1
|
Yang C, Huang Z, Pan C, Wang S. Characterization of feed efficiency-related key signatures molecular in different cattle breeds. PLoS One 2023; 18:e0289939. [PMID: 37756351 PMCID: PMC10529570 DOI: 10.1371/journal.pone.0289939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/30/2023] [Indexed: 09/29/2023] Open
Abstract
Feed efficiency is a major constraint in the beef industry and has a significant negative correlation with residual feed intake (RFI). RFI is widely used as a measure of feed efficiency in beef cattle and is independent of economic traits such as body weight and average daily gain. However, key traits with commonality or specificity among beef cattle breeds at the same level of RFI have not been reported. Accordingly, the present study hypothesized that signatures associated with feed efficiency would have commonality or specificity in the liver of cattle breeds at the same RFI level. By comparing and integrating liver transcriptome data, we investigated the critical signatures closely associated with RFI in beef cattle using weighted co-expression network analysis, consensus module analysis, functional enrichment analysis and protein network interaction analysis. The results showed that the consensus modules in Angus and Charolais cattle were negatively correlated, and four (turquoise, red, tan, yellow) were significantly positively correlated in Angus liver, while (turquoise, red) were significantly negatively correlated in Charolais liver. These consensus modules were found to be primarily involved in biological processes such as substance metabolism, energy metabolism and gene transcription, which may be one of the possible explanations for the difference in feed efficiency between the two beef breeds. This research also identified five key candidate genes, PLA2G12B, LCAT, MTTP, LCAT, ABCA1 and FADS1, which are closely associated with hepatic lipid metabolism. The present study has identified some modules, genes and pathways that may be the major contributors to the variation in feed efficiency among different cattle breeds, providing a new perspective on the molecular mechanisms of feed efficiency in beef cattle and a research basis for investigating molecular markers associated with feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Chaoyun Yang
- College of Animal Science, Xichang University, Xichang City, Sichuan Province, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| | - Zengwen Huang
- College of Animal Science, Xichang University, Xichang City, Sichuan Province, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| | - Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan City, Ningxia, China
| |
Collapse
|
2
|
Grove JI, Lo PC, Shrine N, Barwell J, Wain LV, Tobin MD, Salter AM, Borkar AN, Cuevas-Ocaña S, Bennett N, John C, Ntalla I, Jones GE, Neal CP, Thomas MG, Kuht H, Gupta P, Vemala VM, Grant A, Adewoye AB, Shenoy KT, Balakumaran LK, Hollox EJ, Hannan NR, Aithal GP. Identification and characterisation of a rare MTTP variant underlying hereditary non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100764. [PMID: 37484212 PMCID: PMC10362796 DOI: 10.1016/j.jhepr.2023.100764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 07/25/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) is a complex trait with an estimated prevalence of 25% globally. We aimed to identify the genetic variant underlying a four-generation family with progressive NAFLD leading to cirrhosis, decompensation, and development of hepatocellular carcinoma in the absence of common risk factors such as obesity and type 2 diabetes. Methods Exome sequencing and genome comparisons were used to identify the likely causal variant. We extensively characterised the clinical phenotype and post-prandial metabolic responses of family members with the identified novel variant in comparison with healthy non-carriers and wild-type patients with NAFLD. Variant-expressing hepatocyte-like cells (HLCs) were derived from human-induced pluripotent stem cells generated from homozygous donor skin fibroblasts and restored to wild-type using CRISPR-Cas9. The phenotype was assessed using imaging, targeted RNA analysis, and molecular expression arrays. Results We identified a rare causal variant c.1691T>C p.I564T (rs745447480) in MTTP, encoding microsomal triglyceride transfer protein (MTP), associated with progressive NAFLD, unrelated to metabolic syndrome and without characteristic features of abetalipoproteinaemia. HLCs derived from a homozygote donor had significantly lower MTP activity and lower lipoprotein ApoB secretion than wild-type cells, while having similar levels of MTP mRNA and protein. Cytoplasmic triglyceride accumulation in HLCs triggered endoplasmic reticulum stress, secretion of pro-inflammatory mediators, and production of reactive oxygen species. Conclusions We have identified and characterised a rare causal variant in MTTP, and homozygosity for MTTP p.I564T is associated with progressive NAFLD without any other manifestations of abetalipoproteinaemia. Our findings provide insights into mechanisms driving progressive NAFLD. Impact and Implications A rare genetic variant in the gene MTTP has been identified as responsible for the development of severe non-alcoholic fatty liver disease in a four-generation family with no typical disease risk factors. A cell line culture created harbouring this variant gene was characterised to understand how this genetic variation leads to a defect in liver cells, which results in accumulation of fat and processes that promote disease. This is now a useful model for studying the disease pathways and to discover new ways to treat common types of fatty liver disease.
Collapse
Affiliation(s)
- Jane I. Grove
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Peggy C.K. Lo
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Julian Barwell
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Aditi N. Borkar
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Sara Cuevas-Ocaña
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Neil Bennett
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Ioanna Ntalla
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Gabriela E. Jones
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | | | - Mervyn G. Thomas
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Helen Kuht
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Pankaj Gupta
- Department of Chemical Pathology and Metabolic Diseases, University Hospitals of Leicester NHS Trust, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Vishwaraj M. Vemala
- Department of Gastroenterology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Allister Grant
- Department of Gastroenterology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Adeolu B. Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nicholas R.F. Hannan
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Guruprasad P. Aithal
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Liu JT, Doueiry C, Jiang YL, Blaszkiewicz J, Lamprecht MP, Heslop JA, Peterson YK, Carten JD, Traktman P, Yuan Y, Khetani SR, Twal WO, Duncan SA. A human iPSC-derived hepatocyte screen identifies compounds that inhibit production of Apolipoprotein B. Commun Biol 2023; 6:452. [PMID: 37095219 PMCID: PMC10125972 DOI: 10.1038/s42003-023-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) patients suffer from excessively high levels of Low Density Lipoprotein Cholesterol (LDL-C), which can cause severe cardiovascular disease. Statins, bile acid sequestrants, PCSK9 inhibitors, and cholesterol absorption inhibitors are all inefficient at treating FH patients with homozygous LDLR gene mutations (hoFH). Drugs approved for hoFH treatment control lipoprotein production by regulating steady-state Apolipoprotein B (apoB) levels. Unfortunately, these drugs have side effects including accumulation of liver triglycerides, hepatic steatosis, and elevated liver enzyme levels. To identify safer compounds, we used an iPSC-derived hepatocyte platform to screen a structurally representative set of 10,000 small molecules from a proprietary library of 130,000 compounds. The screen revealed molecules that could reduce the secretion of apoB from cultured hepatocytes and from humanized livers in mice. These small molecules are highly effective, do not cause abnormal lipid accumulation, and share a chemical structure that is distinct from any known cholesterol lowering drug.
Collapse
Affiliation(s)
- Jui-Tung Liu
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Caren Doueiry
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yu-Lin Jiang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Josef Blaszkiewicz
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mary Paige Lamprecht
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Juliana Debrito Carten
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paula Traktman
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yang Yuan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Grùthan Biosciences LLC, Hollywood, SC, 29449, USA.
| |
Collapse
|
4
|
Giallongo S, Lo Re O, Resnick I, Raffaele M, Vinciguerra M. Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:275-298. [DOI: 10.1007/978-981-19-5642-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Risk Factors and Prediction Models for Nonalcoholic Fatty Liver Disease Based on Random Forest. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8793659. [PMID: 35983527 PMCID: PMC9381194 DOI: 10.1155/2022/8793659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Objective To establish a risk prediction model of nonalcoholic fatty liver disease (NAFLD) and provide management strategies for preventing this disease. Methods A total of 200 inpatients and physical examinees were collected from the Department of Gastroenterology and Endocrinology and Physical Examination Center. The data of physical examination, laboratory examination, and abdominal ultrasound examination were collected. All subjects were randomly divided into a training set (70%) and a verification set (30%). A random forest (RF) prediction model is constructed to predict the occurrence risk of NAFLD. The receiver operating characteristic (ROC) curve is used to verify the prediction effect of the prediction models. Results The number of NAFLD patients was 44 out of 200 enrolled patients, and the cumulative incidence rate was 22%. The prediction models showed that BMI, TG, HDL-C, LDL-C, ALT, SUA, and MTTP mutations were independent influencing factors of NAFLD, all of which has statistical significance (P < 0.05). The area under curve (AUC) of logistic regression and the RF model was 0.940 (95% CI: 0.870~0.987) and 0.945 (95% CI: 0.899~0.994), respectively. Conclusion This study established a prediction model of NAFLD occurrence risk based on the RF, which has a good prediction value.
Collapse
|
6
|
Lin H, Wang L, Liu Z, Long K, Kong M, Ye D, Chen X, Wang K, Wu KKL, Fan M, Song E, Wang C, Hoo RLC, Hui X, Hallenborg P, Piao H, Xu A, Cheng KKY. Hepatic MDM2 Causes Metabolic Associated Fatty Liver Disease by Blocking Triglyceride-VLDL Secretion via ApoB Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200742. [PMID: 35524581 PMCID: PMC9284139 DOI: 10.1002/advs.202200742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Indexed: 05/06/2023]
Abstract
Dysfunctional triglyceride-very low-density lipoprotein (TG-VLDL) metabolism is linked to metabolic-associated fatty liver disease (MAFLD); however, the underlying cause remains unclear. The study shows that hepatic E3 ubiquitin ligase murine double minute 2 (MDM2) controls MAFLD by blocking TG-VLDL secretion. A remarkable upregulation of MDM2 is observed in the livers of human and mouse models with different levels of severity of MAFLD. Hepatocyte-specific deletion of MDM2 protects against high-fat high-cholesterol diet-induced hepatic steatosis and inflammation, accompanied by a significant elevation in TG-VLDL secretion. As an E3 ubiquitin ligase, MDM2 targets apolipoprotein B (ApoB) for proteasomal degradation through direct protein-protein interaction, which leads to reduced TG-VLDL secretion in hepatocytes. Pharmacological blockage of the MDM2-ApoB interaction alleviates dietary-induced hepatic steatohepatitis and fibrosis by inducing hepatic ApoB expression and subsequent TG-VLDL secretion. The effect of MDM2 on VLDL metabolism is p53-independent. Collectively, these findings suggest that MDM2 acts as a negative regulator of hepatic ApoB levels and TG-VLDL secretion in MAFLD. Inhibition of the MDM2-ApoB interaction may represent a potential therapeutic approach for MAFLD treatment.
Collapse
Affiliation(s)
- Huige Lin
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Lin Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Zhuohao Liu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of NeurosurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Kekao Long
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengjie Kong
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Xi Chen
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kai Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kelvin KL Wu
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengqi Fan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Erfei Song
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Ruby LC Hoo
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Xiaoyan Hui
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Philip Hallenborg
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkSouthern Denmark5230Denmark
| | - Hailong Piao
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116000P. R. China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Kenneth KY Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
7
|
Blaszkiewicz J, Duncan SA. Advancements in Disease Modeling and Drug Discovery Using iPSC-Derived Hepatocyte-like Cells. Genes (Basel) 2022; 13:573. [PMID: 35456379 PMCID: PMC9030659 DOI: 10.3390/genes13040573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Serving as the metabolic hub of the human body, the liver is a vital organ that performs a variety of important physiological functions. Although known for its regenerative potential, it remains vulnerable to a variety of diseases. Despite decades of research, liver disease remains a leading cause of mortality in the United States with a multibillion-dollar-per-year economic burden. Prior research with model systems, such as primary hepatocytes and murine models, has provided many important discoveries. However, progress has been impaired by numerous obstacles associated with these models. In recent years, induced pluripotent stem cell (iPSC)-based systems have emerged as advantageous platforms for studying liver disease. Benefits, including preserved differentiation and physiological function, amenability to genetic manipulation via tools such as CRISPR/Cas9, and availability for high-throughput screening, make these systems increasingly attractive for both mechanistic studies of disease and the identification of novel therapeutics. Although limitations exist, recent studies have made progress in ameliorating these issues. In this review, we discuss recent advancements in iPSC-based models of liver disease, including improvements in model system construction as well as the use of high-throughput screens for genetic studies and drug discovery.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
8
|
Yu L, Tai L, Gao J, Sun M, Liu S, Huang T, Yu J, Zhang Z, Miao W, Li Y, Song Z, Zhang H, Zhou L. A New lncRNA, lnc-LLMA, Regulates Lipid Metabolism in Pig Hepatocytes. DNA Cell Biol 2022; 41:202-214. [PMID: 34981960 DOI: 10.1089/dna.2021.0220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A large variety of long noncoding RNAs (lncRNAs) have been discovered through high-throughput sequencing technology and some have been demonstrated to play important roles in lipid metabolism regulation. In our study, we found a highly expressed lncRNA (lnc-LLMA, liver lipid metabolism-associated lncRNA) in the liver of Duroc pigs, which was enriched in the nucleus. It displays potent tissue specificity among different pig breeds. Overexpression of lnc-LLMA can cause a decline in intracellular triglyceride (TG) levels and increases in ATP and mitochondrial DNA levels in pig primary hepatocytes and HepG2 cells. In addition, the expression levels of MTTP, APOB, CPT1α, and other genes were increased by overexpression of lnc-LLMA. It downregulated expression of G6Pase and SREBP1 genes. Chromatin isolation by RNA purification (ChRIP) experiments demonstrated that microsomal triglyceride transfer protein (MTTP) and glycogen synthase 2 (GYS2) were the potential interacting proteins of lnc-LLMA. The overexpression of the GYS2 gene rescued the decreasing intracellular TG levels caused by the increase of lnc-LLMA. Similarly, overexpression of MTTP was also able to save the lnc-LLMA-induced decrease in intracellular TG. Our study demonstrated that this novel lncRNA was closely related to lipid metabolism and affected lipid transport and mitochondrial function through MTTP and GYS2. Our results provided a new direction for further studying the effect of lncRNA on lipid metabolism regulation.
Collapse
Affiliation(s)
- Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Lina Tai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jiayi Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Mingjie Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Weiwei Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Haojie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
9
|
Siew WS, Tang YQ, Kong CK, Goh BH, Zacchigna S, Dua K, Chellappan DK, Duangjai A, Saokaew S, Phisalprapa P, Yap WH. Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. Int J Mol Sci 2021; 22:8422. [PMID: 34445123 PMCID: PMC8395110 DOI: 10.3390/ijms22168422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.
Collapse
Affiliation(s)
- Wei Sheng Siew
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
| | - Yin Quan Tang
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chee Kei Kong
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Serena Zacchigna
- Centre for Translational Cardiology, Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Strada di Fiume 447, 34149 Trieste, Italy;
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Malaysia;
| | - Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Department of Pharmaceutical Care, Division of Pharmacy Practice, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Pochamana Phisalprapa
- Department of Medicine, Division of Ambulatory Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
10
|
Deng Y, Yuan J, Qiu J, Tang B, Chen X, Hu S, He H, Liu H, Li L, Han C, Hu J, Wang J. Oestrogen promotes lipids transportation through oestrogen receptor α in hepatic steatosis of geese in vitro. J Anim Physiol Anim Nutr (Berl) 2021; 106:552-560. [PMID: 34111322 DOI: 10.1111/jpn.13590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023]
Abstract
Evidence has shown that oestrogen suppresses lipids deposition in the liver of mammals. However, the molecular mechanism of oestrogen action in hepatic steatosis of geese liver has yet to be determined. This study aimed to investigate the effect of oestrogen on lipid homeostasis at different states of geese hepatocytes in vitro. The results showed that an in vitro model of hepatic steatosis was induced by 1.5 mM sodium oleate via detecting the viability of hepatocytes and content of lipids. When the normal hepatocytes were administrated with different concentrations of oestrogen (E2 ), the expression levels of diacylglycerol acyltransferase 2 (DGAT2), microsomal triglyceride transfer protein (MTTP) and oestrogen receptors (ERs, alpha and beta) were up-regulated only at high concentrations of E2 , whereas the lipid content was not a significant difference. In goose hepatocytes of hepatic steatosis, however, the expression levels of MTTP, apolipoprotein B (apoB) and ERα/β significantly increased at 10-7 or 10-6 M E2 . Meanwhile, the lipids content significantly increased at 10-9 and 10-8 M E2 and decreased at 80 µM E2 . Further heatmap analysis showed that ERα was clustered with apoB and MTTP in either normal hepatocytes or that of hepatic steatosis. Taken together, E2 might bind to ERα to up-regulate the expression levels of apoB and MTTP, promoting the transportation of lipids and alleviating lipids overload in hepatic steatosis of geese in vitro.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junsong Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiamin Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuefei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Wang L, Li X, Zhang G, Zhao H. Transcriptomic analysis of lead-induced hepatoxicology in female Japanese quails (Coturnix japonica): Implications of triglyceride synthesis, degradation and transport disruption. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109024. [PMID: 33631343 DOI: 10.1016/j.cbpc.2021.109024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Lead (Pb) pollution poses great threats to mammals including human and it is also hazardous to bird life. In this study, RNA sequencing analysis was employed to examine the molecular responses to lead exposure in the liver of a toxicological model species Japanese quails (Coturnix japonica). Female birds were exposed to 0, 50, 500 and 1000 ppm waterborne Pb for 49 days. The results showed that hepatic microstructure was damaged under lead exposure featured by sinusoids dilation and irregularity as well as cell necrosis. Moreover, ultrastructural injury in the liver including mitochondrial swelling and vacuolization as well as nuclear deformation was induced by lead exposure. Lead exposure also caused the decrease of lipid droplets in the liver by oil red O staining. In addition, liver transcriptomic analysis revealed that molecular signaling and functional pathways were disrupted by lead exposure. Meanwhile, the expression of genes involved with hepatic glycerophospholipids metabolism of triglyceride synthesis and lipid transport of triglyceride transfer was significantly down-regulated by lead exposure. Moreover, the up-regulation of genes associated with fatty acid oxidation and the down-regulation of genes related with fatty acid synthesis were caused by lead exposure. The present study implied that lead induced liver malfunction and bird health risks through histopathological damages, molecular signaling disruption, genetic expression alteration and triglyceride metabolism disturbance.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China
| | - Xuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China
| | - Gaixia Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
12
|
Rodríguez Gutiérrez PG, González García JR, Castillo De León YA, Zárate Guerrero JR, Magaña Torres MT. A novel p.Gly417Valfs*12 mutation in the MTTP gene causing abetalipoproteinemia: Presentation of the first patient in Mexico and analysis of the previously reported cases. J Clin Lab Anal 2021; 35:e23672. [PMID: 33258201 PMCID: PMC7957982 DOI: 10.1002/jcla.23672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Our aims were to describe the first Mexican patient with abetalipoproteinemia and to perform a comparative analysis of biochemical, clinical, and genetic characteristics of 100 cases reported in the literature. METHODS We performed biochemical and molecular screenings in a Mexican girl with extremely low lipid levels and in her family. Further, we integrated and evaluated the characteristics of the cases with abetalipoproteinemia described in the literature. RESULTS Our patient is a six-year-old girl who presented vomiting, chronic diarrhea, failure to thrive, malabsorption, acanthocytosis, anemia, transaminases elevation, and extremely low lipid levels. MTTP gene sequencing revealed homozygosity for a novel mutation p.Gly417Valfs*12 (G deletion c.1250). With the analysis of the reported cases, 60 clinical features (14 classical and 46 non-classical) were observed, being the most common acanthocytosis (57.5%), malabsorption (43.7%), and diarrhea (42.5%); 48.8% of the patients presented only classic clinical features, while the remaining 51.2% developed secondary effects due to a fat-soluble vitamin deficiency. An odds ratio analysis disclosed that patients diagnosed after 10 years of age have an increased risk for presenting clinical complications (OR = 18.0; 95% CI 6.0-54.1, p < 0.0001). A great diversity of mutations in MTTP has been observed (n = 76, being the most common p.G865X and p.N139_E140) and some of them with possible residual activity. CONCLUSION The first Mexican patient with abetalipoproteinemia presents a novel MTTP mutation p.Gly417Valfs*12. Three factors that could modulate the phenotype in abetalipoproteinemia were identified: age at diagnosis, treatment, and the causal mutation.
Collapse
Affiliation(s)
- Perla Graciela Rodríguez Gutiérrez
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
- Doctorado en Genética HumanaCentro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
| | - Juan Ramón González García
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
| | | | | | - María Teresa Magaña Torres
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
| |
Collapse
|
13
|
Wu JX, He KY, Zhang ZZ, Qu YL, Su XB, Shi Y, Wang N, Wang L, Han ZG. LZP is required for hepatic triacylglycerol transportation through maintaining apolipoprotein B stability. PLoS Genet 2021; 17:e1009357. [PMID: 33591966 PMCID: PMC7909667 DOI: 10.1371/journal.pgen.1009357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The conserved zona pellucida (ZP) domain is found in hundreds of extracellular proteins that are expressed in various organs and play a variety of roles as structural components, receptors and tumor suppressors. A liver-specific zona pellucida domain-containing protein (LZP), also named OIT3, has been shown to be mainly expressed in human and mouse hepatocytes; however, the physiological function of LZP in the liver remains unclear. Here, we show that Lzp deletion inhibited very low-density lipoprotein (VLDL) secretion, leading to hepatic TG accumulation and lower serum TG levels in mice. The apolipoprotein B (apoB) levels were significantly decreased in the liver, serum, and VLDL particles of LZP-deficient mice. In the presence of LZP, which is localized to the endoplasmic reticulum (ER) and Golgi apparatus, the ER-associated degradation (ERAD) of apoB was attenuated; in contrast, in the absence of LZP, apoB was ubiquitinated by AMFR, a known E3 ubiquitin ligase specific for apoB, and was subsequently degraded, leading to lower hepatic apoB levels and inhibited VLDL secretion. Interestingly, hepatic LZP levels were elevated in mice challenged with a high-fat diet and humans with simple hepatic steatosis, suggesting that LZP contributes to the physiological regulation of hepatic TG homeostasis. In general, our data establish an essential role for LZP in hepatic TG transportation and VLDL secretion by preventing the AMFR-mediated ubiquitination and degradation of apoB and therefore provide insight into the molecular function of LZP in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiao-Xiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Kun-Yan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuang-Zhuang Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Lan Qu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
14
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Larsen LE, Smith MA, Abbey D, Korn A, Reeskamp LF, Hand NJ, Holleboom AG. Hepatocyte-like cells derived from induced pluripotent stem cells: A versatile tool to understand lipid disorders. Atherosclerosis 2020; 303:8-14. [PMID: 32460140 DOI: 10.1016/j.atherosclerosis.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/19/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Dyslipidemias are strongly linked to the development of atherosclerotic cardiovascular disease. Most dyslipidemias find their origin in the liver. In recent years, the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells has provided a versatile platform for the functional study of various dyslipidemias, both rare genetic dyslipidemia as well as common lipid disorders associated with insulin resistance or non-alcoholic fatty liver disease. In addition, iPSC-derived hepatocytes can serve as a cell model for developing novel lipid lowering therapies and have the potential of regenerative medicine. This review provides an overview of these developments.
Collapse
Affiliation(s)
- Lars E Larsen
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Mikhaila A Smith
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Deepti Abbey
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Amber Korn
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Nicholas J Hand
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | - Adriaan G Holleboom
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Blom DJ, Raal FJ, Santos RD, Marais AD. Lomitapide and Mipomersen-Inhibiting Microsomal Triglyceride Transfer Protein (MTP) and apoB100 Synthesis. Curr Atheroscler Rep 2019; 21:48. [PMID: 31741187 DOI: 10.1007/s11883-019-0809-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate the role of inhibiting the synthesis of lipoproteins when there is no or little residual LDL-receptor function as in patients with homozygous familial hypercholesterolaemia. Lomitapide is administered orally once a day while mipomersen is given by subcutaneous injection once a week. Lomitapide inhibits microsomal triglyceride transfer protein while mipomersen is an antisense oligonucleotide directed against apoB100. RECENT FINDINGS The pivotal registration trials for lomitapide and mipomersen were published in 2013 and 2010, respectively. More recently published data from extension trials and cohort studies provides additional information on long-term safety and efficacy. The mean LDL cholesterol reduction was 50% with lomitapide in its single-arm open-label registration trial. Mipomersen reduced LDL cholesterol by approximately 25% in its double-blind, placebo-controlled registration study. Both lomitapide and mipomersen therapy are associated with variable increases in hepatic fat content. The long-term safety of increased hepatic fat content in patients receiving these therapies is uncertain and requires further study. Both drugs may cause elevated transaminase in some patients, but no cases of severe liver injury have been reported. Lomitapide may also cause gastrointestinal discomfort and diarrhoea, especially if patients consume high-fat meals and patients are advised to follow a low-fat diet supplemented with essential fatty acids and fat-soluble vitamins. Mipomersen may cause injection-site and influenza-like reactions. The effect of lomitapide and mipomersen on cardiovascular outcomes has not been studied, but circumstantial evidence suggests that the LDL cholesterol lowering achieved with these two agents may reduce cardiovascular event rates.
Collapse
Affiliation(s)
- Dirk J Blom
- Department of Medicine, Division of Lipidology and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, 4th Floor Chris Barnard Building, Anzio Road, 7925 Observatory, Cape Town, South Africa.
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil.,Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - A David Marais
- Division of Chemical Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| |
Collapse
|
17
|
Klevstig M, Arif M, Mannila M, Svedlund S, Mardani I, Ståhlman M, Andersson L, Lindbom M, Miljanovic A, Franco-Cereceda A, Eriksson P, Jeppsson A, Gan LM, Levin M, Mardinoglu A, Ehrenborg E, Borén J. Cardiac expression of the microsomal triglyceride transport protein protects the heart function during ischemia. J Mol Cell Cardiol 2019; 137:1-8. [PMID: 31533023 DOI: 10.1016/j.yjmcc.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
AIMS The microsomal triglyceride transport protein (MTTP) is critical for assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins and is most abundant in the liver and intestine. Surprisingly, MTTP is also expressed in the heart. Here we tested the functional relevance of cardiac MTTP expression. MATERIALS AND METHODS We combined clinical studies, advanced expression analysis of human heart biopsies and analyses in genetically modified mice lacking cardiac expression of the MTTP-A isoform of MTTP. RESULTS Our results indicate that lower cardiac MTTP expression in humans is associated with structural and perfusion abnormalities in patients with ischemic heart disease. MTTP-A deficiency in mice heart does not affect total MTTP expression, activity or lipid concentration in the heart. Despite this, MTTP-A deficient mice displayed impaired cardiac function after a myocardial infarction. Expression analysis of MTTP indicates that MTTP expression is linked to cardiac function and responses in the heart. CONCLUSIONS Our results indicate that MTTP may play an important role for the heart function in conjunction to ischemic events.
Collapse
Affiliation(s)
- Martina Klevstig
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Maria Mannila
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Franco-Cereceda
- Department of Cardiothoracic Surgery and Anaesthesia, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Mölndal, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ewa Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
18
|
Musunuru K, Arora P, Cooke JP, Ferguson JF, Hershberger RE, Hickey KT, Lee JM, Lima JAC, Loscalzo J, Pereira NL, Russell MW, Shah SH, Sheikh F, Wang TJ, MacRae CA. Interdisciplinary Models for Research and Clinical Endeavors in Genomic Medicine: A Scientific Statement From the American Heart Association. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e000046. [PMID: 29844141 DOI: 10.1161/hcg.0000000000000046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The completion of the Human Genome Project has unleashed a wealth of human genomics information, but it remains unclear how best to implement this information for the benefit of patients. The standard approach of biomedical research, with researchers pursuing advances in knowledge in the laboratory and, separately, clinicians translating research findings into the clinic as much as decades later, will need to give way to new interdisciplinary models for research in genomic medicine. These models should include scientists and clinicians actively working as teams to study patients and populations recruited in clinical settings and communities to make genomics discoveries-through the combined efforts of data scientists, clinical researchers, epidemiologists, and basic scientists-and to rapidly apply these discoveries in the clinic for the prediction, prevention, diagnosis, prognosis, and treatment of cardiovascular diseases and stroke. The highly publicized US Precision Medicine Initiative, also known as All of Us, is a large-scale program funded by the US National Institutes of Health that will energize these efforts, but several ongoing studies such as the UK Biobank Initiative; the Million Veteran Program; the Electronic Medical Records and Genomics Network; the Kaiser Permanente Research Program on Genes, Environment and Health; and the DiscovEHR collaboration are already providing exemplary models of this kind of interdisciplinary work. In this statement, we outline the opportunities and challenges in broadly implementing new interdisciplinary models in academic medical centers and community settings and bringing the promise of genomics to fruition.
Collapse
|
19
|
Yamashita T, Takayama K, Hori M, Harada-Shiba M, Mizuguchi H. Pharmaceutical Research for Inherited Metabolic Disorders of the Liver Using Human Induced Pluripotent Stem Cell and Genome Editing Technologies. Biol Pharm Bull 2019; 42:312-318. [PMID: 30828061 DOI: 10.1248/bpb.b18-00544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthotopic liver transplantation, rather than drug therapy, is the major curative approach for various inherited metabolic disorders of the liver. However, the scarcity of donated livers is a serious problem. To resolve this, there is an urgent need for novel drugs to treat inherited metabolic disorders of the liver. This requirement, in turn, necessitates the establishment of suitable disease models for many inherited metabolic disorders of the liver that currently lack such models for drug development. Recent studies have shown that human induced pluripotent stem (iPS) cells generated from patients with inherited metabolic disorders of the liver are an ideal cell source for models that faithfully recapitulate the pathophysiology of inherited metabolic disorders of the liver. By using patient iPS cell-derived hepatocyte-like cells, drug efficacy evaluation and drug screening can be performed. In addition, genome editing technology has enabled us to generate functionally recovered patient iPS cell-derived hepatocyte-like cells in vitro. It is also possible to identify the genetic mutations responsible for undiagnosed liver diseases using iPS cell and genome editing technologies. Finally, a combination of exhaustive analysis, iPS cells, and genome editing technologies would be a powerful approach to accelerate the identification of novel genetic mutations responsible for undiagnosed liver diseases. In this review, we will discuss the usefulness of iPS cell and genome editing technologies in the field of inherited metabolic disorders of the liver, such as alpha-1 antitrypsin deficiency and familial hypercholesterolemia.
Collapse
Affiliation(s)
- Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University.,PRESTO, Japan Science and Technology Agency.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition.,Global Center for Medical Engineering and Informatics, Osaka University
| |
Collapse
|
20
|
Pinheiro EA, Fetterman KA, Burridge PW. hiPSCs in cardio-oncology: deciphering the genomics. Cardiovasc Res 2019; 115:935-948. [PMID: 30689737 PMCID: PMC6452310 DOI: 10.1093/cvr/cvz018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The genomic predisposition to oncology-drug-induced cardiovascular toxicity has been postulated for many decades. Only recently has it become possible to experimentally validate this hypothesis via the use of patient-specific human-induced pluripotent stem cells (hiPSCs) and suitably powered genome-wide association studies (GWAS). Identifying the individual single nucleotide polymorphisms (SNPs) responsible for the susceptibility to toxicity from a specific drug is a daunting task as this precludes the use of one of the most powerful tools in genomics: comparing phenotypes to close relatives, as these are highly unlikely to have been treated with the same drug. Great strides have been made through the use of candidate gene association studies (CGAS) and increasingly large GWAS studies, as well as in vivo whole-organism studies to further our mechanistic understanding of this toxicity. The hiPSC model is a powerful technology to build on this work and identify and validate causal variants in mechanistic pathways through directed genomic editing such as CRISPR. The causative variants identified through these studies can then be implemented clinically to identify those likely to experience cardiovascular toxicity and guide treatment options. Additionally, targets identified through hiPSC studies can inform future drug development. Through careful phenotypic characterization, identification of genomic variants that contribute to gene function and expression, and genomic editing to verify mechanistic pathways, hiPSC technology is a critical tool for drug discovery and the realization of precision medicine in cardio-oncology.
Collapse
Affiliation(s)
- Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| |
Collapse
|
21
|
Di Filippo M, Collardeau Frachon S, Janin A, Rajan S, Marmontel O, Decourt C, Rubio A, Nony S, Dumont S, Cuerq C, Charrière S, Moulin P, Lachaux A, Hussain MM, Bozon D, Peretti N. Normal serum ApoB48 and red cells vitamin E concentrations after supplementation in a novel compound heterozygous case of abetalipoproteinemia. Atherosclerosis 2019; 284:75-82. [PMID: 30875496 DOI: 10.1016/j.atherosclerosis.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Abetalipoproteinemia (ABL) is a rare recessive monogenic disease due to MTTP (microsomal triglyceride transfer protein) mutations leading to the absence of plasma apoB-containing lipoproteins. Here we characterize a new ABL case with usual clinical phenotype, hypocholesterolemia, hypotriglyceridemia but normal serum apolipoprotein B48 (apoB48) and red blood cell vitamin E concentrations. METHODS Histology and MTP activity measurements were performed on intestinal biopsies. Mutations in MTTP were identified by Sanger sequencing, quantitative digital droplet and long-range PCR. Functional consequences of the variants were studied in vitro using a minigene splicing assay, measurement of MTP activity and apoB48 secretion. RESULTS Intestinal steatosis and the absence of measurable lipid transfer activity in intestinal protein extract supported the diagnosis of ABL. A novel MTTP c.1868G>T variant inherited from the patient's father was identified. This variant gives rise to three mRNA transcripts: one normally spliced, found at a low frequency in intestinal biopsy, carrying the p.(Arg623Leu) missense variant, producing in vitro 65% of normal MTP activity and apoB48 secretion, and two abnormally spliced transcripts resulting in a non-functional MTP protein. Digital droplet PCR and long-range sequencing revealed a previously described c.1067+1217_1141del allele inherited from the mother, removing exon 10. Thus, the patient is compound heterozygous for two dysfunctional MTTP alleles. The p.(Arg623Leu) variant may maintain residual secretion of apoB48. CONCLUSIONS Complex cases of primary dyslipidemia require the use of a cascade of different methodologies to establish the diagnosis in patients with non-classical biological phenotypes and provide better knowledge on the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France.
| | - Sophie Collardeau Frachon
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Institut de Pathologie, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Alexandre Janin
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; Université de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Lyon, F-69622, France.
| | - Sujith Rajan
- NYU Winthrop Hospital, 101 Mineola Blvd, Mineola, USA.
| | - Oriane Marmontel
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France.
| | - Charlotte Decourt
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Amandine Rubio
- Gastroentérologie et Nutrition Pédiatrique Hôpital Couple Enfant, CHU de Grenoble Alpes, Grenoble, F-38043, France; Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Univ. Grenoble Alpes, F-38000, France.
| | - Séverine Nony
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Sabrina Dumont
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Charlotte Cuerq
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, Pierre, Benite cedex, F-69495, France.
| | - Sybil Charrière
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Philippe Moulin
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Alain Lachaux
- Service de Nutrition Pediatrique, Gastroenterologie and Hepatologie, Hôpital Femme Mère Enfants, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | | | - Dominique Bozon
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Noël Peretti
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Service de Nutrition Pediatrique, Gastroenterologie and Hepatologie, Hôpital Femme Mère Enfants, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| |
Collapse
|
22
|
Yang Z, Zhao J, Wang J, Li J, Ouyang K, Wang W. Effects of Cyclocarya paliurus polysaccharide on lipid metabolism-related genes DNA methylation in rats. Int J Biol Macromol 2019; 123:343-349. [PMID: 30445074 DOI: 10.1016/j.ijbiomac.2018.11.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
The present study was conducted to evaluate the effect of CPP on the DNA methylation and expressions of lipid metabolism-related genes (leptin and MTTP) in hyperlipidemic rats. After 8 weeks intervention of CPP, the abdominal wall fat index, liver weight, the serum concentrations of TC, TG and LDL-C were significantly decreased, while HDL was increased. In addition, DNA methylation was analyzed by bisulfite sequencing method, and the mRNA expression levels of leptin and MTTP were detected by Q-PCR. The results showed that CPP could considerably decrease DNA methylation levels of leptin (regions from -694 ~ -370 bp contains 14 CpGs and -324 ~ -29 bp contains 18 CpGs) and MTTP (region from -350 ~ -1 bp contains 11 CpGs) promoters in the liver with the maximum decrease rate of 43.2%, 40.2% and 7.7%, respectively. In parallel, the mRNA contents of leptin and MTTP were dramatically down-regulated. In conclusion, the present findings demonstrated that CPP can regulate the level of mRNA by controlling DNA methylation levels in the liver, thereby reducing blood lipids.
Collapse
Affiliation(s)
- Zhanwei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Zhao
- Guang' an Vocation & Technical College, Guang' an 638000, China
| | - Jin Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingen Li
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
23
|
Yang Z, Zhao J, Wang J, Li J, Ouyang K, Wang W. Effects of Cyclocarya paliurus polysaccharide on lipid metabolism-related genes DNA methylation in rats. Int J Biol Macromol 2019. [DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Liu Y, Shen J, Yang X, Sun Q, Yang X. Folic Acid Reduced Triglycerides Deposition in Primary Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13162-13172. [PMID: 30484310 DOI: 10.1021/acs.jafc.8b05193] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Abdominal fat or fatty liver cause huge economic losses in the poultry industry, and nonalcoholic fatty liver disease (NAFLD) is also a global health issue in humans. More than 90% of de novo lipogenesis in humans and chickens is undertaken by the liver, which is proved to be full of lipids in new-born chickens. Folic acid was thought to have correlation with lipid metabolism. Primary hepatocytes from new-born chickens were employed as a natural model of early stage fatty liver in vitro and further to explore whether folic acid could prevent fatty liver in the current study. We found that folic acid addition reduced triglyceride deposition by suppressing de novo fatty acid synthesis and coordinately promoting triglyceride hydrolysis and exportation in primary chicken hepatocytes from new-born chickens. In addition, lipogenesis suppression was through the PI3K/AKT/SREBP pathway mediated by weakening insulin/IGF signal. Our data suggested that folic acid may be considered as a precautionary strategy for abdominal fat deposition in broilers or fatty liver in laying hens and humans. In addition, mechanism regulation also implied that an IGF2 inhibitor and PI3K inhibitor may be used for the NAFLD precautionary measure to reduce TG deposition.
Collapse
Affiliation(s)
- Yanli Liu
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Jing Shen
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xin Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Qingzhu Sun
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xiaojun Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| |
Collapse
|
25
|
Abstract
The development of the reprogramming technology led to generation of induced Pluripotent Stem Cells (iPSC) from a variety of somatic cells. Ever since, fast growing knowledge of different efficient protocols enabled the differentiation of these iPSCs into different cells types utilized for disease modeling. Indeed, iPSC-derived cells have been increasingly used for investigating molecular and cellular pathophysiological mechanisms underlying inherited diseases. However, a major barrier in the field of iPSC-based disease modeling relies on discriminating between the effects of the causative mutation and the genetic background of these cells. In the past decade, researchers have made great improvement in genome editing techniques, with one of the latest being CRISPR/Cas9. Using a single non-sequence specific protein combined with a small guiding RNA molecule, this state-of-the-art approach enables modifications of genes with high efficiency and accuracy. By so doing, this technique enables the generation of isogenic controls or isogenic mutated cell lines in order to focus on the pathologies caused by a specific mutation. In this article, we review the latest studies combining iPSC and CRISPR/Cas9 technologies for the investigation of the molecular and cellular mechanisms underlying inherited diseases including immunological, metabolic, hematological, neurodegenerative and cardiac diseases.
Collapse
|
26
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
27
|
Lyssenko NN, Haider N, Picataggi A, Cipollari E, Jiao W, Phillips MC, Rader DJ, Chavali VRM. Directional ABCA1-mediated cholesterol efflux and apoB-lipoprotein secretion in the retinal pigment epithelium. J Lipid Res 2018; 59:1927-1939. [PMID: 30076206 DOI: 10.1194/jlr.m087361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Cholesterol-containing soft drusen and subretinal drusenoid deposits (SDDs) occur at the basolateral and apical side of the retinal pigment epithelium (RPE), respectively, in the chorioretina and are independent risk factors for late age-related macular degeneration (AMD). Cholesterol in these deposits could originate from the RPE as nascent HDL or apoB-lipoprotein. We characterized cholesterol efflux and apoB-lipoprotein secretion in RPE cells. Human RPE cells, ARPE-19, formed nascent HDL that was similar in physicochemical properties to nascent HDL formed by other cell types. In highly polarized primary human fetal RPE (phfRPE) monolayers grown in low-lipid conditions, cholesterol efflux to HDL was moderately directional to the apical side and much stronger than ABCA1-mediated efflux to apoA-I at both sides; ABCA1-mediated efflux was weak and equivalent between the two sides. Feeding phfRPE monolayers with oxidized or acetylated LDL increased intracellular levels of free and esterified cholesterol and substantially raised ABCA1-mediated cholesterol efflux at the apical side. phfRPE monolayers secreted apoB-lipoprotein preferentially to the apical side in low-lipid and oxidized LDL-feeding conditions. These findings together with evidence from human genetics and AMD pathology suggest that RPE-generated HDL may contribute lipid to SDDs.
Collapse
Affiliation(s)
- Nicholas N Lyssenko
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Naqi Haider
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Antonino Picataggi
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eleonora Cipollari
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wanzhen Jiao
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
28
|
Induced Pluripotent Stem Cell-Derived Hepatocytes and Precision Medicine in Human Liver Disease. J Pediatr Gastroenterol Nutr 2018; 66:716-719. [PMID: 29509632 DOI: 10.1097/mpg.0000000000001948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver-like human cells can be generated from human skin by converting fibroblasts to "induced pluripotent stem cells" (iPSCs), then differentiating the iPSCs into "induced hepatocytes". Although still primarily used as a research tool, emerging applications involving iPSC-derived induced hepatocytes have exciting and provocative clinical and translational potential. This review provides a brief summary of the current status of this field and obstacles that must be overcome before this novel tool will enable precision medicine-based approaches to human liver disease.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To summarize recent advances with respect to the use of human pluripotent stem cells to study the genetics of blood lipid traits. RECENT FINDINGS Human pluripotent stem cell models have been used to elucidate the mechanisms by which genes contribute to dyslipidemia, to discover new lipid-related DNA variants and genes, and to perform drug screens. SUMMARY In addition to enabling a better understanding of the genetic basis of lipid metabolism, human pluripotent stem cells are identifying potential therapeutic targets as well as potential therapies.
Collapse
|
30
|
Musunuru K. Genome Editing: The Recent History and Perspective in Cardiovascular Diseases. J Am Coll Cardiol 2017; 70:2808-2821. [PMID: 29191331 DOI: 10.1016/j.jacc.2017.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
The genome-editing field has advanced to a remarkable degree in the last 5 years, culminating in the successful correction of a cardiomyopathy gene mutation in viable human embryos. In this review, the author discusses the basic principles of genome editing, recent advances in clustered regularly interspaced short palindromic repeats and clustered regularly interspaced short palindromic repeats-associated 9 technology, the impact on cardiovascular basic science research, possible therapeutic applications in patients with cardiovascular diseases, and finally the implications of potential clinical uses of human germline genome editing.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and the Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|