1
|
Kreslavsky T. Thymflammation: The Role of a Constitutively Active Inflammatory Network and "Ectopic" Cell Types in the Thymus in the Induction of T Cell Tolerance and Beyond. Immunol Rev 2025; 332:e70037. [PMID: 40433806 PMCID: PMC12117520 DOI: 10.1111/imr.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
The thymus exhibits constitutive activation of nearly all major inflammatory pathways, including sterile MyD88-dependent signaling and interferon production by mTECs, the presence of cellular and molecular components of type 1, type 2, and type 3 responses, as well as sustained B cell activation. The reasons for the existence of such a complex constitutively active inflammatory network at the site of T cell development-where the initial pathogen encounter is unlikely-have remained enigmatic. We propose that this inflammatory thymic 'ecosystem' has evolved to promote immunological tolerance to 'inflammatory self'-endogenous molecules absent from most peripheral tissues at steady state but upregulated during pathogen invasion. The spatial and temporal overlap with pathogen presence makes the discrimination of the inflammatory self from pathogen-derived molecules a unique challenge for the adaptive immune system. The frequent occurrence of diseases associated with autoantibodies against proinflammatory cytokines underscores the persistent risk of these molecules being misidentified as foreign. Their abundant representation in the thymus, therefore, is likely to be critical for maintaining tolerance. This review explores current insights into the thymic inflammatory network, its cellular and molecular constituents, and their role in the induction of T cell tolerance.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Liu X, Zhang S, Qiu H, Xie ZQ, Tang WF, Chen Y, Wei X. Investigation of high-mobility group box 1 variants with lymph node status and colorectal cancer risk. World J Gastrointest Oncol 2025; 17:102584. [PMID: 40235898 PMCID: PMC11995333 DOI: 10.4251/wjgo.v17.i4.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/31/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Accumulating studies indicated that maintain nuclei homeostasis was deemed to the protective factors for the occurrence of cancer. Thus, high-mobility group box 1 (HMGB1) might influence the risk and poorer prognoses of colorectal cancer (CRC). AIM This study was designed to investigate whether HMGB1 polymorphisms influence the risk and lymph node metastasis (LNM) of CRC. METHODS Firstly, we designed an investigation with 1003 CRC patients and 1303 cancer-free controls to observe whether HMGB1 rs1412125 T > C and rs1045411 C > T SNPs could influence the risk of cancer. Subsequently, we carried out a correlation-analysis to assess whether these SNPs could alter the risk of LNM. RESULTS The current investigation suggested a relationship of HMGB1 rs1412125 SNP with the increased susceptibility of CRC. In a subgroup analysis, our findings suggested that this SNP could enhance an occurrence of CRC in ≥ 61 years, non-drinker and body mass index < 24 kg/m2 subgroups. However, we found that there was null association between HMGB1 rs1412125 SNP and LNM, even in different CRC region. These observations were confirmed by calculating the power value (more than 0.8). The association of HMGB1 rs1045411 C > T SNP with CRC risk and LNM was not found in any compare. CONCLUSION This study highlights a possible association between HMGB1 rs1412125 polymorphism and the increased risk of CRC. In the future, more studies should be conducted to explore HMGB1 rs1412125 polymorphism in relation to CRC development.
Collapse
Affiliation(s)
- Xin Liu
- Department of General Surgery, Changzhou Third People’s Hospital, Changzhou 213001, Jiangsu Province, China
| | - Sheng Zhang
- Department of General Surgery, Changzhou Third People’s Hospital, Changzhou 213001, Jiangsu Province, China
| | - Hao Qiu
- Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhi-Qiang Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Wei-Feng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuqing 350014, Fujian Province, China
| | - Xi Wei
- Department of Pathology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu Province, China
| |
Collapse
|
3
|
Johnson JT, Surette FA, Ausdahl GR, Shah M, Minns AM, Lindner SE, Zander RA, Butler NS. CD4 T Cell-Derived IL-21 Is Critical for Sustaining Plasmodium Infection-Induced Germinal Center Responses and Promoting the Selection of Memory B Cells with Recall Potential. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1467-1478. [PMID: 38477614 PMCID: PMC11018477 DOI: 10.4049/jimmunol.2300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Development of Plasmodium-specific humoral immunity is critically dependent on CD4 Th cell responses and germinal center (GC) reactions during blood-stage Plasmodium infection. IL-21, a cytokine primarily produced by CD4 T cells, is an essential regulator of affinity maturation, isotype class-switching, B cell differentiation, and maintenance of GC reactions in response to many infection and immunization models. In models of experimental malaria, mice deficient in IL-21 or its receptor IL-21R fail to develop memory B cell populations and are not protected against secondary infection. However, whether sustained IL-21 signaling in ongoing GCs is required for maintaining GC magnitude, organization, and output is unclear. In this study, we report that CD4+ Th cells maintain IL-21 expression after resolution of primary Plasmodium yoelii infection. We generated an inducible knockout mouse model that enabled cell type-specific and timed deletion of IL-21 in peripheral, mature CD4 T cells. We found that persistence of IL-21 signaling in active GCs had no impact on the magnitude of GC reactions or their capacity to produce memory B cell populations. However, the memory B cells generated in the absence of IL-21 exhibited reduced recall function upon challenge. Our data support that IL-21 prevents premature cellular dissolution within the GC and promotes stringency of selective pressures during B cell fate determination required to produce high-quality Plasmodium-specific memory B cells. These data are additionally consistent with a temporal requirement for IL-21 in fine-tuning humoral immune memory responses during experimental malaria.
Collapse
Affiliation(s)
- Jordan T. Johnson
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- These authors contributed equally
| | - Fionna A. Surette
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- These authors contributed equally
| | - Graham R. Ausdahl
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Manan Shah
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Allen M. Minns
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania USA
| | - Scott E. Lindner
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania USA
| | - Ryan A. Zander
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Noah S. Butler
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
4
|
Afzali AM, Nirschl L, Sie C, Pfaller M, Ulianov O, Hassler T, Federle C, Petrozziello E, Kalluri SR, Chen HH, Tyystjärvi S, Muschaweckh A, Lammens K, Delbridge C, Büttner A, Steiger K, Seyhan G, Ottersen OP, Öllinger R, Rad R, Jarosch S, Straub A, Mühlbauer A, Grassmann S, Hemmer B, Böttcher JP, Wagner I, Kreutzfeldt M, Merkler D, Pardàs IB, Schmidt Supprian M, Buchholz VR, Heink S, Busch DH, Klein L, Korn T. B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4. Nature 2024; 627:407-415. [PMID: 38383779 PMCID: PMC10937377 DOI: 10.1038/s41586-024-07079-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.
Collapse
Affiliation(s)
- Ali Maisam Afzali
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Lucy Nirschl
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Christopher Sie
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Monika Pfaller
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Oleksii Ulianov
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Tobias Hassler
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christine Federle
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Elisabetta Petrozziello
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Hsin Hsiang Chen
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sofia Tyystjärvi
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Gönül Seyhan
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ole Petter Ottersen
- Division of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Anton Mühlbauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | | | - Marc Schmidt Supprian
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sylvia Heink
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ludger Klein
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
5
|
Podestà MA, Cavazzoni CB, Hanson BL, Bechu ED, Ralli G, Clement RL, Zhang H, Chandrakar P, Lee JM, Reyes-Robles T, Abdi R, Diallo A, Sen DR, Sage PT. Stepwise differentiation of follicular helper T cells reveals distinct developmental and functional states. Nat Commun 2023; 14:7712. [PMID: 38001088 PMCID: PMC10674016 DOI: 10.1038/s41467-023-43427-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Follicular helper T (Tfh) cells are essential for the formation of high affinity antibodies after vaccination or infection. Although the signals responsible for initiating Tfh differentiation from naïve T cells have been studied, the signals controlling sequential developmental stages culminating in optimal effector function are not well understood. Here we use fate mapping strategies for the cytokine IL-21 to uncover sequential developmental stages of Tfh differentiation including a progenitor-like stage, a fully developed effector stage and a post-effector Tfh stage that maintains transcriptional and epigenetic features without IL-21 production. We find that progression through these stages are controlled intrinsically by the transcription factor FoxP1 and extrinsically by follicular regulatory T cells. Through selective deletion of Tfh stages, we show that these cells control antibody dynamics during distinct stages of the germinal center reaction in response to a SARS-CoV-2 vaccine. Together, these studies demonstrate the sequential phases of Tfh development and how they promote humoral immunity.
Collapse
Affiliation(s)
- Manuel A Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Renal Division, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Cecilia B Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Hanson
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elsa D Bechu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Garyfallia Ralli
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel L Clement
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alos Diallo
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Debattama R Sen
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Ishikawa J, Suto A, Abe K, Hayashi Y, Suga K, Tanaka S, Kageyama T, Iwata A, Suzuki K, Suzuki K, Nakajima H. IL-21 is required for the maintenance and pathogenesis of murine Vγ4 + IL-17-producing γδT cells. Front Immunol 2023; 14:1211620. [PMID: 37662923 PMCID: PMC10473412 DOI: 10.3389/fimmu.2023.1211620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Murine IL-17-producing γδT (γδT17) cells are divided into two subsets: natural γδT17 (nγδT17) cells, whose development is restricted to the fetal thymus, and inducible γδT17 cells, which require antigen exposure for their IL-17 production and are presumed to develop from Rorc + Il17a - CCR9 + immature γδT17 cells in the adult thymus and whose T cell receptor (TCR) is biased toward Vγ4. Although IL-23 is known to be involved in developing γδT17 cells, the roles of other cytokines, such as IL-21, which is involved in developing Th17 cells like IL-23, in the development, maintenance, and pathophysiology of γδT17 cells remain unknown. Here, we show that IL-21 is dispensable for the fetal thymic development of nγδT17 cells but is required for the peripheral maintenance of Vγ4+nγδT17 cells. Upon stimulation with γδTCR, IL-1 plus IL-21 induces the proliferation of Vγ4+nγδT17 cells via STAT3 as effectively as IL-1 plus IL-23. Using bone marrow chimeric mice, we demonstrated that immature γδT17 cells are produced de novo in the adult mice from donor adult bone marrow cells and that IL-21 is dispensable for their development. Instead, IL-21 is required to expand newly induced Vγ4+γδT17 cells in the periphery upon immunization. Finally, using adoptive transfer experiments of γδT17 cells, we found that IL-21 receptors on γδT17 cells are involved in maintaining Vγ4+γδT17 cells, subsequent infiltration of Th17 cells into the spinal cord, and exacerbation of experimental autoimmune encephalomyelitis. Collectively, IL-21 plays a vital role in the maintenance and pathogenesis of Vγ4+γδT17 cells.
Collapse
Affiliation(s)
- Junichi Ishikawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Kazuya Abe
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Hayashi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazumasa Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| |
Collapse
|
7
|
Martinez RJ, Breed ER, Worota Y, Ashby KM, Vobořil M, Mathes T, Salgado OC, O’Connor CH, Kotenko SV, Hogquist KA. Type III interferon drives thymic B cell activation and regulatory T cell generation. Proc Natl Acad Sci U S A 2023; 120:e2220120120. [PMID: 36802427 PMCID: PMC9992806 DOI: 10.1073/pnas.2220120120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023] Open
Abstract
The activation of thymic B cells is critical for their licensing as antigen presenting cells and resulting ability to mediate T cell central tolerance. The processes leading to licensing are still not fully understood. By comparing thymic B cells to activated Peyer's patch B cells at steady state, we found that thymic B cell activation starts during the neonatal period and is characterized by TCR/CD40-dependent activation, followed by immunoglobulin class switch recombination (CSR) without forming germinal centers. Transcriptional analysis also demonstrated a strong interferon signature, which was not apparent in the periphery. Thymic B cell activation and CSR were primarily dependent on type III IFN signaling, and loss of type III IFN receptor in thymic B cells resulted in reduced thymocyte regulatory T cell (Treg) development. Finally, from TCR deep sequencing, we estimate that licensed B cells induce development of a substantial fraction of the Treg cell repertoire. Together, these findings reveal the importance of steady-state type III IFN in generating licensed thymic B cells that induce T cell tolerance to activated B cells.
Collapse
Affiliation(s)
- Ryan J. Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Elise R. Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Yosan Worota
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Katherine M. Ashby
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Matouš Vobořil
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Tailor Mathes
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Oscar C. Salgado
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Christine H. O’Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN55455
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ07103
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Kristin A. Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN55455
| |
Collapse
|
8
|
Petrušić M, Stojić-Vukanić Z, Pilipović I, Kosec D, Prijić I, Leposavić G. Thymic changes as a contributing factor in the increased susceptibility of old Albino Oxford rats to EAE development. Exp Gerontol 2023; 171:112009. [PMID: 36334894 DOI: 10.1016/j.exger.2022.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The study was aimed to examine putative contribution of thymic involution to ageing-associated increase in susceptibility of Albino Oxford (AO) rats to the development of clinical EAE, and vice versa influence of the disease on the progression of thymic involution. To this end we examined (i) the parameters of thymocyte negative selection efficacy, the thymic generation of CD4+CD25+Foxp3+ T regulatory cells (Tregs) and thymic capacity to instruct/predetermine IL-17-producing T-cell differentiation, and thymopietic efficacy-associated accumulation of "inflammescent" cytotoxic CD28- T cells in the periphery, and (ii) the key underlying mechanisms in young and old non-immunised AO rats and their counterparts immunised for EAE (on the 16th day post-immunisation when the disease in old rats reached the plateau) using flow cytometry analysis and/or RT-qPCR. It was found that thymic involution impairs: (i) the efficacy of negative selection (by affecting thymocyte expression of CD90, negative regulator of selection threshold and the expression of thymic stromal cell integrity factors) and (ii) Treg generation (by diminishing expression of cytokines supporting their differentiation/maturation). Additionally, the results suggest that thymic involution facilitates CD8+ T-cell differentiation into IL-17-producing cells (previously linked to the development of clinical EAE in old AO rats). Furthermore, they confirmed that ageing-related decrease in thymic T-cell output (as indicated by diminished frequency of recent thymic emigrants in peripheral blood) resulted in the accumulation of CD28- T cells in peripheral blood and, upon immunisation, in the target organ. On the other hand, the development of EAE (most likely by increasing circulatory levels of proinflammatory cytokines) contributed to the decline in thymic output of T cells, including Tregs, and thereby to the progression/maintenance of clinical EAE. Thus, in AO rats thymic involution via multi-layered mechanisms may favour the development of clinically manifested autoimmunity, which, in turn, precipitates the thymus atrophy.
Collapse
Affiliation(s)
- Marija Petrušić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
9
|
Cao T, Liu L, To KK, Lim C, Zhou R, Ming Y, Kwan K, Yu S, Chan C, Zhou B, Huang H, Mo Y, Du Z, Gong R, Yat L, Hung IF, Tam AR, To W, Leung W, Chik TS, Tsang OT, Lin X, Song Y, Yuen K, Chen Z. Mitochondrial regulation of acute extrafollicular B-cell responses to COVID-19 severity. Clin Transl Med 2022; 12:e1025. [PMID: 36103567 PMCID: PMC9473490 DOI: 10.1002/ctm2.1025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.
Collapse
Affiliation(s)
- Tianyu Cao
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of ImmunologyFourth Military Medical UniversityXi'anPeople's Republic of China
- Department of DermatologyTangdu Hospital, Fourth Military Medical UniversityXi'anPeople's Republic of China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| | - Kelvin Kai‐Wang To
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of ImmunologyFourth Military Medical UniversityXi'anPeople's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Department of MicrobiologyThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| | - Chun‐Yu Lim
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Runhong Zhou
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Yue Ming
- School of Biomedical SciencesUniversity of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Ka‐Yi Kwan
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Sulan Yu
- School of Chinese MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Chun‐Yin Chan
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Biao Zhou
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Haode Huang
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Yufei Mo
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Zhenglong Du
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Ruomei Gong
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Luk‐Tsz Yat
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Ivan Fan‐Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Anthony Raymond Tam
- Department of MedicineQueen Mary HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Wing‐Kin To
- Department of PathologyPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Wai‐Shing Leung
- Department of Medicine and GeriatricsPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Thomas Shiu‐Hong Chik
- Department of Medicine and GeriatricsPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Owen Tak‐Yin Tsang
- Department of Medicine and GeriatricsPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Xiang Lin
- School of Chinese MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - You‐qiang Song
- School of Biomedical SciencesUniversity of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Kwok‐Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Department of MicrobiologyThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Department of MicrobiologyThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| |
Collapse
|
10
|
Patel PS, Pérez-Baos S, Walters B, Orlen M, Volkova A, Ruggles K, Park CY, Schneider RJ. Translational regulation of TFH cell differentiation and autoimmune pathogenesis. SCIENCE ADVANCES 2022; 8:eabo1782. [PMID: 35749506 PMCID: PMC9232117 DOI: 10.1126/sciadv.abo1782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Little is known regarding T cell translational regulation. We demonstrate that T follicular helper (TFH) cells use a previously unknown mechanism of selective messenger RNA (mRNA) translation for their differentiation, role in B cell maturation, and in autoimmune pathogenesis. We show that TFH cells have much higher levels of translation factor eIF4E than non-TFH CD4+ T cells, which is essential for translation of TFH cell fate-specification mRNAs. Genome-wide translation studies indicate that modest down-regulation of eIF4E activity by a small-molecule inhibitor or short hairpin RN impairs TFH cell development and function. In mice, down-regulation of eIF4E activity specifically reduces TFH cells among T helper subtypes, germinal centers, B cell recruitment, and antibody production. In experimental autoimmune encephalomyelitis, eIF4E activity down-regulation blocks TFH cell participation in disease pathogenesis while promoting rapid remission and spinal cord remyelination. TFH cell development and its role in autoimmune pathogenesis involve selective mRNA translation that is highly druggable.
Collapse
Affiliation(s)
- Preeyam S. Patel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Beth Walters
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Margo Orlen
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Angelina Volkova
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Christopher Y. Park
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Son YM, Cheon IS, Wu Y, Li C, Wang Z, Gao X, Chen Y, Takahashi Y, Fu YX, Dent AL, Kaplan MH, Taylor JJ, Cui W, Sun J. Tissue-resident CD4 + T helper cells assist the development of protective respiratory B and CD8 + T cell memory responses. Sci Immunol 2021; 6:6/55/eabb6852. [PMID: 33419791 DOI: 10.1126/sciimmunol.abb6852] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/11/2020] [Indexed: 11/02/2022]
Abstract
Much remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21-dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.
Collapse
Affiliation(s)
- Young Min Son
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - In Su Cheon
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chaofan Li
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheng Wang
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaochen Gao
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, WI 53213, USA
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA. .,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Ren HM, Lukacher AE. IL-21 in Homeostasis of Resident Memory and Exhausted CD8 T Cells during Persistent Infection. Int J Mol Sci 2020; 21:ijms21186966. [PMID: 32971931 PMCID: PMC7554897 DOI: 10.3390/ijms21186966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023] Open
Abstract
CD4 T cells guide the development of CD8 T cells into memory by elaborating mitogenic and differentiation factors and by licensing professional antigen-presenting cells. CD4 T cells also act to stave off CD8 T cell dysfunction during repetitive antigen stimulation in persistent infection and cancer by mitigating generation of exhausted T cells (TEX). CD4 T cell help is also required for establishing and maintaining tissue-resident memory T cells (TRM), the nonrecirculating memory T cell subset parked in nonlymphoid tissues to provide frontline defense against reinvading pathogens. Interleukin (IL)-21 is the signature cytokine secreted by follicular helper CD4 T cells (TFH) to drive B cell expansion and differentiation in germinal centers to mount high-affinity, isotype class-switched antibodies. In several infection models, IL-21 has been identified as the CD4 T help needed for formation and survival of TRM and TEX. In this review, we will explore the different memory subsets of CD8 T cells in persistent infections, the metabolic profiles associated with each, and evidence documenting the importance of CD4 T cell-derived IL-21 in regulating CD8 TRM and TEX development, homeostasis, and function.
Collapse
|
13
|
Ren HM, Kolawole EM, Ren M, Jin G, Netherby-Winslow CS, Wade Q, Shwetank, Rahman ZSM, Evavold BD, Lukacher AE. IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Sci Immunol 2020; 5:5/51/eabb5590. [PMID: 32948671 DOI: 10.1126/sciimmunol.abb5590] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R-/-) fail to become bTRM IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R-/- brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell-deficient and IL21R-/- brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell-depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.
Collapse
Affiliation(s)
- Heather M Ren
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Quinn Wade
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Shwetank
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
Śledzińska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, Akarca AU, Marzolini MAV, Solomon I, Vargas FA, Pule M, Ono M, Seddon B, Kassiotis G, Ariyan CE, Korn T, Marafioti T, Lord GM, Stauss H, Jenner RG, Peggs KS, Quezada SA. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4 + T Cells. Immunity 2020; 52:151-166.e6. [PMID: 31924474 PMCID: PMC7369640 DOI: 10.1016/j.immuni.2019.12.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 09/30/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
In addition to helper and regulatory potential, CD4+ T cells also acquire cytotoxic activity marked by granzyme B (GzmB) expression and the ability to promote rejection of established tumors. Here, we examined the molecular and cellular mechanisms underpinning the differentiation of cytotoxic CD4+ T cells following immunotherapy. CD4+ transfer into lymphodepleted animals or regulatory T (Treg) cell depletion promoted GzmB expression by tumor-infiltrating CD4+, and this was prevented by interleukin-2 (IL-2) neutralization. Transcriptional analysis revealed a polyfunctional helper and cytotoxic phenotype characterized by the expression of the transcription factors T-bet and Blimp-1. While T-bet ablation restricted interferon-γ (IFN-γ) production, loss of Blimp-1 prevented GzmB expression in response to IL-2, suggesting two independent programs required for polyfunctionality of tumor-reactive CD4+ T cells. Our findings underscore the role of Treg cells, IL-2, and Blimp-1 in controlling the differentiation of cytotoxic CD4+ T cells and offer a pathway to enhancement of anti-tumor activity through their manipulation.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Maria Vila de Mucha
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Regulatory Genomics Research Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Katharina Bergerhoff
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Alastair Hotblack
- Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Dafne Franz Demane
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Ehsan Ghorani
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospital, London NW1 2BU, UK
| | - Maria A V Marzolini
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Isabelle Solomon
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Frederick Arce Vargas
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Martin Pule
- Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Masahiro Ono
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London SW7 2BB, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Department of Immunology, Royal Free Hospital, London NW3 2PF, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charlotte E Ariyan
- Memorial Sloan Kettering Center, 1275 York Avenue, New York, NY 10065, USA
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospital, London NW1 2BU, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Hans Stauss
- Institute of Immunity and Transplantation, Department of Immunology, Royal Free Hospital, London NW3 2PF, UK
| | - Richard G Jenner
- Regulatory Genomics Research Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK.
| | - Sergio A Quezada
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
15
|
Leonard WJ, Lin JX, O'Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019; 50:832-850. [PMID: 30995502 DOI: 10.1016/j.immuni.2019.03.028] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
16
|
Pei G, Sun H, Dai Y, Liu X, Zhao Z, Jia P. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics. BMC Genomics 2019; 20:79. [PMID: 30712509 PMCID: PMC6360716 DOI: 10.1186/s12864-018-5373-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have been successful in identifying disease-associated genetic variants. Recently, an increasing number of GWAS summary statistics have been made available to the research community, providing extensive repositories for studies of human complex diseases. In particular, cross-trait associations at the genetic level can be beneficial from large-scale GWAS summary statistics by using genetic variants that are associated with multiple traits. However, direct assessment of cross-trait associations using susceptibility loci has been challenging due to the complex genetic architectures in most diseases, calling for advantageous methods that could integrate functional interpretation and imply biological mechanisms. Results We developed an analytical framework for systematic integration of cross-trait associations. It incorporates two different approaches to detect enriched pathways and requires only summary statistics. We demonstrated the framework using 25 traits belonging to four phenotype groups. Our results revealed an average of 54 significantly associated pathways (ranged between 18 and 175) per trait. We further proved that pathway-based analysis provided increased power to estimate cross-trait associations compared to gene-level analysis. Based on Fisher’s Exact Test (FET), we identified a total of 24 (53) pairs of trait-trait association at adjusted pFET < 1 × 10− 3 (pFET < 0.01) among the 25 traits. Our trait-trait association network revealed not only many relationships among the traits within the same group but also novel relationships among traits from different groups, which warrants further investigation in future. Conclusions Our study revealed that risk variants for 25 different traits aggregated in particular biological pathways and that these pathways were frequently shared among traits. Our results confirmed known mechanisms and also suggested several novel insights into the etiology of multi-traits. Electronic supplementary material The online version of this article (10.1186/s12864-018-5373-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA
| | - Hua Sun
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA
| | - Xiaoming Liu
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA. .,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Zarin P, In TS, Chen EL, Singh J, Wong GW, Mohtashami M, Wiest DL, Anderson MK, Zúñiga-Pflücker JC. Integration of T-cell receptor, Notch and cytokine signals programs mouse γδ T-cell effector differentiation. Immunol Cell Biol 2018; 96:994-1007. [PMID: 29754419 PMCID: PMC6197911 DOI: 10.1111/imcb.12164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
γδ T‐cells perform a wide range of tissue‐ and disease‐specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon‐γ (IFNγ) and interleukin‐17 (IL‐17) producing γδ T‐cells remain unknown. Here, we define the cues involved in the functional programming of γδ T‐cells, by examining the roles of T‐cell receptor (TCR), Notch, and cytokine‐receptor signaling. KN6 γδTCR‐transduced Rag2−/− T‐cell progenitors were cultured on stromal cells variably expressing TCR and Notch ligands, supplemented with different cytokines. We found that distinct combinations of these signals are required to program IFNγ versus IL‐17 producing γδ T‐cell subsets, with Notch and weak TCR ligands optimally enabling development of γδ17 cells in the presence of IL‐1β, IL‐21 and IL‐23. Notably, these cytokines were also shown to be required for the intrathymic development of γδ17 cells. Together, this work provides a framework of how signals downstream of TCR, Notch and cytokine receptors integrate to program the effector function of IFNγ and IL‐17 producing γδ T‐cell subsets.
Collapse
Affiliation(s)
- Payam Zarin
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Tracy Sh In
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Edward Ly Chen
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Gladys W Wong
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - David L Wiest
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Michele K Anderson
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| |
Collapse
|
18
|
Issac JM, Mohamed YA, Bashir GH, Al-Sbiei A, Conca W, Khan TA, Iqbal A, Riemekasten G, Bieber K, Ludwig RJ, Cabral-Marques O, Fernandez-Cabezudo MJ, Al-Ramadi BK. Induction of Hypergammaglobulinemia and Autoantibodies by Salmonella Infection in MyD88-Deficient Mice. Front Immunol 2018; 9:1384. [PMID: 29973931 PMCID: PMC6019449 DOI: 10.3389/fimmu.2018.01384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Growing evidence indicates a link between persistent infections and the development of autoimmune diseases. For instance, the inability to control Salmonella infection due to defective toll-like receptor (TLR)/myeloid differentiation primary response 88 (MyD88) signaling has linked the development of persistent infections to a breakdown in B cell tolerance. However, the extent of immune dysregulation in the absence of TLR-MyD88 signaling remains poorly characterized. Here, we show that MyD88−/− mice are unable to eliminate attenuated Salmonella enterica serovar Typhimurium, even when challenged with a low-dose inoculum (200 CFUs/mouse), developing a persistent and progressive infection when compared to wild-type (MyD88+/+) animals. The splenic niche of MyD88−/− mice revealed increased counts of activated, Sca-1-positive, myeloid subpopulations highly expressing BAFF during persistent Salmonella infection. Likewise, the T cell compartment of Salmonella-infected MyD88−/− mice showed increased levels of CD4+ and CD8+ T cells expressing Sca-1 and CD25 and producing elevated amounts of IL-4, IL-10, and IL-21 in response to CD3/CD28 stimulation. This was associated with increased Tfh cell differentiation and the presence of CD4+ T cells co-expressing IFN-γ/IL-4 and IFN-γ/IL-10. Noteworthy, infected MyD88−/− mice had enhanced serum titers of both anti-Salmonella antibodies as well as autoantibodies directed against double-stranded DNA, thyroglobulin, and IgG rheumatoid factor, positive nuclear staining with HEp-2 cells, and immune complex deposition in the kidneys of MyD88−/− mice infected with live but not heat-killed Salmonella. Infection with other microorganisms (Acinetobacter baumanii, Streptococcus agalactiae, or Escherichia coli) was unable to trigger the autoimmune phenomenon. Our findings suggest that dysregulation of the immune response in the absence of MyD88 is pathogen-dependent and highlight potentially important genotype–environmental factor correlations.
Collapse
Affiliation(s)
- Jincy M Issac
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Hassan Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Walter Conca
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Taj A Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Asif Iqbal
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Choi SC, Xu Z, Li W, Yang H, Roopenian DC, Morse HC, Morel L. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4 + T Cell Polarization. THE JOURNAL OF IMMUNOLOGY 2018; 200:3087-3099. [PMID: 29563177 DOI: 10.4049/jimmunol.1701179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
Abstract
Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4+ T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4+ T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4+ T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4+ T cells were introduced into Rag1-/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4+ T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4+ T cells in a nonredundant manner with myeloid/stromal cells.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Hong Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | | | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|