1
|
Cai J, Zhou R, Ye Y, Hao J, Luo Q, Mei H, He Z, Wang F, Yalikun A, Yu Y, Wen Y. UGDH promotes 5-fluorouracil resistance in colorectal cancer via the ROS-activated PI3K/AKT-EEF1A2-PRDX1 pathway. Arch Biochem Biophys 2025; 769:110445. [PMID: 40311992 DOI: 10.1016/j.abb.2025.110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/01/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
5-Fluorouracil (5-FU) chemotherapy resistance is a critical determinant of poor prognosis in patients with colorectal cancer (CRC). One critical mechanism underlying this resistance is the clearance of reactive oxygen species (ROS) generated by 5-FU, which diminishes its cytotoxic efficacy. Here, we identified the differential expression of UDP-glucose dehydrogenase (UGDH) in resistant cells through sequencing, and downstream targets EEF1A2 and PRDX1 were identified via immunoprecipitation-mass spectrometry (IP-MS). Stable knockdown and overexpression cell models were generated using a lentiviral system. The effects of gene manipulation on 5-FU resistance in CRC were evaluated both in vitro and in vivo through flow cytometry for reactive oxygen species (ROS) and apoptosis, as well as TUNEL immunofluorescence assays. Sequencing was utilized to enrich the relevant pathways. Our study firstly demonstrates that ROS-induced activation of the PI3K/AKT signaling pathway upregulates UGDH expression. UGDH promotes 5-FU resistance by collaborating with downstream effectors EEF1A2 and PRDX1 to clear ROS and inhibit tumor cell apoptosis. UGDH serves as a potential biomarker for 5-FU resistance in CRC, with its expression levels providing a crucial basis for therapeutic decision-making.
Collapse
Affiliation(s)
- Jinfeng Cai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runkai Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingzi Ye
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jialing Hao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Qinshan Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Mei
- Department of Gastrointestinal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd., Shanghai, 200071, China
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fazhi Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Abudushalamu Yalikun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ali R, Algethami M, Sheha A, Alqahtani S, Altayyar A, Lashen A, Rakha E, Sulaiman AA, Madhusudan S, Ramotar D. PRDX1 protects ATM from arsenite-induced proteotoxicity and maintains its stability during DNA damage signaling. Oncotarget 2025; 16:362-378. [PMID: 40387816 PMCID: PMC12088036 DOI: 10.18632/oncotarget.28720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/17/2025] [Indexed: 05/20/2025] Open
Abstract
Redox regulation and DNA repair coordination are essential for genomic stability. Peroxiredoxin 1 (PRDX1) is a thiol-dependent peroxidase and a chaperone that protects proteins from excessive oxidation. ATM kinase (Ataxia-Telangiectasia Mutated) and the MRN (MRE11-RAD50-NBS1) complex are DNA damage signaling and repair proteins. We previously showed that cells lacking PRDX1 are sensitive to arsenite, a toxic metal that induces DNA single- and double-strand breaks (DSBs). Herein, we showed that PRDX1 interacts with ATM. PRDX1-deleted cells have reduced ATM, MRE11, and RAD50 protein levels, but not NBS1. In control cells treated with arsenite, we observed γH2AX foci formation due to arsenite-induced DSBs, and not from PRDX1-deleted cells. Arsenite caused profound depletion of ATM in PRDX1-deleted cells, suggesting that PRDX1 protects and stabilizes ATM required to form γH2AX foci. Importantly, arsenite pretreatment of PRDX1-deleted cells caused hypersensitivity to chemotherapeutic agents that generate DSBs. Analysis of a clinical cohort of ovarian cancers treated with platinum chemotherapy revealed that tumours with high PRDX1/high ATM or high PRDX1/high MRE11 expression manifested aggressive phenotypes and poor patient survival. The data suggest that PRDX1 can predict responses to chemotherapy, and targeting PRDX1 could be a viable strategy to improve the efficacy of platinum chemotherapy.
Collapse
Affiliation(s)
- Reem Ali
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Mashael Algethami
- Naaz Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Amera Sheha
- Naaz Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Shatha Alqahtani
- Naaz Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Ahmad Altayyar
- Naaz Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Ayat Lashen
- Naaz Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Emad Rakha
- Naaz Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | | | - Srinivasan Madhusudan
- Naaz Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Dindial Ramotar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Martinez-Fernandez V, Barascu A, Teixeira MT. Life and Death without Telomerase: The Saccharomyces cerevisiae Model. Cold Spring Harb Perspect Biol 2025; 17:a041699. [PMID: 39694811 PMCID: PMC12047662 DOI: 10.1101/cshperspect.a041699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Saccharomyces cerevisiae, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.
Collapse
Affiliation(s)
- Veronica Martinez-Fernandez
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Aurélia Barascu
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| |
Collapse
|
4
|
Montaldo NP, Nilsen HL, Bordin DL. Targeting base excision repair in precision oncology. DNA Repair (Amst) 2025; 149:103844. [PMID: 40359788 DOI: 10.1016/j.dnarep.2025.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Targeting the DNA damage response (DDR) is a key strategy in cancer therapy, leveraging tumour-specific weaknesses in DNA repair pathways to enhance treatment efficacy. Traditional treatments, such as chemotherapy and radiation, use a broad, damage-inducing approach, whereas precision oncology aims to tailor therapies to specific genetic mutations or vulnerabilities. The clinical success of PARP inhibitors has renewed the interest in targeting DNA repair as a therapeutic strategy. Expanding the precision oncology toolbox by targeting the base excision repair (BER) pathway presents a promising avenue for cancer therapy, particularly in tumours that rely heavily on this pathway due to deficiencies in other DNA repair mechanisms. This review discusses how targeting BER could improve treatment outcomes, particularly in DDR-defective cancers. With ongoing advancements in biomarker discovery and drug development, BER-targeted therapies hold significant potential for refining precision oncology approaches.
Collapse
Affiliation(s)
- Nicola P Montaldo
- Department of Microbiology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway; CRESCO - Centre for embryology and healthy Development, University of Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Microbiology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway; CRESCO - Centre for embryology and healthy Development, University of Oslo, Norway.
| | - Diana L Bordin
- Akershus University Hospital, Department of Clinical Molecular Biology, Unit for Precision Medicine, Lørenskog, Norway
| |
Collapse
|
5
|
Nguyen TT, Mazzucco G, Kyriacou E, Lunardi T, Brandl L, Ahmed W, Doksani Y, Lingner J. Oxidative stress at telomeres triggers internal DNA loops, TRF1 dissociation, and TRF2-dependent R-loops. Nucleic Acids Res 2025; 53:gkaf285. [PMID: 40219969 PMCID: PMC11992676 DOI: 10.1093/nar/gkaf285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Telomeres are the nucleoprotein structures at chromosome ends. Telomeres are particularly sensitive to oxidative stress, which can induce telomere damage, shortening, and premature cellular senescence. How oxidative damage influences telomere structure has not been defined. Here, we induce oxidative damage at telomeres using menadione, which damages mitochondria mimicking intrinsic oxidative stress. We find that oxidative stress induces at telomeres single-stranded DNA breaks, internal DNA loop structures, dissociation of the shelterin component TRF1, upregulation of TERRA long noncoding RNA, and increased DNA:RNA hybrid structures known as R-loops. R-loop formation is enhanced not only in cis at telomeres, which show increased TERRA transcription, but also in trans at telomeres at which TERRA transcription is not induced indicating post-transcriptional R-loop formation. Finally, we show that oxidative damage induced R-loop formation requires TRF2, whose R-loop promoting activity may be unleashed upon TRF1 dissociation from telomeres. Altogether, our findings uncover in response to oxidative stress major remodelling of telomeric DNA, RNA, and shelterin complexes, and they unravel a physiological role of TRF2's ability to stimulate TERRA R-loop formation. We propose that the identified structural changes may facilitate DNA damage signalling and repair pathways to maintain telomere integrity during development and aging.
Collapse
Affiliation(s)
- Trang Thu Nguyen
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Giulia Mazzucco
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Lunardi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Leona Brandl
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wareed Ahmed
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ylli Doksani
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Arnhold J. Oxidant-Based Cytotoxic Agents During Aging: From Disturbed Energy Metabolism to Chronic Inflammation and Disease Progression. Biomolecules 2025; 15:547. [PMID: 40305309 PMCID: PMC12025200 DOI: 10.3390/biom15040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
In humans, aging is an inevitable consequence of diminished growth processes after reaching maturity. The high order of biomolecules in cells and tissues is continuously disturbed by numerous physical and chemical destructive impacts. Host-derived oxidant-based cytotoxic agents (reactive species, transition free metal ions, and free heme) contribute considerably to this damage. These agents are under the control of immediately acting antagonizing principles, which are important to ensure cell and tissue homeostasis. In this review, I apply the concept of host-derived cytotoxic agents and their interplay with antagonizing principles to the aging process. During aging, energy metabolism and the supply of tissues with dioxygen and nutrients are increasingly disturbed. In addition, a chronic inflammatory state develops, a condition known as inflammaging. The balance between oxidant-based cytotoxic agents and protective mechanisms is analyzed depending on age-based physiological alterations in ATP production. Disturbances in this balance are associated with the development of age-related diseases and comorbidities. An enhanced production of reactive species from dysfunctional mitochondria, alterations in cellular redox homeostasis, and adaptations to hypoxia are highlighted. Examples of how disturbances between oxidant-based cytotoxic agents and antagonizing principles contribute to the pathogenesis of diseases in persons of advanced age are given.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
7
|
Li H, Furusawa T, Cavero R, Xiao Y, Chari R, Wu X, Sun D, Hartmann O, Dhall A, Holewinski R, Andresson T, Karim B, Villamor-Payà M, Gallardo D, Day CP, Pal LR, Nair NU, Ruppin E, Aladjem MI, Pommier Y, Diefenbacher ME, Lim JM, Levine RL, Stracker TH, Weyemi U. Metabolic dependency mapping identifies Peroxiredoxin 1 as a driver of resistance to ATM inhibition. Redox Biol 2025; 80:103503. [PMID: 39854937 PMCID: PMC11795153 DOI: 10.1016/j.redox.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic pathways fuel tumor progression and resistance to stress conditions including chemotherapeutic drugs, such as DNA damage response (DDR) inhibitors. Yet, significant gaps persist in how metabolic pathways confer resistance to DDR inhibition in cancer cells. Here, we employed a metabolism-focused CRISPR knockout screen and identified genetic vulnerabilities to DDR inhibitors. We unveiled Peroxiredoxin 1 (PRDX1) as a synthetic lethality partner with Ataxia Telangiectasia Mutated (ATM) kinase. Tumor cells depleted of PRDX1 displayed heightened sensitivity to ATM inhibition in vitro and in mice in a manner dependent on p53 status. Mechanistically, we discovered that the ribosomal protein RPL32 undergoes redox modification on active cysteine residues 91 and 96 upon ATM inhibition, promoting p53 stability and altered cell fitness. Our findings reveal a new pathway whereby RPL32 senses stress and induces p53 activation impairing tumor cell survival.
Collapse
Affiliation(s)
- Haojian Li
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Takashi Furusawa
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Renzo Cavero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Yunjie Xiao
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick, MD, USA
| | - Xiaolin Wu
- NCI Genomics Technology Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research/ Frederick, Maryland, USA
| | - David Sun
- NCI Genomics Technology Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research/ Frederick, Maryland, USA
| | - Oliver Hartmann
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL/CPC-M), Munich, Germany
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory/Cancer Research Technology Program/Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory/Cancer Research Technology Program/Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory/ Cancer Research Technology Program/Frederick National Laboratory for Cancer Research/ Frederick, Maryland, USA
| | | | - Devorah Gallardo
- Laboratory Animal Sciences Program, Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Cancer Data Science Lab/ Center for Cancer Research/National Cancer Institute/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lipika R Pal
- Cancer Data Science Lab/ Center for Cancer Research/National Cancer Institute/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Lab/ Center for Cancer Research/National Cancer Institute/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Lab/ Center for Cancer Research/National Cancer Institute/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Markus E Diefenbacher
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL/CPC-M), Munich, Germany
| | - Jung Mi Lim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | - Urbain Weyemi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Douglas ME. How to write an ending: Telomere replication as a multistep process. DNA Repair (Amst) 2024; 144:103774. [PMID: 39426311 DOI: 10.1016/j.dnarep.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Telomeres are protective nucleoprotein caps found at the natural ends of eukaryotic chromosomes and are crucial for the preservation of stable chromosomal structure. In cycling cells, telomeres are maintained by a multi-step process called telomere replication, which involves the eukaryotic replisome navigating a complex repetitive template tightly bound by specific proteins, before terminating at the chromosome end prior to a 5' resection step that generates a protective 3' overhang. In this review, we examine mechanistic aspects of the telomere replication process and consider how individual parts of this multistep event are integrated and coordinated with one-another.
Collapse
Affiliation(s)
- Max E Douglas
- Telomere Biology Laboratory, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
9
|
Loukopoulou C, Nikolouzakis T, Koliarakis I, Vakonaki E, Tsiaoussis J. Telomere Length and Telomerase Activity as Potential Biomarkers for Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3370. [PMID: 39409990 PMCID: PMC11482595 DOI: 10.3390/cancers16193370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Gastrointestinal (GI) cancers, such as colorectal and gastric cancers, pose significant global health challenges due to their high rates of incidence and mortality. Even with advancements in treatment and early detection, many patients still face poor outcomes, highlighting the critical need for new biomarkers and therapeutic targets. Telomere length (TL) and telomerase activity (TA) have gained attention in this context. Telomeres, protective nucleotide sequences at chromosome ends, shorten with each cell division, leading to cellular aging. Telomerase, a ribonucleoprotein enzyme, counteracts this shortening by adding telomeric repeats, a process tightly regulated in normal cells but often dysregulated in cancer. This review critically evaluates the role of TL and TA in the pathogenesis of GI cancers, examining their potential as diagnostic, prognostic, and predictive biomarkers. It explores how alterations in telomere biology contribute to the initiation and progression of GI tumors and assesses the therapeutic implications of targeting telomerase. By integrating findings from diverse studies, this review aims to elucidate the intricate relationship between telomere dynamics and gastrointestinal carcinogenesis, offering insights into how TL and TA could be leveraged to enhance the early detection, treatment, and prognosis of GI cancers.
Collapse
Affiliation(s)
- Christina Loukopoulou
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Taxiarchis Nikolouzakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| |
Collapse
|
10
|
Medoro A, Saso L, Scapagnini G, Davinelli S. NRF2 signaling pathway and telomere length in aging and age-related diseases. Mol Cell Biochem 2024; 479:2597-2613. [PMID: 37917279 PMCID: PMC11455797 DOI: 10.1007/s11010-023-04878-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is well recognized as a critical regulator of redox, metabolic, and protein homeostasis, as well as the regulation of inflammation. An age-associated decline in NRF2 activity may allow oxidative stress to remain unmitigated and affect key features associated with the aging phenotype, including telomere shortening. Telomeres, the protective caps of eukaryotic chromosomes, are highly susceptible to oxidative DNA damage, which can accelerate telomere shortening and, consequently, lead to premature senescence and genomic instability. In this review, we explore how the dysregulation of NRF2, coupled with an increase in oxidative stress, might be a major determinant of telomere shortening and age-related diseases. We discuss the relevance of the connection between NRF2 deficiency in aging and telomere attrition, emphasizing the importance of studying this functional link to enhance our understanding of aging pathologies. Finally, we present a number of compounds that possess the ability to restore NRF2 function, maintain a proper redox balance, and preserve telomere length during aging.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| |
Collapse
|
11
|
Chen HR, Sun Y, Mittler G, Rumpf T, Shvedunova M, Grosschedl R, Akhtar A. MOF-mediated PRDX1 acetylation regulates inflammatory macrophage activation. Cell Rep 2024; 43:114682. [PMID: 39207899 DOI: 10.1016/j.celrep.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.
Collapse
Affiliation(s)
- Hui-Ru Chen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany; Albert-Ludwigs-University Freiburg, Faculty of Biology, Freiburg, Baden-Württemberg, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Tobias Rumpf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany.
| |
Collapse
|
12
|
Kong W, Zhao Y, Dai X, You C. Methodologies for the detection and sequencing of the epigenetic-like oxidative DNA modification, 8-oxo-7,8-dihydroguanine. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108516. [PMID: 39486616 DOI: 10.1016/j.mrrev.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The human genome is constantly threatened by endogenous and environmental DNA damaging agents that can induce a variety of chemically modified DNA lesions including 8-oxo-7,8-dihydroguanine (OG). Increasing evidence has indicated that OG is not only a biomarker for oxidative DNA damage but also a novel epigenetic-like modification involved in regulation of gene expression in mammalian cells. Here we summarize the recent progress in OG research focusing on the following points: (i) the mechanism of OG production in organisms and its biological consequences in cells, (ii) the accurate identification of OG in low-abundance genomes and complex biological backgrounds, (iii) the development of OG sequencing methods. These studies will be helpful for further understanding of the molecular mechanisms of OG-induced mutagenesis and its potential roles in human development and diseases such as cancer.
Collapse
Affiliation(s)
- Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yingqi Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
13
|
Vaurs M, Dolu EB, Decottignies A. Mitochondria and telomeres: hand in glove. Biogerontology 2024; 25:289-300. [PMID: 37864609 DOI: 10.1007/s10522-023-10074-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Born as an endosymbiont, the bacteria engulfed by the proto-eukaryotic cell more than 1.45 billion years ago progressively evolved as an important organelle with multiple interactions with the host cell. In particular, strong connections between mitochondria and the chromosome ends, the telomeres, led to propose a new theory of ageing in which dysfunctional telomeres and mitochondria are the main actors of a vicious circle reducing cell fitness and promoting cellular ageing. We review the evidences that oxidative stress and dysfunctional mitochondria damage telomeres and further discuss the interrelationship between telomere biology and mitochondria through the lens of telomerase which shuttles between the nucleus and mitochondria. Finally, we elaborate on the possible role of the mitochondrial genome on the inheritance of human telomere length through the expression of mitochondrial gene variants.
Collapse
Affiliation(s)
- Mélina Vaurs
- de Duve Institute, UCLouvain, Avenue Hippocrate, 1200, Brussels, Belgium.
| | - Elif Beyza Dolu
- de Duve Institute, UCLouvain, Avenue Hippocrate, 1200, Brussels, Belgium
| | | |
Collapse
|
14
|
Thosar SA, Barnes RP, Detwiler A, Bhargava R, Wondisford A, O'Sullivan RJ, Opresko PL. Oxidative guanine base damage plays a dual role in regulating productive ALT-associated homology-directed repair. Cell Rep 2024; 43:113656. [PMID: 38194346 PMCID: PMC10851105 DOI: 10.1016/j.celrep.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer cells maintain telomeres by upregulating telomerase or alternative lengthening of telomeres (ALT) via homology-directed repair at telomeric DNA breaks. 8-Oxoguanine (8oxoG) is a highly prevalent endogenous DNA lesion in telomeric sequences, altering telomere structure and telomerase activity, but its impact on ALT is unclear. Here, we demonstrate that targeted 8oxoG formation at telomeres stimulates ALT activity and homologous recombination specifically in ALT cancer cells. Mechanistically, an acute 8oxoG induction increases replication stress, as evidenced by increased telomere fragility and ATR kinase activation at ALT telomeres. Furthermore, ALT cells are more sensitive to chronic telomeric 8oxoG damage than telomerase-positive cancer cells, consistent with increased 8oxoG-induced replication stress. However, telomeric 8oxoG production in G2 phase, when ALT telomere elongation occurs, impairs telomeric DNA synthesis. Our study demonstrates that a common oxidative base lesion has a dual role in regulating ALT depending on when the damage arises in the cell cycle.
Collapse
Affiliation(s)
- Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan P Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ariana Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ragini Bhargava
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Wondisford
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roderick J O'Sullivan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Vukašinović A, Klisic A, Ostanek B, Kafedžić S, Zdravković M, Ilić I, Sopić M, Hinić S, Stefanović M, Bogavac-Stanojević N, Marc J, Nešković AN, Kotur-Stevuljević J. Redox Status and Telomere-Telomerase System Biomarkers in Patients with Acute Myocardial Infarction Using a Principal Component Analysis: Is There a Link? Int J Mol Sci 2023; 24:14308. [PMID: 37762611 PMCID: PMC10531660 DOI: 10.3390/ijms241814308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, we examined redox status parameters in arterial and venous blood samples, its potential to predict the prognosis of acute myocardial infarction (AMI) patients assessed through its impact on the comprehensive grading SYNTAX score, and its clinical accuracy. Potential connections between common blood biomarkers, biomarkers of redox status, leukocyte telomere length, and telomerase enzyme activity in the acute myocardial infarction burden were assessed using principal component analysis (PCA). This study included 92 patients with acute myocardial infarction. Significantly higher levels of advanced oxidation protein products (AOPP), superoxide anion (O2•-), ischemia-modified albumin (IMA), and significantly lower levels of total oxidant status (TOS) and total protein sulfhydryl (SH-) groups were found in arterial blood than in the peripheral venous blood samples, while biomarkers of the telomere-telomerase system did not show statistical significance in the two compared sample types (p = 0.834 and p = 0.419). To better understand the effect of the examined biomarkers in the AMI patients on SYNTAX score, those biomarkers were grouped using PCA, which merged them into the four the most contributing factors. The "cholesterol-protein factor" and "oxidative-telomere factor" were independent predictors of higher SYNTAX score (OR = 0.338, p = 0.008 and OR = 0.427, p = 0.035, respectively), while the ability to discriminate STEMI from non-STEMI patients had only the "oxidative-telomere factor" (AUC = 0.860, p = 0.008). The results show that traditional cardiovascular risk factors, i.e., high total cholesterol together with high total serum proteins and haemoglobin, are associated with severe disease progression in much the same way as a combination of redox biomarkers (pro-oxidant-antioxidant balance, total antioxidant status, IMA) and telomere length.
Collapse
Affiliation(s)
- Aleksandra Vukašinović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.O.); (J.M.)
| | - Srdjan Kafedžić
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marija Zdravković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Cardiology, Clinical Hospital Center Bezanijska Kosa, 11070 Belgrade, Serbia;
| | - Ivan Ilić
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| | - Saša Hinić
- Department of Cardiology, Clinical Hospital Center Bezanijska Kosa, 11070 Belgrade, Serbia;
| | - Milica Stefanović
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
| | - Nataša Bogavac-Stanojević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.O.); (J.M.)
| | - Aleksandar N. Nešković
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| |
Collapse
|
16
|
Salikhova DI, Golovicheva VV, Fatkhudinov TK, Shevtsova YA, Soboleva AG, Goryunov KV, Dyakonov AS, Mokroysova VO, Mingaleva NS, Shedenkova MO, Makhnach OV, Kutsev SI, Chekhonin VP, Silachev DN, Goldshtein DV. Therapeutic Efficiency of Proteins Secreted by Glial Progenitor Cells in a Rat Model of Traumatic Brain Injury. Int J Mol Sci 2023; 24:12341. [PMID: 37569717 PMCID: PMC10419112 DOI: 10.3390/ijms241512341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Traumatic brain injuries account for 30-50% of all physical traumas and are the most common pathological diseases of the brain. Mechanical damage of brain tissue leads to the disruption of the blood-brain barrier and the massive death of neuronal, glial, and endothelial cells. These events trigger a neuroinflammatory response and neurodegenerative processes locally and in distant parts of the brain and promote cognitive impairment. Effective instruments to restore neural tissue in traumatic brain injury are lacking. Glial cells are the main auxiliary cells of the nervous system, supporting homeostasis and ensuring the protection of neurons through contact and paracrine mechanisms. The glial cells' secretome may be considered as a means to support the regeneration of nervous tissue. Consequently, this study focused on the therapeutic efficiency of composite proteins with a molecular weight of 5-100 kDa secreted by glial progenitor cells in a rat model of traumatic brain injury. The characterization of proteins below 100 kDa secreted by glial progenitor cells was evaluated by proteomic analysis. Therapeutic effects were assessed by neurological outcomes, measurement of the damage volume by MRI, and an evaluation of the neurodegenerative, apoptotic, and inflammation markers in different areas of the brain. Intranasal infusions of the composite protein product facilitated the functional recovery of the experimental animals by decreasing the inflammation and apoptotic processes, preventing neurodegenerative processes by reducing the amounts of phosphorylated Tau isoforms Ser396 and Thr205. Consistently, our findings support the further consideration of glial secretomes for clinical use in TBI, notably in such aspects as dose-dependent effects and standardization.
Collapse
Affiliation(s)
- Diana I. Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Victoria V. Golovicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Timur Kh. Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Yulia A. Shevtsova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (Y.A.S.); (K.V.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna G. Soboleva
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Kirill V. Goryunov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (Y.A.S.); (K.V.G.)
| | - Alexander S. Dyakonov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Victoria O. Mokroysova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Natalia S. Mingaleva
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Margarita O. Shedenkova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Oleg V. Makhnach
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| | - Vladimir P. Chekhonin
- Serbsky State Scientific Center for Social and Forensic Psychiatry, 119034 Moscow, Russia;
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Dmitry V. Goldshtein
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (T.K.F.); (A.G.S.); (M.O.S.); (D.V.G.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.S.D.); (V.O.M.); (N.S.M.); (O.V.M.); (S.I.K.)
| |
Collapse
|
17
|
Moretton A, Kourtis S, Gañez Zapater A, Calabrò C, Espinar Calvo ML, Fontaine F, Darai E, Abad Cortel E, Block S, Pascual‐Reguant L, Pardo‐Lorente N, Ghose R, Vander Heiden MG, Janic A, Müller AC, Loizou JI, Sdelci S. A metabolic map of the DNA damage response identifies PRDX1 in the control of nuclear ROS scavenging and aspartate availability. Mol Syst Biol 2023; 19:e11267. [PMID: 37259925 PMCID: PMC10333845 DOI: 10.15252/msb.202211267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.
Collapse
Affiliation(s)
- Amandine Moretton
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Antoni Gañez Zapater
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Chiara Calabrò
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | | | - Frédéric Fontaine
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Evangelia Darai
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Etna Abad Cortel
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Samuel Block
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Laura Pascual‐Reguant
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Natalia Pardo‐Lorente
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Dana‐Farber Cancer InstituteBostonMAUSA
| | - Ana Janic
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I Loizou
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
18
|
Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel) 2023; 12:1250. [PMID: 37371980 DOI: 10.3390/antiox12061250] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Collapse
Affiliation(s)
- Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
19
|
Chieffi Baccari G, Iurato G, Santillo A, Dale B. Male Germ Cell Telomeres and Chemical Pollutants. Biomolecules 2023; 13:biom13050745. [PMID: 37238614 DOI: 10.3390/biom13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, male infertility has been correlated with the shortening of sperm telomeres. Telomeres regulate the reproductive lifespan by mediating the synapsis and homologous recombination of chromosomes during gametogenesis. They are composed of thousands of hexanucleotide DNA repeats (TTAGGG) that are coupled to specialized shelterin complex proteins and non-coding RNAs. Telomerase activity in male germ cells ensures that the telomere length is maintained at maximum levels during spermatogenesis, despite telomere shortening due to DNA replication or other genotoxic factors such as environmental pollutants. An emerging body of evidence has associated an exposure to pollutants with male infertility. Although telomeric DNA may be one of the important targets of environmental pollutants, only a few authors have considered it as a conventional parameter for sperm function. The aim of this review is to provide comprehensive and up-to-date data on the research carried out so far on the structure/function of telomeres in spermatogenesis and the influence of environmental pollutants on their functionality. The link between pollutant-induced oxidative stress and telomere length in germ cells is discussed.
Collapse
Affiliation(s)
- Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | | | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Brian Dale
- Centro Fecondazione Assistita (CFA-Italia), 80127 Napoli, Italy
| |
Collapse
|
20
|
Telomere Attrition in Chronic Kidney Diseases. Antioxidants (Basel) 2023; 12:antiox12030579. [PMID: 36978826 PMCID: PMC10045531 DOI: 10.3390/antiox12030579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Telomeres are dynamic DNA nucleoprotein structures located at the end of chromosomes where they maintain genomic stability. Due to the end replication problem, telomeres shorten with each cell division. Critically short telomeres trigger cellular senescence, which contributes to various degenerative and age-related diseases, including chronic kidney diseases (CKDs). Additionally, other factors such as oxidative stress may also contribute to accelerated telomere shortening. Indeed, telomeres are highly susceptible to oxidative damage due to their high guanine content. Here, we provide a comprehensive review of studies examining telomere length (TL) in CKDs to highlight the association between TL and the development and progression of CKDs in humans. We then focus on studies investigating TL in patients receiving kidney replacement therapy. The mechanisms of the relationship between TL and CKD are not fully understood, but a shorter TL has been associated with decreased kidney function and the progression of nephropathy. Interestingly, telomere lengthening has been observed in some patients in longitudinal studies. Hemodialysis has been shown to accelerate telomere erosion, whereas the uremic milieu is not reversed even in kidney transplantation patients. Overall, this review aims to provide insights into the biological significance of telomere attrition in the pathophysiology of kidney disease, which may contribute to the development of new strategies for the management of patients with CKDs.
Collapse
|
21
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
22
|
Moazamian A, Gharagozloo P, Aitken RJ, Drevet JR. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Sperm telomeres, oxidative stress, and infertility. Reproduction 2022; 164:F125-F133. [PMID: 35938805 DOI: 10.1530/rep-22-0189] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Oxidative stress is recognized as an underlying driving factor of both telomere dysfunction and human subfertility/infertility. This review briefly reassesses telomere integrity as a fertility biomarker before proposing a novel, mechanistic rationale for the role of oxidative stress in the seemingly paradoxical lengthening of sperm telomeres with aging. Abstract The maintenance of redox balance in the male reproductive tract is critical to sperm health and function. Physiological levels of reactive oxygen species (ROS) promote sperm capacitation, while excess ROS exposure, or depleted antioxidant defenses, yields a state of oxidative stress which disrupts their fertilizing capacity and DNA structural integrity. The guanine moiety is the most readily oxidized of the four DNA bases and gets converted to the mutagenic lesion 8-hydroxy-deoxyguanosine (8-OHdG). Numerous studies have also confirmed oxidative stress as a driving factor behind accelerated telomere shortening and dysfunction. Although a clear consensus has not been reached, clinical studies also appear to associate telomere integrity with fertility outcomes in the assisted reproductive technology setting. Intriguingly, while sperm cellular and molecular characteristics make them more susceptible to oxidative insult than any other cell type, they are also the only cell type in which telomere lengthening accompanies aging. This article focuses on the oxidative stress response pathways to propose a mechanism for the explanation of this apparent paradox.
Collapse
Affiliation(s)
- Aron Moazamian
- CellOxess LLC, Ewing, New Jersey, USA.,Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| | | | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joël R Drevet
- Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| |
Collapse
|
23
|
Vaurs M, Audry J, Runge KW, Géli V, Coulon S. A proto-telomere is elongated by telomerase in a shelterin-dependent manner in quiescent fission yeast cells. Nucleic Acids Res 2022; 50:11682-11695. [PMID: 36330920 PMCID: PMC9723628 DOI: 10.1093/nar/gkac986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Telomere elongation is coupled with genome replication, raising the question of the repair of short telomeres in post-mitotic cells. We investigated the fate of a telomere-repeat capped end that mimics a single short telomere in quiescent fission yeast cells. We show that telomerase is able to elongate this single short telomere during quiescence despite the binding of Ku to the proto-telomere. While Taz1 and Rap1 repress telomerase in vegetative cells, both shelterin proteins are required for efficient telomere extension in quiescent cells, underscoring a distinct mode of telomerase control. We further show that Rad3ATR and Tel1ATM are redundantly required for telomere elongation in quiescence through the phosphorylation of Ccq1 and that Rif1 and its associated-PP1 phosphatases negatively regulate telomerase activity by opposing Ccq1 phosphorylation. The distinct mode of telomerase regulation in quiescent fission yeast cells may be relevant to that in human stem and progenitor cells.
Collapse
Affiliation(s)
- Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | - Julien Audry
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kurt W Runge
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Vincent Géli
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| |
Collapse
|
24
|
Brandt M, Dörschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S, Stauber R, Karbach SH, Münzel T, Daiber A, Wenzel P. Telomere Shortening in Hypertensive Heart Disease Depends on Oxidative DNA Damage and Predicts Impaired Recovery of Cardiac Function in Heart Failure. Hypertension 2022; 79:2173-2184. [PMID: 35862118 DOI: 10.1161/hypertensionaha.121.18935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) coincides with cardiomyocyte telomere shortening. Arterial hypertension is the most prominent risk factor for HF. Both HF and arterial hypertension are associated with dysregulation of the neurohormonal axis. How neurohormonal activation is linked to telomere shortening in the pathogenesis of HF is incompletely understood. METHODS Cardiomyocyte telomere length was assessed in a mouse model of hypertensive HF induced by excess neurohormonal activation (AngII [angiotensin II] infusion, high salt diet, and uninephrectomy), in AngII-stimulated cardiomyocytes and in endomyocardial biopsies from patients with HF. Superoxide production, expression of NOX2 (NADPH oxidase 2) and PRDX1 (peroxiredoxin 1) and HDAC6 (histone deacetylase 6) activity were assessed. RESULTS Telomere shortening occurred in vitro and in vivo, correlating with both left ventricular (LV) dilatation and LV systolic function impairment. Telomere shortening coincided with increased superoxide production, increased NOX2 expression, increased HDAC6 activity, loss of the telomere-specific antioxidant PRDX1, and increased oxidative DNA-damage. NOX2 knockout prevented PRDX1 depletion, DNA-damage and telomere shortening confirming this enzyme as a critical source of reactive oxygen species. Cotreatment with the NOX inhibitor apocynin ameliorated hypertensive HF and telomere shortening. Similarly, treatment with the HDAC6 inhibitor tubastatin A, which increases PRDX1 bioavailability, prevented telomere shortening in adult cardiomyocytes. To explore the clinical relevance of our findings, we examined endomyocardial biopsies from an all-comer population of patients with HF with reduced ejection fraction. Here, cardiomyocyte telomere length predicted the recovery of cardiac function. CONCLUSIONS Cardiomyocyte telomere shortening and oxidative damage in heart failure with reduced ejection fraction induced by excess neurohormonal activation depends on NOX2-derived superoxide and may help to stratify HF therapy.
Collapse
Affiliation(s)
- Moritz Brandt
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Hendrik Dörschmann
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sana'a Khraisat
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Tanja Knopp
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Julia Ringen
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sanela Kalinovic
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Venkata Garlapati
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Svenja Siemer
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Michael Molitor
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sebastian Göbel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Roland Stauber
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Susanne Helena Karbach
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Thomas Münzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Andreas Daiber
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Philip Wenzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands (P.W.)
| |
Collapse
|
25
|
Yao J, Ma F, Zhang L, Zhu C, Jumabay M, Yao Z, Wang L, Cai X, Zhang D, Qiao X, Shivkumar K, Pellegrini M, Yao Y, Wu X, Boström KI. Single-Cell RNA-Seq Identifies Dynamic Cardiac Transition Program from Adipose Derived Cells Induced by Leukemia Inhibitory Factor. Stem Cells 2022; 40:932-948. [PMID: 35896368 PMCID: PMC9585902 DOI: 10.1093/stmcls/sxac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022]
Abstract
Adipose-derived cells (ADCs) from white adipose tissue (WAT) are promising stem cell candidates because of their large regenerative reserves and the potential for cardiac regeneration. However, given the heterogeneity of ADC and its unsolved mechanisms of cardiac acquisition, ADC-cardiac transition efficiency remains low. In this study, we explored the heterogeneity of ADCs and the cellular kinetics of 39,432 single-cell transcriptomes along the leukemia inhibitory factor (LIF) induced ADC-cardiac transition. We identified distinct ADC subpopulations that reacted differentially to LIF when entering the cardiomyogenic program, further demonstrating that ADC-myogenesis is time-dependent and initiates from transient changes in nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. At later stages, pseudotime analysis of ADCs navigated a trajectory with two branches corresponding to activated myofibroblast or cardiomyocyte-like cells. Our findings offer a high-resolution dissection of ADC heterogeneity and cell fate during ADC-cardiac transition, thus providing new insights into potential cardiac stem cells.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.,Chongqing International Institute for Immunology, Chongqing 401338, China
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Ching Zhu
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Medet Jumabay
- Division of Allergy, Immunology Center for Immunity, Infection, and Inflammation Pediatrics, Dept of Medicine, University of California, San Diego, San Diego, CA
| | - Zehao Yao
- Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Lumin Wang
- Institute of Precision Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | | | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.,Dept of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
26
|
Assis V, de Sousa Neto IV, Ribeiro FM, de Cassia Marqueti R, Franco OL, da Silva Aguiar S, Petriz B. The Emerging Role of the Aging Process and Exercise Training on the Crosstalk between Gut Microbiota and Telomere Length. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137810. [PMID: 35805470 PMCID: PMC9266215 DOI: 10.3390/ijerph19137810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Aging is a natural process of organism deterioration, which possibly impairs multiple physiological functions. These harmful effects are linked to an accumulation of somatic mutations, oxidative stress, low-grade inflammation, protein damage, and mitochondrial dysfunction. It is known that these factors are capable of inducing telomere shortening, as well as intestinal dysbiosis. Otherwise, among the biological mechanisms triggered by physical exercise, the attenuation of pro-inflammatory mediators accompanied by redox state improvement can be the main mediators for microbiota homeostasis and telomere wear prevention. Thus, this review highlights how oxidative stress, inflammation, telomere attrition, and gut microbiota (GM) dysbiosis are interconnected. Above all, we provide a logical foundation for unraveling the role of physical exercise in this process. Based on the studies summarized in this article, exercise training can increase the biodiversity of beneficial microbial species, decrease low-grade inflammation and improve oxidative metabolism, these factors together possibly reduce telomeric shortening.
Collapse
Affiliation(s)
- Victória Assis
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasília 72220-275, Brazil; (V.A.); (I.V.d.S.N.); (R.d.C.M.)
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasília 72220-275, Brazil; (V.A.); (I.V.d.S.N.); (R.d.C.M.)
| | - Filipe M. Ribeiro
- Postgraduate Program in Physical Education–Catholic University of Brasília, Brasília 71966-700, Brazil;
- Postgraduate Program in Genomic Sciences and Biotechnology, Proteomic and Biochemical Analysis Center, Catholic University of Brasília, Brasília 71966-700, Brazil; (O.L.F.); (B.P.)
- Laboratory of Molecular Exercise Physiology–Physical Education Department, University Center–UDF, Brasília 70297-400, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasília 72220-275, Brazil; (V.A.); (I.V.d.S.N.); (R.d.C.M.)
| | - Octávio Luiz Franco
- Postgraduate Program in Genomic Sciences and Biotechnology, Proteomic and Biochemical Analysis Center, Catholic University of Brasília, Brasília 71966-700, Brazil; (O.L.F.); (B.P.)
- Postgraduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco, Campo Grande 79117-900, Brazil
| | - Samuel da Silva Aguiar
- Laboratory of Molecular Exercise Physiology–Physical Education Department, University Center–UDF, Brasília 70297-400, Brazil
- Postgraduate Program in Physical Education–Federal University of Mato Grosso–UFMT, Cuiabá 78060-900, Brazil
- Correspondence: ; Tel.: +55-61-99425-5260
| | - Bernardo Petriz
- Postgraduate Program in Genomic Sciences and Biotechnology, Proteomic and Biochemical Analysis Center, Catholic University of Brasília, Brasília 71966-700, Brazil; (O.L.F.); (B.P.)
- Laboratory of Molecular Exercise Physiology–Physical Education Department, University Center–UDF, Brasília 70297-400, Brazil
- Postgraduate Program in Rehabilitation Sciences–University of Brasília, Brasília 72220-275, Brazil
| |
Collapse
|
27
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
28
|
Wu M, Deng C, Lo TH, Chan KY, Li X, Wong CM. Peroxiredoxin, Senescence, and Cancer. Cells 2022; 11:cells11111772. [PMID: 35681467 PMCID: PMC9179887 DOI: 10.3390/cells11111772] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Peroxiredoxins are multifunctional enzymes that play a key role in protecting cells from stresses and maintaining the homeostasis of many cellular processes. Peroxiredoxins were firstly identified as antioxidant enzymes that can be found in all living organisms. Later studies demonstrated that peroxiredoxins also act as redox signaling regulators, chaperones, and proinflammatory factors and play important roles in oxidative defense, redox signaling, protein folding, cycle cell progression, DNA integrity, inflammation, and carcinogenesis. The versatility of peroxiredoxins is mainly based on their unique active center cysteine with a wide range of redox states and the ability to switch between low- and high-molecular-weight species for regulating their peroxidase and chaperone activities. Understanding the molecular mechanisms of peroxiredoxin in these processes will allow the development of new approaches to enhance longevity and to treat various cancers. In this article, we briefly review the history of peroxiredoxins, summarize recent advances in our understanding of peroxiredoxins in aging- and cancer-related biological processes, and discuss the future perspectives of using peroxiredoxins in disease diagnostics and treatments.
Collapse
|
29
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
30
|
Effect of oxidative stress on telomere maintenance in aortic smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166397. [PMID: 35346819 DOI: 10.1016/j.bbadis.2022.166397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2+/-) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1+/-) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2+/- mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.
Collapse
|
31
|
Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022; 11:antiox11030572. [PMID: 35326222 PMCID: PMC8944834 DOI: 10.3390/antiox11030572] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is the subject of numerous studies, most of them focusing on the negative effects exerted at both molecular and cellular levels, ignoring the possible benefits of free radicals. More and more people admit to having heard of the term "oxidative stress", but few of them understand the meaning of it. We summarized and analyzed the published literature data in order to emphasize the importance and adaptation mechanisms of basal oxidative stress. This review aims to provide an overview of the mechanisms underlying the positive effects of oxidative stress, highlighting these effects, as well as the risks for the population consuming higher doses than the recommended daily intake of antioxidants. The biological dose-response curve in oxidative stress is unpredictable as reactive species are clearly responsible for cellular degradation, whereas antioxidant therapies can alleviate senescence by maintaining redox balance; nevertheless, excessive doses of the latter can modify the redox balance of the cell, leading to a negative outcome. It can be stated that the presence of oxidative status or oxidative stress is a physiological condition with well-defined roles, yet these have been insufficiently researched and explored. The involvement of reactive oxygen species in the pathophysiology of some associated diseases is well-known and the involvement of antioxidant therapies in the processes of senescence, apoptosis, autophagy, and the maintenance of cellular homeostasis cannot be denied. All data in this review support the idea that oxidative stress is an undesirable phenomenon in high and long-term concentrations, but regular exposure is consistent with the hormetic theory.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
- Correspondence:
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Amalia Pușcaș Miklos
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Mădălina-Georgiana Bătrînu
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
32
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
34
|
Li Z, Li W, Zhou D, Zhao J, Ma Y, Huang L, Dong C, Wilson JX, Huang G. Alleviating Oxidative Damage-Induced Telomere Attrition: a Potential Mechanism for Inhibition by Folic Acid of Apoptosis in Neural Stem Cells. Mol Neurobiol 2021; 59:590-602. [PMID: 34741234 DOI: 10.1007/s12035-021-02623-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/26/2021] [Indexed: 01/07/2023]
Abstract
DNA oxidative damage can cause telomere attrition or dysfunction that triggers cell senescence and apoptosis. The hypothesis of this study is that folic acid decreases apoptosis in neural stem cells (NSCs) by preventing oxidative stress-induced telomere attrition. Primary cultures of NSCs were incubated for 9 days with various concentrations of folic acid (0-40 µM) and then incubated for 24 h with a combination of folic acid and an oxidant (100-µM hydrogen peroxide, H2O2), antioxidant (10-mM N-acetyl-L-cysteine, NAC), or vehicle. Intracellular folate concentration, apoptosis rate, cell proliferative capacity, telomere length, telomeric DNA oxidative damage, telomerase activity, intracellular reactive oxygen species (ROS) levels, cellular oxidative damage, and intracellular antioxidant enzyme activities were determined. The results showed that folic acid deficiency in NSCs decreased intracellular folate concentration, cell proliferation, telomere length, and telomerase activity but increased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. In contrast, folic acid supplementation dose-dependently increased intracellular folate concentration, cell proliferative capacity, telomere length, and telomerase activity but decreased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. Exposure to H2O2 aggravated telomere attrition and oxidative damage, whereas NAC alleviated the latter. High doses of folic acid prevented telomere attrition and telomeric DNA oxidative damage by H2O2. In conclusion, inhibition of telomeric DNA oxidative damage and telomere attrition in NSCs may be potential mechanisms of inhibiting NSC apoptosis by folic acid.
Collapse
Affiliation(s)
- Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
- Center for International Collaborative Research On Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yue Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Ling Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214-8028, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China.
- Center for International Collaborative Research On Environment, Nutrition and Public Health, Tianjin, 300070, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
35
|
Sanford SL, Welfer GA, Freudenthal BD, Opresko PL. How DNA damage and non-canonical nucleotides alter the telomerase catalytic cycle. DNA Repair (Amst) 2021; 107:103198. [PMID: 34371388 PMCID: PMC8526386 DOI: 10.1016/j.dnarep.2021.103198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Telomeres at the ends of linear chromosomes are essential for genome maintenance and sustained cellular proliferation, but shorten with each cell division. Telomerase, a specialized reverse transcriptase with its own integral RNA template, compensates for this by lengthening the telomeric 3' single strand overhang. Mammalian telomerase has the unique ability to processively synthesize multiple GGTTAG repeats, by translocating along its product and reiteratively copying the RNA template, termed repeat addition processivity (RAP). This unusual form of processivity is distinct from the nucleotide addition processivity (NAP) shared by all other DNA polymerases. In this review, we focus on the minimally active human telomerase catalytic core consisting of the telomerase reverse transcriptase (TERT) and the integral RNA (TR), which catalyzes DNA synthesis. We review the mechanisms by which oxidatively damaged nucleotides, and anti-viral and anti-cancer nucleotide drugs affect the telomerase catalytic cycle. Finally, we offer perspective on how we can leverage telomerase's unique properties, and advancements in understanding of telomerase catalytic mechanism, to selectively manipulate telomerase activity with therapeutics, particularly in cancer treatment.
Collapse
Affiliation(s)
- Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Griffin A Welfer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
36
|
Somyajit K, Spies J, Coscia F, Kirik U, Rask MB, Lee JH, Neelsen KJ, Mund A, Jensen LJ, Paull TT, Mann M, Lukas J. Homology-directed repair protects the replicating genome from metabolic assaults. Dev Cell 2021; 56:461-477.e7. [PMID: 33621493 DOI: 10.1016/j.devcel.2021.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/14/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.
Collapse
Affiliation(s)
- Kumar Somyajit
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark.
| | - Julian Spies
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Fabian Coscia
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Ufuk Kirik
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein, Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Maj-Britt Rask
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Kai John Neelsen
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Lars Juhl Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein, Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Tanya T Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthias Mann
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Jiri Lukas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
37
|
Kordowitzki P. Oxidative Stress Induces Telomere Dysfunction and Shortening in Human Oocytes of Advanced Age Donors. Cells 2021; 10:cells10081866. [PMID: 34440635 PMCID: PMC8391391 DOI: 10.3390/cells10081866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Research from the past decades provided strong evidence that in humans the pool of oocytes starts to decline already before the birth of a female individual, and from menarche to menopause the oocyte is exposed to different environmental stimuli. Since more and more women of the 21st century in developed countries wish to postpone the first pregnancy to their thirties, higher rates of miscarriage and chromosomal non-disjunction might occur. In oocytes of advanced maternal age, meaning above 35 years of age, characteristics such as chromosomal instabilities/abnormalities, spindle defects, decreased mitochondrial function and telomere shortening become more prevalent than in younger counterparts. Telomere attrition belongs to the so-called “hallmarks of aging” which are also relevant for the female germ-line cells. In oocytes, telomeres shorten with advancing maternal age due to the effects of reactive oxygen species and not upon replicative senescence, similar to how it is common in dividing cells.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-243 Olsztyn, Poland
| |
Collapse
|
38
|
Telomere dysfunction instigates inflammation in inflammatory bowel disease. Proc Natl Acad Sci U S A 2021; 118:2024853118. [PMID: 34253611 DOI: 10.1073/pnas.2024853118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition driven by diverse genetic and nongenetic programs that converge to disrupt immune homeostasis in the intestine. We have reported that, in murine intestinal epithelium with telomere dysfunction, DNA damage-induced activation of ataxia-telangiectasia mutated (ATM) results in ATM-mediated phosphorylation and activation of the YAP1 transcriptional coactivator, which in turn up-regulates pro-IL-18, a pivotal immune regulator in IBD pathogenesis. Moreover, individuals with germline defects in telomere maintenance genes experience increased occurrence of intestinal inflammation and show activation of the ATM/YAP1/pro-IL-18 pathway in the intestinal epithelium. Here, we sought to determine the relevance of the ATM/YAP1/pro-IL-18 pathway as a potential driver of IBD, particularly older-onset IBD. Analysis of intestinal biopsy specimens and organoids from older-onset IBD patients documented the presence of telomere dysfunction and activation of the ATM/YAP1/precursor of interleukin 18 (pro-IL-18) pathway in the intestinal epithelium. Employing intestinal organoids from healthy individuals, we demonstrated that experimental induction of telomere dysfunction activates this inflammatory pathway. In organoid models from ulcerative colitis and Crohn's disease patients, pharmacological interventions of telomerase reactivation, suppression of DNA damage signaling, or YAP1 inhibition reduced pro-IL-18 production. Together, these findings support a model wherein telomere dysfunction in the intestinal epithelium can initiate the inflammatory process in IBD, pointing to therapeutic interventions for this disease.
Collapse
|
39
|
Cavicchi C, Oussalah A, Falliano S, Ferri L, Gozzini A, Gasperini S, Motta S, Rigoldi M, Parenti G, Tummolo A, Meli C, Menni F, Furlan F, Daniotti M, Malvagia S, la Marca G, Chery C, Morange PE, Tregouet D, Donati MA, Guerrini R, Guéant JL, Morrone A. PRDX1 gene-related epi-cblC disease is a common type of inborn error of cobalamin metabolism with mono- or bi-allelic MMACHC epimutations. Clin Epigenetics 2021; 13:137. [PMID: 34215320 PMCID: PMC8254308 DOI: 10.1186/s13148-021-01117-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background The role of epigenetics in inborn errors of metabolism (IEMs) is poorly investigated. Epigenetic changes can contribute to clinical heterogeneity of affected patients but could also be underestimated determining factors in the occurrence of IEMs. An epigenetic cause of IEMs has been recently described for the autosomal recessive methylmalonic aciduria and homocystinuria, cblC type (cblC disease), and it has been named epi-cblC. Epi-cblC has been reported in association with compound heterozygosity for a genetic variant and an epimutation at the MMACHC locus, which is secondary to a splicing variant (c.515-1G > T or c.515-2A > T) at the adjacent PRDX1 gene. Both these variants cause aberrant antisense transcription and cis-hypermethylation of the MMACHC gene promotor with subsequent silencing. Until now, only nine epi-cblC patients have been reported. Methods We report clinical/biochemical assessment, MMACHC/PRDX1 gene sequencing and genome-wide DNA methylation profiling in 11 cblC patients who had an inconclusive MMACHC gene testing. We also compare clinical phenotype of epi-cblC patients with that of canonical cblC patients. Results All patients turned out to have the epi-cblC disease. One patient had a bi-allelic MMACHC epimutation due to the homozygous PRDX1:c.515-1G > T variant transmitted by both parents. We found that the bi-allelic epimutation produces the complete silencing of MMACHC in the patient’s fibroblasts. The remaining ten patients had a mono-allelic MMACHC epimutation, due to the heterozygous PRDX1:c.515-1G > T, in association with a mono-allelic MMACHC genetic variant. Epi-cblC disease has accounted for about 13% of cblC cases diagnosed by newborn screening in the Tuscany and Umbria regions since November 2001. Comparative analysis showed that clinical phenotype of epi-cblC patients is similar to that of canonical cblC patients. Conclusions We provide evidence that epi-cblC is an underestimated cause of inborn errors of cobalamin metabolism and describe the first instance of epi-cblC due to a bi-allelic MMACHC epimutation. MMACHC epimutation/PRDX1 mutation analyses should be part of routine genetic testing for all patients presenting with a metabolic phenotype that combines methylmalonic aciduria and homocystinuria. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01117-2.
Collapse
Affiliation(s)
- Catia Cavicchi
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Abderrahim Oussalah
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | - Silvia Falliano
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Lorenzo Ferri
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Alessia Gozzini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Serena Gasperini
- Rare Metabolic Disease Unit, Department of Paediatrics, Fondazione MBBM, Monza, Italy
| | - Serena Motta
- Rare Metabolic Disease Unit, Department of Paediatrics, Fondazione MBBM, Monza, Italy
| | - Miriam Rigoldi
- Mario Negri Institute for Pharmacological Research IRCCS, Bergamo, Italy
| | | | - Albina Tummolo
- Metabolic Disease Unit, Giovanni XXIII Hospital, Bari, Italy
| | - Concetta Meli
- Metabolic Disease Unit, G. Rodolico Hospital, Catania, Italy
| | - Francesca Menni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Francesca Furlan
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Marta Daniotti
- Metabolic and Muscular Unit, Meyer Children's Hospital, Florence, Italy
| | - Sabrina Malvagia
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Meyer Children's Hospital, Florence, Italy
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Meyer Children's Hospital, Florence, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Céline Chery
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | | | - David Tregouet
- INSERM, UMR_S937, ICAN Institute, Université Pierre et Marie Curie, Paris, France
| | | | - Renzo Guerrini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Jean-Louis Guéant
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy. .,Department of NEUROFARBA, University of Florence, Florence, Italy.
| |
Collapse
|
40
|
Specificity of Human Sulfiredoxin for Reductant and Peroxiredoxin Oligomeric State. Antioxidants (Basel) 2021; 10:antiox10060946. [PMID: 34208049 PMCID: PMC8230665 DOI: 10.3390/antiox10060946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
Human peroxiredoxins (Prx) are a family of antioxidant enzymes involved in a myriad of cellular functions and diseases. During the reaction with peroxides (e.g., H2O2), the typical 2-Cys Prxs change oligomeric structure between higher order (do)decamers and disulfide-linked dimers, with the hyperoxidized inactive state (-SO2H) favoring the multimeric structure of the reduced enzyme. Here, we present a study on the structural requirements for the repair of hyperoxidized 2-Cys Prxs by human sulfiredoxin (Srx) and the relative efficacy of physiological reductants hydrogen sulfide (H2S) and glutathione (GSH) in this reaction. The crystal structure of the toroidal Prx1-Srx complex shows an extended active site interface. The loss of this interface within engineered Prx2 and Prx3 dimers yielded variants more resistant to hyperoxidation and repair by Srx. Finally, we reveal for the first time Prx isoform-dependent use of and potential cooperation between GSH and H2S in supporting Srx activity.
Collapse
|
41
|
The Power of Stress: The Telo-Hormesis Hypothesis. Cells 2021; 10:cells10051156. [PMID: 34064566 PMCID: PMC8151059 DOI: 10.3390/cells10051156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects.
Collapse
|
42
|
Jacome Burbano MS, Cherfils-Vicini J, Gilson E. Neutrophils: mediating TelOxidation and senescence. EMBO J 2021; 40:e108164. [PMID: 33880795 DOI: 10.15252/embj.2021108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Cellular senescence is considered to be a major driver of aging, yet the mechanisms explaining the accumulation of senescent cells during life time remain unclear. In this issue, Lagnado et al (2021) show that neutrophils can trigger the senescence of neighboring cells by transmitting reactive oxygen species (ROS), which they normally produce to fight pathogens. The main genomic targets of the neutrophil-mediated ROS damage are telomeres, supporting an intimate interplay between telomere homeostasis and oxidative stress in senescence and consequently aging.
Collapse
Affiliation(s)
| | | | - Eric Gilson
- CNRS, INSERM, IRCAN, Faculty of Medicine, Côte d'Azur University, Nice, France.,Department of Medical Genetics, CHU, FHU Oncoage, Nice, France
| |
Collapse
|
43
|
Madusanka RK, Tharuka MDN, Madhuranga WSP, Lee S, Lee J. Transcriptional modifications and the cytoprotective, DNA protective, and wound healing effects of peroxiredoxin-1 from Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2020; 107:73-83. [PMID: 33031901 DOI: 10.1016/j.fsi.2020.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Peroxiredoxins are a group of thiol-specific antioxidant proteins that take six isoforms in vertebrates and allow the innate immune system to sense and detoxify reactive oxygen species. In this study, we identified and characterized the perxiredoxin-1 (SsPrdx1) cDNA sequence from the rockfish, Sebastes schlegelii. In silico analysis revealed that SsPrdx1 contained a 594 bp long open reading frame (ORF) encoding a protein of 198 amino acids, with a predicted molecular weight and theoretical isoelectric point of 21.97 kDa and 6.30, respectively. The SsPrdx1 gene comprised six exons linked by five introns, while peroxiredoxin signature motifs were found in the highly conserved third, fourth, and fifth exons. Phylogenetic analysis and sequence alignment suggested that SsPrdx1 is evolutionarily conserved and that its most closely related counterpart is Salarias fasciatus. Recombinant SsPrdx1 (rSsPrdx1) displayed supercoiled DNA protection and insulin disulfide reduction activities in a concentration-dependent manner, while cells transiently transfected with pcDNA3.1 (+)/SsPrdx1 exhibited significant cytoprotective effects under oxidative stress and wound healing activity. SsPrdx1 transcripts were constitutively expressed under normal physiological conditions, with the highest expression observed in the blood. Moreover, SsPrdx1 expression increased in the blood, spleen, and liver following immune provocation by LPS, poly I:C, and Streptococcus iniae injection. Thus, this study provides insights into the role of SsPrdx1 in rockfish immune protection.
Collapse
Affiliation(s)
- Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - W S P Madhuranga
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
44
|
Ibáñez-Cabellos JS, Seco-Cervera M, Picher-Latorre C, Pérez-Machado G, García-Giménez JL, Pallardó FV. Acute depletion of telomerase components DKC1 and NOP10 induces oxidative stress and disrupts ribosomal biogenesis via NPM1 and activation of the P53 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118845. [DOI: 10.1016/j.bbamcr.2020.118845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
45
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
46
|
Sharapov MG, Gudkov SV. Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation. Arch Biochem Biophys 2020; 697:108671. [PMID: 33181129 DOI: 10.1016/j.abb.2020.108671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Peroxiredoxin 1 (Prx1) is known to be a multifunctional antioxidant enzyme playing an essential role in protecting the organism against oxidative stress. We hypothesized that administration of exogenous recombinant Prx1 may provide additional protection of the mammalian organism during the development of acute oxidative stress induced by ionizing radiation. Hence, the aim of the present work was to study the radioprotective properties of exogenous Prx1. MATERIALS AND METHODS Recombinant Prx1 was obtained by genetic engineering. The properties of Prx1 were studied using physicochemical methods. An immunoblotting and ELISA were used for the determination of the level of endogenous and exogenous Prx1 in animal blood. The survival rate of irradiated animals was assessed for 30 days with various modes of administration (intraperitoneal, intramuscular, intravenously) Prx1. Using a hematological analyzer and microscopic analysis, the changes in the level of leukocytes and platelets were assessed in animals that received and did not receive an intravenous injection of Prx1 before irradiation. Genoprotective properties of Prx1 were confirmed by micronucleus test. Real-time PCR was used to investigate the effect of Prx1 on the expression of genes involved in response to oxidative stress. RESULTS Recombinant Prx1 was shown to significantly reduce oxidative damage to biological macromolecules. Prx1 is an effective radioprotector which decreases the severity of radiation-induced leuko- and thrombocytopenia, plus protects bone marrow cells from damage. The half-life of Prx1 in the bloodstream is more than 1 h, while within 1 h there is a loss of the antioxidant activity of Prx1 by almost 50%, which limits its use long (2 h) before irradiation. The introduction of Prx1 after irradiation has no significant radiomitigating effect. The most effective way of using Prx1 is intravenous administration shortly (15-30 min) before exposure to ionizing radiation, with a dose reduction factor of 1.3. Under the action of ionizing radiation a dose-dependent appearance of endogenous Prx1 in the bloodstream was also observed. The appearance of Prx1 in the bloodstream alters the expression of stress response genes (especial antioxidant response and DNA repair) in the cells of red bone marrow, promoting the activation of repair processes. CONCLUSION The recombinant Prx1 can be considered as an effective radioprotector for minimizing the risks of injury of animal's body by ionizing radiation.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
47
|
Ahmed W, Lingner J. PRDX1 Counteracts Catastrophic Telomeric Cleavage Events That Are Triggered by DNA Repair Activities Post Oxidative Damage. Cell Rep 2020; 33:108347. [DOI: 10.1016/j.celrep.2020.108347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
|
48
|
Sanford SL, Welfer GA, Freudenthal BD, Opresko PL. Mechanisms of telomerase inhibition by oxidized and therapeutic dNTPs. Nat Commun 2020; 11:5288. [PMID: 33082336 PMCID: PMC7576608 DOI: 10.1038/s41467-020-19115-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Telomerase is a specialized reverse transcriptase that adds GGTTAG repeats to chromosome ends and is upregulated in most human cancers to enable limitless proliferation. Here, we uncover two distinct mechanisms by which naturally occurring oxidized dNTPs and therapeutic dNTPs inhibit telomerase-mediated telomere elongation. We conduct a series of direct telomerase extension assays in the presence of modified dNTPs on various telomeric substrates. We provide direct evidence that telomerase can add the nucleotide reverse transcriptase inhibitors ddITP and AZT-TP to the telomeric end, causing chain termination. In contrast, telomerase continues elongation after inserting oxidized 2-OH-dATP or therapeutic 6-thio-dGTP, but insertion disrupts translocation and inhibits further repeat addition. Kinetics reveal that telomerase poorly selects against 6-thio-dGTP, inserting with similar catalytic efficiency as dGTP. Furthermore, telomerase processivity factor POT1-TPP1 fails to restore processive elongation in the presence of inhibitory dNTPs. These findings reveal mechanisms for targeting telomerase with modified dNTPs in cancer therapy.
Collapse
Affiliation(s)
- Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Griffin A Welfer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Ulrich K, Schwappach B, Jakob U. Thiol-based switching mechanisms of stress-sensing chaperones. Biol Chem 2020; 402:239-252. [PMID: 32990643 DOI: 10.1515/hsz-2020-0262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Thiol-based redox switches evolved as efficient post-translational regulatory mechanisms that enable individual proteins to rapidly respond to sudden environmental changes. While some protein functions need to be switched off to save resources and avoid potentially error-prone processes, protective functions become essential and need to be switched on. In this review, we focus on thiol-based activation mechanisms of stress-sensing chaperones. Upon stress exposure, these chaperones convert into high affinity binding platforms for unfolding proteins and protect cells against the accumulation of potentially toxic protein aggregates. Their chaperone activity is independent of ATP, a feature that becomes especially important under oxidative stress conditions, where cellular ATP levels drop and canonical ATP-dependent chaperones no longer operate. Vice versa, reductive inactivation and substrate release require the restoration of ATP levels, which ensures refolding of client proteins by ATP-dependent foldases. We will give an overview over the different strategies that cells evolved to rapidly increase the pool of ATP-independent chaperones upon oxidative stress and provide mechanistic insights into how stress conditions are used to convert abundant cellular proteins into ATP-independent holding chaperones.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI48109, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
50
|
Coulon S, Vaurs M. Telomeric Transcription and Telomere Rearrangements in Quiescent Cells. J Mol Biol 2020; 432:4220-4231. [PMID: 32061930 DOI: 10.1016/j.jmb.2020.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Despite the condensed nature of terminal sequences, the telomeres are transcribed into a group of noncoding RNAs, including the TElomeric Repeat-containing RNA (TERRA). Since the discovery of TERRA, its evolutionary conserved function has been confirmed, and its involvement in telomere length regulation, heterochromatin establishment, and telomere recombination has been demonstrated. We previously reported that TERRA is upregulated in quiescent fission yeast cells, although the global transcription is highly reduced. Elevated telomeric transcription was also detected when telomeres detach from the nuclear periphery. These intriguing observations unveil unexpected facets of telomeric transcription in arrested cells. In this review, we present the different aspects of TERRA transcription during quiescence and discuss their implications for telomere maintenance and cell fate.
Collapse
Affiliation(s)
- Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France.
| | - Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France
| |
Collapse
|