1
|
Arana ÁJ, González-Llera L, Barreiro-Iglesias A, Sánchez L. Emerging Frontiers in Zebrafish Embryonic and Adult-Derived Cell Lines. Int J Mol Sci 2025; 26:4351. [PMID: 40362588 PMCID: PMC12072986 DOI: 10.3390/ijms26094351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Zebrafish (Danio rerio) has become a pivotal vertebrate model in biomedical research, renowned for its genetic similarity to humans, optical transparency, rapid embryonic development, and amenability to experimental manipulation. In recent years, the derivation of cell lines from zebrafish embryos has unlocked new possibilities for in vitro studies across developmental biology, toxicology, disease modeling, and genetic engineering. These embryo-derived cultures offer scalable, reproducible, and ethically favorable alternatives to in vivo approaches, enabling high-throughput screening and mechanistic exploration under defined conditions. This review provides a comprehensive overview of protocols for establishing and maintaining zebrafish embryonic cell lines, emphasizing culture conditions, pluripotency features, transfection strategies, and recent innovations such as genotype-defined mutant lines generated via CRISPR/Cas9 and feeder-free systems. We also highlight emerging applications in oncology, regenerative medicine, and functional genomics, positioning zebrafish cell lines as versatile platforms bridging animal models and next-generation in vitro systems. Its continued optimization holds promise for improved reproducibility, reduced animal use, and expanded translational impact in biomedical research.
Collapse
Affiliation(s)
- Álvaro J. Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Laura González-Llera
- Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Shen L, Qi Z, Ai Y, Zhang J, Chao Y, Han L, Xu L. Integration of ATAC-seq and RNA-seq reveals the dynamics of chromatin accessibility and gene expression in zoysiagrass response to drought. PLANT CELL REPORTS 2025; 44:92. [PMID: 40167783 DOI: 10.1007/s00299-025-03469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
KEY MESSAGE The 'X4' accession of zoysiagrass demonstrated superior drought tolerance compared to other accessions. Integration analysis of transcriptomics and epigenomics revealed a positive correlation between ATAC-seq peak intensity and gene expression levels. Six motifs involved in regulating drought responses were identified, which are similar to the domains of the ERF and C2H2 transcription factor families. Heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress, allowing robust growth even at high PEG6000 concentrations. Zoysiagrass is renowned for its drought tolerance and serves as an exceptional domestic turfgrass in China. However, the changes in chromatin accessibility during drought in zoysiagrass are not well understood. We conducted a preliminary evaluation of the phenotypic changes in drought tolerance for six zoysiagrass cultivars, taking into account their growth characteristics and physiological traits under drought conditions. Additionally, we utilized an integrated multi-omics strategy, encompassing RNA sequencing (RNA-seq), Assay for Transposase Accessible Chromatin using high-throughput sequencing (ATAC-seq), and reverse transcription quantitative PCR (RT-qPCR) verification experiments, to gain deeper understanding of the chromatin accessibility patterns linked to gene expression in response to drought stress in zoysiagrass. Preliminary analysis of the trends in relative water content and proline content suggested that the variety 'X4' exhibited superior drought tolerance compared to the other five accessions. The KEGG pathway enrichment analysis revealed that zoysiagrass responded to environmental stress by regulating stress response and antioxidant defense pathways. Notably, the expression levels of genes Zja03G031540 and Zja11G000860 were significantly increased in the 'X4' zoysiagrass genotype, which exhibited improved drought tolerance, compared to the 'X1' zoysiagrass genotype with reduced drought tolerance. This study suggested that 63 high-confidence genes are related to drought stress, including Zja03G031540 and Zja11G000860. Additionally, six motifs regulating drought responses were unearthed. Furthermore, the heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress. The study discovered a positive correlation between ATAC-seq peak intensity and gene expression levels. The expression of high-confidence genes was linked to zoysiagrass resistance evaluation and phenotypic traits, implying that these genes are involved in responding to external drought stress. This study combined ATAC-seq and RNA-seq technologies for the first time to identify drought-related gene expression in zoysiagrass, elucidating the grass adaptation to environmental stress and the regulatory mechanisms underlying stress responses, and laying the groundwork for zoysiagrass improvement and breeding.
Collapse
Affiliation(s)
- Liangying Shen
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Zewen Qi
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
- Institute of Advanced Agricultural Sciences, Peking University, Shandong, 261325, China
| | - Ye Ai
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Jiahang Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grsassland Administration, Beijing, 100083, China.
| | - Lixin Xu
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Sun K, Liu X, Xu R, Liu C, Meng A, Lan X. Mapping the chromatin accessibility landscape of zebrafish embryogenesis at single-cell resolution by SPATAC-seq. Nat Cell Biol 2024; 26:1187-1199. [PMID: 38977847 DOI: 10.1038/s41556-024-01449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Currently, the dynamic accessible elements that determine regulatory programs responsible for the unique identity and function of each cell type during zebrafish embryogenesis lack detailed study. Here we present SPATAC-seq: a split-pool ligation-based assay for transposase-accessible chromatin using sequencing. Using SPATAC-seq, we profiled chromatin accessibility in more than 800,000 individual nuclei across 20 developmental stages spanning the sphere stage to the early larval protruding mouth stage. Using this chromatin accessibility map, we identified 604 cell states and inferred their developmental relationships. We also identified 959,040 candidate cis-regulatory elements (cCREs) and delineated development-specific cCREs, as well as transcription factors defining diverse cell identities. Importantly, enhancer reporter assays confirmed that the majority of tested cCREs exhibited robust enhanced green fluorescent protein expression in restricted cell types or tissues. Finally, we explored gene regulatory programs that drive pigment and notochord cell differentiation. Our work provides a valuable open resource for exploring driver regulators of cell fate decisions in zebrafish embryogenesis.
Collapse
Affiliation(s)
- Keyong Sun
- School of Medicine, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing, China
| | - Xin Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Center for Life Sciences, Beijing, China
| | - Runda Xu
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Center for Life Sciences, Beijing, China
| | - Chang Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Anming Meng
- School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua University-Peking University Center for Life Sciences, Beijing, China.
| | - Xun Lan
- School of Medicine, Tsinghua University, Beijing, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing, China.
- Tsinghua University-Peking University Center for Life Sciences, Beijing, China.
- Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Panara V, Yu H, Peng D, Staxäng K, Hodik M, Filipek-Gorniok B, Kazenwadel J, Skoczylas R, Mason E, Allalou A, Harvey NL, Haitina T, Hogan BM, Koltowska K. Multiple cis-regulatory elements control prox1a expression in distinct lymphatic vascular beds. Development 2024; 151:dev202525. [PMID: 38722096 PMCID: PMC11128278 DOI: 10.1242/dev.202525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 05/15/2024]
Abstract
During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.
Collapse
Affiliation(s)
- Virginia Panara
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| | - Hujun Yu
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Di Peng
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Karin Staxäng
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Monika Hodik
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Beata Filipek-Gorniok
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Elizabeth Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amin Allalou
- Uppsala University, Department of Information Technology, Division of Visual Information and Interaction, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala 75185, Sweden
| | - Natasha L. Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| |
Collapse
|
5
|
Zhang G, Fu Y, Yang L, Ye F, Zhang P, Zhang S, Ma L, Li J, Wu H, Han X, Wang J, Guo G. Construction of single-cell cross-species chromatin accessibility landscapes with combinatorial-hybridization-based ATAC-seq. Dev Cell 2024; 59:793-811.e8. [PMID: 38330939 DOI: 10.1016/j.devcel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Despite recent advances in single-cell genomics, the lack of maps for single-cell candidate cis-regulatory elements (cCREs) in non-mammal species has limited our exploration of conserved regulatory programs across vertebrates and invertebrates. Here, we developed a combinatorial-hybridization-based method for single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) named CH-ATAC-seq, enabling the construction of single-cell accessible chromatin landscapes for zebrafish, Drosophila, and earthworms (Eisenia andrei). By integrating scATAC censuses of humans, monkeys, and mice, we systematically identified 152 distinct main cell types and around 0.8 million cell-type-specific cCREs. Our analysis provided insights into the conservation of neural, muscle, and immune lineages across species, while epithelial cells exhibited a higher organ-origin heterogeneity. Additionally, a large-scale gene regulatory network (GRN) was constructed in four vertebrates by integrating scRNA-seq censuses. Overall, our study provides a valuable resource for comparative epigenomics, identifying the evolutionary conservation and divergence of gene regulation across different species.
Collapse
Affiliation(s)
- Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Lei Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Peijing Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuang Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Lifeng Ma
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiaoping Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou 310058, China.
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China.
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Shao F, Van Otterloo E, Cao H. Computational identification of key transcription factors for embryonic and postnatal Sox2+ dental epithelial stem cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573158. [PMID: 38187542 PMCID: PMC10769342 DOI: 10.1101/2023.12.22.573158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
While many reptiles can replace their tooth throughout life, human loss the tooth replacement capability after formation of the permanent teeth. It was thought that the difference in tooth regeneration capability depends on the persistence of a specialized dental epithelial structure, the dental lamina that contains dental epithelial stem cells (DESC). Currently, we know very little about DESC such as what genes are expressed or its chromatin accessibility profile. Multiple markers of DESC have been proposed such as Sox2 and Lgr5 . Few single cell RNA-seq experiments have been performed previously, but no obvious DESC cluster was identified in these scRNA-seq datasets, possible due to that the expression level of DESC markers such as Sox2 and Lgr5 is too low or the percentage of DESC is too low in whole tooth. We utilize a mouse line Sox2-GFP to enrich Sox2+ DESC and use Smart-Seq2 protocol and ATAC-seq protocol to generate transcriptome profile and chromatin accessibility profile of P2 Sox2+ DESC. Additionally, we generate transcriptome profile and chromatin accessibility profile of E11.5 Sox2+ dental lamina cells. With transcriptome profile and chromatin accessibility profile, we systematically identify potential key transcription factors for E11.5 Sox2+ cells and P2 Sox2+ cells. We identified transcription factors including Pitx2, Id3, Pitx1, Tbx1, Trp63, Nkx2-3, Grhl3, Dlx2, Runx1, Nfix, Zfp536 , etc potentially formed the core transcriptional regulatory networks of Sox2+ DESC in both embryonic and postnatal stages.
Collapse
|
7
|
Zlatanova I, Sun F, Wu RS, Chen X, Lau BH, Colombier P, Sinha T, Celona B, Xu SM, Materna SC, Huang GN, Black BL. An injury-responsive mmp14b enhancer is required for heart regeneration. SCIENCE ADVANCES 2023; 9:eadh5313. [PMID: 38019918 PMCID: PMC10686572 DOI: 10.1126/sciadv.adh5313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration. We identify a TEAD-dependent mmp14b endothelial enhancer induced by heart injury in zebrafish and mice, and we show that the enhancer is required for regeneration, supporting a role for Hippo signaling upstream of mmp14b. Last, we show that MMP-14 function in mice is important for the accumulation of Agrin, an essential regulator of neonatal mouse heart regeneration. These findings reveal mechanisms for extracellular matrix remodeling that promote heart regeneration.
Collapse
Affiliation(s)
- Ivana Zlatanova
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Roland S. Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan H. Lau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Colombier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan C. Materna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guo N. Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Komatsu V, Cooper B, Yim P, Chan K, Gong W, Wheatley L, Rohs R, Fraser SE, Trinh LA. Hand2 represses non-cardiac cell fates through chromatin remodeling at cis- regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559156. [PMID: 37790542 PMCID: PMC10542161 DOI: 10.1101/2023.09.23.559156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.
Collapse
|
9
|
Begeman IJ, Emery B, Kurth A, Kang J. Regeneration and developmental enhancers are differentially compatible with minimal promoters. Dev Biol 2022; 492:47-58. [PMID: 36167150 PMCID: PMC10211259 DOI: 10.1016/j.ydbio.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022]
Abstract
Enhancers and promoters are cis-regulatory elements that control gene expression. Enhancers are activated in a cell type-, tissue-, and condition-specific manner to stimulate promoter function and transcription. Zebrafish have emerged as a powerful animal model for examining the activities of enhancers derived from various species through transgenic enhancer assays, in which an enhancer is coupled with a minimal promoter. However, the efficiency of minimal promoters and their compatibility with multiple developmental and regeneration enhancers have not been systematically tested in zebrafish. Thus, we assessed the efficiency of six minimal promoters and comprehensively interrogated the compatibility of the promoters with developmental and regeneration enhancers. We found that the fos minimal promoter and Drosophila synthetic core promoter (DSCP) yielded high rates of leaky expression that may complicate the interpretation of enhancer assays. Notably, the adenovirus E1b promoter, the zebrafish lepb 0.8-kb (P0.8) and lepb 2-kb (P2) promoters, and a new zebrafish synthetic promoter (ZSP) that combines elements of the E1b and P0.8 promoters drove little or no ectopic expression, making them suitable for transgenic assays. We also found significant differences in compatibility among specific combinations of promoters and enhancers, indicating the importance of promoters as key regulatory elements determining the specificity of gene expression. Our study provides guidelines for transgenic enhancer assays in zebrafish to aid in the discovery of functional enhancers regulating development and regeneration.
Collapse
Affiliation(s)
- Ian J Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Benjamin Emery
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA; UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Jimenez E, Slevin CC, Song W, Chen Z, Frederickson SC, Gildea D, Wu W, Elkahloun AG, Ovcharenko I, Burgess SM. A regulatory network of Sox and Six transcription factors initiate a cell fate transformation during hearing regeneration in adult zebrafish. CELL GENOMICS 2022; 2. [PMID: 36212030 PMCID: PMC9540346 DOI: 10.1016/j.xgen.2022.100170] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using adult zebrafish inner ears as a model for sensorineural regeneration, we ablated the mechanosensory receptors and characterized the single-cell epigenome and transcriptome at consecutive time points during hair cell regeneration. We utilized deep learning on the regeneration-induced open chromatin sequences and identified cell-specific transcription factor (TF) motif patterns. Enhancer activity correlated with gene expression and identified potential gene regulatory networks. A pattern of overlapping Sox- and Six-family TF gene expression and binding motifs was detected, suggesting a combinatorial program of TFs driving regeneration and cell identity. Pseudotime analysis of single-cell transcriptomic data suggested that support cells within the sensory epithelium changed cell identity to a “progenitor” cell population that could differentiate into hair cells. We identified a 2.6 kb DNA enhancer upstream of the sox2 promoter that, when deleted, showed a dominant phenotype that resulted in a hair-cell-regeneration-specific deficit in both the lateral line and adult inner ear. Jimenez et al. interrogate the epigenomic and transcriptomic landscape of regenerating adult zebrafish inner-ear sensory epithelia. They show that the support-cell population transitions to an intermediate “progenitor” cell state that becomes new hair cells, and they demonstrate that the cell fate decisions may be driven by the coordinate regulation and spatial co-binding of Sox and Six transcription factors. By functionally validating a predicted regeneration-responsive enhancer upstream of sox2, they show that precise timing of sox2 expression is critical for hearing regeneration in zebrafish.
Collapse
Affiliation(s)
- Erin Jimenez
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Claire C. Slevin
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Wei Song
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Stephen C. Frederickson
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Derek Gildea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- Corresponding author
| |
Collapse
|
11
|
Xiao Y, Jiao S, He M, Lin D, Zuo H, Han J, Sun Y, Cao G, Chen Z, Liu H. Chromatin conformation of human oral epithelium can identify orofacial cleft missing functional variants. Int J Oral Sci 2022; 14:43. [PMID: 36008388 PMCID: PMC9411193 DOI: 10.1038/s41368-022-00194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association studies (GWASs) are the most widely used method to identify genetic risk loci associated with orofacial clefts (OFC). However, despite the increasing size of cohort, GWASs are still insufficient to detect all the heritability, suggesting there are more associations under the current stringent statistical threshold. In this study, we obtained an integrated epigenomic dataset based on the chromatin conformation of a human oral epithelial cell line (HIOEC) using RNA-seq, ATAC-seq, H3K27ac ChIP-seq, and DLO Hi-C. Presumably, this epigenomic dataset could reveal the missing functional variants located in the oral epithelial cell active enhancers/promoters along with their risk target genes, despite relatively less-stringent statistical association with OFC. Taken a non-syndromic cleft palate only (NSCPO) GWAS data of the Chinese Han population as an example, 3664 SNPs that cannot reach the strict significance threshold were subjected to this functional identification pipeline. In total, 254 potential risk SNPs residing in active cis-regulatory elements interacting with 1 718 promoters of oral epithelium-expressed genes were screened. Gapped k-mer machine learning based on enhancers interacting with epithelium-expressed genes along with in vivo and in vitro reporter assays were employed as functional validation. Among all the potential SNPs, we chose and confirmed that the risk alleles of rs560789 and rs174570 reduced the epithelial-specific enhancer activity by preventing the binding of transcription factors related to epithelial development. In summary, we established chromatin conformation datasets of human oral epithelial cells and provided a framework for testing and understanding how regulatory variants impart risk for clefts.
Collapse
Affiliation(s)
- Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huanyan Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Jiahao Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China. .,Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
mafba and mafbb differentially regulate lymphatic endothelial cell migration in topographically distinct manners. Cell Rep 2022; 39:110982. [PMID: 35732122 DOI: 10.1016/j.celrep.2022.110982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphangiogenesis, formation of lymphatic vessels from pre-existing vessels, is a dynamic process that requires cell migration. Regardless of location, migrating lymphatic endothelial cell (LEC) progenitors probe their surroundings to form the lymphatic network. Lymphatic-development regulation requires the transcription factor MAFB in different species. Zebrafish Mafba, expressed in LEC progenitors, is essential for their migration in the trunk. However, the transcriptional mechanism that orchestrates LEC migration in different lymphatic endothelial beds remains elusive. Here, we uncover topographically different requirements of the two paralogs, Mafba and Mafbb, for LEC migration. Both mafba and mafbb are necessary for facial lymphatic development, but mafbb is dispensable for trunk lymphatic development. On the molecular level, we demonstrate a regulatory network where Vegfc-Vegfd-SoxF-Mafba-Mafbb is essential in facial lymphangiogenesis. We identify that mafba and mafbb tune the directionality of LEC migration and vessel morphogenesis that is ultimately necessary for lymphatic function.
Collapse
|
13
|
Merrill CB, Montgomery AB, Pabon MA, Shabalin AA, Rodan AR, Rothenfluh A. Harnessing changes in open chromatin determined by ATAC-seq to generate insulin-responsive reporter constructs. BMC Genomics 2022; 23:399. [PMID: 35614386 PMCID: PMC9134605 DOI: 10.1186/s12864-022-08637-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Gene regulation is critical for proper cellular function. Next-generation sequencing technology has revealed the presence of regulatory networks that regulate gene expression and essential cellular functions. Studies investigating the epigenome have begun to uncover the complex mechanisms regulating transcription. Assay for transposase-accessible chromatin by sequencing (ATAC-seq) is quickly becoming the assay of choice for many epigenomic investigations. However, whether intervention-mediated changes in accessible chromatin determined by ATAC-seq can be harnessed to generate intervention-inducible reporter constructs has not been systematically assayed. RESULTS We used the insulin signaling pathway as a model to investigate chromatin regions and gene expression changes using ATAC- and RNA-seq in insulin-treated Drosophila S2 cells. We found correlations between ATAC- and RNA-seq data, especially when stratifying differentially-accessible chromatin regions by annotated feature type. In particular, our data demonstrated a weak but significant correlation between chromatin regions annotated to enhancers (1-2 kb from the transcription start site) and downstream gene expression. We cloned candidate enhancer regions upstream of luciferase and demonstrate insulin-inducibility of several of these reporters. CONCLUSIONS Insulin-induced chromatin accessibility determined by ATAC-seq reveals enhancer regions that drive insulin-inducible reporter gene expression.
Collapse
Affiliation(s)
- Collin B Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, 84108, USA.
| | - Austin B Montgomery
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Miguel A Pabon
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrey A Shabalin
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, 84108, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Nephrology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, 84108, USA.
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
14
|
Investigating chromatin accessibility during development and differentiation by ATAC-sequencing to guide the identification of cis-regulatory elements. Biochem Soc Trans 2022; 50:1167-1177. [PMID: 35604124 PMCID: PMC9246326 DOI: 10.1042/bst20210834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Mapping accessible chromatin across time scales can give insights into its dynamic nature, for example during cellular differentiation and tissue or organism development. Analysis of such data can be utilised to identify functional cis-regulatory elements (CRE) and transcription factor binding sites and, when combined with transcriptomics, can reveal gene regulatory networks (GRNs) of expressed genes. Chromatin accessibility mapping is a powerful approach and can be performed using ATAC-sequencing (ATAC-seq), whereby Tn5 transposase inserts sequencing adaptors into genomic DNA to identify differentially accessible regions of chromatin in different cell populations. It requires low sample input and can be performed and analysed relatively quickly compared with other methods. The data generated from ATAC-seq, along with other genomic approaches, can help uncover chromatin packaging and potential cis-regulatory elements that may be responsible for gene expression. Here, we describe the ATAC-seq approach and give examples from mainly vertebrate embryonic development, where such datasets have identified the highly dynamic nature of chromatin, with differing landscapes between cellular precursors for different lineages.
Collapse
|
15
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
16
|
Zhang Q, Kindt KS. Using Light-Sheet Microscopy to Study Spontaneous Activity in the Developing Lateral-Line System. Front Cell Dev Biol 2022; 10:819612. [PMID: 35592245 PMCID: PMC9112283 DOI: 10.3389/fcell.2022.819612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hair cells are the sensory receptors in the auditory and vestibular systems of all vertebrates, and in the lateral-line system of aquatic vertebrates. The purpose of this work is to explore the zebrafish lateral-line system as a model to study and understand spontaneous activity in vivo. Our work applies genetically encoded calcium indicators along with light-sheet fluorescence microscopy to visualize spontaneous calcium activity in the developing lateral-line system. Consistent with our previous work, we show that spontaneous calcium activity is present in developing lateral-line hair cells. We now show that supporting cells that surround hair cells, and cholinergic efferent terminals that directly contact hair cells are also spontaneously active. Using two-color functional imaging we demonstrate that spontaneous activity in hair cells does not correlate with activity in either supporting cells or cholinergic terminals. We find that during lateral-line development, hair cells autonomously generate spontaneous events. Using localized calcium indicators, we show that within hair cells, spontaneous calcium activity occurs in two distinct domains—the mechanosensory bundle and the presynapse. Further, spontaneous activity in the mechanosensory bundle ultimately drives spontaneous calcium influx at the presynapse. Comprehensively, our results indicate that in developing lateral-line hair cells, autonomously generated spontaneous activity originates with spontaneous mechanosensory events.
Collapse
|
17
|
Merrill CB, Pabon MA, Montgomery AB, Rodan AR, Rothenfluh A. Optimized assay for transposase-accessible chromatin by sequencing (ATAC-seq) library preparation from adult Drosophila melanogaster neurons. Sci Rep 2022; 12:6043. [PMID: 35411004 PMCID: PMC9001676 DOI: 10.1038/s41598-022-09869-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Assay for transposase-accessible chromatin by sequencing (ATAC-seq) is rapidly becoming the assay of choice to investigate chromatin-mediated gene regulation, largely because of low input requirements, a fast workflow, and the ability to interrogate the entire genome in an untargeted manner. Many studies using ATAC-seq use mammalian or human-derived tissues, and established protocols work well in these systems. However, ATAC-seq is not yet widely used in Drosophila. Vinegar flies present several advantages over mammalian systems that make them an excellent model for ATAC-seq studies, including abundant genetic tools that allow straightforward targeting, transgene expression, and genetic manipulation that are not available in mammalian models. Because current ATAC-seq protocols are not optimized to use flies, we developed an optimized workflow that accounts for several complicating factors present in Drosophila. We examined parameters affecting nuclei isolation, including input size, freezing time, washing, and possible confounds from retinal pigments. Then, we optimized the enzymatic steps of library construction to account for the smaller Drosophila genome size. Finally, we used our optimized protocol to generate ATAC-seq libraries that meet ENCODE quality metrics. Our optimized protocol enables extensive ATAC-seq experiments in Drosophila, thereby leveraging the advantages of this powerful model system to understand chromatin-mediated gene regulation.
Collapse
Affiliation(s)
- Collin B. Merrill
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108 USA
| | - Miguel A. Pabon
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA
| | - Austin B. Montgomery
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA
| | - Aylin R. Rodan
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA ,grid.280807.50000 0000 9555 3716Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148 USA
| | - Adrian Rothenfluh
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108 USA ,grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Neurobiology, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
18
|
Tsaryk R, Yucel N, Leonard EV, Diaz N, Bondareva O, Odenthal-Schnittler M, Arany Z, Vaquerizas JM, Schnittler H, Siekmann AF. Shear stress switches the association of endothelial enhancers from ETV/ETS to KLF transcription factor binding sites. Sci Rep 2022; 12:4795. [PMID: 35314737 PMCID: PMC8938417 DOI: 10.1038/s41598-022-08645-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited. Here, we set out to study alterations in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 h of laminar shear stress. Our results show a correlation of gained and lost enhancers with up and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized the shear stress response in ECs of zebrafish embryos using RNA-Seq. Our results lay the groundwork for the exploration of shear stress responsive elements in controlling EC biology.
Collapse
Affiliation(s)
- Roman Tsaryk
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nora Yucel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Elvin V Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Noelia Diaz
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Olga Bondareva
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| | - Maria Odenthal-Schnittler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Institute of Neuropathology, Westfälische Wilhelms-Universität Münster, Pottkamp 2, 48149, Münster, Germany
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Hans Schnittler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
- Institute of Anatomy and Vascular Biology, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
- Institute of Neuropathology, Westfälische Wilhelms-Universität Münster, Pottkamp 2, 48149, Münster, Germany
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany.
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Environmental adaptation in fish induced changes in the regulatory region of fatty acid elongase gene, elovl5, involved in long-chain polyunsaturated fatty acid biosynthesis. Int J Biol Macromol 2022; 204:144-153. [PMID: 35120941 DOI: 10.1016/j.ijbiomac.2022.01.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Fish are the main source of long-chain polyunsaturated fatty acids (LC-PUFA) for human consumption. In the process of evolution via natural selection, adaptation to distinct environments has likely driven changes in the endogenous capacity for LC-PUFA biosynthesis between marine and freshwater fishes. However, the molecular mechanisms underlying adaptive changes in this metabolic pathway are poorly understood. Here, we compared the transcriptional regulation of elongation of very long chain fatty acids protein 5 (Elovl5), which is one of the critical enzymes in LC-PUFA biosynthesis pathway, in marine large yellow croaker (Larimichthys crocea) and freshwater rainbow trout (Oncorhynchus mykiss). Comparative transcriptomic and absolute mRNA quantification analyses revealed that the expression of elovl5 in rainbow trout was markedly higher than that in large yellow croaker. Correspondingly, the number of chromatin accessible areas in the regulatory region of elovl5 in rainbow trout was higher than in large yellow croaker, which revealed that chromatin accessibility in the regulatory region of elovl5 in rainbow trout was higher. Furthermore, the differences in sequence and activity of the elovl5 promoter were observed between rainbow trout and large yellow croaker, and transcription factors including CCAAT/enhancer-binding protein β (CEBPβ), GATA binding protein 3 (GATA3) and upstream stimulatory factor 2 (USF2) displayed different regulatory roles on elovl5 expression between the two species. We propose that changes in the gene regulatory region driven by natural selection likely play a key role in differences in elovl5 expression and the activity of Elovl5, which may influence the LC-PUFA biosynthesis capacities of rainbow trout and large yellow croaker. These findings may also provide opportunities to improve the quality of aquatic products and, consequently, human health.
Collapse
|
20
|
Finding and Verifying Enhancers for Endothelial-Expressed Genes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:351-368. [PMID: 35099751 DOI: 10.1007/978-1-0716-2059-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Identification and analysis of enhancers for endothelial-expressed genes can provide crucial information regarding their upstream transcriptional regulators. However, enhancer identification can be challenging, particularly for people with limited access or experience of bioinformatics, and transgenic analysis of enhancer activity patterns can be prohibitively expensive. Here we describe how to use publicly available datasets displayed on the UCSC Genome Browser to identify putative endothelial enhancers for mammalian genes. Furthermore, we detail how to utilize mosaic Tol2-mediated transgenesis in zebrafish to verify whether a putative enhancer is capable of directing endothelial-specific patterns of gene expression.
Collapse
|
21
|
Shih YH, Portman D, Idrizi F, Grosse A, Lawson ND. Integrated molecular analysis identifies a conserved pericyte gene signature in zebrafish. Development 2021; 148:273393. [PMID: 34751773 DOI: 10.1242/dev.200189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Pericytes reside in capillary beds where they share a basement membrane with endothelial cells and regulate their function. However, little is known about embryonic pericyte development, in part, due to lack of specific molecular markers and genetic tools. Here, we applied single cell RNA-sequencing (scRNA-seq) of platelet derived growth factor beta (pdgfrb)-positive cells to molecularly characterize pericytes in zebrafish larvae. scRNA-seq revealed zebrafish cells expressing mouse pericyte gene orthologs, and comparison with bulk RNA-seq from wild-type and pdgfrb mutant larvae further refined a pericyte gene set. Subsequent integration with mouse pericyte scRNA-seq profiles revealed a core set of conserved pericyte genes. Using transgenic reporter lines, we validated pericyte expression of two genes identified in our analysis: NDUFA4 mitochondrial complex associated like 2a (ndufa4l2a), and potassium voltage-gated channel, Isk-related family, member 4 (kcne4). Both reporter lines exhibited pericyte expression in multiple anatomical locations, and kcne4 was also detected in a subset of vascular smooth muscle cells. Thus, our integrated molecular analysis revealed a molecular profile for zebrafish pericytes and allowed us to develop new tools to observe these cells in vivo.
Collapse
Affiliation(s)
- Yu-Huan Shih
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daneal Portman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feston Idrizi
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
22
|
López-Pérez AR, Balwierz PJ, Lenhard B, Muller F, Wardle FC, Manfroid I, Voz ML, Peers B. Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics. Sci Rep 2021; 11:22717. [PMID: 34811400 PMCID: PMC8608873 DOI: 10.1038/s41598-021-02039-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.
Collapse
Affiliation(s)
- Ana R López-Pérez
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Piotr J Balwierz
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Boris Lenhard
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ferenc Muller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium
| | - Marianne L Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium.
| |
Collapse
|
23
|
Quillien A, Gilbert G, Boulet M, Ethuin S, Waltzer L, Vandel L. Prmt5 promotes vascular morphogenesis independently of its methyltransferase activity. PLoS Genet 2021; 17:e1009641. [PMID: 34153034 PMCID: PMC8248709 DOI: 10.1371/journal.pgen.1009641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/01/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
During development, the vertebrate vasculature undergoes major growth and remodeling. While the transcriptional cascade underlying blood vessel formation starts to be better characterized, little is known concerning the role and mode of action of epigenetic enzymes during this process. Here, we explored the role of the Protein Arginine Methyl Transferase Prmt5 in blood vessel formation as well as hematopoiesis using zebrafish as a model system. Through the combination of different prmt5 loss-of-function approaches we highlighted a key role of Prmt5 in both processes. Notably, we showed that Prmt5 promotes vascular morphogenesis through the transcriptional control of ETS transcription factors and adhesion proteins in endothelial cells. Interestingly, using a catalytic dead mutant of Prmt5 and a specific drug inhibitor, we found that while Prmt5 methyltransferase activity was required for blood cell formation, it was dispensable for vessel formation. Analyses of chromatin architecture impact on reporter genes expression and chromatin immunoprecipitation experiments led us to propose that Prmt5 regulates transcription by acting as a scaffold protein that facilitates chromatin looping to promote vascular morphogenesis. Blood vessel formation is an essential developmental process required for the survival of all vertebrates. The vascular anatomy and the mechanisms involved in vessel formation are highly conserved among vertebrates. Hence, we used zebrafish as a model, to decipher the role and the mode of action of Prmt5, an enzyme known to regulate gene expression, in vascular morphogenesis and in blood cell formation in vivo. Using different approaches, we highlighted a key role of Prmt5 during both processes. However, we found that while blood cell formation required Prmt5 enzymatic activity, vascular morphogenesis was independent on its activity. Prmt5 has been proposed as a therapeutic target in many diseases, including cancer. Yet, we show here that Prmt5 acts at least in part independently of its methyltransferase activity to regulate vascular morphogenesis. By shedding light on a mechanism of action of Prmt5 that will be insensitive to enzymatic inhibitors, our data calls forth the design of alternative drugs. In addition, this non-canonical function of Prmt5 may have a more pervasive role than previously thought in physiological conditions, i.e. during development, but also in pathological situations such as in tumor angiogenesis and certainly deserves more attention in the future.
Collapse
Affiliation(s)
- Aurélie Quillien
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse, France
- * E-mail: (AQ); (LV)
| | - Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Manon Boulet
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Séverine Ethuin
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Laurence Vandel
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
- * E-mail: (AQ); (LV)
| |
Collapse
|
24
|
Cunningham RL, Kramer ET, DeGeorgia SK, Godoy PM, Zarov AP, Seneviratne S, Grigura V, Kaufman CK. Functional in vivo characterization of sox10 enhancers in neural crest and melanoma development. Commun Biol 2021; 4:695. [PMID: 34099848 PMCID: PMC8184803 DOI: 10.1038/s42003-021-02211-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The role of a neural crest developmental transcriptional program, which critically involves Sox10 upregulation, is a key conserved aspect of melanoma initiation in both humans and zebrafish, yet transcriptional regulation of sox10 expression is incompletely understood. Here we used ATAC-Seq analysis of multiple zebrafish melanoma tumors to identify recurrently open chromatin domains as putative melanoma-specific sox10 enhancers. Screening in vivo with EGFP reporter constructs revealed 9 of 11 putative sox10 enhancers with embryonic activity in zebrafish. Focusing on the most active enhancer region in melanoma, we identified a region 23 kilobases upstream of sox10, termed peak5, that drives EGFP reporter expression in a subset of neural crest cells, Kolmer-Agduhr neurons, and early melanoma patches and tumors with high specificity. A ~200 base pair region, conserved in Cyprinidae, within peak5 is required for transgenic reporter activity in neural crest and melanoma. This region contains dimeric SoxE/Sox10 dimeric binding sites essential for peak5 neural crest and melanoma activity. We show that deletion of the endogenous peak5 conserved genomic locus decreases embryonic sox10 expression and disrupts adult stripe patterning in our melanoma model background. Our work demonstrates the power of linking developmental and cancer models to better understand neural crest identity in melanoma.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva T Kramer
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sophia K DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Paula M Godoy
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Anna P Zarov
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Shayana Seneviratne
- School of Arts and Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Vadim Grigura
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
25
|
Han Y, Shao W, Zhong D, Ma C, Wei X, Ahmed A, Yu T, Jing W, Jing L. Zebrafish mafbb Mutants Display Osteoclast Over-Activation and Bone Deformity Resembling Osteolysis in MCTO Patients. Biomolecules 2021; 11:biom11030480. [PMID: 33806930 PMCID: PMC8004647 DOI: 10.3390/biom11030480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia with osteolysis at the carpal and tarsal bones. Heterozygous missense mutations in the transcription factor MAFB are found in patients with MCTO. MAFB is reported to negatively regulate osteoclastogenesis in vitro. However, the in vivo function of MAFB and its relation to MCTO remains unknown. In this study, we generated zebrafish MAFB homolog mafbb mutant utilizing CRISPR/Cas9 technology. Mafbb deficient zebrafish demonstrated enhanced osteoclast cell differentiation and abnormal cartilage and bone development resembling MCTO patients. It is known that osteoclasts are hematopoietic cells derived from macrophages. Loss of mafbb caused selective expansion of definitive macrophages and myeloid cells, supporting that mafbb restricts myeloid differentiation in vivo. We also demonstrate that MAFB MCTO mutations failed to rescue the defective osteoclastogenesis in mafbb-/- embryos, but did not affect osteoclast cells in wild type embryos. The mechanism of MCTO mutations is likely haploinsufficiency. Zebrafish mafbb mutant provides a useful model to study the function of MAFB in osteoclastogenesis and the related MCTO disease.
Collapse
Affiliation(s)
- Yujie Han
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.); (W.S.); (D.Z.); (C.M.); (X.W.); (A.A.)
| | - Weihao Shao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.); (W.S.); (D.Z.); (C.M.); (X.W.); (A.A.)
| | - Dan Zhong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.); (W.S.); (D.Z.); (C.M.); (X.W.); (A.A.)
| | - Cui Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.); (W.S.); (D.Z.); (C.M.); (X.W.); (A.A.)
| | - Xiaona Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.); (W.S.); (D.Z.); (C.M.); (X.W.); (A.A.)
| | - Abrar Ahmed
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.); (W.S.); (D.Z.); (C.M.); (X.W.); (A.A.)
| | - Tingting Yu
- Shanghai Children’s Medical Center, Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Shanghai Changhai Hospital, Shanghai 200433, China
- Correspondence: (W.J.); (L.J.)
| | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.H.); (W.S.); (D.Z.); (C.M.); (X.W.); (A.A.)
- Correspondence: (W.J.); (L.J.)
| |
Collapse
|
26
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
27
|
Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. J Neurosci 2020; 41:1371-1392. [PMID: 33376159 PMCID: PMC7896009 DOI: 10.1523/jneurosci.1316-20.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
In neurons, mitochondria are transported by molecular motors throughout the cell to form and maintain functional neural connections. These organelles have many critical functions in neurons and are of high interest as their dysfunction is associated with disease. While the mechanics and impact of anterograde mitochondrial movement toward axon terminals are beginning to be understood, the frequency and function of retrograde (cell body directed) mitochondrial transport in neurons are still largely unexplored. While existing evidence indicates that some mitochondria are retrogradely transported for degradation in the cell body, the precise impact of disrupting retrograde transport on the organelles and the axon was unknown. Using long-term, in vivo imaging, we examined mitochondrial motility in zebrafish sensory and motor axons. We show that retrograde transport of mitochondria from axon terminals allows replacement of the axon terminal population within a day. By tracking these organelles, we show that not all mitochondria that leave the axon terminal are degraded; rather, they persist over several days. Disrupting retrograde mitochondrial flux in neurons leads to accumulation of aged organelles in axon terminals and loss of cell body mitochondria. Assays of neural circuit activity demonstrated that disrupting mitochondrial transport and function has no effect on sensory axon terminal activity but does negatively impact motor neuron axons. Taken together, our work supports a previously unappreciated role for retrograde mitochondrial transport in the maintenance of a homeostatic distribution of mitochondria in neurons and illustrates the downstream effects of disrupting this process on sensory and motor circuits. SIGNIFICANCE STATEMENT Disrupted mitochondrial transport has been linked to neurodegenerative disease. Retrograde transport of this organelle has been implicated in turnover of aged organelles through lysosomal degradation in the cell body. Consistent with this, we provide evidence that retrograde mitochondrial transport is important for removing aged organelles from axons; however, we show that these organelles are not solely degraded, rather they persist in neurons for days. Disrupting retrograde mitochondrial transport impacts the homeostatic distribution of mitochondria throughout the neuron and the function of motor, but not sensory, axon synapses. Together, our work shows the conserved reliance on retrograde mitochondrial transport for maintaining a healthy mitochondrial pool in neurons and illustrates the disparate effects of disrupting this process on sensory versus motor circuits.
Collapse
|
28
|
Yang H, Luan Y, Liu T, Lee HJ, Fang L, Wang Y, Wang X, Zhang B, Jin Q, Ang KC, Xing X, Wang J, Xu J, Song F, Sriranga I, Khunsriraksakul C, Salameh T, Li D, Choudhary MNK, Topczewski J, Wang K, Gerhard GS, Hardison RC, Wang T, Cheng KC, Yue F. A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature 2020; 588:337-343. [PMID: 33239788 DOI: 10.1038/s41586-020-2962-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
The zebrafish (Danio rerio) has been widely used in the study of human disease and development, and about 70% of the protein-coding genes are conserved between the two species1. However, studies in zebrafish remain constrained by the sparse annotation of functional control elements in the zebrafish genome. Here we performed RNA sequencing, assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing, whole-genome bisulfite sequencing, and chromosome conformation capture (Hi-C) experiments in up to eleven adult and two embryonic tissues to generate a comprehensive map of transcriptomes, cis-regulatory elements, heterochromatin, methylomes and 3D genome organization in the zebrafish Tübingen reference strain. A comparison of zebrafish, human and mouse regulatory elements enabled the identification of both evolutionarily conserved and species-specific regulatory sequences and networks. We observed enrichment of evolutionary breakpoints at topologically associating domain boundaries, which were correlated with strong histone H3 lysine 4 trimethylation (H3K4me3) and CCCTC-binding factor (CTCF) signals. We performed single-cell ATAC-seq in zebrafish brain, which delineated 25 different clusters of cell types. By combining long-read DNA sequencing and Hi-C, we assembled the sex-determining chromosome 4 de novo. Overall, our work provides an additional epigenomic anchor for the functional annotation of vertebrate genomes and the study of evolutionarily conserved elements of 3D genome organization.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Hyung Joo Lee
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yanli Wang
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Bo Zhang
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Khai Chung Ang
- Department of Pathology and Penn State Zebrafish Functional Genomics Core, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xiaoyun Xing
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fan Song
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Iyyanki Sriranga
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | | | - Tarik Salameh
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Daofeng Li
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Mayank N K Choudhary
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Keith C Cheng
- Department of Pathology and Penn State Zebrafish Functional Genomics Core, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
29
|
Serizay J, Dong Y, Jänes J, Chesney M, Cerrato C, Ahringer J. Distinctive regulatory architectures of germline-active and somatic genes in C. elegans. Genome Res 2020; 30:1752-1765. [PMID: 33093068 PMCID: PMC7706728 DOI: 10.1101/gr.265934.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
RNA profiling has provided increasingly detailed knowledge of gene expression patterns, yet the different regulatory architectures that drive them are not well understood. To address this, we profiled and compared transcriptional and regulatory element activities across five tissues of Caenorhabditis elegans, covering ∼90% of cells. We find that the majority of promoters and enhancers have tissue-specific accessibility, and we discover regulatory grammars associated with ubiquitous, germline, and somatic tissue–specific gene expression patterns. In addition, we find that germline-active and soma-specific promoters have distinct features. Germline-active promoters have well-positioned +1 and −1 nucleosomes associated with a periodic 10-bp WW signal (W = A/T). Somatic tissue–specific promoters lack positioned nucleosomes and this signal, have wide nucleosome-depleted regions, and are more enriched for core promoter elements, which largely differ between tissues. We observe the 10-bp periodic WW signal at ubiquitous promoters in other animals, suggesting it is an ancient conserved signal. Our results show fundamental differences in regulatory architectures of germline and somatic tissue–specific genes, uncover regulatory rules for generating diverse gene expression patterns, and provide a tissue-specific resource for future studies.
Collapse
Affiliation(s)
- Jacques Serizay
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jürgen Jänes
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael Chesney
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Chiara Cerrato
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
30
|
Lawson ND, Li R, Shin M, Grosse A, Yukselen O, Stone OA, Kucukural A, Zhu L. An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes. eLife 2020; 9:55792. [PMID: 32831172 PMCID: PMC7486121 DOI: 10.7554/elife.55792] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The zebrafish is ideal for studying embryogenesis and is increasingly applied to model human disease. In these contexts, RNA-sequencing (RNA-seq) provides mechanistic insights by identifying transcriptome changes between experimental conditions. Application of RNA-seq relies on accurate transcript annotation for a genome of interest. Here, we find discrepancies in analysis from RNA-seq datasets quantified using Ensembl and RefSeq zebrafish annotations. These issues were due, in part, to variably annotated 3' untranslated regions and thousands of gene models missing from each annotation. Since these discrepancies could compromise downstream analyses and biological reproducibility, we built a more comprehensive zebrafish transcriptome annotation that addresses these deficiencies. Our annotation improves detection of cell type-specific genes in both bulk and single cell RNA-seq datasets, where it also improves resolution of cell clustering. Thus, we demonstrate that our new transcriptome annotation can outperform existing annotations, providing an important resource for zebrafish researchers.
Collapse
Affiliation(s)
- Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Masahiro Shin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Ann Grosse
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Onur Yukselen
- Bioinformatics Core, University of Massachusetts Medical School, Worcester, United States
| | - Oliver A Stone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alper Kucukural
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Lihua Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
31
|
Anderson RA, Schwalbach KT, Mui SR, LeClair EE, Topczewska JM, Topczewski J. Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency. Dis Model Mech 2020; 13:dmm042549. [PMID: 32430393 PMCID: PMC7328163 DOI: 10.1242/dmm.042549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
Human disorders of the post-squalene cholesterol biosynthesis pathway frequently result in skeletal abnormalities, yet our understanding of the mechanisms involved is limited. In a forward-genetic approach, we have found that a late-onset skeletal mutant, named kolibernu7 , is the result of a cis-acting regulatory mutation leading to loss of methylsterol monooxygenase 1 (msmo1) expression within pre-hypertrophic chondrocytes. Generated msmo1nu81 knockdown mutation resulted in lethality at larval stage. We demonstrated that this is a result of both cholesterol deprivation and sterol intermediate accumulation by creating a mutation eliminating activity of Lanosterol synthase (Lss). Our results indicate that double lssnu60;msmo1nu81 and single lssnu60 mutants survive significantly longer than msmo1nu81 homozygotes. Liver-specific restoration of either Msmo1 or Lss in corresponding mutant backgrounds suppresses larval lethality. Rescued mutants develop dramatic skeletal abnormalities, with a loss of Msmo1 activity resulting in a more-severe patterning defect of a near-complete loss of hypertrophic chondrocytes marked by col10a1a expression. Our analysis suggests that hypertrophic chondrocytes depend on endogenous cholesterol synthesis, and blocking C4 demethylation exacerbates the cholesterol deficiency phenotype. Our findings offer new insight into the genetic control of bone development and provide new zebrafish models for human disorders of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin T Schwalbach
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Stephanie R Mui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elizabeth E LeClair
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Jolanta M Topczewska
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
32
|
Liu H, Duncan K, Helverson A, Kumari P, Mumm C, Xiao Y, Carlson JC, Darbellay F, Visel A, Leslie E, Breheny P, Erives AJ, Cornell RA. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. eLife 2020; 9:e51325. [PMID: 32031521 PMCID: PMC7039683 DOI: 10.7554/elife.51325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies for non-syndromic orofacial clefting (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effects of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Department of Periodontology, School of Stomatology, Wuhan UniversityWuhanChina
| | - Kaylia Duncan
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Annika Helverson
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Camille Mumm
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | | | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- University of California, MercedMercedUnited States
| | - Elizabeth Leslie
- Department of Human Genetics, Emory University School of MedicineAtlantaGeorgia
| | - Patrick Breheny
- Department of Biostatistics, University of IowaIowa CityUnited States
| | - Albert J Erives
- Department of Biology, University of IowaIowa CityUnited States
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
33
|
Nakato R, Wada Y, Nakaki R, Nagae G, Katou Y, Tsutsumi S, Nakajima N, Fukuhara H, Iguchi A, Kohro T, Kanki Y, Saito Y, Kobayashi M, Izumi-Taguchi A, Osato N, Tatsuno K, Kamio A, Hayashi-Takanaka Y, Wada H, Ohta S, Aikawa M, Nakajima H, Nakamura M, McGee RC, Heppner KW, Kawakatsu T, Genno M, Yanase H, Kume H, Senbonmatsu T, Homma Y, Nishimura S, Mitsuyama T, Aburatani H, Kimura H, Shirahige K. Comprehensive epigenome characterization reveals diverse transcriptional regulation across human vascular endothelial cells. Epigenetics Chromatin 2019; 12:77. [PMID: 31856914 PMCID: PMC6921469 DOI: 10.1186/s13072-019-0319-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/03/2019] [Indexed: 01/19/2023] Open
Abstract
Background Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phenotypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The underlying molecular mechanisms responsible for the diverse phenotypes of ECs from different organs are not well understood. Results To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene expression and active histone marks in nine types of human ECs (generating 148 genome-wide datasets) and carried out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample preparation under various conditions. Through this approach, we identified 3765 EC-specific enhancers, some of which were associated with disease-associated genetic variations. We also identified various candidate marker genes for each EC type. We found that the nine EC types can be divided into two subgroups, corresponding to those with upper-body origins and lower-body origins, based on their epigenomic landscape. Epigenomic variations were highly correlated with gene expression patterns, but also provided unique information. Most of the deferentially expressed genes and enhancers were cooperatively enriched in more than one EC type, suggesting that the distinct combinations of multiple genes play key roles in the diverse phenotypes across EC types. Notably, many homeobox genes were differentially expressed across EC types, and their expression was correlated with the relative position of each organ in the body. This reflects the developmental origins of ECs and their roles in angiogenesis, vasculogenesis and wound healing. Conclusions This comprehensive analysis of epigenome characterization of EC types reveals diverse transcriptional regulation across human vascular systems. These datasets provide a valuable resource for understanding the vascular system and associated diseases.
Collapse
Affiliation(s)
- Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Youichiro Wada
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan. .,Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Genta Nagae
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Yuki Katou
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Natsu Nakajima
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Atsushi Iguchi
- Department of Cardiovascular Surgery, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan
| | - Yasuharu Kanki
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yutaka Saito
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Mika Kobayashi
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | | | - Naoki Osato
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Asuka Kamio
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Yoko Hayashi-Takanaka
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiromi Wada
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.,Brain Attack Center, Ohta Memorial Hospital, Fukuyama, 720-0825, Japan
| | - Shinzo Ohta
- Brain Attack Center, Ohta Memorial Hospital, Fukuyama, 720-0825, Japan
| | - Masanori Aikawa
- The Center for Excellence in Vascular Biology and the Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division and Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroyuki Nakajima
- Department of Cardiovascular Surgery, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Masaki Nakamura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | | | | | - Tatsuo Kawakatsu
- Bio-Medical Department, Kurabo Industries Ltd., Neyagawa, Osaka, 572-0823, Japan
| | - Michiru Genno
- Bio-Medical Department, Kurabo Industries Ltd., Neyagawa, Osaka, 572-0823, Japan
| | - Hiroshi Yanase
- Bio-Medical Department, Kurabo Industries Ltd., Neyagawa, Osaka, 572-0823, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takaaki Senbonmatsu
- Department of Cardiology, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shigeyuki Nishimura
- Department of Cardiology, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Toutai Mitsuyama
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Aburatani
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroshi Kimura
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan. .,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan. .,Laboratory of Functional Nuclear Imaging, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Katsuhiko Shirahige
- Japan Agency for Medical Research and Development (AMED-CREST), AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan. .,Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
34
|
Shin M, Nozaki T, Idrizi F, Isogai S, Ogasawara K, Ishida K, Yuge S, Roscoe B, Wolfe SA, Fukuhara S, Mochizuki N, Deguchi T, Lawson ND. Valves Are a Conserved Feature of the Zebrafish Lymphatic System. Dev Cell 2019; 51:374-386.e5. [PMID: 31564611 DOI: 10.1016/j.devcel.2019.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/19/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
The lymphatic system comprises blind-ended tubes that collect interstitial fluid and return it to the circulatory system. In mammals, unidirectional lymphatic flow is driven by muscle contraction working in conjunction with valves. Accordingly, defective lymphatic valve morphogenesis results in backflow leading to edema. In fish species, studies dating to the 18th century failed to identify lymphatic valves, a precedent that currently persists, raising the question of whether the zebrafish could be used to study the development of these structures. Here, we provide functional and morphological evidence of valves in the zebrafish lymphatic system. Electron microscopy revealed valve ultrastructure similar to mammals, while live imaging using transgenic lines identified the developmental origins of lymphatic valve progenitors. Zebrafish embryos bearing mutations in genes required for mammalian valve morphogenesis show defective lymphatic valve formation and edema. Together, our observations provide a foundation from which to further investigate lymphatic valve formation in zebrafish.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Feston Idrizi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumio Isogai
- Department of Medical Education, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Katsutoshi Ogasawara
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Shinya Yuge
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Benjamin Roscoe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Naoki Mochizuki
- Department of Cell Biology and AMED-CREST, National Cerebral and Cardiovascular Center, Research Institute, Suita, Osaka 565-8565, Japan
| | - Tomonori Deguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
35
|
Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Adv 2019; 2:3063-3069. [PMID: 30425071 DOI: 10.1182/bloodadvances.2018021725] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Each stem cell resides in a highly specialized anatomic location known as the niche that protects and regulates stem cell function. The importance of the niche in hematopoiesis has long been appreciated in transplantation, but without methods to observe activity in vivo, the components and mechanisms of the hematopoietic niche have remained incompletely understood. Zebrafish have emerged over the past few decades as an answer to this. Use of zebrafish to study the hematopoietic niche has enabled discovery of novel cell-cell interactions, as well as chemical and genetic regulators of hematopoietic stem cells. Mastery of niche components may improve therapeutic efforts to direct differentiation of hematopoietic stem cells from pluripotent cells, sustain stem cells in culture, or improve stem cell transplant.
Collapse
|
36
|
Broad Heterochromatic Domains Open in Gonocyte Development Prior to De Novo DNA Methylation. Dev Cell 2019; 51:21-34.e5. [PMID: 31474564 DOI: 10.1016/j.devcel.2019.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/28/2019] [Accepted: 07/24/2019] [Indexed: 02/03/2023]
Abstract
Facultative heterochromatin forms and reorganizes in response to external stimuli. However, how the initial establishment of such a chromatin state is regulated in cell-cycle-arrested cells remains unexplored. Mouse gonocytes are arrested male germ cells, at which stage the genome-wide DNA methylome forms. Here, we discovered transiently accessible heterochromatin domains of several megabases in size in gonocytes and named them differentially accessible domains (DADs). Open DADs formed in gene desert and gene cluster regions, primarily at transposons, with the reprogramming of histone marks, suggesting DADs as facultative heterochromatin. De novo DNA methylation took place with two waves in gonocytes: the first region specific and the second genome-wide. DADs were resistant to the first wave and their opening preceded the second wave. In addition, the higher-order chromosome architecture was reorganized with less defined chromosome compartments in gonocytes. These findings suggest that multiple layers of chromatin reprogramming facilitate de novo DNA methylation.
Collapse
|
37
|
Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas 2019; 156:29. [PMID: 31427911 PMCID: PMC6696680 DOI: 10.1186/s41065-019-0105-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chromatin accessibility is crucial for gene expression regulation in specific cells and in multiple biological processes. Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is an effective way to reveal chromatin accessibility at a genome-wide level. Through ATAC-seq, produced reads from a small number of cells reflect accessible regions that correspond to nucleosome positioning and transcription factor binding sites, due to probing hyperactive Tn5 transposase to DNA sequence. Conclusion In this review, we summarize both principle and features of ATAC-seq, highlight its applications in basic and clinical research. ATAC-seq has generated comprehensive chromatin accessible maps, and is becoming a powerful tool to understand dynamic gene expression regulation in stem cells, early embryos and tumors.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| |
Collapse
|
38
|
Whitesell TR, Chrystal PW, Ryu JR, Munsie N, Grosse A, French CR, Workentine ML, Li R, Zhu LJ, Waskiewicz A, Lehmann OJ, Lawson ND, Childs SJ. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Dev Biol 2019; 453:34-47. [PMID: 31199900 DOI: 10.1016/j.ydbio.2019.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 11/15/2022]
Abstract
Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrβ positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.
Collapse
Affiliation(s)
- Thomas R Whitesell
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Paul W Chrystal
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Nicole Munsie
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Curtis R French
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Matthew L Workentine
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605; Program in Bioinformatics and Integrative Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA, 01605
| | - Andrew Waskiewicz
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ordan J Lehmann
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Sarah J Childs
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|
39
|
Packaging development: how chromatin controls transcription in zebrafish embryogenesis. Biochem Soc Trans 2019; 47:713-724. [DOI: 10.1042/bst20180617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Abstract
How developmental gene expression is activated, co-ordinated and maintained is one of the biggest questions in developmental biology. While transcription factors lead the way in directing developmental gene expression, their accessibility to the correct repertoire of genes can depend on other factors such as DNA methylation, the presence of particular histone variants and post-translational modifications of histones. Collectively, factors that modify DNA or affect its packaging and accessibility contribute to a chromatin landscape that helps to control the timely expression of developmental genes. Zebrafish, perhaps better known for their strength as a model of embryology and organogenesis during development, are coming to the fore as a powerful model for interpreting the role played by chromatin in gene expression. Several recent advances have shown that zebrafish exhibit both similarities and differences to other models (and humans) in the way that they employ chromatin mechanisms of gene regulation. Here, I review how chromatin influences developmental transcriptional programmes during early zebrafish development, patterning and organogenesis. Lastly, I briefly highlight the importance of zebrafish chromatin research towards the understanding of human disease and transgenerational inheritance.
Collapse
|
40
|
Bhattacharyya S, Sathe AA, Bhakta M, Xing C, Munshi NV. PAN-INTACT enables direct isolation of lineage-specific nuclei from fibrous tissues. PLoS One 2019; 14:e0214677. [PMID: 30939177 PMCID: PMC6445515 DOI: 10.1371/journal.pone.0214677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
Recent studies have highlighted the extraordinary cell type diversity that exists within mammalian organs, yet the molecular drivers of such heterogeneity remain elusive. To address this issue, much attention has been focused on profiling the transcriptome and epigenome of individual cell types. However, standard cell type isolation methods based on surface or fluorescent markers remain problematic for cells residing within organs with significant connective tissue. Since the nucleus contains both genomic and transcriptomic information, the isolation of nuclei tagged in specific cell types (INTACT) method provides an attractive solution. Although INTACT has been successfully applied to plants, flies, zebrafish, frogs, and mouse brain and adipose tissue, broad use across mammalian organs remains challenging. Here we describe the PAN-INTACT method, which can be used to isolate cell type specific nuclei from fibrous mouse organs, which are particularly problematic. As a proof-of-concept, we demonstrate successful isolation of cell type-specific nuclei from the mouse heart, which contains substantial connective tissue and harbors multiple cell types, including cardiomyocytes, fibroblasts, endothelial cells, and epicardial cells. Compared to established techniques, PAN-INTACT allows more rapid isolation of cardiac nuclei to facilitate downstream applications. We show cell type-specific isolation of nuclei from the hearts of Nkx2-5Cre/+; R26Sun1-2xsf-GFP-6xmyc/+ mice, which we confirm by expression of lineage markers. Furthermore, we perform Assay for Transposase Accessible Chromatin (ATAC)-Seq to provide high-fidelity chromatin accessibility maps of Nkx2-5+ nuclei. To extend the applicability of PAN-INTACT, we also demonstrate successful isolation of Wt1+ podocytes from adult kidney. Taken together, our data suggest that PAN-INTACT is broadly applicable for profiling the transcriptional and epigenetic landscape of specific cell types. Thus, we envision that our method can be used to systematically probe mechanistic details of cell type-specific functions within individual organs of intact mice.
Collapse
Affiliation(s)
- Samadrita Bhattacharyya
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adwait A. Sathe
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Minoti Bhakta
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nikhil V. Munshi
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Zebrafish has provided a powerful platform to study vascular biology over the past 25 years, owing to their distinct advantages for imaging and genetic manipulation. In this review, we summarize recent progress in vascular biology with particular emphasis on vascular development in zebrafish. RECENT FINDINGS The advent of transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome-editing technologies has dramatically facilitated reverse genetic approaches in zebrafish, as in other models. Here, we highlight recent studies on vascular development in zebrafish which mainly employed forward or reverse genetics combined with high-resolution imaging. These studies have advanced our understanding of diverse areas in vascular biology, including transcriptional regulation of endothelial cell differentiation, endothelial cell signaling during angiogenesis and lymphangiogenesis, vascular bed-specific developmental mechanisms, and perivascular cell recruitment. SUMMARY The unique attributes of the zebrafish model have allowed critical cellular and molecular insights into fundamental mechanisms of vascular development. Knowledge acquired through recent zebrafish work further advances our understanding of basic mechanisms underlying vascular morphogenesis, maintenance, and homeostasis. Ultimately, insights provided by the zebrafish model will help to understand the genetic, cellular, and molecular underpinnings of human vascular malformations and diseases.
Collapse
|
42
|
Abstract
Programs of gene transcription are controlled by cis-acting DNA elements, including enhancers, silencers, and promoters. Local accessibility of chromatin has proven to be a highly informative structural feature for identifying such regulatory elements, which tend to be relatively open due to their interactions with proteins. Recently, ATAC-seq (assay for transposase-accessible chromatin using sequencing) has emerged as one of the most powerful approaches for genome-wide chromatin accessibility profiling. This method assesses DNA accessibility using hyperactive Tn5 transposase, which simultaneously cuts DNA and inserts sequencing adaptors, preferentially in regions of open chromatin. ATAC-seq is a relatively simple procedure which can be applied to only a few thousand cells. It is well-suited to developing embryos of sea urchins and other echinoderms, which are a prominent experimental model for understanding the genomic control of animal development. In this chapter, we present a protocol for applying ATAC-seq to embryonic cells of sea urchins.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
43
|
de Pater E, Trompouki E. Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2018; 6:124. [PMID: 30374440 PMCID: PMC6196227 DOI: 10.3389/fcell.2018.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field.
Collapse
Affiliation(s)
- Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
44
|
Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 2018; 7:36187. [PMID: 30188322 PMCID: PMC6126923 DOI: 10.7554/elife.36187] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cell (EC) function depends on appropriate organ-specific molecular and cellular specializations. To explore genomic mechanisms that control this specialization, we have analyzed and compared the transcriptome, accessible chromatin, and DNA methylome landscapes from mouse brain, liver, lung, and kidney ECs. Analysis of transcription factor (TF) gene expression and TF motifs at candidate cis-regulatory elements reveals both shared and organ-specific EC regulatory networks. In the embryo, only those ECs that are adjacent to or within the central nervous system (CNS) exhibit canonical Wnt signaling, which correlates precisely with blood-brain barrier (BBB) differentiation and Zic3 expression. In the early postnatal brain, single-cell RNA-seq of purified ECs reveals (1) close relationships between veins and mitotic cells and between arteries and tip cells, (2) a division of capillary ECs into vein-like and artery-like classes, and (3) new endothelial subtype markers, including new validated tip cell markers.
Collapse
Affiliation(s)
- Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jacob S Heng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
45
|
Ou J, Liu H, Yu J, Kelliher MA, Castilla LH, Lawson ND, Zhu LJ. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. BMC Genomics 2018; 19:169. [PMID: 29490630 PMCID: PMC5831847 DOI: 10.1186/s12864-018-4559-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND ATAC-seq (Assays for Transposase-Accessible Chromatin using sequencing) is a recently developed technique for genome-wide analysis of chromatin accessibility. Compared to earlier methods for assaying chromatin accessibility, ATAC-seq is faster and easier to perform, does not require cross-linking, has higher signal to noise ratio, and can be performed on small cell numbers. However, to ensure a successful ATAC-seq experiment, step-by-step quality assurance processes, including both wet lab quality control and in silico quality assessment, are essential. While several tools have been developed or adopted for assessing read quality, identifying nucleosome occupancy and accessible regions from ATAC-seq data, none of the tools provide a comprehensive set of functionalities for preprocessing and quality assessment of aligned ATAC-seq datasets. RESULTS We have developed a Bioconductor package, ATACseqQC, for easily generating various diagnostic plots to help researchers quickly assess the quality of their ATAC-seq data. In addition, this package contains functions to preprocess aligned ATAC-seq data for subsequent peak calling. Here we demonstrate the utilities of our package using 25 publicly available ATAC-seq datasets from four studies. We also provide guidelines on what the diagnostic plots should look like for an ideal ATAC-seq dataset. CONCLUSIONS This software package has been used successfully for preprocessing and assessing several in-house and public ATAC-seq datasets. Diagnostic plots generated by this package will facilitate the quality assessment of ATAC-seq data, and help researchers to evaluate their own ATAC-seq experiments as well as select high-quality ATAC-seq datasets from public repositories such as GEO to avoid generating hypotheses or drawing conclusions from low-quality ATAC-seq experiments. The software, source code, and documentation are freely available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/ATACseqQC.html .
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Lucio H. Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Nathan D. Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 USA
- Department of Molecular Medicine, Program in Bioinformatics and Integrative Biology, Worcester, MA 01655 USA
| |
Collapse
|
46
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|