1
|
Tadepalli S, Clements DR, Raquer-McKay HM, Lüdtke A, Saravanan S, Seong D, Vitek L, Richards CM, Carette JE, Mack M, Gottfried-Blackmore A, Graves EE, Idoyaga J. CD301b+ monocyte-derived dendritic cells mediate resistance to radiotherapy. J Exp Med 2025; 222:e20231717. [PMID: 40146036 PMCID: PMC11949126 DOI: 10.1084/jem.20231717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Monocytes infiltrating tumors acquire various states that distinctly impact cancer treatment. Here, we show that resistance of tumors to radiotherapy (RT) is controlled by the accumulation of monocyte-derived dendritic cells (moDCs). These moDCs are characterized by the expression of CD301b and have a superior capacity to generate regulatory T cells (Tregs). Accordingly, moDC depletion limits Treg generation and improves the therapeutic outcome of RT. Mechanistically, we demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF) derived from radioresistant tumor cells following RT is necessary for the accumulation of moDCs. Our results unravel the immunosuppressive function of moDCs and identify GM-CSF as an immunotherapeutic target during RT.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hayley M. Raquer-McKay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - David Seong
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lorraine Vitek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M. Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Andres Gottfried-Blackmore
- Department of Pharmacology, University of California San Diego School of Medicine, San Diego, CA, USA
- Department of Medicine, Division of Gastroenterology, University of California San Diego School of Medicine, San Diego, CA, USA
- Gastroenterology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pharmacology, University of California San Diego School of Medicine, San Diego, CA, USA
- Department of Molecular Biology, University of California San Diego School of Biological Sciences, San Diego, CA, USA
| |
Collapse
|
2
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025; 22:439-456. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
3
|
Blümke J, Schameitat M, Verma A, Limbecker C, Arlt E, Kessler SM, Kielstein H, Krug S, Bazwinsky-Wutschke I, Haemmerle M. Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer. Cancers (Basel) 2025; 17:1689. [PMID: 40427186 PMCID: PMC12110028 DOI: 10.3390/cancers17101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar-ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Juliane Blümke
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| | - Moritz Schameitat
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Atul Verma
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
| | - Celina Limbecker
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Elise Arlt
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sonja M. Kessler
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Faculty of Natural Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sebastian Krug
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Monika Haemmerle
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| |
Collapse
|
4
|
Glapiński F, Zając W, Fudalej M, Deptała A, Czerw A, Sygit K, Kozłowski R, Badowska-Kozakiewicz A. The Role of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma: Recent Advancements and Emerging Therapeutic Strategies. Cancers (Basel) 2025; 17:1599. [PMID: 40427098 PMCID: PMC12110676 DOI: 10.3390/cancers17101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic cancer (PC), with pancreatic ductal adenocarcinoma (PDAC) comprising about 90% of all cases, is one of the most aggressive and lethal solid tumors. PDAC remains one of the most significant challenges of oncology to this day due to its inadequate response to conventional treatment, gradual rise in incidence since 2004, and poor five-year survival rates. As cancer cells are the primary adversary in this uneven fight, they remain the primary research target. Nevertheless, increasing attention is being paid to the tumor microenvironment (TME). The most crucial TME constellation components are immune cells, especially macrophages, stellate cells and lymphocytes, fibroblasts, bacterial and fungal microflora, and neuronal cells. Depending on the particular phenotype of these cells, the composition of the microenvironment, and the cell ratio, patients can experience different disease outcomes and varying vulnerability to treatment approaches. This study aims to present the current knowledge and review the most up-to-date scientific findings regarding the microenvironment of PC. It contains detailed information on the structure and cellular composition of the stroma, including its impact on disease development, metastasis, and response to treatment, as well as the therapeutic opportunities that arise from targeting this tissue.
Collapse
Affiliation(s)
- Franciszek Glapiński
- Students’ Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Weronika Zając
- Students’ Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Marta Fudalej
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.F.); (A.D.)
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.F.); (A.D.)
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Economic and System Analyses, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Remigiusz Kozłowski
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland
| | - Anna Badowska-Kozakiewicz
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.F.); (A.D.)
| |
Collapse
|
5
|
Li M, Chen YL, Pearce LM, Hammett AM, Sharma FH, Miller DS, Chen KHE. Asymmetric Dimethylarginine Disrupts Tumor Antigen Presentation in Breast Cancer. Int J Mol Sci 2025; 26:4482. [PMID: 40429627 PMCID: PMC12111280 DOI: 10.3390/ijms26104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous methylated amino acid, has been implicated in tumor progression; however, its influence on tumor immunity, particularly dendritic cell (DC) function and antigen presentation, remains unclear. In this study, we examined the effects of ADMA on tumor antigen uptake, processing, and presentation in DCs using the murine dendritic cell line DC2.4 as a model. Our results reveal that ADMA treatment significantly reduces the phagocytic uptake of tumor antigens derived from EO771 and Py230 breast cancer cell lysates. Additionally, ADMA exposure leads to a marked downregulation of key genes involved in antigen processing and presentation, including MHC I, MHC II, TAP1, TAP2, ERp57, and CD80. This suppression at the transcriptional level corresponds with decreased surface protein expression of MHC I, MHC II, and CD80, as confirmed by flow cytometry. Furthermore, ADMA-treated DC2.4 cells exhibit impaired tumor antigen presentation on their surface. Consequently, these functional impairments result in a diminished capacity to activate CD4+ T cells, as evidenced by a 41.18% decrease in CD25 expression and a 30.28% reduction in IFN-γ secretion. Similarly, CD8+ T cell activation is compromised, as indicated by a 32.26% decrease in IFN-γ production, although CD25 expression remains unaffected. Collectively, our findings identify ADMA as a potential immunosuppressive factor that disrupts antigen uptake, processing, and presentation in DCs, thereby modulating T cell activation. These insights suggest a potential mechanism through which ADMA may contribute to immune evasion within the tumor microenvironment.
Collapse
Affiliation(s)
- Mei Li
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.L.); (Y.-L.C.); (L.M.P.); (A.M.H.); (F.H.S.); (D.S.M.)
| | - Yi-Ling Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.L.); (Y.-L.C.); (L.M.P.); (A.M.H.); (F.H.S.); (D.S.M.)
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Lilly M. Pearce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.L.); (Y.-L.C.); (L.M.P.); (A.M.H.); (F.H.S.); (D.S.M.)
| | - Amy M. Hammett
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.L.); (Y.-L.C.); (L.M.P.); (A.M.H.); (F.H.S.); (D.S.M.)
| | - Falak H. Sharma
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.L.); (Y.-L.C.); (L.M.P.); (A.M.H.); (F.H.S.); (D.S.M.)
| | - Derick S. Miller
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.L.); (Y.-L.C.); (L.M.P.); (A.M.H.); (F.H.S.); (D.S.M.)
| | - Kuan-Hui E. Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.L.); (Y.-L.C.); (L.M.P.); (A.M.H.); (F.H.S.); (D.S.M.)
| |
Collapse
|
6
|
Lonberg N. The Problem with Syngeneic Mouse Tumor Models. Cancer Immunol Res 2025; 13:456-462. [PMID: 39996612 DOI: 10.1158/2326-6066.cir-24-1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
The advent of syngeneic mouse tumor models provided the scientific foundation for cancer immunotherapies now in widespread use. However, in many respects, these models do not faithfully recapitulate the interactions between cancer cells and the immune systems of human patients who have solid tumors because they represent a very early stage in the immune response to the newly transplanted cancer cells compared with the relatively mature stage found in human patients at the time of treatment. The lack of translatability of syngeneic models is probably responsible for many failed clinical trials conducted at considerable expense, involving far too many patients with cancer who received no benefit. Better mouse models would substantially accelerate the pace of discovery of new immunotherapies. Until these models emerge, a better understanding of the differences between the existing syngeneic models and human cancers may provide a more efficient path for moving experimental drugs into clinical development. To accomplish this, we must consider mice transplanted with syngeneic tumor cells to be in vivo assays, potentially useful for understanding the mechanism of action of immunotherapies rather than disease models.
Collapse
|
7
|
Hirao H, Honda M, Tomita M, Li L, Adawy A, Xue W, Hibi T. Intravital Imaging of Immune Responses in the Cancer Microenvironment. Cancer Med 2025; 14:e70899. [PMID: 40257446 PMCID: PMC12010765 DOI: 10.1002/cam4.70899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND To date, many types of immune cells have been identified, but their precise role in cancer immunity remains unclear. Understanding the immune responses involved in cancer and the cancer microenvironment is becoming increasingly important for elucidating disease mechanisms. In recent years, the application of intravital imaging in cancer research has provided new insights into the mechanisms of cancer-specific immune events, including innate and adaptive immunity. RESULTS In this review, we focus on the emerging role of intravital imaging in cancer research and describe how cancer and immune cells can be observed using intravital imaging in vivo. We also discuss new insights gained by this state-of-the-art technique. CONCLUSIONS Intravital imaging is a relatively new field of research that offers significant advantages, including the ability to directly capture cell-cell interactions, pathophysiology, and immune cell dynamics in the cancer microenvironment in vivo.
Collapse
Affiliation(s)
- Hiroki Hirao
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masaki Honda
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masahiro Tomita
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Lianbo Li
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Ahmad Adawy
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Weijie Xue
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Taizo Hibi
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| |
Collapse
|
8
|
Chen P, Wang H, Tang Z, Shi J, Cheng L, Zhao C, Li X, Zhou C. Selective Depletion of CCR8+Treg Cells Enhances the Antitumor Immunity of Cytotoxic T Cells in Lung Cancer by Dendritic Cells. J Thorac Oncol 2025:S1556-0864(25)00109-1. [PMID: 40056978 DOI: 10.1016/j.jtho.2025.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 02/22/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Accumulation of regulatory T (Treg) cells, an immunosuppressive population, limits the efficacy of immunotherapy in NSCLC. C-C motif chemokine receptor 8 (CCR8) is selectively expressed in tumor-infiltrating Treg cells and is, therefore, considered an ideal target. METHODS The efficacy and safety of anti-CCR8 monotherapy and its combination with programmed cell death protein-1 (PD1) inhibitor were evaluated in four NSCLC-bearing mice models. To track the dynamic changes in tumor microenvironment, we performed the single-cell RNA sequencing, the single-cell T-cell receptor sequencing analysis, the flow cytometry, the multi-color immunofluorescence, and the Luminex assay on tumors after three, seven, 14, and 21 days of different treatment regimens. Then, in vitro and in vivo experiments were applied to validate our findings and explore molecular mechanisms of the synergistic effects. RESULTS Across four NSCLC-bearing mice models, the combination of CCR8 antibody and PD1 inhibitor significantly reduced tumor growth (p < 0.05) without obvious mouse body weight drops and systemic cytokine storm. The anti-CCR8 therapy synergizes with PD1 blockade by remodeling the tumor microenvironment and disrupting CCR8+Treg-C-C motif chemokine ligand 5 (CCL5)+ dendritic cells (DC) interaction. Mechanistically, therapeutic depletion of CCR8+Treg cells combined with PD1 inhibitor extremely increased interleukin-12 secretion by the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway activation on CCL5+ DCs, thereby promoting cytotoxic activity of CD8+ T cells. The therapeutic potential of the CCR8 antibody LM-108 in combination with immunotherapy was observed in clinical patients with advanced NSCLC. CONCLUSION Overall, CCR8 expression on tumor-infiltrating Treg cells is correlated with immunosuppressive function on DCs and CD8+ T cells, thus impeding antitumor immunity.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Shi J, Zhao L, Wang K, Lin J, Shen J. Disulfidptosis classification of pancreatic carcinoma reveals correlation with clinical prognosis and immune profile. Hereditas 2025; 162:26. [PMID: 39987145 PMCID: PMC11846472 DOI: 10.1186/s41065-025-00381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Disulfidptosis, a novel form of metabolism-related regulated cell death, is a promising intervention for cancer therapeutic intervention. Although aberrant expression of long-chain noncoding RNAs (lncRNAs) expression has been associated with pancreatic carcinoma (PC) development, the biological properties and prognostic potential of disulfidptosis-related lncRNAs (DRLs) remain unclear. METHODS We obtained RNA-seq data, clinical data, and genomic mutations of PC from the TCGA database, and then determined DRLs. We developed a risk score model and analyzed the role of risk score in the predictive ability, immune cell infiltration, immunotherapy response, and drug sensitivity. RESULTS We finally established a prognostic model including three DRLs (AP005233.2, FAM83A-AS1, and TRAF3IP2-AS1). According to Kaplan-Meier curve analysis, the survival time of patients in the low-risk group was significantly longer than that in the high-risk group. Based on enrichment analysis, significant associations between metabolic processes and differentially expressed genes were assessed in two risk groups. In addition, we observed significant differences in the tumor immune microenvironment landscape. Tumor Immune Dysfunction and Rejection (TIDE) analysis showed no statistically significant likelihood of immune evasion in both risk groups. Patients exhibiting both high risk and high tumor mutation burden (TMB) had the poorest survival times, while those falling into the low risk and low TMB categories showed the best prognosis. Moreover, the risk group identified by the 3-DRLs profile showed significant drug sensitivity. CONCLUSIONS Our proposed 3-DRLs-based feature could serve as a promising tool for predicting the prognosis, immune landscape, and treatment response of PC patients, thus facilitating optimal clinical decision-making.
Collapse
Affiliation(s)
- Jiangmin Shi
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Liang Zhao
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Kai Wang
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Jieqiong Lin
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China
| | - Jianwei Shen
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to, Ningbo University), Ningbo, Zhejiang Province, 315040, P.R. China.
| |
Collapse
|
10
|
Sivakumar S, Jainarayanan A, Arbe-Barnes E, Sharma PK, Leathlobhair MN, Amin S, Reiss DJ, Heij L, Hegde S, Magen A, Tucci F, Sun B, Wu S, Anand NM, Slawinski H, Revale S, Nassiri I, Webber J, Hoeltzel GD, Frampton AE, Wiltberger G, Neumann U, Charlton P, Spiers L, Elliott T, Wang M, Couto S, Lila T, Sivakumar PV, Ratushny AV, Middleton MR, Peppa D, Fairfax B, Merad M, Dustin ML, Abu-Shah E, Bashford-Rogers R. Distinct immune cell infiltration patterns in pancreatic ductal adenocarcinoma (PDAC) exhibit divergent immune cell selection and immunosuppressive mechanisms. Nat Commun 2025; 16:1397. [PMID: 39915477 PMCID: PMC11802853 DOI: 10.1038/s41467-024-55424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Pancreatic ductal adenocarcinoma has a dismal prognosis. A comprehensive analysis of single-cell multi-omic data from matched tumour-infiltrated CD45+ cells and peripheral blood in 12 patients, and two published datasets, reveals a complex immune infiltrate. Patients have either a myeloid-enriched or adaptive-enriched tumour microenvironment. Adaptive immune cell-enriched is intrinsically linked with highly distinct B and T cell clonal selection, diversification, and differentiation. Using TCR data, we see the largest clonal expansions in CD8 effector memory, senescent cells, and highly activated regulatory T cells which are induced within the tumour from naïve cells. We identify pathways that potentially lead to a suppressive microenvironment, including investigational targets TIGIT/PVR and SIRPA/CD47. Analysis of patients from the APACT clinical trial shows that myeloid enrichment had a shorter overall survival compared to those with adaptive cell enrichment. Strategies for rationale therapeutic development in this disease include boosting of B cell responses, targeting immunosuppressive macrophages, and specific Treg cell depletion approaches.
Collapse
Affiliation(s)
- Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK.
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK.
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
- Institute of Developmental and Regenerative Medicine (IDRM), Old Road Campus, Old Rd, Roosevelt Dr, Headington, University of Oxford, Oxford, OX3 7TY, UK
| | - Edward Arbe-Barnes
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, NW3 2PP, UK
| | | | - Maire Ni Leathlobhair
- Department of Microbiology, Trinity College, Dublin, Ireland
- Oxford Big Data Institute, Old Road Campus, University of Oxford, Oxford, OX3 7LF, UK
| | - Sakina Amin
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Lara Heij
- GROW School for Oncology and Developmental Biology, Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Samarth Hegde
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Assaf Magen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Felicia Tucci
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
- Oxford Cancer Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Shihong Wu
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
- Oxford Cancer Centre, Oxford, UK
| | | | - Hubert Slawinski
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Santiago Revale
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Isar Nassiri
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathon Webber
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
| | - Gerard D Hoeltzel
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - Adam E Frampton
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Daphne Jackson Road, Guildford, GU2 7WG, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford, GU2 7XX, UK
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7WG, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Georg Wiltberger
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Ulf Neumann
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
- Department of Surgery Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Philip Charlton
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Laura Spiers
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Tim Elliott
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria Wang
- Bristol-Myers Squibb, Seattle, Seattle, WA, USA
| | - Suzana Couto
- Neomorph, Inc., 5590 Morehouse Dr, San Diego, CA, USA
| | - Thomas Lila
- Bristol-Myers Squibb, Seattle, Seattle, WA, USA
| | | | | | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Dimitra Peppa
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, NW3 2PP, UK
- Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford, OX3 7BN, UK
| | - Benjamin Fairfax
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK.
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK.
| | - Rachael Bashford-Rogers
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK.
- Oxford Cancer Centre, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Yang M, Hou S, Chen Y, Chen H, Chu M, Liu SB. Emerging insights into intravital imaging, unraveling its role in cancer immunotherapy. Cancer Immunol Immunother 2025; 74:100. [PMID: 39904769 PMCID: PMC11794739 DOI: 10.1007/s00262-025-03944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Cancer immunotherapy has attracted great attention as a potential therapeutic approach for advanced malignancies due to its promising survival benefits. Comprehension of intricate interactions between the tumor microenvironment (TME) and immune checkpoint inhibitors (ICIs) is crucial for optimizing and improving immunotherapies. Currently, several experimental strategies are available to monitor this complexity but most of them fail to facilitate real-time monitoring of the immune response such as cellular phagocytosis and cytolysis. Consequently, the application of intravital imaging has been extensively studied in the domain of cancer immunotherapy. Intravital imaging has been proven to be a powerful real-time imaging modality that provides insights into intratumoral immune responses, cellular metabolic signatures, tumor vasculature, and cellular functions. This review aims to provide a comprehensive overview of the latest research on intravital imaging in cancer immunotherapy, especially addressing how intravital imaging sheds light on essential features of tumor immunity, immune infiltrations, tumor angiogenesis, and aids in the clarification of underlying immunotherapeutic mechanisms. Moreover, a variety of labeling tools, imaging windows and models for real-time visualizations of TME are also summarized. We will also investigate the full potential of using intravital imaging to circumvent the limitations of currently available imaging modalities, which hold promise to advent efficient immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Minfeng Yang
- School of Public Health, Nantong University, Nantong, China
| | - Shiqiang Hou
- The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| | - Yao Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Hongzhao Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
| | - Minjie Chu
- School of Public Health, Nantong University, Nantong, China.
| | - Song-Bai Liu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, China.
| |
Collapse
|
12
|
Li J, Jiang Y, Ma M, Wang L, Jing M, Yang Z, Zhang M, Chen K, Fan J. Epithelial cell diversity and immune remodeling in bladder cancer progression: insights from single-cell transcriptomics. J Transl Med 2025; 23:135. [PMID: 39885578 PMCID: PMC11783851 DOI: 10.1186/s12967-025-06138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored. METHODS We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues. Bulk RNA-seq data were used to validate the clinical features of characteristic cells, and protein levels of these cells were further confirmed through immunohistochemistry (IHC) and multiplex immunofluorescence. RESULTS Bladder cancer progression was associated with distinct transcriptomic features in the TME. Tumor cells in MIBC displayed enhanced glycolytic activity and downregulation of chemokines and MHC-II molecules, reducing immune cell recruitment and facilitating immune evasion. This highlights glycolysis as a potential therapeutic target for disrupting tumor progression. We identified a T cell exhaustion pathway from naive CD8 + T cells (CD8 + TCF7) to terminally exhausted CD8 + STMN1 cells, with progressively declining immune surveillance. Targeting intermediate exhaustion states may restore T cell function and improve anti-tumor immunity. Macrophages polarized toward a pro-tumorigenic phenotype, while VEGFA + mast cells promoted angiogenesis in early-stage BC, suggesting their role as potential targets for therapeutic intervention in NMIBC. Furthermore, conventional dendritic cells (DCs) transformed into LAMP3 + DCs, contributing to an immunosuppressive microenvironment and enabling immune evasion. CONCLUSION This study reveals dynamic changes in the TME during BC progression, including enhanced glycolysis, T cell exhaustion, and immune cell remodeling, which contribute to immune evasion and tumor progression. These findings identify critical pathways and cell populations as potential therapeutic targets, offering new strategies to improve treatment outcomes in BC patients.
Collapse
Affiliation(s)
- Jianpeng Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yunzhong Jiang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Minghai Ma
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lu Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Minxuan Jing
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zezhong Yang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Jinhai Fan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
13
|
Abbaszadeh M, Naseri B, Taghizadeh-Teymorloei M, Mardi A, Javan MR, Masoumi J, Ghorbaninezhad F, Hatami‐Sadr A, Tural Ş, Baradaran B, Sadeghi MR. Overview of dendritic cells subsets and their involvement in immune-related pathological disease. BIOIMPACTS : BI 2025; 15:30671. [PMID: 40256217 PMCID: PMC12008504 DOI: 10.34172/bi.30671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 04/22/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) in linking innate and adaptive immune responses. In addition to presenting antigens to T cells, DCs must also provide co-stimulatory signals along with cytokines for T cells to induce an appropriate cellular immune response. Tolerance is also established and maintained by DCs under homeostatic circumstances. There is remarkable phenotypic heterogeneity in DCs, each with different functional flexibility and specific expression of various markers. The three primary categories of DCs comprise conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). Langerhans cells (LCs) are another type of DCs, which are found in the skin's epidermal layer. DCs may be positioned or triggered inappropriately as a result of dysregulation of DC. This phenomenon can cause an imbalance in immune responses and even immune-related pathological disorders, i.e., autoimmune diseases and malignancies. Herein, by reviewing the ontogeny, biology, characteristics, and function of DCs subsets in immune system, we discuss the contribution of these cells in the mentioned immune-related disorders.
Collapse
Affiliation(s)
- Mohsen Abbaszadeh
- Molecular Medicine Department, Faculty of advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh-Teymorloei
- Molecular Medicine Department, Faculty of advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Şengül Tural
- Mayis University, Faculty of Medicine, Department of Medical Biology, Samsun, Turkey
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Molecular Medicine Department, Faculty of advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Bhandarkar V, Dinter T, Spranger S. Architects of immunity: How dendritic cells shape CD8 + T cell fate in cancer. Sci Immunol 2025; 10:eadf4726. [PMID: 39823318 PMCID: PMC11970844 DOI: 10.1126/sciimmunol.adf4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8+ T cell fates in cancer, drawing on insights from acute and chronic viral infection models. We highlight the role of DCs in lymph nodes and tumors in maintaining stem-like CD8+ T cells, which are critical for durable antitumor immune responses. Understanding how CD8+ T cell fates are determined will enable the rational design of immunotherapies, particularly therapeutic cancer vaccines, that can modulate DC-T cell interactions to generate beneficial CD8+ T cell fates.
Collapse
Affiliation(s)
- Vidit Bhandarkar
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Teresa Dinter
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Ying H, Kimmelman AC, Bardeesy N, Kalluri R, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2025; 39:36-63. [PMID: 39510840 PMCID: PMC11789498 DOI: 10.1101/gad.351863.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a grim prognosis for patients. Recent multidisciplinary research efforts have provided critical insights into its genetics and tumor biology, creating the foundation for rational development of targeted and immune therapies. Here, we review the PDAC genomic landscape and the role of specific oncogenic events in tumor initiation and progression, as well as their contributions to shaping its tumor biology. We further summarize and synthesize breakthroughs in single-cell and metabolic profiling technologies that have illuminated the complex cellular composition and heterotypic interactions of the PDAC tumor microenvironment, with an emphasis on metabolic cross-talk across cancer and stromal cells that sustains anabolic growth and suppresses tumor immunity. These conceptual advances have generated novel immunotherapy regimens, particularly cancer vaccines, which are now in clinical testing. We also highlight the advent of KRAS targeted therapy, a milestone advance that has transformed treatment paradigms and offers a platform for combined immunotherapy and targeted strategies. This review provides a perspective summarizing current scientific and therapeutic challenges as well as practice-changing opportunities for the PDAC field at this major inflection point.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA
- The Cancer Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Raghu Kalluri
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anirban Maitra
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA;
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Allen D, Szoo MJ, van Bergen TD, Seppelin A, Oh J, Saad MA. Near-infrared photoimmunotherapy: mechanisms, applications, and future perspectives in cancer research. Antib Ther 2025; 8:68-85. [PMID: 39958565 PMCID: PMC11826922 DOI: 10.1093/abt/tbaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Photoimmunotherapy (PIT) involves the targeted delivery of a photosensitizer through antibody conjugation, which, upon binding to its cellular target and activation by external irradiation, induces localized toxicity. This approach addresses several limitations of conventional cancer therapies, such as chemo- and radiotherapies, which result in off-target effects that significantly reduce patient quality of life. Furthermore, PIT improves on the challenges encountered with photodynamic therapy (PDT), such as nonspecific localization of the photosensitizer, which often results in unintended toxicities. Although PIT was first proposed in the early 1980s, its clinical applications have been constrained by limitations in antibody engineering, conjugation chemistries, and optical technologies. However, recent advances in antibody-drug conjugate (ADC) research and the emergence of sophisticated laser technologies have greatly benefited the broader applicability of PIT. Notably, the first near-infrared photoimmunotherapy (NIR-PIT) treatment for head and neck cancer has been approved in Japan and is currently in phase III clinical trials in the USA. A significant advantage of PIT over traditional ADCs in cancer management is the agnostic nature of PDT, making it more adaptable to different tumor types. Specifically, PIT can act on cancer stem cells and cancer cells displaying treatment resistance and aggressive phenotypes-a capability beyond the scope of ADCs alone. This review provides an overview of the mechanism of action of NIR-PIT, highlighting its adaptability and application in cancer therapeutics, and concludes by exploring the potential of PIT in advancing cancer treatments.
Collapse
Affiliation(s)
- Derek Allen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Madeline JoAnna Szoo
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Tessa D van Bergen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Ani Seppelin
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Jeonghyun Oh
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
18
|
Finan JM, Guo Y, Goodyear SM, Brody JR. Challenges and Opportunities in Targeting the Complex Pancreatic Tumor Microenvironment. JCO ONCOLOGY ADVANCES 2024; 1:e2400050. [PMID: 39735733 PMCID: PMC11670921 DOI: 10.1200/oa-24-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME). Opportunities to target the PDAC stroma may increase the effectiveness of existing or novel therapies. Current strategies targeting the stromal compartment within the PDAC TME primarily focus on degrading extracellular matrix or inhibiting stromal cell activity, angiogenesis, or hypoxic responses. In addition, extensive work has attempted to use immune targeting strategies to improve clinical outcomes. Preclinically, these strategies show promise, especially with the ability to alter the tumor ecosystem; however, when translated to the clinic, most of these trials have failed to improve overall patient outcomes. In this review, we catalog the heterogenous elements of the TME and discuss the potential of combination therapies that target the heterogeneity observed in the TME between patients and how molecular stratification could improve responses to targeted and combination therapies.
Collapse
Affiliation(s)
- Jennifer M. Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shaun M. Goodyear
- Division of Hematology and Oncology, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
19
|
Holm M, Stepanauskaitė L, Bäckström A, Birgersson M, Socciarelli F, Archer A, Stadler C, Williams C. Spatial profiling of the mouse colonic immune landscape associated with colitis and sex. Commun Biol 2024; 7:1595. [PMID: 39613949 DOI: 10.1038/s42003-024-07276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Inflammatory intestinal conditions are a major disease burden. Numerous factors shape the distribution of immune cells in the colon, but a spatial characterization of the homeostatic and inflamed colonic immune microenvironment is lacking. Here, we use the COMET platform for multiplex immunofluorescence to profile the infiltration of nine immune cell populations in mice of both sexes (N = 16) with full spatial context, including in regions of squamous metaplasia. Unsupervised clustering, neighborhood analysis, and manual quantification along the proximal-distal axis characterized the colonic immune landscape, quantified cell-cell interactions, and revealed sex differences. The distal colon was the most affected region during colitis, which was pronounced in males, who exhibited a sex-dependent increase of B cells and reduction of M2-like macrophages. Regions of squamous metaplasia exhibited strong infiltration of numerous immune cell populations, especially in males. Females exhibited more helper T cells and neutrophils at homeostasis and increased M2-like macrophage infiltration in the mid-colon upon colitis. Sex differences were corroborated by plasma cytokine profiles. Our results provide a foundation for future studies of inflammatory intestinal conditions.
Collapse
Affiliation(s)
- Matilda Holm
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaitė
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Anna Bäckström
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Madeleine Birgersson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Charlotte Stadler
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
20
|
Debesset A, Pilon C, Meunier S, Cuelenaere-Bonizec O, Richer W, Thiolat A, Houppe C, Ponzo M, Magnan J, Caron J, Caudana P, Tosello Boari J, Baulande S, To NH, Salomon BL, Piaggio E, Cascone I, Cohen JL. TNFR2 blockade promotes antitumoral immune response in PDAC by targeting activated Treg and reducing T cell exhaustion. J Immunother Cancer 2024; 12:e008898. [PMID: 39562007 PMCID: PMC11580249 DOI: 10.1136/jitc-2024-008898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, highly resistant to standard chemotherapy and immunotherapy. Regulatory T cells (Tregs) expressing tumor necrosis factor α receptor 2 (TNFR2) contribute to immunosuppression in PDAC. Treg infiltration correlates with poor survival and tumor progression in patients with PDAC. We hypothesized that TNFR2 inhibition using a blocking monoclonal antibody (mAb) could shift the Treg-effector T cell balance in PDAC, thus enhancing antitumoral responses. METHOD To support this hypothesis, we first described TNFR2 expression in a cohort of 24 patients with PDAC from publicly available single-cell analysis data. In orthotopic and immunocompetent mouse models of PDAC, we also described the immune environment of PDAC after immune cell sorting and single-cell analysis. The modifications of the immune environment before and after anti-TNFR2 mAb treatment were evaluated as well as the effect on tumor progression. RESULTS Patients with PDAC exhibited elevated TNFR2 expression in Treg, myeloid cells and endothelial cells and lower level in tumor cells. By flow cytometry and single-cell RNA-seq analysis, we identified two Treg populations in orthotopic mouse models: Resting and activated Tregs. The anti-TNFR2 mAb selectively targeted activated tumor-infiltrating Tregs, reducing T cell exhaustion markers in CD8+ T cells. However, anti-TNFR2 treatment alone had limited efficacy in activating CD8+ T cells and only slightly reduced the tumor growth. The combination of the anti-TNFR2 mAb with agonistic anti-CD40 mAb promoted stronger T cell activation, tumor growth inhibition, and improved survival and immunological memory in PDAC-bearing mice. CONCLUSION Our data suggest that combining a CD40 agonist with a TNFR2 antagonist represents a promising therapeutic strategy for patients with PDAC.
Collapse
Affiliation(s)
- Anais Debesset
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Caroline Pilon
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| | - Sylvain Meunier
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | - Wilfrid Richer
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Allan Thiolat
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Claire Houppe
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Matteo Ponzo
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jeanne Magnan
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jonathan Caron
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Pamela Caudana
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Jimena Tosello Boari
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Research Center, ICGex Next-Generation Sequencing Platform, Single Cell Initiative, PSL Research University, Paris, France
| | - Nhu Han To
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- Department of Radiation Oncology, Henri Mondor Breast Center, AP-HP, GH Henri Mondor, Paris, France
| | - Benoit Laurent Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Eliane Piaggio
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Ilaria Cascone
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| |
Collapse
|
21
|
Bukys T, Kurlinkus B, Sileikis A, Vitkus D. The Prospect of Improving Pancreatic Cancer Diagnostic Capabilities by Implementing Blood Biomarkers: A Study of Evaluating Properties of a Single IL-8 and in Conjunction with CA19-9, CEA, and CEACAM6. Biomedicines 2024; 12:2344. [PMID: 39457656 PMCID: PMC11505492 DOI: 10.3390/biomedicines12102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: This study aims to evaluate the possible clinical application of interleukin 8 (IL-8) as a single biomarker and its capabilities in combination with carbohydrate antigen (CA19-9), carcinoembryonic antigen (CEA), and carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as diagnostic and prognostic tools for pancreatic ductal adenocarcinoma (PDAC). Methods: A total of 170 serum samples from patients with PDAC (n = 100), chronic pancreatitis (CP) (n = 39), and healthy individuals (n = 31) were analysed. IL-8 and CEACAM6 were measured by an enzyme-linked immunosorbent assay (ELISA). CA19-9 and CEA were determined by chemiluminescent microparticle immunoassay, and bilirubin was quantified using a diazonium salt reaction. Receiver operating characteristic curve analysis, logistic regression, and Kaplan-Meier analyses were performed to evaluate the properties of a single IL-8 and in combination with other biomarkers. Results: The concentrations of IL-8 were statistically significantly higher in the PDAC group compared to the CP and control groups. Heterogeneous levels of IL-8 correlated with PDAC stages (p = 0.007). IL-8 had good and satisfactory diagnostic efficacy in differentiating PDAC from controls (0.858; p < 0.001) and patients with CP (0.696; p < 0.001), respectively. High and low expressions of IL-8 were not significantly associated with overall survival (OS) or disease-free survival (DFS). A combination of IL-8, CEACAM6, and CA19-9 reached the highest AUC values for differentiating PDAC from the control group. The best classification score between PDAC and the control group with CP patients was obtained by merging IL-8 and CA19-9 (0.894; p < 0.001). Conclusions: These results provide compelling evidence of IL-8 as a promising diagnostic biomarker. Nonetheless, due to the high complexity of PDAC, only the conjunction of IL-8, CA19-9, and CEACAM6 integrates sufficient diagnostic capabilities.
Collapse
Affiliation(s)
- Tomas Bukys
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| | - Benediktas Kurlinkus
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.K.); (A.S.)
| | - Audrius Sileikis
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.K.); (A.S.)
| | - Dalius Vitkus
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
22
|
Gao Y, Li J, Cheng W, Diao T, Liu H, Bo Y, Liu C, Zhou W, Chen M, Zhang Y, Liu Z, Han W, Chen R, Peng J, Zhu L, Hou W, Zhang Z. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 2024; 42:1764-1783.e10. [PMID: 39303725 DOI: 10.1016/j.ccell.2024.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/28/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Fibroblasts, known for their functional diversity, play crucial roles in inflammation and cancer. In this study, we conduct comprehensive single-cell RNA sequencing analyses on fibroblast cells from 517 human samples, spanning 11 tissue types and diverse pathological states. We identify distinct fibroblast subpopulations with universal and tissue-specific characteristics. Pathological conditions lead to significant shifts in fibroblast compositions, including the expansion of immune-modulating fibroblasts during inflammation and tissue-remodeling myofibroblasts in cancer. Within the myofibroblast category, we identify four transcriptionally distinct subpopulations originating from different developmental origins, with LRRC15+ myofibroblasts displaying terminally differentiated features. Both LRRC15+ and MMP1+ myofibroblasts demonstrate pro-tumor potential that contribute to the immune-excluded and immune-suppressive tumor microenvironments (TMEs), whereas PI16+ fibroblasts show potential anti-tumor functions in adjacent non-cancerous regions. Fibroblast-subtype compositions define patient subtypes with distinct clinical outcomes. This study advances our understanding of fibroblast biology and suggests potential therapeutic strategies for targeting specific fibroblast subsets in cancer treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jianan Li
- Changping Laboratory, Beijing 102206, China
| | - Wenfeng Cheng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Tian Diao
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Huilan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Minmin Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanyuan Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510180, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Linnan Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenhong Hou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Zhang B, Ohuchida K, Tsutsumi C, Shimada Y, Mochida Y, Oyama K, Iwamoto C, Sheng N, Fei S, Shindo K, Ikenaga N, Nakata K, Oda Y, Nakamura M. Dynamic glycolytic reprogramming effects on dendritic cells in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2024; 43:271. [PMID: 39343933 PMCID: PMC11441259 DOI: 10.1186/s13046-024-03192-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma tumors exhibit resistance to chemotherapy, targeted therapies, and even immunotherapy. Dendritic cells use glucose to support their effector functions and play a key role in anti-tumor immunity by promoting cytotoxic CD8+ T cell activity. However, the effects of glucose and lactate levels on dendritic cells in pancreatic ductal adenocarcinoma are unclear. In this study, we aimed to clarify how glucose and lactate can impact the dendritic cell antigen-presenting function and elucidate the relevant mechanisms. METHODS Glycolytic activity and immune cell infiltration in pancreatic ductal adenocarcinoma were evaluated using patient-derived organoids and resected specimens. Cell lines with increased or decreased glycolysis were established from KPC mice. Flow cytometry and single-cell RNA sequencing were used to evaluate the impacts on the tumor microenvironment. The effects of glucose and lactate on the bone marrow-derived dendritic cell antigen-presenting function were detected by flow cytometry. RESULTS The pancreatic ductal adenocarcinoma tumor microenvironment exhibited low glucose and high lactate concentrations from varying levels of glycolytic activity in cancer cells. In mouse transplantation models, tumors with increased glycolysis showed enhanced myeloid-derived suppressor cell infiltration and reduced dendritic cell and CD8+ T cell infiltration, whereas tumors with decreased glycolysis displayed the opposite trends. In three-dimensional co-culture, increased glycolysis in cancer cells suppressed the antigen-presenting function of bone marrow-derived dendritic cells. In addition, low-glucose and high-lactate media inhibited the antigen-presenting and mitochondrial functions of bone marrow-derived dendritic cells. CONCLUSIONS Our study demonstrates the impact of dynamic glycolytic reprogramming on the composition of immune cells in the tumor microenvironment of pancreatic ductal adenocarcinoma, especially on the antigen-presenting function of dendritic cells.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koki Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nan Sheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shuang Fei
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Bednar F, Olsen LY, Pasca di Magliano M. From Inception to Malignancy: the Co-evolution of Pancreatic Cancer and Its Immunosuppressive Microenvironment. Cancer Res 2024; 84:2944-2946. [PMID: 39279377 DOI: 10.1158/0008-5472.can-24-2732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Published in Cancer Research in 2007, Clark and colleagues first introduced the concept that the immune microenvironment evolves in lockstep with the progression of pancreatic cancer. Leveraging genetically engineered mouse models of the disease that were described a few years earlier, Clark and colleagues used a combination of approaches to describe the dynamics of immune evolution in precursor lesions all the way to overt malignancy. They discovered that immunosuppression is established at the earliest stages of carcinogenesis. Here, we discuss their findings, how they led to a wealth of functional work, and how they have been expanded upon since the advent of -omics technologies. See related article by Clark and colleagues, Cancer Res 2007;67:9518-27.
Collapse
Affiliation(s)
- Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lee Y Olsen
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
25
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Somasundaram A, Yeh JJ. Future of Dendritic Cell-Based Approaches in Pancreatic Cancer. J Clin Oncol 2024; 42:3067-3070. [PMID: 38991191 PMCID: PMC11377165 DOI: 10.1200/jco.24.00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Ashwin Somasundaram
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Departments of Surgery and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Zhao C, Wang C, Wang R, Shan W, Wang W, Deng H. Regulatory T Cells Nanoextinguisher to Manipulate Multiple Immune Evasion for Immunotherapy. ACS NANO 2024; 18:24105-24117. [PMID: 39171893 DOI: 10.1021/acsnano.4c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Regulatory T cells (Treg) play key roles in inhibiting effective antitumor immunity. However, therapeutic Treg depletion fails to consistently enhance immune responses due to the emergence of a wave of peripherally converted Treg cells postdepletion, along with undesired off-target side effects. Here, we report a nanoextinguisher decorated with functional peptides via tumor microenvironment responsive linkers to selectively block Treg function and maintain Treg levels rather than deplete them. The nanoextinguisher specifically neutralizes TGF-β to inhibit the recruitment of Treg cells and the conversion of naive T cells into Treg cells, thus promoting antitumor immunity. Moreover, the nanoextinguisher can alleviate tumor resistance to immunogenic photodynamic therapy, vaccination therapy, and checkpoint inhibition. The nanoextinguisher showed 30-fold potentiation in antitumor effect compared to standalone photodynamic therapy or vaccination therapy. Overall, utilizing a nanoextinguisher to inhibit Treg function without triggering reconversion represents a generalizable method to reverse immune evasion, yielding antitumor efficacy.
Collapse
Affiliation(s)
- Caiyan Zhao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Rujie Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weipeng Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
28
|
Zheng X, Sun R, Wei T. Immune microenvironment in papillary thyroid carcinoma: roles of immune cells and checkpoints in disease progression and therapeutic implications. Front Immunol 2024; 15:1438235. [PMID: 39290709 PMCID: PMC11405226 DOI: 10.3389/fimmu.2024.1438235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of primary thyroid cancer. Despite the low malignancy and relatively good prognosis, some PTC cases are highly aggressive and even develop refractory cancer in the thyroid. Growing evidence suggested that microenvironment in tumor affected PTC biological behavior due to different immune states. Different interconnected components in the immune system influence and participate in tumor invasion, and are closely related to PTC metastasis. Immune cells and molecules are widely distributed in PTC tissues. Their quantity and proportion vary with the host's immune status, which suggests that immunotherapy may be a very promising therapeutic modality for PTC. In this paper, we review the role of immune cells and immune checkpoints in PTC immune microenvironment based on the characteristics of the PTC tumor microenvironment.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Sun
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Poyia F, Neophytou CM, Christodoulou MI, Papageorgis P. The Role of Tumor Microenvironment in Pancreatic Cancer Immunotherapy: Current Status and Future Perspectives. Int J Mol Sci 2024; 25:9555. [PMID: 39273502 PMCID: PMC11395109 DOI: 10.3390/ijms25179555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic cancer comprises different subtypes, where most cases include ductal adenocarcinoma (PDAC). It is one of the deadliest tumor types, with a poor prognosis. In the majority of patients, the disease has already spread by the time of diagnosis, making full recovery unlikely and increasing mortality risk. Despite developments in its detection and management, including chemotherapy, radiotherapy, and targeted therapies as well as advances in immunotherapy, only in about 13% of PDAC patients does the overall survival exceed 5 years. This may be attributed, at least in part, to the highly desmoplastic tumor microenvironment (TME) that acts as a barrier limiting perfusion, drug delivery, and immune cell infiltration and contributes to the establishment of immunologically 'cold' conditions. Therefore, there is an urgent need to unravel the complexity of the TME that promotes PDAC progression and decipher the mechanisms of pancreatic tumors' resistance to immunotherapy. In this review, we provide an overview of the major cellular and non-cellular components of PDAC TME, as well as their biological interplays. We also discuss the current state of PDAC therapeutic treatments and focus on ongoing and future immunotherapy efforts and multimodal treatments aiming at remodeling the TME to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Fotini Poyia
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Christiana M Neophytou
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
30
|
Do CTP, Prochnau JY, Dominguez A, Wang P, Rao MK. The Road Ahead in Pancreatic Cancer: Emerging Trends and Therapeutic Prospects. Biomedicines 2024; 12:1979. [PMID: 39335494 PMCID: PMC11428787 DOI: 10.3390/biomedicines12091979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the challenges and emerging trends in pancreatic cancer therapy. In particular, we focus on the tumor microenvironment and the potential of immunotherapy for pancreatic cancer. Pancreatic ductal adenocarcinoma, characterized by its dense stromal architecture, presents unique challenges for effective treatment. Recent advancements have emphasized the role of the tumor microenvironment in therapeutic resistance and disease progression. We discuss novel strategies targeting the desmoplastic barrier and immunosuppressive cells to enhance immune cell infiltration and activation. Recent clinical trials, particularly those involving novel immunotherapeutic agents and tumor vaccines, are examined to understand their efficacy and limitations. Our analysis reveals that combining immunotherapy with chemotherapy, radiation therapy, or drugs targeting epigenetic processes shows promise, improving overall survival rates and response to treatment. For instance, trials utilizing checkpoint inhibitors in combination with standard chemotherapies have extended disease-free survival by up to 6 months compared to chemotherapy alone. Importantly, vaccines targeting specific tumor neoantigens have shown the potential to increase patient survival. However, these approaches also face significant challenges, including overcoming the immunosuppressive tumor microenvironment and enhancing the delivery and efficacy of therapeutic agents. By providing an overview of both the promising results and the obstacles encountered, this review aims to highlight ongoing efforts to refine immunotherapy approaches for better patient outcomes.
Collapse
Affiliation(s)
- Chris T P Do
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Y Prochnau
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angel Dominguez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
31
|
Drougkas K, Karampinos K, Karavolias I, Gomatou G, Koumprentziotis IA, Ploumaki I, Triantafyllou E, Kotteas E. CAR-T Cell Therapy in Pancreatic and Biliary Tract Cancers: An Updated Review of Clinical Trials. J Gastrointest Cancer 2024; 55:990-1003. [PMID: 38695995 DOI: 10.1007/s12029-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Pancreatic and biliary tract cancers are digestive system tumors with dismal prognosis and limited treatment options. The effectiveness of conventional surgical interventions, radiation therapy, and systemic therapy is restricted in these cases. Furthermore, clinical trials have shown that immunotherapy using immune checkpoint inhibitors has only demonstrated modest clinical results when applied to patients with pancreatobiliary tumors. This highlights the importance of implementing combination immunotherapy approaches or exploring alternative therapeutic strategies to improve treatment outcomes. MATERIALS AND METHODS We reviewed the relevant literature on chimeric antigen receptor (CAR)-T cell therapy for pancreatobiliary cancers from PubMed/Medline and ClinicalTrials.gov and retrieved the relevant data accordingly. Attention was additionally given to the examination of grey literature with the aim of obtaining additional details regarding ongoing clinical trials. We mainly focused on abstracts and presentations and e-posters and slides of recent important annual meetings (namely ESMO Immuno-Oncology Congress, ESMO Congress, ASCO Virtual Scientific Program, ASCO Gastrointestinal Cancers Symposium). RESULTS CAR-T cell therapy has emerged as a promising and evolving treatment approach for pancreatic and biliary tract cancer. This form of adoptive cell therapy utilizes genetic engineering to modify the expression of specific antibodies on the surface of T cells enabling them to target specific cancer-associated antigens and to induce potent anti-tumor activity. The aim of this review is to provide an updated summary of the available evidence from clinical trials that have explored the application of CAR-T cell therapy in treating pancreatobiliary cancers. CONCLUSIONS While the utilization of CAR-T cell therapy in pancreatobiliary cancers is still in its initial phases with only a limited amount of clinical data available, the field is advancing rapidly, incorporating novel technologies to mitigate potential toxicities and enhance antigen-directed tumor eradication.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Karampinos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Karavolias
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis-Alexios Koumprentziotis
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioanna Ploumaki
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Triantafyllou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Pratticò F, Garajová I. Focus on Pancreatic Cancer Microenvironment. Curr Oncol 2024; 31:4241-4260. [PMID: 39195299 PMCID: PMC11352508 DOI: 10.3390/curroncol31080316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to current anticancer treatments. Pancreatic cancer has a complex tumor microenvironment, characterized by an intricate crosstalk between cancer cells, cancer-associated fibroblasts and immune cells. The complex composition of the tumor microenvironment is also reflected in the diversity of its acellular components, such as the extracellular matrix, cytokines, growth factors and secreted ligands involved in signaling pathways. Desmoplasia, the hallmark of the pancreatic cancer microenvironment, contributes by creating a dense and hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance and suppresses anti-tumor immune invasion. We discuss the complex crosstalk among tumor microenvironment components and explore therapeutic strategies and opportunities in pancreatic cancer research. Better understanding of the tumor microenvironment and its influence on pancreatic cancer progression could lead to potential novel therapeutic options, such as integration of immunotherapy and cytokine-targeted treatments.
Collapse
Affiliation(s)
| | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| |
Collapse
|
33
|
Basavaraja R, Zhang H, Holczbauer Á, Lu Z, Radaelli E, Assenmacher CA, George SS, Nallamala VC, Beiting DP, Meyer-Ficca ML, Meyer RG, Guo W, Fan Y, Modzelewski AJ, Spiegelman VS, Cohen MS, Fuchs SY. PARP11 inhibition inactivates tumor-infiltrating regulatory T cells and improves the efficacy of immunotherapies. Cell Rep Med 2024; 5:101649. [PMID: 39019005 PMCID: PMC11293321 DOI: 10.1016/j.xcrm.2024.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Tumor-infiltrating regulatory T cells (TI-Tregs) elicit immunosuppressive effects in the tumor microenvironment (TME) leading to accelerated tumor growth and resistance to immunotherapies against solid tumors. Here, we demonstrate that poly-(ADP-ribose)-polymerase-11 (PARP11) is an essential regulator of immunosuppressive activities of TI-Tregs. Expression of PARP11 correlates with TI-Treg cell numbers and poor responses to immune checkpoint blockade (ICB) in human patients with cancer. Tumor-derived factors including adenosine and prostaglandin E2 induce PARP11 in TI-Tregs. Knockout of PARP11 in the cells of the TME or treatment of tumor-bearing mice with selective PARP11 inhibitor ITK7 inactivates TI-Tregs and reinvigorates anti-tumor immune responses. Accordingly, ITK7 decelerates tumor growth and significantly increases the efficacy of anti-tumor immunotherapies including ICB and adoptive transfer of chimeric antigen receptor (CAR) T cells. These results characterize PARP11 as a key driver of TI-Treg activities and a major regulator of immunosuppressive TME and argue for targeting PARP11 to augment anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Raghavendra Basavaraja
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongru Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ágnes Holczbauer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vamshidhar C Nallamala
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mirella L Meyer-Ficca
- Department of Veterinary Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Ralph G Meyer
- Department of Veterinary Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Departments of Radiation Oncology and of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Cysneiros MADPC, Cirqueira MB, Barbosa LDF, Chaves de Oliveira Ê, Morais LK, Wastowski IJ, Floriano VG. Immune cells and checkpoints in pancreatic adenocarcinoma: Association with clinical and pathological characteristics. PLoS One 2024; 19:e0305648. [PMID: 38954689 PMCID: PMC11218951 DOI: 10.1371/journal.pone.0305648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION Pancreatic adenocarcinoma is an extremely aggressive neoplasm, with many challenges to be overcome in order to achieve a truly effective treatment. It is characterized by a mostly immunosuppressed environment, with dysfunctional immune cells and active immunoinhibitory pathways that favor tumor evasion and progression. Thus, the study and understanding of the tumor microenvironment and the various cells subtypes and their functional capacities are essential to achieve more effective treatments, especially with the use of new immunotherapeutics. METHODS Seventy cases of pancreatic adenocarcinoma divided into two groups 43 with resectable disease and 27 with unresectable disease were analyzed using immunohistochemical methods regarding the expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), and human leukocyte antigen G (HLA-G) molecules as well as the populations of CD4+ and CD8+ T lymphocytes, regulatory T cells (Tregs), and M2 macrophages (MM2). Several statistical tests, including multivariate analyses, were performed to examine how those immune cells and immunoinhibitory molecules impact the evolution and prognosis of pancreatic adenocarcinoma. RESULTS CD8+ T lymphocytes and M2 macrophages predominated in the group operated on, and PD-L2 expression predominated in the unresectable group. PD-L2 was associated with T stage, lymph node metastasis, and clinical staging, while in survival analysis, PD-L2 and HLA-G were associated with a shorter survival. In the inoperable cases, Tregs cells, MM2, PD-L1, PD-L2, and HLA-G were positively correlated. CONCLUSIONS PD-L2 and HLA-G expression correlated with worse survival in the cases studied. Tumor microenvironment was characterized by a tolerant and immunosuppressed pattern, mainly in unresectable lesions, where a broad positive influence was observed between immunoinhibitory cells and immune checkpoint proteins expressed by tumor cells.
Collapse
Affiliation(s)
| | - Magno Belém Cirqueira
- Diagnostic and Therapeutic Support Division of Clinical Hospital, Federal University of Goias, Goiania, Brazil
| | | | | | - Lucio Kenny Morais
- Surgery Department of Medicine College, Federal University of Goias, Goiania, Brazil
| | | | - Vitor Gonçalves Floriano
- Clinics Department of Medicine College, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
35
|
Liu R, Li J, Liu L, Wang W, Jia J. Tumor-associated macrophages (TAMs): Constructing an immunosuppressive microenvironment bridge for pancreatic ductal adenocarcinoma (PDAC). CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
36
|
Mahadevan KK, Dyevoich AM, Chen Y, Li B, Sugimoto H, Sockwell AM, McAndrews KM, Sthanam LK, Wang H, Shalapour S, Watowich SS, Kalluri R. Type I conventional dendritic cells facilitate immunotherapy in pancreatic cancer. Science 2024; 384:eadh4567. [PMID: 38935717 PMCID: PMC11841451 DOI: 10.1126/science.adh4567] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/23/2024] [Indexed: 06/29/2024]
Abstract
Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8+ T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge. Using PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with elimination of tumors. cDC1 vaccination coupled with iCBT identified specific CDR3 sequences in the tumor-infiltrating CD8+ T cells with potential therapeutic importance. This study identifies a fundamental difference in the immune microenvironment in PDAC concurrent with, or without, pancreatitis and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.
Collapse
Affiliation(s)
- Krishnan K. Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Allison M. Dyevoich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amari M. Sockwell
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen M. McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lakshmi Kavitha Sthanam
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S. Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
37
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Smith H, Arbe-Barnes E, Shah EA, Sivakumar S. Manipulating regulatory T cells: is it the key to unlocking effective immunotherapy for pancreatic ductal adenocarcinoma? Front Immunol 2024; 15:1406250. [PMID: 38873607 PMCID: PMC11170104 DOI: 10.3389/fimmu.2024.1406250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The five-year survival rates for pancreatic ductal adenocarcinoma (PDAC) have scarcely improved over the last half-century. It is inherently resistant to FDA-approved immunotherapies, which have transformed the outlook for patients with other advanced solid tumours. Accumulating evidence relates this resistance to its hallmark immunosuppressive milieu, which instils progressive dysfunction among tumour-infiltrating effector T cells. This milieu is established at the inception of neoplasia by immunosuppressive cellular populations, including regulatory T cells (Tregs), which accumulate in parallel with the progression to malignant PDAC. Thus, the therapeutic manipulation of Tregs has captured significant scientific and commercial attention, bolstered by the discovery that an abundance of tumour-infiltrating Tregs correlates with a poor prognosis in PDAC patients. Herein, we propose a mechanism for the resistance of PDAC to anti-PD-1 and CTLA-4 immunotherapies and re-assess the rationale for pursuing Treg-targeted therapies in light of recent studies that profiled the immune landscape of patient-derived tumour samples. We evaluate strategies that are emerging to limit Treg-mediated immunosuppression for the treatment of PDAC, and signpost early-stage trials that provide preliminary evidence of clinical activity. In this context, we find a compelling argument for investment in the ongoing development of Treg-targeted immunotherapies for PDAC.
Collapse
Affiliation(s)
- Henry Smith
- School of Medicine and Biomedical Sciences, University of Oxford, Oxford, United Kingdom
| | - Edward Arbe-Barnes
- Institute of Immunology and Transplantation, University College London, London, United Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shivan Sivakumar
- Institute of Immunology and Immunotherapy, Birmingham Medical School, Birmingham, United Kingdom
- Birmingham Cancer Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
39
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
40
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
41
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
42
|
Qin X, Lam A, Zhang X, Sengupta S, Iorgulescu JB, Ni H, Das S, Rager M, Zhou Z, Zuo T, Meara GK, Floru AE, Kemet C, Veerapaneni D, Kashy D, Lin L, Lloyd K, Kwok L, Smith KS, Nagaraju RT, Meijers R, Ceol C, Liu CT, Alexandrescu S, Wu CJ, Keskin DB, George RE, Feng H. CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness. SCIENCE ADVANCES 2024; 10:eadh9547. [PMID: 38489372 PMCID: PMC10942121 DOI: 10.1126/sciadv.adh9547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Lam
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Xu Zhang
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongru Ni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, KIIT University, Bhubanesw, India
| | - Madison Rager
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Grace K. Meara
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander E. Floru
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chinyere Kemet
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Divya Veerapaneni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Liang Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Lauren Kwok
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kaylee S. Smith
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Raghavendar T. Nagaraju
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Craig Ceol
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
43
|
Pothuri VS, Hogg GD, Conant L, Borcherding N, James CA, Mudd J, Williams G, Seo YD, Hawkins WG, Pillarisetty VG, DeNardo DG, Fields RC. Intratumoral T-cell receptor repertoire composition predicts overall survival in patients with pancreatic ductal adenocarcinoma. Oncoimmunology 2024; 13:2320411. [PMID: 38504847 PMCID: PMC10950267 DOI: 10.1080/2162402x.2024.2320411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is refractory to immune checkpoint inhibitor therapy. However, intratumoral T-cell infiltration correlates with improved overall survival (OS). Herein, we characterized the diversity and antigen specificity of the PDAC T-cell receptor (TCR) repertoire to identify novel immune-relevant biomarkers. Demographic, clinical, and TCR-beta sequencing data were collated from 353 patients across three cohorts that underwent surgical resection for PDAC. TCR diversity was calculated using Shannon Wiener index, Inverse Simpson index, and "True entropy." Patients were clustered by shared repertoire specificity. TCRs predictive of OS were identified and their associated transcriptional states were characterized by single-cell RNAseq. In multivariate Cox regression models controlling for relevant covariates, high intratumoral TCR diversity predicted OS across multiple cohorts. Conversely, in peripheral blood, high abundance of T-cells, but not high diversity, predicted OS. Clustering patients based on TCR specificity revealed a subset of TCRs that predicts OS. Interestingly, these TCR sequences were more likely to encode CD8+ effector memory and CD4+ T-regulatory (Tregs) T-cells, all with the capacity to recognize beta islet-derived autoantigens. As opposed to T-cell abundance, intratumoral TCR diversity was predictive of OS in multiple PDAC cohorts, and a subset of TCRs enriched in high-diversity patients independently correlated with OS. These findings emphasize the importance of evaluating peripheral and intratumoral TCR repertoires as distinct and relevant biomarkers in PDAC.
Collapse
Affiliation(s)
- Vikram S. Pothuri
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Graham D. Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leah Conant
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas Borcherding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - C. Alston James
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Greg Williams
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongwoo David Seo
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, USA
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - William G. Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MOUSA
| | - Venu G. Pillarisetty
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WAUSA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MOUSA
| | - Ryan C. Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MOUSA
| |
Collapse
|
44
|
Li J, Wei T, Ma K, Zhang J, Lu J, Zhao J, Huang J, Zeng T, Xie Y, Liang Y, Li X, Zhang Q, Liang T. Single-cell RNA sequencing highlights epithelial and microenvironmental heterogeneity in malignant progression of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 584:216607. [PMID: 38246225 DOI: 10.1016/j.canlet.2024.216607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). Single-cell transcriptomics provides a unique perspective for dissecting the epithelial and microenvironmental heterogeneity that accompanies progression from benign IPMNs to invasive PDAC. Single-cell RNA sequencing was performed through droplet-based sequencing on 35 693 cells from three high-grade IPMNs and two IPMN-derived PDACs (all surgically resected). Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. For epithelial cells, we identified acinar-ductal cells and isthmus-pit cells enriched in IPMN lesions and profiled three types of PDAC-unique ductal cells. Notably, a proinflammatory immune component was distinctly observed in IPMNs, comprising CD4+ T cells, CD8+ T cells, and B cells, whereas M2 macrophages were significantly accumulated in PDAC. Through the analysis of cellular communication, the osteopontin gene (SPP1)-CD44 pathway between macrophages and epithelial cells were particularly strengthened in the PDAC group. Further prognostic analysis revealed that SPP1 is a biomarker of IPMN carcinogenesis for surveillance. This study demonstrates the ability to perform high-resolution profiling of single cellular transcriptomes during the progression of high-grade IPMNs to cancer. Notably, single-cell analysis provides an unparalleled insight into both epithelial and microenvironmental heterogeneity associated with early cancer pathogenesis and provides practical markers for surveillance and targets for cancer interception.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianfeng Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yali Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yingjiqiong Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Xuejie Li
- Department of Pathology, The First Affiliated Hospital of Medical School of Zhejiang University, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
45
|
Zhang H, Xu W, Zhu H, Chen X, Tsai HI. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: Combining radiotherapy and metabolic targeting therapy. J Cancer 2024; 15:2003-2023. [PMID: 38434964 PMCID: PMC10905401 DOI: 10.7150/jca.92502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy (RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the exhausted T cell function. The current review will help in tailoring combination regimens to enhance the efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, RT, and metabolism targeting therapy in PDAC.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wenjin Xu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuelian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Sharma P, Zhang X, Ly K, Kim JH, Wan Q, Kim J, Lou M, Kain L, Teyton L, Winau F. Hyperglycosylation of prosaposin in tumor dendritic cells drives immune escape. Science 2024; 383:190-200. [PMID: 38207022 PMCID: PMC11398950 DOI: 10.1126/science.adg1955] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Tumors develop strategies to evade immunity by suppressing antigen presentation. In this work, we show that prosaposin (pSAP) drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor dendritic cells (DCs) leads to cancer immune escape. We found that lysosomal pSAP and its single-saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, transforming growth factor-β (TGF-β) induced hyperglycosylation of pSAP and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. pSAP hyperglycosylation was also observed in tumor-associated DCs from melanoma patients, and reconstitution with pSAP rescued activation of tumor-infiltrating T cells. Targeting DCs with recombinant pSAP triggered tumor protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of pSAP in tumor immunity and may support its role in immunotherapy.
Collapse
Affiliation(s)
- Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Ly
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ji Hyung Kim
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Wan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Kim
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Shaopeng Z, Yang Z, Yuan F, Chen H, Zhengjun Q. Regulation of regulatory T cells and tumor-associated macrophages in gastric cancer tumor microenvironment. Cancer Med 2024; 13:e6959. [PMID: 38349050 PMCID: PMC10839124 DOI: 10.1002/cam4.6959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Despite advancements in the methods for prevention and early diagnosis of gastric cancer (GC), GC continues to be the fifth in incidence among major cancers and the third most common cause of cancer-related death. The therapeutic effects of surgery and drug treatment are still unsatisfied and show notable differences according to the tumor microenvironment (TME) of GC. METHODS Through screening Pubmed, Embase, and Web of Science, we identified and summarized the content of recent studies that focus on the investigation of Helicobacter pylori (Hp) infection, regulatory T cells (Tregs), and tumor-associated macrophages (TAMs) in the TME of GC. Furthermore, we searched and outlined the clinical research progress of various targeted drugs in GC treatment including CTLA-4, PD-1\PD-L1, and VEGF/VEGFR. RESULTS In this review, the findings indicate that Hp infection causes local inflammation and leads to immunosuppressive environment. High Tregs infiltration in the TME of GC is associated with increased induction and recruitment; the exact function of infiltrated Tregs in GC was also affected by phenotypes and immunosuppressive molecules. TAMs promote the development and metastasis of tumors, the induction, recruitment, and function of TAMs in the TME of gastric cancer are also regulated by various factors. CONCLUSION Discussing the distinct tumor immune microenvironment (TIME) of GC can deepen our understanding on the mechanism of cancer immune evasion, invasion, and metastasis, help us to reduce the incidence of GC, and guide the innovation of new therapeutic targets for GC eventually.
Collapse
Affiliation(s)
- Zhang Shaopeng
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zheng Yang
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fang Yuan
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Huang Chen
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiu Zhengjun
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
48
|
Niu J, Jiang W, Fan D, Li X, Zhou W, Zhang H. Research trends on immunotherapy for pancreatic cancer: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2269794. [PMID: 37885280 PMCID: PMC10760365 DOI: 10.1080/21645515.2023.2269794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
This study aims to summarize and visually analyze the current research status in pancreatic cancer immunotherapy during the past two decades by bibliometrics and explore the current research hotspots and future development directions. The literature related to pancreatic cancer immunotherapy from 2002 to 2021 was downloaded from the core database of the Web of Science. VOSviewer and CiteSpace software were used to visualize the included literature. A total of 2528 articles were included. In the past two decades, publications in the pancreatic cancer immunotherapy field have increased almost annually. As the country with the largest publications, the United States has various research institutions dedicated to pancreatic cancer immunotherapy. Jaffee EM and Zheng L from Johns Hopkins University and Vonderheide RH from the University of Pennsylvania have published the most articles in this field. The current research hotspots of pancreatic cancer immunotherapy include the tumor microenvironment, immune cells, immune checkpoint blockade, and combination therapy. The study of novel immunotherapies and combination therapy may become the primary focus of future research on pancreatic cancer immunotherapy. More prospective clinical studies with high evidence levels should be conducted.
Collapse
Affiliation(s)
- Jubao Niu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenkai Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongao Fan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
49
|
Quilbe A, Mustapha R, Duchêne B, Kumar A, Werkmeister E, Leteurtre E, Moralès O, Jonckheere N, Van Seuningen I, Delhem N. A novel anti-galectin-9 immunotherapy limits the early progression of pancreatic neoplastic lesions in transgenic mice. Front Immunol 2023; 14:1267279. [PMID: 38098486 PMCID: PMC10720041 DOI: 10.3389/fimmu.2023.1267279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Background Pancreatic adenocarcinoma (PDAC) is a devastating disease with an urgent need for therapeutic innovation. Immune checkpoint inhibition has shown promise in a variety of solid tumors, but most clinical trials have failed to demonstrate clinical efficacy in PDAC. This low efficacy is partly explained by a highly immunosuppressive microenvironment, which dampens anti-tumor immunity through the recruitment or induction of immunosuppressive cells, particularly regulatory T cells (Tregs). In this context, our laboratory has developed a novel immunotherapeutic strategy aimed at inhibiting the suppressive activity of Tregs, based on a patented (EP3152234B1) monoclonal antibody (mAb) targeting galectin-9 (LGALS9). Materials and methods CD4+ conventional T cells (TCD4 or Tconv), Treg ratio, and LGALS9 expression were analyzed by immunohistochemistry (IHC) and cytometry in blood and pancreas of K-rasLSL.G12D/+;Pdx-1-Cre (KC) and K-rasWildType (WT);Pdx1-Cre (WT) mice aged 4-13 months. Pancreatic intraepithelial neoplasm (PanIN) progression and grade were quantified using FIJI software and validated by pathologists. The anti-galectin-9 mAb was validated for its use in mice on isolated murine C57BL/6 Treg by immunofluorescence staining and cytometry. Its specificity and functionality were validated in proliferation assays on rLGALS9-immunosuppressed murine Tconv and in suppression assays between murine Treg and Tconv. Finally, 2-month-old KC mice were treated with anti-LGALS9 and compared to WT mice for peripheral and infiltrating TCD4, Treg, and PanIN progression. Results IHC and cytometry revealed a significant increase in LGALS9 expression and Treg levels in the blood and pancreas of KC mice proportional to the stages of precancerous lesions. Although present in WT mice, LGALS9 is expressed at a basal level with low and restricted expression that increases slightly over time, while Treg cells are few in number in their circulation and even absent from the pancreas over time. Using our anti-LGALS9 mAb in mice, it is shown that (i) murine Treg express LGALS9, (ii) the mAb could target and inhibit recombinant murine LGALS9, and (iii) neutralize murine Treg suppressive activity. Finally, the anti-LGALS9 mAb in KC mice reduced (i) LGALS9 expression in pancreatic cancer cells, (ii) the Treg ratio, and (iii) the total surface area and grade of PanIN. Conclusion We demonstrate for the first time that an anti-LGALS9 antibody, by specifically targeting endogenous LGALS9 tumor and exogenous LGALS9 produced by Treg, was able to limit the progression of pancreatic neoplastic lesions in mice, opening up new prospects for its use as an immunotherapeutic tool in PDAC.
Collapse
Affiliation(s)
- Alexandre Quilbe
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Assisted Laser Therapy and Immunotherapy for Oncology, Lille, France
| | - Rami Mustapha
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Assisted Laser Therapy and Immunotherapy for Oncology, Lille, France
- Department of Cancer Studies and Pharmaceutical Sciences New Hunt’s House, School of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Belinda Duchêne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Abhishek Kumar
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Assisted Laser Therapy and Immunotherapy for Oncology, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 -PLBS, Lille, France
| | - Emmanuelle Leteurtre
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Assisted Laser Therapy and Immunotherapy for Oncology, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Assisted Laser Therapy and Immunotherapy for Oncology, Lille, France
| |
Collapse
|
50
|
Qiao H, Li H. PLP2 Could Be a Prognostic Biomarker and Potential Treatment Target in Glioblastoma Multiforme. Pharmgenomics Pers Med 2023; 16:991-1009. [PMID: 37964785 PMCID: PMC10642424 DOI: 10.2147/pgpm.s425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This study aimed to discern the association between PLP2 expression, its biological significance, and the extent of immune infiltration in human GBM. Methods Utilizing the GEPIA2 and TCGA databases, we contrasted the expression levels of PLP2 in GBM against normal tissue. We utilized GEPIA2 and LinkedOmics for survival analysis, recognized genes co-expressed with PLP2 via cBioPortal and GEPIA2, and implemented GO and KEGG analyses. The STRING database facilitated the construction of protein-protein interaction networks. We evaluated the relationship of PLP2 with tumor immune infiltrates using ssGSEA and the TIMER 2.0 database. An IHC assay assessed PLP2 and PDL-1 expression in GBM tissue, and the Drugbank database aided in identifying potential PLP2-targeting compounds. Molecular docking was accomplished using Autodock Vina 1.2.2. Results PLP2 expression was markedly higher in GBM tissues in comparison to normal tissues. High PLP2 expression correlated with a decrease in overall survival across two databases. Functional analyses highlighted a focus of PLP2 functions within leukocyte. Discrepancies in PLP2 expression were evident in immune infiltration, impacting CD4+ T cells, neutrophils, myeloid dendritic cells, and macrophages. There was a concomitant increase in PLP2 and PD-L1 expression in GBM tissues, revealing a link between the two. Molecular docking with ethosuximide and praziquantel yielded scores of -7.441 and -4.295 kcal/mol, correspondingly. Conclusion PLP2's upregulation in GBM may adversely influence the lifespan of GBM patients. The involvement of PLP2 in pathways linked to leukocyte function is suggested. The positive correlation between PLP2 and PD-L1 could provide insights into PLP2's role in glioma modulation. Our research hints at PLP2's potential as a therapeutic target for GBM, with ethosuximide and praziquantel emerging as potential treatment candidates, especially emphasizing the potential of these compounds in GBM treatment targeting PLP2.
Collapse
Affiliation(s)
- Hao Qiao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Huanting Li
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|