1
|
Barry C, Shahi A, Kidane D. DNA glycosylase (NEIL3) overexpression associated with low tumor immune infiltration and poor overall patient survival in endometrial cancer. Sci Rep 2025; 15:16308. [PMID: 40348794 PMCID: PMC12065799 DOI: 10.1038/s41598-025-00393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. Although prognosis is favorable for patients with an early-stage disease, those with recurrent or more advanced disease have low response rates to chemotherapy and poor clinical outcomes. Previously, we have shown that DNA repair gene (NEIL3) is required for retaining replication fork integrity during replication stress. Here, we examined whether the overexpression of NEIL3 in endometrial cancer associated with altered genomic instability, tumor immunogenicity and anti-tumor immunity in endometrial tumor. In this study, we show that endometrial cancer patients with tumors that a have high NEIL3 expression associated with worse overall survival (OS) outcomes in patients. In addition, tumor with high NEIL3 expression is associated with high number of mutation and chromosomal instability. Furthermore, NEIL3 expression in EC tumors positively correlated with mutation of DNA polymerase eta (POLE) and TP53 as well as high expression of replicative polymerases genes (POLE, POLD1 and POLA1). In contrast, tumor with high NEIL3 expression exhibit low tumor immunogenicity and poor anti-tumor immune cell infiltration. Our findings may have important clinical implications for utilizing NEIL3 as a potential prognostic biomarker to stratify EC patients and as a target to enhance immunotherapy response in endometrial cancer. However, our NEIL3 overexpression associated observation still requires further experimental-based scientific validation studies.
Collapse
Affiliation(s)
- Cristofer Barry
- Department of Physiology & Biophysics, College of Medicine, Howard University, 520 W Street N.W, Washington, DC, 20059, USA
| | - Aashirwad Shahi
- Department of Physiology & Biophysics, College of Medicine, Howard University, 520 W Street N.W, Washington, DC, 20059, USA
| | - Dawit Kidane
- Department of Physiology & Biophysics, College of Medicine, Howard University, 520 W Street N.W, Washington, DC, 20059, USA.
| |
Collapse
|
2
|
Wang J, Liao C, Luo J, Li M, Gu L, Li X, Chen L. NEIL3 Deficiency Enhances HCC Cell Sensitivity to Oxaliplatin by Inhibiting the Fanconi Anaemia Pathway. Cell Biol Int 2025. [PMID: 40263742 DOI: 10.1002/cbin.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Despite some achievements in oxaliplatin-based chemotherapy for the treatment of advanced hepatocellular carcinoma (HCC), the abnormal activation of DNA damage repair pathways in HCC cells remains a major problem, limiting the efficacy of oxaliplatin-based chemotherapy. In a previous study, we found that endonuclease VIII-like protein 3 (NEIL3) is expressed in a high proportion of patients with HCC and associated with an unfavourable prognosis. However, the role of NEIL3 in chemoresistance is still unclear. The aim of this study was to evaluate whether and how NEIL3 regulates oxaliplatin anti-tumour efficacy. Gene expression after oxaliplatin treatment in HCC cell lines was assessed by real-time quantitative PCR, western blot analysis and bioinformatics analysis. The effect of NEIL3 on regulating oxaliplatin efficacy was assessed using cell counting kit-8 assays, colony formation assays, flow cytometry and an in vivo nude mice study. Mechanistic insights into the sensitivity to oxaliplatin mediated by the inhibition of NEIL3 were obtained through immunofluorescence and RNA sequencing analyses. Our findings demonstrated that NEIL3 expression was markedly downregulated after oxaliplatin administration. NEIL3 knockdown impaired cell viability and colony formation and increased apoptosis in HCC cells exposed to oxaliplatin. In addition, NEIL3 inhibition reduced tumour progression and enhanced oxaliplatin efficacy in xenograft nude mice models. Furthermore, knocking down NEIL3 significantly increased the oxaliplatin-mediated inhibition of the Fanconi anaemia pathway. Our results revealed that NEIL3 may be a promising therapeutic target for improving oxaliplatin efficacy in the treatment of HCC.
Collapse
Affiliation(s)
- Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mingna Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Hwang Y, Kang SJ, Kang J, Choi J, Kim SJ, Jang S. DNA repair and disease: insights from the human DNA glycosylase NEIL family. Exp Mol Med 2025; 57:524-532. [PMID: 40033009 PMCID: PMC11958798 DOI: 10.1038/s12276-025-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
The base excision repair pathway protects DNA from base damage via oxidation, deamination, alkylation and methylation. DNA glycosylases are key enzymes that recognize damaged bases in a lesion-specific manner and initiate the base excision repair process. Among these, the endonuclease VIII-like 1-3 (NEIL1-3) family, which is found in mammalian genomes, is a homolog of bacterial DNA glycosylases known as Fpg/Nei. NEIL enzymes have similar structures and substrates but with slight differences. When repair proteins are impaired, the accumulation of damaged bases can lead to increased genomic instability, which is implicated in various pathologies, including cancer and neurodegeneration. Notably, mutations in these proteins also influence a range of other diseases and inflammation. This review focuses on the influence of the NEIL family on human health across different organ systems. Investigating the relationship between NEIL mutations and diseases can improve our understanding of how these enzymes affect the human body. This information is crucial for understanding the basic mechanisms of DNA repair and enabling the development of novel inhibitors or gene therapies that target only these enzymes. Understanding the role of the NEIL family provides insights into novel therapies and improves our ability to combat genetic diseases.
Collapse
Affiliation(s)
- Yuna Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Jieun Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongwoo Choi
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Sunbok Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Zhang F, Wang B, Zhang W, Xu Y, Zhang C, Xue X. NEIL3 Upregulated by TFAP2A Promotes M2 Polarization of Macrophages in Liver Cancer via the Mediation of Glutamine Metabolism. Digestion 2024; 106:30-44. [PMID: 39342941 DOI: 10.1159/000540804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Tumor-associated macrophages, which are part of the tumor microenvironment, are a major factor in cancer progression. However, a complete understanding of the regulatory mechanism of M2 polarization of macrophages (Mø) in liver cancer is yet to be established. This study aimed to investigate the potential mechanism by which NEIL3 influenced M2 Mø polarization in liver cancer. METHODS Bioinformatics analysis analyzed NEIL3 expression and its enriched pathways in liver cancer tissue, as well as its correlation with pathway genes. The upstream transcription factor of NEIL3, TFAP2A, was predicted and its expression in liver cancer tissue was analyzed. The binding relationship between the two was analyzed by dual-luciferase reporter and chromatin immunoprecipitation experiments. qRT-PCR assessed NEIL3 and TFAP2A levels in liver cancer cells. Cell viability was detected by CCK-8, while CD206 and CD86 expression was detected by immunofluorescence. IL-10 and CCR2 expressions were assessed using qRT-PCR, and M2 Mø quantity was detected using flow cytometry. Reagent kits tested glutamine (Gln) consumption, α-ketoglutarate, and glutamate content, as well as NADPH/NADP+ and GSH/GSSG ratios. Expression of Gln transport proteins was detected using Western blot. An animal model was established to investigate the influence of NEIL3 expression on liver cancer growth. RESULTS NEIL3 was highly expressed in liver cancer and promoted Mø M2 polarization through Gln metabolism. TFAP2A was identified as the upstream transcription factor of NEIL3 and was highly expressed in liver cancer. Rescue experiments presented that overexpression of NEIL3 reversed the suppressive effect of TFAP2A knockdown on Mø M2 polarization in liver cancer. In vivo experiments demonstrated that the knockdown of NEIL3 could significantly repress the growth of xenograft tumors. CONCLUSION This study suggested that the TFAP2A/NEIL3 axis promoted Mø M2 polarization through Gln metabolism, providing a theoretical basis for immune therapy targeting the liver cancer TME.
Collapse
Affiliation(s)
- Fabiao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Binfeng Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenlong Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yongfu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Caiming Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiangyang Xue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Oswalt LE, Eichman BF. NEIL3: A unique DNA glycosylase involved in interstrand DNA crosslink repair. DNA Repair (Amst) 2024; 139:103680. [PMID: 38663144 PMCID: PMC11162926 DOI: 10.1016/j.dnarep.2024.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.
Collapse
Affiliation(s)
- Leah E Oswalt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Zhang M, Jiang Y, Wang J, Yue Y, Liu W, Wang L, Li Y, Wang W, Cai H, Yang Z, Ma M, Lu S, Fan J. NEIL3 promotes cell proliferation of ccRCC via the cyclin D1-Rb-E2F1 feedback loop regulation. DNA Repair (Amst) 2024; 133:103604. [PMID: 37992567 DOI: 10.1016/j.dnarep.2023.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Nei endonuclease VIII-like 3 (NEIL3), a novel tumor-related gene, is differentially expressed and involved in pathophysiological processes in multiple tumors. However, the potential biological functions and molecular mechanisms of NEIL3 in human clear cell renal cell carcinoma (ccRCC) have not been identified. In this research, we demonstrated that NEIL3, transcriptionally activated by E2F1, served as an oncogene to facilitate cell proliferation and cell cycle progression and contribute to tumorigenesis via the cyclin D1-Rb-E2F1 feedback loop in ccRCC. First, we found that NEIL3 expression was upregulated in ccRCC tissues and cell lines compared with matched adjacent nontumor tissues and renal tubular epithelial cells and was also positively correlated with adverse clinicopathological characteristics, such as advanced cancer stages and higher tumor grades, and acted as an independent prognostic marker in ccRCC. Mechanistically, we demonstrated that NEIL3 promoted cell proliferation, DNA replication and cell cycle progression in vitro and tumor growth in vivo. Furthermore, we found that NEIL3 overexpression activated the cyclin D1-Rb-E2F1 pathway, and the E2F1 upregulation transcriptionally activated NEIL3 expression, thus forming a feedback loop. In addition, there was a positive correlation between NEIL3 and E2F1 expression in clinical specimens of ccRCC. Taken together, our results suggest that NEIL3 serves as a proto-oncogene in ccRCC and presents as a novel candidate for ccRCC diagnosis and treatment.
Collapse
Affiliation(s)
- Mengzhao Zhang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yunzhong Jiang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jichang Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yangyang Yue
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Wei Liu
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Lu Wang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yan Li
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weiyi Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Hui Cai
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Zezhong Yang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Minghai Ma
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Shaoying Lu
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jinhai Fan
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, #277 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
8
|
Gohil D, Sarker AH, Roy R. Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int J Mol Sci 2023; 24:14186. [PMID: 37762489 PMCID: PMC10531636 DOI: 10.3390/ijms241814186] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.
Collapse
Affiliation(s)
- Dhara Gohil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Altaf H. Sarker
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
9
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
10
|
Wang T, Zhu X, Wang K, Li J, Hu X, Lin P, Zhang J. Transcriptional factor MAZ promotes cisplatin-induced DNA damage repair in lung adenocarcinoma by regulating NEIL3. Pulm Pharmacol Ther 2023; 80:102217. [PMID: 37121465 DOI: 10.1016/j.pupt.2023.102217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cisplatin remains a common chemotherapy drug for lung adenocarcinoma (LUAD) in clinical treatment. Long-term use of cisplatin in patients may lead to acquired drug resistance, resulting in poor prognoses of patients. NEIL3 was a glycosylase-encoding gene highly expressed in LUAD. NEIL3 can repair telomerase DNA damage in the S phase. Nevertheless, there are few reports on whether NEIL3 is involved in cisplatin resistance and its related mechanisms in LUAD. METHODS The expression of NEIL3 in LUAD patients was analyzed by bioinformatics. The regulator upstream of NEIL3 was predicted via hTFtarget. The possibly involved pathways of NEIL3 were obtained by performing Gene Set Enrichment Analysis. qRT-PCR and western blot were applied to test the expression level of genes and protein LUAD cells. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay were conducted to validate the binding relationship between MAZ and NEIL3. Cell function assays were performed to test the DNA damage, cell viability, cell migration and invasion, and cell cycle of LUAD cells in the treatment group. RESULTS NEIL3 and its upstream regulatory factor MAZ were highly expressed in LUAD tissue, and NEIL3 was enriched in cell cycle and mismatch repair pathways. Dual-luciferase assay and ChIP assay proved that MAZ could target NEIL3. Cell experiments identified that MAZ/NEIL3 axis could repress DNA damage to advance cisplatin resistance of cancer cells, and foster cell migration and invasion in LUAD. CONCLUSION MAZ-activated NEIL3 could propel the cisplatin resistance in LUAD by repressing DNA damage.
Collapse
Affiliation(s)
- Tao Wang
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, 550004, China.
| | - Xu Zhu
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, 550004, China
| | - Kai Wang
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, 550004, China
| | - Jianglun Li
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, 550004, China
| | - Xiao Hu
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, 550004, China
| | - Peng Lin
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, 550004, China
| | - Jian Zhang
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, 550004, China
| |
Collapse
|
11
|
Howpay Manage SA, Zhu J, Fleming AM, Burrows CJ. Promoters vs. telomeres: AP-endonuclease 1 interactions with abasic sites in G-quadruplex folds depend on topology. RSC Chem Biol 2023; 4:261-270. [PMID: 37034403 PMCID: PMC10074553 DOI: 10.1039/d2cb00233g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The DNA repair endonuclease APE1 is responsible for the cleavage of abasic sites (AP) in DNA as well as binding AP in promoter G-quadruplex (G4) folds in some genes to regulate transcription. The present studies focused on the topological properties of AP-bearing G4 folds and how they impact APE1 interaction. The human telomere sequence with a tetrahydrofuran model (F) of an AP was folded in K+- or Na+-containing buffers to adopt hybrid- or basket-folds, respectively. Endonuclease and binding assays were performed with APE1 and the G4 substrates, and the data were compared to prior work with parallel-stranded VEGF and NEIL3 promoter G4s to identify topological differences. The APE1-catalyzed endonuclease assays led to the conclusion that telomere G4 folds were slightly better substrates than the promoter G4s, but the yields were all low compared to duplex DNA. In the binding assays, G4 topological differences were observed in which APE1 bound telomere G4s with dissociation constants similar to single-stranded DNA, and promoter G4s were bound with nearly ten-fold lower values similar to duplex DNA. An in-cellulo assay with the telomere G4 in a model promoter bearing a lesion failed to regulate transcription. These data support a hypothesis that G4 topology in gene promoters is a critical feature that APE1 recognizes for gene regulation.
Collapse
Affiliation(s)
| | - Judy Zhu
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| | - Aaron M Fleming
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| |
Collapse
|
12
|
Hernández-Álvarez D, Rosado-Pérez J, Gavia-García G, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review. Biomedicines 2023; 11:598. [PMID: 36831134 PMCID: PMC9952920 DOI: 10.3390/biomedicines11020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| |
Collapse
|
13
|
Sun X, Liu P. Prognostic biomarker NEIL3 and its association with immune infiltration in renal clear cell carcinoma. Front Oncol 2023; 13:1073941. [PMID: 36816967 PMCID: PMC9932331 DOI: 10.3389/fonc.2023.1073941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a malignant tumor with a high degree of immune infiltration. Identifying immune biomarkers is essential for the treatment of KIRC. Studies have identified the potential of NEIL3 to modulate the immune microenvironment and promote tumor progression. However, the role of NEIL3 in KIRC remains uncertain. This study was to investigate the effect of NEIL3 on the prognosis and immune infiltration of patients with KIRC. Methods TCGA and GEO databases were used to study the expression of NEIL3 in KIRC. Cox regression analysis was used to examine the relationship between the expression of NEIL3 and clinicopathological variables and survival. Furthermore, Gene Set Cancer Analysis (GSCA) was applied to study the impact of NEIL3 methylation on outcomes of KIRC. Through gene ontology (GO) and Gene set enrichment (GSEA) analysis, the biological processes and signal pathways related to NEIL3 expression were identified. In addition, immune infiltration analysis was conducted via CIBERSORT analysis, ssGSEA analysis and TISIDB database. Results NEIL3 was overexpressed in KIRC, and it was significantly related with histologic grade, pathologic stage, T stage, M stage, and vital status of KIRC patients (P < 0.001). The expression of NEIL3 was associated with worse outcomes. Univariate and multivariate Cox analysis showed that NEIL3 may be an indicator of adverse outcomes in KIRC. GSEA analysis revealed that NEIL3 may be involved in signal pathways including cell cycle, DNA replication, mismatch repair, P53 signal pathway, and antigen processing and presentation. In addition, immune infiltration analysis showed a positive correlation between NEIL3 expression and multiple immune cells (activated CD8 T cells, activated dendritic cells, myeloid-derived suppressor cells, follicular helper T cells, and regulatory T cells) and immunoinhibitors (PD1, CTLA4, LAG3, TIGHT, IL10, and CD96). Conclusion NEIL3 is a potential independent biomarker of KIRC, which is relevant to immune infiltration.
Collapse
Affiliation(s)
- Xiaomei Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengfei Liu
- Department of Medical Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China,*Correspondence: Pengfei Liu,
| |
Collapse
|
14
|
Zhang F, Lu J, Yang J, Dai Q, Du X, Xu Y, Zhang C. SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma. Immunogenetics 2023; 75:39-51. [PMID: 36114381 DOI: 10.1007/s00251-022-01277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023]
Abstract
The involvement of small nucleolar RNA host gene 3 (SNHG3) in cancer regulation has been reported. This study attempted to deeply investigate the molecular regulatory mechanism of SNHG3 on malignant progression of hepatocellular carcinoma (HCC). According to TCGA analysis, high SNHG3 expression was a risk factor for poor prognosis of HCC patients. Therefore, we further detected the mRNA level of SNHG3 in HCC tissue and cells. It was found that SNHG3 was upregulated in HCC tissue and cells. Afterwards, CCK-8 and flow cytometry assays further proved that silencing SNHG3 inhibited HCC cell proliferation while inducing cell apoptosis and G0/G1 phase arrest. It was also attested in vivo experiments that silencing SNHG3 could reduce the volume and weight of tumors and downregulate the Ki-67 expression to suppress HCC tumor growth. Next, it was discovered that SNHG3 increased the binding of E2F1 and NEIL3 promoter region, thereby activating the transcription feature of NEIL3. Lastly, rescue assays indicated that NEIL3 participated in SNHG3-mediated HCC cell cycle, apoptosis and proliferation. All in all, this study revealed the specific regulatory mechanism of SNHG3 in HCC to enable SNHG3 a hopeful marker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Fabiao Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jie Lu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jian Yang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Qiqiang Dai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xuefeng Du
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yongfu Xu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Caiming Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|
15
|
Sugawara S, Okada R, Loo TM, Tanaka H, Miyata K, Chiba M, Kawasaki H, Katoh K, Kaji S, Maezawa Y, Yokote K, Nakayama M, Oshima M, Nagao K, Obuse C, Nagayama S, Takubo K, Nakanishi A, Kanemaki MT, Hara E, Takahashi A. RNaseH2A downregulation drives inflammatory gene expression via genomic DNA fragmentation in senescent and cancer cells. Commun Biol 2022; 5:1420. [PMID: 36577784 PMCID: PMC9797495 DOI: 10.1038/s42003-022-04369-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Cellular senescence caused by oncogenic stimuli is associated with the development of various age-related pathologies through the senescence-associated secretory phenotype (SASP). SASP is mediated by the activation of cytoplasmic nucleic acid sensors. However, the molecular mechanism underlying the accumulation of nucleotide ligands in senescent cells is unclear. In this study, we revealed that the expression of RNaseH2A, which removes ribonucleoside monophosphates (rNMPs) from the genome, is regulated by E2F transcription factors, and it decreases during cellular senescence. Residual rNMPs cause genomic DNA fragmentation and aberrant activation of cytoplasmic nucleic acid sensors, thereby provoking subsequent SASP factor gene expression in senescent cells. In addition, RNaseH2A expression was significantly decreased in aged mouse tissues and cells from individuals with Werner syndrome. Furthermore, RNaseH2A degradation using the auxin-inducible degron system induced the accumulation of nucleotide ligands and induction of certain tumourigenic SASP-like factors, promoting the metastatic properties of colorectal cancer cells. Our results indicate that RNaseH2A downregulation provokes SASP through nucleotide ligand accumulation, which likely contributes to the pathological features of senescent, progeroid, and cancer cells.
Collapse
Affiliation(s)
- Sho Sugawara
- grid.410807.a0000 0001 0037 4131Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Ryo Okada
- grid.410807.a0000 0001 0037 4131Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan ,grid.265073.50000 0001 1014 9130Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510 Japan
| | - Tze Mun Loo
- grid.410807.a0000 0001 0037 4131Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Hisamichi Tanaka
- grid.410807.a0000 0001 0037 4131Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Kenichi Miyata
- grid.410807.a0000 0001 0037 4131Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Masatomo Chiba
- grid.410807.a0000 0001 0037 4131Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Hiroko Kawasaki
- grid.410807.a0000 0001 0037 4131Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Kaoru Katoh
- grid.208504.b0000 0001 2230 7538Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560 Japan
| | - Shizuo Kaji
- grid.177174.30000 0001 2242 4849Institute of Mathematics for Industry, Kyushu University, Nishi-ku, Fukuoka 819-0395 Japan
| | - Yoshiro Maezawa
- grid.136304.30000 0004 0370 1101Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Chiba, 260-0856 Japan
| | - Koutaro Yokote
- grid.136304.30000 0004 0370 1101Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Chiba, 260-0856 Japan
| | - Mizuho Nakayama
- grid.9707.90000 0001 2308 3329Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192 Japan
| | - Masanobu Oshima
- grid.9707.90000 0001 2308 3329Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192 Japan
| | - Koji Nagao
- grid.136593.b0000 0004 0373 3971Laboratory of Genome Structure and Function, Graduated School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Chikashi Obuse
- grid.136593.b0000 0004 0373 3971Laboratory of Genome Structure and Function, Graduated School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Satoshi Nagayama
- grid.410807.a0000 0001 0037 4131Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 135-8550 Tokyo, Japan ,Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, 611-0041 Japan
| | - Keiyo Takubo
- grid.45203.300000 0004 0489 0290Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655 Japan
| | - Akira Nakanishi
- grid.265073.50000 0001 1014 9130Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510 Japan
| | - Masato T. Kanemaki
- grid.288127.60000 0004 0466 9350Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, 411-8540 Japan ,grid.275033.00000 0004 1763 208XDepartment of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| | - Eiji Hara
- grid.136593.b0000 0004 0373 3971Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871 Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan. .,Advanced Research & Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, 104-0004, Japan. .,Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| |
Collapse
|
16
|
Pan-Cancer Landscape of NEIL3 in Tumor Microenvironment: A Promising Predictor for Chemotherapy and Immunotherapy. Cancers (Basel) 2022; 15:cancers15010109. [PMID: 36612106 PMCID: PMC9817722 DOI: 10.3390/cancers15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
With the aim of enhancing the understanding of NEIL3 in prognosis prediction and therapy administration, we conducted a pan-cancer landscape analysis on NEIL3. The mutation characteristics, survival patterns, and immune features of NEIL3 across cancers were analyzed. Western blotting, qPCR, and immunohistochemistry were conducted to validate the bioinformatics results. The correlation between NEIL3 and chemotherapeutic drugs, as well as immunotherapies, was estimated. NEIL3 was identified as an oncogene with prognostic value in predicting clinical outcomes in multiple cancers. Combined with the neoantigen, tumor mutational burden (TMB), and microsatellite instability (MSI) results, a strong relationship between NEIL3 and the TME was observed. NEIL3 was demonstrated to be closely associated with multiple immune parameters, including infiltrating immunocytes and pro-inflammatory chemokines, which was verified by experiments. More importantly, patients with a higher expression of NEIL3 were revealed to be more sensitive to chemotherapeutic regimens and immune checkpoint inhibitors in selected cancers, implying that NEIL3 may be an indicator for therapeutic administration. Our study indicated NEIL3 has a strong association with the immune microenvironment and phenotypic changes in certain types of cancers, which facilitated the improved understanding of NEIL3 across cancers and highlighted the potential for clinical application of NEIL3 in precision medical stratification.
Collapse
|
17
|
Biological Functions of the DNA Glycosylase NEIL3 and Its Role in Disease Progression Including Cancer. Cancers (Basel) 2022; 14:cancers14235722. [PMID: 36497204 PMCID: PMC9737245 DOI: 10.3390/cancers14235722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
The accumulation of oxidative DNA base damage can severely disrupt the integrity of the genome and is strongly associated with the development of cancer. DNA glycosylase is the critical enzyme that initiates the base excision repair (BER) pathway, recognizing and excising damaged bases. The Nei endonuclease VIII-like 3 (NEIL3) is an emerging DNA glycosylase essential in maintaining genome stability. With an in-depth study of the structure and function of NEIL3, we found that it has properties related to the process of base damage repair. For example, it not only prefers the base damage of single-stranded DNA (ssDNA), G-quadruplex and DNA interstrand crosslinks (ICLs), but also participates in the maintenance of replication fork stability and telomere integrity. In addition, NEIL3 is strongly associated with the progression of cancers and cardiovascular and neurological diseases, is incredibly significantly overexpressed in cancers, and may become an independent prognostic marker for cancer patients. Interestingly, circNEIL3, a circular RNA of exon-encoded origin by NEIL3, also promotes the development of multiple cancers. In this review, we have summarized the structure and the characteristics of NEIL3 to repair base damage. We have focused on NEIL3 and circNEIL3 in cancer development, progression and prognosis.
Collapse
|
18
|
Li N, Xu Y, Chen H, Chen L, Zhang Y, Yu T, Yao R, Chen J, Fu Q, Zhou J, Wang J. NEIL3 contributes to the Fanconi anemia/BRCA pathway by promoting the downstream double-strand break repair step. Cell Rep 2022; 41:111600. [PMID: 36351389 DOI: 10.1016/j.celrep.2022.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Interstrand crosslinks (ICLs) repair by the canonical Fanconi anemia (FA) pathway generates double-strand breaks (DSBs), which are subsequently repaired by the homologous recombination (HR) pathway. Recent studies show that the NEIL3 DNA glycosylase repairs psoralen-ICLs by direct unhooking. However, whether and how NEIL3 regulates MMC and cisplatin-ICL repair remains unclear. Here we show that NEIL3 participates in DSB repair step of ICL repair by promoting HR pathway. Mechanistically, NEIL3 is recruited to the DSB sites through its GRF zinc finger motifs. NEIL3 interacts with the DSB resection machinery, including CtIP, the MRE11-RAD50-NBS1 (MRN) complex, and DNA2, which is mediated by the GRF zinc finger motifs. In addition, NEIL3 is necessary for the chromatin recruitment of the resection machinery, and depletion of NEIL3 decreases end resection and compromises HR. Taken together, our results show that NEIL3 plays an important role in MMC/cisplatin-ICL repair by promoting the HR step in FA/BRCA pathway.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China.
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongzhu Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China.
| |
Collapse
|
19
|
Deng Y, Huang H, Shi J, Jin H. Identification of Candidate Genes in Breast Cancer Induced by Estrogen Plus Progestogens Using Bioinformatic Analysis. Int J Mol Sci 2022; 23:ijms231911892. [PMID: 36233194 PMCID: PMC9569986 DOI: 10.3390/ijms231911892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Menopausal hormone therapy (MHT) was widely used to treat menopause-related symptoms in menopausal women. However, MHT therapies were controversial with the increased risk of breast cancer because of different estrogen and progestogen combinations, and the molecular basis behind this phenomenon is currently not understood. To address this issue, we identified differentially expressed genes (DEGs) between the estrogen plus progestogens treatment (EPT) and estrogen treatment (ET) using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data. As a result, a total of 96 upregulated DEGs were first identified. Seven DEGs related to the cell cycle (CCNE2, CDCA5, RAD51, TCF19, KNTC1, MCM10, and NEIL3) were validated by RT-qPCR. Specifically, these seven DEGs were increased in EPT compared to ET (p < 0.05) and had higher expression levels in breast cancer than adjacent normal tissues (p < 0.05). Next, we found that estrogen receptor (ER)-positive breast cancer patients with a higher CNNE2 expression have a shorter overall survival time (p < 0.05), while this effect was not observed in the other six DEGs (p > 0.05). Interestingly, the molecular docking results showed that CCNE2 might bind to 17β-estradiol (−6.791 kcal/mol), progesterone (−6.847 kcal/mol), and medroxyprogesterone acetate (−6.314 kcal/mol) with a relatively strong binding affinity, respectively. Importantly, CNNE2 protein level could be upregulated with EPT and attenuated by estrogen receptor antagonist, acolbifene and had interactions with cancer driver genes (AKT1 and KRAS) and high mutation frequency gene (TP53 and PTEN) in breast cancer patients. In conclusion, the current study showed that CCNE2, CDCA5, RAD51, TCF19, KNTC1, MCM10, and NEIL3 might contribute to EPT-related tumorigenesis in breast cancer, with CCNE2 might be a sensitive risk indicator of breast cancer risk in women using MHT.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - He Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Jiangcheng Shi
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Hongyan Jin
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
- Correspondence:
| |
Collapse
|
20
|
Involvement of the PI3K/AKT Intracellular Signaling Pathway in the AntiCancer Activity of Hydroxytyrosol, a Polyphenol from Olea europaea, in Hematological Cells and Implication of HSP60 Levels in Its Anti-Inflammatory Activity. Int J Mol Sci 2022; 23:ijms23137053. [PMID: 35806065 PMCID: PMC9266908 DOI: 10.3390/ijms23137053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL−1, 109.8 µg·mL−1 and 45.7 µg·mL−1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.
Collapse
|
21
|
NEIL3 Mediates Lung Cancer Progression and Modulates PI3K/AKT/mTOR Signaling: A Potential Therapeutic Target. Int J Genomics 2022; 2022:8348499. [PMID: 35535347 PMCID: PMC9078818 DOI: 10.1155/2022/8348499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Nei endonuclease VIII-like 3 (NEIL3) is widely involved in pathophysiological processes of the body; however, its role in lung cancer has not been conclusively determined. Objective. This study is aimed at exploring the role of NEIL3 in lung cancer. Methods. The public data used in this study were downloaded from The Cancer Genome Atlas (TCGA) database. “Limma” in R was used for the analysis of differentially expressed genes. Clinical correlations and prognostic analyses were performed using the survival package in R. The proliferative abilities of lung cancer cells were evaluated by the CCK8 and colony formation assays while their invasive and migration abilities were assessed by the transwell and wound healing assays. Quantitative real-time PCR (qRT-PCR) and western blot analyses were utilized to detect RNA and protein levels. Biological differences between groups were determined by gene set enrichment analysis (GSEA). Tumor Immune Dysfunction and Exclusion (TIDE) as well as Genomics of Drug Sensitivity in Cancer (GDSC) was used for immunotherapeutic and chemotherapeutic sensitivity analyses. Results. NEIL3 was upregulated in NSCLC tissues and cell lines, implying that it is involved in lung cancer initiation and progression. Clinical correlation and prognostic analyses showed that NEIL3 was associated with worse clinical features (stage and T and N classifications) and poor prognostic outcomes. In vitro, NEIL3 significantly enhanced NSCLC proliferation, invasion, and migration. GSEA indicated that NEIL3 might be involved in PI3K/AKT/mTOR, G2/M checkpoints, and E2F target pathways. Inhibition of NEIL3 suppressed cyclinD1 and p-AKT protein levels; however, it had no effects on AKT levels, indicating that NEIL3 can partially activate the PI3K/AKT/mTOR signaling pathway. The predicted result of TIDE indicated that immunotherapeutic nonresponders had elevated NEIL3 levels. Moreover, there was a positive correlation between NEIL3 levels and chemosensitivity to cisplatin and paclitaxel. Conclusion. In general, NEIL3 mediates NSCLC progression and affects sensitivity to immunotherapy and chemotherapy; therefore, it is a potential molecular target for treatment.
Collapse
|
22
|
Construction of Bone Metastasis-Specific Regulation Network Based on Prognostic Stemness-Related Signatures in Prostate Cancer. DISEASE MARKERS 2022; 2022:8495923. [PMID: 35392496 PMCID: PMC8983176 DOI: 10.1155/2022/8495923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
Abstract
Background We planned to uncover the cancer stemness-related genes (SRGs) in prostate cancer (PCa) and its underlying mechanism in PCa metastasis. Methods We acquired the RNA-seq data of 406 patients with PCa from the TCGA database. Based on the mRNA stemness index (mRNAsi) calculated by one-class logistic regression (OCLR) algorithm, SRGs in PCa were extracted by WGCNA. Univariate and multivariate regression analyses were applied to uncover OS-associated SRGs. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Pearson's correlation analysis were performed to discover the possible mechanism of PCa metastasis. The significantly correlated transcription factors of OS-associated SRGs were also identified by Pearson's correlation analysis. ChIP-seq was applied to validate the binding relationship of TFs and OS-associated SRGs and spatial transcriptome and single-cell sequencing were performed to uncover the location of key biomarkers expression. Lastly, we explored the specific inhibitors for SRGs using CMap algorithm. Results We identified 538 differentially expressed genes (DEGs) between non-metastatic and metastatic PCa. Furthermore, OS-associated SRGs were identified. The Pearson correlation analysis revealed that FOXM1 was significantly correlated with NEIL3 (correlation efficient =0.89, p < 0.001) and identified hallmark_E2F_targets as the potential pathway mechanism of NEIL3 promoting PCa metastasis (correlation efficient =0.58, p < 0.001). Single-cell sequencing results indicated that FOXM1 regulating NEIL3 may get involved in the antiandrogen resistance of PCa. Rottlerin was discovered to be a potential target drug for PCa. Conclusion We constructed a regulatory network based on SRGs associated with PCa metastasis and explored possible mechanism.
Collapse
|
23
|
Karlsen TR, Olsen MB, Kong XY, Yang K, Quiles-Jiménez A, Kroustallaki P, Holm S, Lines GT, Aukrust P, Skarpengland T, Bjørås M, Dahl TB, Nilsen H, Gregersen I, Halvorsen B. NEIL3-deficient bone marrow displays decreased hematopoietic capacity and reduced telomere length. Biochem Biophys Rep 2022; 29:101211. [PMID: 35079641 PMCID: PMC8777121 DOI: 10.1016/j.bbrep.2022.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Deficiency of NEIL3, a DNA repair enzyme, has significant impact on mouse physiology, including vascular biology and gut health, processes related to aging. Leukocyte telomere length (LTL) is suggested as a marker of biological aging, and shortened LTL is associated with increased risk of cardiovascular disease. NEIL3 has been shown to repair DNA damage in telomere regions in vitro. Herein, we explored the role of NEIL3 in telomere maintenance in vivo by studying bone marrow cells from atherosclerosis-prone NEIL3-deficient mice. We found shortened telomeres and decreased activity of the telomerase enzyme in bone marrow cells derived from Apoe -/- Neil3 -/- as compared to Apoe -/- mice. Furthermore, Apoe -/- Neil3 -/- mice had decreased leukocyte levels as compared to Apoe -/- mice, both in bone marrow and in peripheral blood. Finally, RNA sequencing of bone marrow cells from Apoe -/- Neil3 -/- and Apoe -/- mice revealed different expression levels of genes involved in cell cycle regulation, cellular senescence and telomere protection. This study points to NEIL3 as a telomere-protecting protein in murine bone marrow in vivo.
Collapse
Affiliation(s)
- Tom Rune Karlsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maria B. Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiang Y. Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ana Quiles-Jiménez
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Penelope Kroustallaki
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tuva B. Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital HF, Rikshospitalet, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Khan H, Alam W, Alsharif KF, Aschner M, Pervez S, Saso L. Alkaloids and Colon Cancer: Molecular Mechanisms and Therapeutic Implications for Cell Cycle Arrest. Molecules 2022; 27:molecules27030920. [PMID: 35164185 PMCID: PMC8838632 DOI: 10.3390/molecules27030920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099,Taif 21944, Saudi Arabia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Samreen Pervez
- Department of Pharmacy, Qurtuba University of Science and Information Technology, Peshawar 29050, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
25
|
Ding J, He X, Luo W, Zhou W, Chen R, Cao G, Chen B, Xiong M. Development and Validation of a Pyroptosis-Related Signature for Predicting Prognosis in Hepatocellular Carcinoma. Front Genet 2022; 13:801419. [PMID: 35140750 PMCID: PMC8818951 DOI: 10.3389/fgene.2022.801419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a primary health problem and threat to global mortality, especially in China. Since pyroptosis as a new field for HCC prognosis is not well studied, it is important to open a specific prognostic model. In this study, consensus clustering method for 42 pyroptosis-related genes to classify 374 HCC patients in the TCGA database. After cox regression analysis of the differentially expressed genes between the two clusters, LASSO-Cox analysis was then performed to construct a pyroptosis-related prognostic model with 11 genes including MMP1, KPNA2, LPCAT1, NEIL3, CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1, G6PD, MEX3A. The ICGC dataset was served as the validation cohort. Patients in the high-risk group had significantly lower overall survival (OS) rates than those in the low-risk group (p < 0.05). COX regression analysis showed that our model could be used as an independent prognostic factor to predict prognosis of patients and was significantly correlated with clinicopathological characteristics. Nomogram showing the stability of the model predicting the 1, 3, 5 year survival probability of patients. In addition, based on the risk model, ssGSEA analysis revealed significant differences in the level of immune cell infiltration and activation of immune-related functional pathways between high and low-risk groups, and patients with the high-risk score may benefit more from treatment with immune checkpoint inhibitors. Furthermore, patients in the high-risk group were more tend to develop chemoresistance. Overall, we identified a novel pyroptosis-related risk signature for prognosis prediction in HCC patients and revealed the overall immune response intensity of the tumor microenvironment. All these findings make the pyroptosis signature shed light upon a latent therapeutic strategy aimed at the treatment and prevention of cancers.
Collapse
Affiliation(s)
- Jianfeng Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaobo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiguo Zhou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Chen
- Department of General Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Bo Chen, ; Maoming Xiong,
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Bo Chen, ; Maoming Xiong,
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Bo Chen, ; Maoming Xiong,
| |
Collapse
|
26
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
27
|
Impact of Chromatin Dynamics and DNA Repair on Genomic Stability and Treatment Resistance in Pediatric High-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13225678. [PMID: 34830833 PMCID: PMC8616465 DOI: 10.3390/cancers13225678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, due in great part to treatment resistance driven by complex DNA repair mechanisms. pHGGs have recently been divided into molecular subtypes based on mutations affecting the N-terminal tail of the histone variant H3.3 and the ATRX/DAXX histone chaperone that deposits H3.3 at repetitive heterochromatin loci that are of paramount importance to the stability of our genome. This review addresses the functions of H3.3 and ATRX/DAXX in chromatin dynamics and DNA repair, as well as the impact of mutations affecting H3.3/ATRX/DAXX on treatment resistance and how the vulnerabilities they expose could foster novel therapeutic strategies. Abstract Despite their low incidence, pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine gliomas (DIPGs), are the leading cause of mortality in pediatric neuro-oncology. Recurrent, mutually exclusive mutations affecting K27 (K27M) and G34 (G34R/V) in the N-terminal tail of histones H3.3 and H3.1 act as key biological drivers of pHGGs. Notably, mutations in H3.3 are frequently associated with mutations affecting ATRX and DAXX, which encode a chaperone complex that deposits H3.3 into heterochromatic regions, including telomeres. The K27M and G34R/V mutations lead to distinct epigenetic reprogramming, telomere maintenance mechanisms, and oncogenesis scenarios, resulting in distinct subgroups of patients characterized by differences in tumor localization, clinical outcome, as well as concurrent epigenetic and genetic alterations. Contrasting with our understanding of the molecular biology of pHGGs, there has been little improvement in the treatment of pHGGs, with the current mainstays of therapy—genotoxic chemotherapy and ionizing radiation (IR)—facing the development of tumor resistance driven by complex DNA repair pathways. Chromatin and nucleosome dynamics constitute important modulators of the DNA damage response (DDR). Here, we summarize the major DNA repair pathways that contribute to resistance to current DNA damaging agent-based therapeutic strategies and describe the telomere maintenance mechanisms encountered in pHGGs. We then review the functions of H3.3 and its chaperones in chromatin dynamics and DNA repair, as well as examining the impact of their mutation/alteration on these processes. Finally, we discuss potential strategies targeting DNA repair and epigenetic mechanisms as well as telomere maintenance mechanisms, to improve the treatment of pHGGs.
Collapse
|
28
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
29
|
Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. Int J Mol Sci 2021; 22:ijms222111771. [PMID: 34769200 PMCID: PMC8584064 DOI: 10.3390/ijms222111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology.
Collapse
|
30
|
Upregulation of Nei-Like DNA Glycosylase 3 Predicts Poor Prognosis in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:1301671. [PMID: 34659404 PMCID: PMC8519696 DOI: 10.1155/2021/1301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Background Accumulating evidence has suggested that Nei-like DNA glycosylase 3 (NEIL3) is associated with human tumors. However, there are few studies on the role of NEIL3 in hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression profile of NEIL3 and its clinical relevance in HCC. Materials and Methods A total of 130 HCC and corresponding nontumor tissues were collected to perform immunohistochemistry (IHC). The clinical relevance and prognostic value of NEIL3 in HCC were analyzed by the chi-square test, Kaplan–Meier analysis, the Cox proportional hazard model, and nomogram. Results IHC showed that the NEIL3 protein level was remarkably upregulated in tumor tissues compared with nontumor tissues (fold change = 1.24; P < 0.001). High NEIL3 expression was significantly correlated with BCLC stage (P=0.004) and TNM stage (P=0.005). Overall survival (OS) and disease-free survival (DFS) rates in the high NEIL3 expression group were significantly worse than those in the low NEIL3 expression group (P=0.007 and P=0.004, respectively). Furthermore, subgroup analysis showed that high NEIL3 expression predicted worse OS and DFS for HCC patients with advanced TNM stage, poorly differentiated tumor, HBsAg positive, or cirrhosis. Multivariate analysis and the prognostic nomograms revealed that tumor NEIL3 level may serve as a promising prognostic indicator for OS and DFS in HCC patients. Conclusion Our findings suggested that NEIL3 might be a potential prognosis assessment marker and therapeutic target for HCC patients.
Collapse
|
31
|
Karlsen TR, Kong XY, Holm S, Quiles-Jiménez A, Dahl TB, Yang K, Sagen EL, Skarpengland T, S Øgaard JD, Holm K, Vestad B, Olsen MB, Aukrust P, Bjørås M, Hov JR, Halvorsen B, Gregersen I. NEIL3-deficiency increases gut permeability and contributes to a pro-atherogenic metabolic phenotype. Sci Rep 2021; 11:19749. [PMID: 34611194 PMCID: PMC8492623 DOI: 10.1038/s41598-021-98820-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis and its consequences cause considerable morbidity and mortality world-wide. We have previously shown that expression of the DNA glycosylase NEIL3 is regulated in human atherosclerotic plaques, and that NEIL3-deficiency enhances atherogenesis in Apoe-/- mice. Herein, we identified a time point prior to quantifiable differences in atherosclerosis between Apoe-/-Neil3-/- mice and Apoe-/- mice. Mice at this age were selected to explore the metabolic and pathophysiological processes preceding extensive atherogenesis in NEIL3-deficient mice. Untargeted metabolomic analysis of young Apoe-/-Neil3-/- mice revealed significant metabolic disturbances as compared to mice expressing NEIL3, particularly in metabolites dependent on the gut microbiota. 16S rRNA gene sequencing of fecal bacterial DNA indeed confirmed that the NEIL3-deficient mice had altered gut microbiota, as well as increased circulating levels of the bacterially derived molecule LPS. The mice were challenged with a FITC-conjugated dextran to explore gut permeability, which was significantly increased in the NEIL3-deficient mice. Further, immunohistochemistry showed increased levels of the proliferation marker Ki67 in the colonic epithelium of NEIL3-deficient mice, suggesting increased proliferation of intestinal cells and gut leakage. We suggest that these metabolic alterations serve as drivers of atherosclerosis in NEIL3-deficient mice.
Collapse
Affiliation(s)
- Tom Rune Karlsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ana Quiles-Jiménez
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ellen L Sagen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jonas D S Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kristian Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria B Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
32
|
Wang W, Yin Q, Guo S, Wang J. NEIL3 contributes toward the carcinogenesis of liver cancer and regulates PI3K/Akt/mTOR signaling. Exp Ther Med 2021; 22:1053. [PMID: 34434267 PMCID: PMC8353638 DOI: 10.3892/etm.2021.10487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is one of the top three fatal types of cancer and it causes several thousands of mortalities each year. The main treatment is surgical resection which shows little benefit for patients with recurrence or metastasis. NEIL3 promotes progression and predicts survival in cancer. However, its role in liver cancer remains unclear. Based on data in the TCGA database, NEIL3 exhibited much higher expression in liver cancer tissues and was clinically correlated with tumor grade in patients with liver cancer. Furthermore, high NEIL3 expression caused shorter survival times. In liver cancer cell lines, NEIL3 showed abundant expression. When NEIL3 was knocked down in HepG2 and Huh-7 cells, cell abilities including proliferation, growth, migration and invasion, exhibited deficiency to different extents. Cell cycle transition was blocked at the G2 phase and the cell apoptotic rate increased notably. In addition, the phosphorylation levels of Akt, PI3K and mTOR were increased following NEIL3-overexpression but decreased following NEIL3-knockdown. In conclusion, NEIL3 contributes toward development and/or progression in liver cancer and regulates PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Weichen Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Qing Yin
- Department of Medical Education, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Shanshan Guo
- Department of Food Science and Nutrition, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Jun Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
33
|
Zhao Z, Gad H, Benitez-Buelga C, Sanjiv K, Xiangwei H, Kang H, Feng M, Zhao Z, Berglund UW, Xia Q, Helleday T. NEIL3 Prevents Senescence in Hepatocellular Carcinoma by Repairing Oxidative Lesions at Telomeres during Mitosis. Cancer Res 2021; 81:4079-4093. [PMID: 34045188 PMCID: PMC9398161 DOI: 10.1158/0008-5472.can-20-1028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Patients with hepatocellular carcinoma (HCC) suffer from few treatment options and poor survival rates. Here we report that endonuclease VIII-like protein 3 (NEIL3) is overexpressed in HCC and correlates with poor survival. All six HCC cell lines investigated were dependent on NEIL3 catalytic activity for survival and prevention of senescence, while NEIL3 was dispensable for nontransformed cells. NEIL3-depleted HCC cell lines accumulated oxidative DNA lesions specifically at telomeres, resulting in telomere dysfunctional foci and 53BP1 foci formation. Following oxidative DNA damage during mitosis, NEIL3 relocated to telomeres and recruited apurinic endonuclease 1 (APE1), indicating activation of base excision repair. META-FISH revealed that NEIL3, but not NEIL1 or NEIL2, is required to initiate APE1 and polymerase beta (POLB)-dependent base excision repair at oxidized telomeres. Repeated exposure of NEIL3-depleted cells to oxidizing damage induced chromatin bridges and damaged telomeres. These results demonstrate a novel function for NEIL3 in repair of oxidative DNA damage at telomeres in mitosis, which is important to prevent senescence of HCC cells. Furthermore, these data suggest that NEIL3 could be a target for therapeutic intervention for HCC. SIGNIFICANCE: This study describes compartmentalization of base excision repair during mitosis that is dependent on NEIL3, APE1, and POLB to repair oxidative damage accumulating at telomeres in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hua Xiangwei
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Kang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Corresponding Authors: Thomas Helleday, Karolinska Institutet, Tomtebodavägen 23B, Stockholm S-171 65, Sweden. E-mail: ; and Xia Qiang, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200001, China. E-mail:
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,Corresponding Authors: Thomas Helleday, Karolinska Institutet, Tomtebodavägen 23B, Stockholm S-171 65, Sweden. E-mail: ; and Xia Qiang, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200001, China. E-mail:
| |
Collapse
|
34
|
Wallace SS. Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers. Int J Radiat Biol 2021; 98:367-382. [PMID: 34187282 DOI: 10.1080/09553002.2021.1948141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To summarize succinctly the 50 years of research undertaken in my laboratory and to provide an overview of my career in science. It is certainly a privilege to have been asked by Carmel Mothersill and Penny Jeggo to contribute to this special issue of the International Journal of Radiation Biology focusing on the work of women in the radiation sciences. CONCLUSION My students, post-docs and I identified and characterized a number of the enzymes that recognize and remove radiation-damaged DNA bases, the DNA glycosylases, which are the first enzymes in the Base Excision Repair (BER) pathway. Although this pathway actually evolved to repair oxidative and other endogenous DNA damages, it is also responsible for removing the vast majority of radiation-induced DNA damages including base damages, alkali-labile lesions and single strand breaks. However, because of its high efficiency, attempted BER of clustered lesions produced by ionizing radiation, can have disastrous effects on cellular DNA. We also evaluated the potential biological consequences of many of the radiation-induced DNA lesions. In addition, with collaborators, we employed computational techniques, x-ray crystallography and single molecule approaches to answer many questions at the molecular level.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
35
|
Significance of base excision repair to human health. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:163-193. [PMID: 34507783 DOI: 10.1016/bs.ircmb.2021.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative and alkylating DNA damage occurs under normal physiological conditions and exogenous exposure to DNA damaging agents. To counteract DNA base damage, cells have evolved several defense mechanisms that act at different levels to prevent or repair DNA base damage. Cells combat genomic lesions like these including base modifications, abasic sites, as well as single-strand breaks, via the base excision repair (BER) pathway. In general, the core BER process involves well-coordinated five-step reactions to correct DNA base damage. In this review, we will uncover the current understanding of BER mechanisms to maintain genomic stability and the biological consequences of its failure due to repair gene mutations. The malfunction of BER can often lead to BER intermediate accumulation, which is genotoxic and can lead to different types of human disease. Finally, we will address the use of BER intermediates for targeted cancer therapy.
Collapse
|
36
|
Zhao C, Liu J, Zhou H, Qian X, Sun H, Chen X, Zheng M, Bian T, Liu L, Liu Y, Zhang J. NEIL3 may act as a potential prognostic biomarker for lung adenocarcinoma. Cancer Cell Int 2021; 21:228. [PMID: 33879165 PMCID: PMC8059184 DOI: 10.1186/s12935-021-01938-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death. This study aimed to develop and validate reliable prognostic biomarkers and signature. METHODS Differentially expressed genes were identified based on three Gene Expression Omnibus (GEO) datasets. Based on 1052 samples' data from our cohort, GEO and The Cancer Genome Atlas, we explored the relationship of clinicopathological features and NEIL3 expression to determine clinical effect of NEIL3 in LUAD. Western blotting (22 pairs of tumor and normal tissues), Real-time quantitative PCR (19 pairs of tumor and normal tissues), and immunohistochemical analyses (406-tumor tissues subjected to microarray) were conducted. TIMER and ImmuCellAI analyzed relationship between NEIL3 expression and the abundance of tumor-infiltrating immune cells in LUAD. The co-expressed-gene prognostic signature was established based on the Cox regression analysis. RESULTS This study identified 502 common differentially expressed genes and confirmed that NEIL3 was significantly overexpressed in LUAD samples (P < 0.001). Increased NEIL3 expression was related to advanced stage, larger tumor size and poor overall survival (p < 0.001) in three LUAD cohorts. The proportions of natural T regulatory cells and induced T regulatory cells increased in the high NEIL3 group, whereas those of B cells, Th17 cells and dendritic cells decreased. Gene set enrichment analysis indicated that NEIL3 may activate cell cycle progression and P53 signaling pathway, leading to poor outcomes. We identified nine prognosis-associated hub genes among 370 genes co-expressed with NEIL3. A 10-gene prognostic signature including NEIL3 and nine key co-expressed genes was constructed. Higher risk-score was correlated with more advanced stage, larger tumor size and worse outcome (p < 0.05). Finally, the signature was verified in test cohort (GSE50081) with superior diagnostic accuracy. CONCLUSIONS This study suggested that NEIL3 has the potential to be an immune-related therapeutic target and an independent predictor of LUAD prognosis. We also developed a prognostic signature for LUAD with a precise diagnostic accuracy.
Collapse
Affiliation(s)
- Cui Zhao
- Nantong University, Nantong, 226001, China
| | - Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | | | - Xin Qian
- Nantong University, Nantong, 226001, China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xuewen Chen
- Department of Orthopedics, Second People's Hospital of Jingmen, Jingmen, 448000, China
| | | | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
37
|
Wallace SS. Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. Int J Radiat Biol 2021; 99:891-902. [DOI: 10.1080/09553002.2021.1908639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
38
|
Sarker AH, Cooper PK, Hazra TK. DNA glycosylase NEIL2 functions in multiple cellular processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:72-80. [PMID: 33753087 DOI: 10.1016/j.pbiomolbio.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Cell survival largely depends on the faithful maintenance of genetic material since genomic DNA is constantly exposed to genotoxicants from both endogenous and exogenous sources. The evolutionarily conserved base excision repair (BER) pathway is critical for maintaining genome integrity by eliminating highly abundant and potentially mutagenic oxidized DNA base lesions. BER is a multistep process, which is initiated with recognition and excision of the DNA base lesion by a DNA glycosylase, followed by DNA end processing, gap filling and finally sealing of the nick. Besides genome maintenance by global BER, DNA glycosylases have been found to play additional roles, including preferential repair of oxidized lesions from transcribed genes, modulation of the immune response, participation in active DNA demethylation and maintenance of the mitochondrial genome. Central to these functions is the DNA glycosylase NEIL2. Its loss results in increased accumulation of oxidized base lesions in the transcribed genome, triggers an immune response and causes early neurodevelopmental defects, thus emphasizing the multitasking capabilities of this repair protein. Here we review the specialized functions of NEIL2 and discuss the consequences of its absence both in vitro and in vivo.
Collapse
Affiliation(s)
- Altaf H Sarker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Priscilla K Cooper
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tapas K Hazra
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
39
|
Quiles-Jiménez A, Gregersen I, Segers FM, Skarpengland T, Kroustallaki P, Yang K, Kong XY, Lauritzen KH, Olsen MB, Karlsen TR, Nyman TA, Sagen EL, Bjerkeli V, Suganthan R, Nygård S, Scheffler K, Prins J, Van der Veer E, Øgaard JD, Fløisand Y, Jørgensen HF, Holven KB, Biessen EA, Nilsen H, Dahl TB, Holm S, Bennett MR, Aukrust P, Bjørås M, Halvorsen B. DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development. Atherosclerosis 2021; 324:123-132. [PMID: 33714552 DOI: 10.1016/j.atherosclerosis.2021.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS Chow diet-fed atherosclerosis-prone Apoe-/- mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway.
Collapse
Affiliation(s)
- Ana Quiles-Jiménez
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Filip M Segers
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Pharmacology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Penelope Kroustallaki
- Department of Clinical Molecular Biology, University of Oslo, Akershus University Hospital, Lørenskog, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut H Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Maria B Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom Rune Karlsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ellen L Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
| | - Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jurriën Prins
- Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric Van der Veer
- Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jonas Ds Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Yngvar Fløisand
- Department of Hematology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Helle F Jørgensen
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Kirsten B Holven
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erik A Biessen
- Department of Pathology, University of Maastricht, Maastricht, the Netherlands
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Akershus University Hospital, Lørenskog, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
40
|
Tomasova K, Kroupa M, Forsti A, Vodicka P, Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis 2021; 35:261-271. [PMID: 32083302 DOI: 10.1093/mutage/geaa005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) continues to be one of the leading malignancies and causes of tumour-related deaths worldwide. Both impaired DNA repair mechanisms and disrupted telomere length homeostasis represent key culprits in CRC initiation, progression and prognosis. Mechanistically, altered DNA repair results in the accumulation of mutations in the genome and, ultimately, in genomic instability. DNA repair also determines the response to chemotherapeutics in CRC treatment, suggesting its utilisation in the prediction of therapy response and individual approach to patients. Telomere attrition resulting in replicative senescence, simultaneously by-passing cell cycle checkpoints, is a hallmark of malignant transformation of the cell. Telomerase is almost ubiquitous in advanced solid cancers, including CRC, and its expression is fundamental to cell immortalisation. Therefore, there is a persistent effort to develop therapeutics, which are telomerase-specific and gentle to non-malignant tissues. However, in practice, we are still at the level of clinical trials. The current state of knowledge and the route, which the research takes, gives us a positive perspective that the problem of molecular models of telomerase activation and telomere length stabilisation will finally be solved. We summarise the current literature herein, by pointing out the crosstalk between proteins involved in DNA repair and telomere length homeostasis in relation to CRC.
Collapse
Affiliation(s)
- Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic
| | - Asta Forsti
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Praha, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská, Praha, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Alej Svobody, Plzeň, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Praha, Czech Republic
| |
Collapse
|
41
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
42
|
Cheng YH, Liu SF, Dong JC, Bian Q. Transcriptomic alterations underline aging of osteogenic bone marrow stromal cells. World J Stem Cells 2021; 13:128-138. [PMID: 33584984 PMCID: PMC7859986 DOI: 10.4252/wjsc.v13.i1.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling. During aging, an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture. We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo. AIM To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss. METHODS We collected BMSCs from mice at early to middle ages and compared their self-renewal and differentiation potential. Subsequently, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo. RESULTS The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo. The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo. The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features. Moreover, we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-inflammatory and apoptotic features. CONCLUSION Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.
Collapse
Affiliation(s)
- Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shu-Fen Liu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
43
|
D'Amico AM, Vasquez KM. The multifaceted roles of DNA repair and replication proteins in aging and obesity. DNA Repair (Amst) 2021; 99:103049. [PMID: 33529944 DOI: 10.1016/j.dnarep.2021.103049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Efficient mechanisms for genomic maintenance (i.e., DNA repair and DNA replication) are crucial for cell survival. Aging and obesity can lead to the dysregulation of genomic maintenance proteins/pathways and are significant risk factors for the development of cancer, metabolic disorders, and other genetic diseases. Mutations in genes that code for proteins involved in DNA repair and DNA replication can also exacerbate aging- and obesity-related disorders and lead to the development of progeroid diseases. In this review, we will discuss the roles of various DNA repair and replication proteins in aging and obesity as well as investigate the possible mechanisms by which aging and obesity can lead to the dysregulation of these proteins and pathways.
Collapse
Affiliation(s)
- Alexandra M D'Amico
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
44
|
Chen Q, Bian C, Wang X, Liu X, Ahmad Kassab M, Yu Y, Yu X. ADP-ribosylation of histone variant H2AX promotes base excision repair. EMBO J 2021; 40:e104542. [PMID: 33264433 PMCID: PMC7809701 DOI: 10.15252/embj.2020104542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Optimal DNA damage response is associated with ADP-ribosylation of histones. However, the underlying molecular mechanism of DNA damage-induced histone ADP-ribosylation remains elusive. Herein, using unbiased mass spectrometry, we identify that glutamate residue 141 (E141) of variant histone H2AX is ADP-ribosylated following oxidative DNA damage. In-depth studies performed with wild-type H2AX and the ADP-ribosylation-deficient E141A mutant suggest that H2AX ADP-ribosylation plays a critical role in base excision repair (BER). Mechanistically, ADP-ribosylation on E141 mediates the recruitment of Neil3 glycosylase to the sites of DNA damage for BER. Moreover, loss of this ADP-ribosylation enhances serine-139 phosphorylation of H2AX (γH2AX) upon oxidative DNA damage and erroneously causes the accumulation of DNA double-strand break (DSB) response factors. Taken together, these results reveal that H2AX ADP-ribosylation not only facilitates BER repair, but also suppresses the γH2AX-mediated DSB response.
Collapse
Affiliation(s)
- Qian Chen
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Chunjing Bian
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
- Present address:
Cedar‐Sinai Medical CenterLos AngelesCAUSA
| | - Xin Wang
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Xiuhua Liu
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Muzaffer Ahmad Kassab
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Yonghao Yu
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Xiaochun Yu
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
- Present address:
Westlake UniversityHangzhouZhejiangChina
| |
Collapse
|
45
|
Rodriguez AA, Wojtaszek JL, Greer BH, Haldar T, Gates KS, Williams RS, Eichman BF. An autoinhibitory role for the GRF zinc finger domain of DNA glycosylase NEIL3. J Biol Chem 2020; 295:15566-15575. [PMID: 32878989 PMCID: PMC7667957 DOI: 10.1074/jbc.ra120.015541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
The NEIL3 DNA glycosylase maintains genome integrity during replication by excising oxidized bases from single-stranded DNA (ssDNA) and unhooking interstrand cross-links (ICLs) at fork structures. In addition to its N-terminal catalytic glycosylase domain, NEIL3 contains two tandem C-terminal GRF-type zinc fingers that are absent in the other NEIL paralogs. ssDNA binding by the GRF-ZF motifs helps recruit NEIL3 to replication forks converged at an ICL, but the nature of DNA binding and the effect of the GRF-ZF domain on catalysis of base excision and ICL unhooking is unknown. Here, we show that the tandem GRF-ZFs of NEIL3 provide affinity and specificity for DNA that is greater than each individual motif alone. The crystal structure of the GRF domain shows that the tandem ZF motifs adopt a flexible head-to-tail configuration well-suited for binding to multiple ssDNA conformations. Functionally, we establish that the NEIL3 GRF domain inhibits glycosylase activity against monoadducts and ICLs. This autoinhibitory activity contrasts GRF-ZF domains of other DNA-processing enzymes, which typically use ssDNA binding to enhance catalytic activity, and suggests that the C-terminal region of NEIL3 is involved in both DNA damage recruitment and enzymatic regulation.
Collapse
Affiliation(s)
- Alyssa A Rodriguez
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Briana H Greer
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Tuhin Haldar
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA.
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
46
|
Identification of Germline Mutations in Melanoma Patients with Early Onset, Double Primary Tumors, or Family Cancer History by NGS Analysis of 217 Genes. Biomedicines 2020; 8:biomedicines8100404. [PMID: 33050356 PMCID: PMC7601281 DOI: 10.3390/biomedicines8100404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Cutaneous melanoma is the deadliest skin malignity with a rising prevalence worldwide. Patients carrying germline mutations in melanoma-susceptibility genes face an increased risk of melanoma and other cancers. To assess the spectrum of germline variants, we analyzed 264 Czech melanoma patients indicated for testing due to early melanoma (at <25 years) or the presence of multiple primary melanoma/melanoma and other cancer in their personal and/or family history. All patients were analyzed by panel next-generation sequencing targeting 217 genes in four groups: high-to-moderate melanoma risk genes, low melanoma risk genes, cancer syndrome genes, and other genes with an uncertain melanoma risk. Population frequencies were assessed in 1479 population-matched controls. Selected POT1 and CHEK2 variants were characterized by functional assays. Mutations in clinically relevant genes were significantly more frequent in melanoma patients than in controls (31/264; 11.7% vs. 58/1479; 3.9%; p = 2.0 × 10−6). A total of 9 patients (3.4%) carried mutations in high-to-moderate melanoma risk genes (CDKN2A, POT1, ACD) and 22 (8.3%) patients in other cancer syndrome genes (NBN, BRCA1/2, CHEK2, ATM, WRN, RB1). Mutations in high-to-moderate melanoma risk genes (OR = 52.2; 95%CI 6.6–413.1; p = 3.2 × 10−7) and in other cancer syndrome genes (OR = 2.3; 95%CI 1.4–3.8; p = 0.003) were significantly associated with melanoma risk. We found an increased potential to carry these mutations (OR = 2.9; 95%CI 1.2–6.8) in patients with double primary melanoma, melanoma and other primary cancer, but not in patients with early age at onset. The analysis revealed affected genes in Czech melanoma patients and identified individuals who may benefit from genetic testing and future surveillance management of mutation carriers.
Collapse
|
47
|
Ha A, Lin Y, Yan S. A non-canonical role for the DNA glycosylase NEIL3 in suppressing APE1 endonuclease-mediated ssDNA damage. J Biol Chem 2020; 295:14222-14235. [PMID: 32817342 DOI: 10.1074/jbc.ra120.014228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
The DNA glycosylase NEIL3 has been implicated in DNA repair pathways including the base excision repair and the interstrand cross-link repair pathways via its DNA glycosylase and/or AP lyase activity, which are considered canonical roles of NEIL3 in genome integrity. Compared with the other DNA glycosylases NEIL1 and NEIL2, Xenopus laevis NEIL3 C terminus has two highly conserved zinc finger motifs containing GRXF residues (designated as Zf-GRF). It has been demonstrated that the minor AP endonuclease APE2 contains only one Zf-GRF motif mediating interaction with single-strand DNA (ssDNA), whereas the major AP endonuclease APE1 does not. It appears that the two NEIL3 Zf-GRF motifs (designated as Zf-GRF repeat) are dispensable for its DNA glycosylase and AP lyase activity; however, the potential function of the NEIL3 Zf-GRF repeat in genome integrity remains unknown. Here, we demonstrate evidence that the NEIL3 Zf-GRF repeat was associated with a higher affinity for shorter ssDNA than one single Zf-GRF motif. Notably, our protein-protein interaction assays show that the NEIL3 Zf-GRF repeat but not one Zf-GRF motif interacted with APE1 but not APE2. We further reveal that APE1 endonuclease activity on ssDNA but not on dsDNA is compromised by a NEIL3 Zf-GRF repeat, whereas one Zf-GRF motif within NEIL3 is not sufficient to prevent such activity of APE1. In addition, COMET assays show that excess NEIL3 Zf-GRF repeat reduces DNA damage in oxidative stress in Xenopus egg extracts. Together, our results suggest a noncanonical role of NEIL3 in genome integrity via its distinct Zf-GRF repeat in suppressing APE1 endonuclease-mediated ssDNA breakage.
Collapse
Affiliation(s)
- Anh Ha
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
48
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
49
|
Tran OT, Tadesse S, Chu C, Kidane D. Overexpression of NEIL3 associated with altered genome and poor survival in selected types of human cancer. Tumour Biol 2020; 42:1010428320918404. [PMID: 32364878 DOI: 10.1177/1010428320918404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Base excision repair, which is initiated by the DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. Several base excision repair genes are deregulated in cancer and affect cellular outcomes to chemotherapy and carcinogenesis. Endonuclease VIII-like 3 (NEIL3) is a DNA glycosylase protein that is involved in oxidative and interstrand crosslink DNA damage repair. Our previous work has showed that NEIL3 is required to maintain replication fork integrity. It is unknown whether NEIL3 overexpression could contribute to cancer phenotypes, and its prognostic value and use as potential drug target remain unexplored. Our analysis of cancer genomics data sets reveals that NEIL3 frequently undergoes overexpression in several cancers. Furthermore, patients who exhibited NEIL3 overexpression with pancreatic adenocarcinoma, lung adenocarcinoma, lower grade glioma, kidney renal clear cell carcinoma, and kidney papillary cell carcinoma had worse overall survival. Importantly, NEIL3 overexpressed tumors accumulate mutation and chromosomal variations. Furthermore, NEIL3 overexpressed tumors exhibit simultaneous overexpression of homologous recombination genes (BRCA1/2) and mismatch repair genes (MSH2/MSH6). However, NEIL3 overexpression is negatively correlated with tumor overexpressing nucleotide excision repair genes (XPA, XPC, ERCC1/2). Our results suggest that NEIL3 might be a potential prognosis marker for high-risk patients, and/or an attractive therapeutic target for selected cancers.
Collapse
Affiliation(s)
- Oanh Tn Tran
- College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.,Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Serkalem Tadesse
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
| | - Christopher Chu
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
50
|
Li N, Wang J, Wallace SS, Chen J, Zhou J, D’Andrea AD. Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair. Nucleic Acids Res 2020; 48:3014-3028. [PMID: 31980815 PMCID: PMC7102959 DOI: 10.1093/nar/gkaa038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The NEIL3 DNA glycosylase is a base excision repair enzyme that excises bulky base lesions from DNA. Although NEIL3 has been shown to unhook interstrand crosslinks (ICL) in Xenopus extracts, how NEIL3 participants in ICL repair in human cells and its corporation with the canonical Fanconi anemia (FA)/BRCA pathway remain unclear. Here we show that the NEIL3 and the FA/BRCA pathways are non-epistatic in psoralen-ICL repair. The NEIL3 pathway is the major pathway for repairing psoralen-ICL, and the FA/BRCA pathway is only activated when NEIL3 is not present. Mechanistically, NEIL3 is recruited to psoralen-ICL in a rapid, PARP-dependent manner. Importantly, the NEIL3 pathway repairs psoralen-ICLs without generating double-strand breaks (DSBs), unlike the FA/BRCA pathway. In addition, we found that the RUVBL1/2 complex physically interact with NEIL3 and function within the NEIL3 pathway in psoralen-ICL repair. Moreover, TRAIP is important for the recruitment of NEIL3 but not FANCD2, and knockdown of TRAIP promotes FA/BRCA pathway activation. Interestingly, TRAIP is non-epistatic with both NEIL3 and FA pathways in psoralen-ICL repair, suggesting that TRAIP may function upstream of the two pathways. Taken together, the NEIL3 pathway is the major pathway to repair psoralen-ICL through a unique DSB-free mechanism in human cells.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|