1
|
Liu S, Wei J, Zhong L, Hai S, Song S, Xie C, Huang Z, Cheng Z, Zhang J, Du A, Zhang P, Yan Y, Shi A. RAB-10 cooperates with EHBP-1 to capture vesicular carriers during post-Golgi exocytic trafficking. J Cell Biol 2025; 224:e202410003. [PMID: 39982707 PMCID: PMC11844438 DOI: 10.1083/jcb.202410003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Post-Golgi exocytic trafficking, fundamental for secretion and cell surface component integration, remains incompletely understood at the molecular level. Here, we investigated this process using Caenorhabditis elegans and mammalian cell models, revealing a novel exocytic carrier capturing mechanism involving the small GTPase RAB-10/Rab10 and its effector EHBP-1/EHBP1. EHBP-1, localized in recycling endosomes, selectively captures RAB-10-positive lipoprotein exocytic carriers through its interaction with active RAB-10, thereby promoting the delivery of exocytic cargo to recycling endosomes. A detailed mechanistic examination demonstrated the synergy between EHBP-1's RAB-10-binding coiled-coil domain and its PI(4,5)P2-binding C2 domain in the capturing process. Of note, we identified LST-6/DENND5 as a specialized guanine nucleotide exchange factor (GEF) for RAB-10 in this particular pathway, distinct from the GEF involved in basolateral recycling. Following the RAB-10-EHBP-1-mediated capture, the exocyst complex carries out its function. Taken together, this study suggests a potential tethering mechanism for basolateral post-Golgi exocytic carriers, highlighting the coordination among membrane compartments in regulating this trafficking route.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Liangyujie Zhong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Sirao Hai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Shibo Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyi Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Anna Du
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Pei Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liu Q, Meng X, Song Z, Shao Y, Zhao Y, Fang R, Huo Y, Zhang L. Insect-transmitted plant virus balances its vertical transmission through regulating Rab1-mediated receptor localization. Cell Rep 2024; 43:114571. [PMID: 39093698 DOI: 10.1016/j.celrep.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Rice stripe virus (RSV) establishes infection in the ovaries of its vector insect, Laodelphax striatellus. We demonstrate that RSV infection delays ovarian maturation by inhibiting membrane localization of the vitellogenin receptor (VgR), thereby reducing the vitellogenin (Vg) accumulation essential for egg development. We identify the host protein L. striatellus Rab1 protein (LsRab1), which directly interacts with RSV nucleocapsid protein (NP) within nurse cells. LsRab1 is required for VgR surface localization and ovarian Vg accumulation. RSV inhibits LsRab1 function through two mechanisms: NP binding LsRab1 prevents GTP binding, and NP binding LsRab1-GTP complexes stimulates GTP hydrolysis, forming an inactive LsRab1 form. Through this dual inhibition, RSV infection prevents LsRab1 from facilitating VgR trafficking to the cell membrane, leading to inefficient Vg uptake. The Vg-VgR pathway is present in most oviparous animals, and the mechanisms detailed here provide insights into the vertical transmission of other insect-transmitted viruses of medical and agricultural importance.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyi Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Shao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, China
| | - Yao Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Deng L, Solichin MR, Adyaksa DNM, Septianastiti MA, Fitri RA, Suwardan GNR, Matsui C, Abe T, Shoji I. Cellular Release of Infectious Hepatitis C Virus Particles via Endosomal Pathways. Viruses 2023; 15:2430. [PMID: 38140670 PMCID: PMC10747773 DOI: 10.3390/v15122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis C virus (HCV) is a positive-sense, single-stranded RNA virus that causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The release of infectious HCV particles from infected hepatocytes is a crucial step in viral dissemination and disease progression. While the exact mechanisms of HCV particle release remain poorly understood, emerging evidence suggests that HCV utilizes intracellular membrane trafficking and secretory pathways. These pathways include the Golgi secretory pathway and the endosomal trafficking pathways, such as the recycling endosome pathway and the endosomal sorting complex required for transport (ESCRT)-dependent multivesicular bodies (MVBs) pathway. This review provides an overview of recent advances in understanding the release of infectious HCV particles, with a particular focus on the involvement of the host cell factors that participate in HCV particle release. By summarizing the current knowledge in this area, this review aims to contribute to a better understanding of endosomal pathways involved in the extracellular release of HCV particles and the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| | - Muchamad Ridotu Solichin
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dewa Nyoman Murti Adyaksa
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Maria Alethea Septianastiti
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rhamadianti Aulia Fitri
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Gede Ngurah Rsi Suwardan
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Udayana, Bali 80361, Indonesia
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| |
Collapse
|
5
|
Guan L, Wen X, Zhang Z, Wang L, Zhang X, Yang M, Wang S, Qin Q. Grouper Rab1 inhibits nodovirus infection by affecting virus entry and host immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109136. [PMID: 37839541 DOI: 10.1016/j.fsi.2023.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Rab1, a GTPase, is present in all eukaryotes, and is mainly involved in vesicle trafficking between the endoplasmic reticulum and Golgi, thereby regulating many cellular activities and pathogenic infections. However, little is known of how Rab1 functions in fish during virus infection. Groupers (Epinephelus spp.) are high in economic value and widely cultivated in China and Southeast Asia, although they often suffer from diseases. Red-spotted grouper nervous necrosis virus (RGNNV), a highly pathogenic RNA virus, is a major pathogen in cultured groupers, and causes huge economic losses. A series of host cellular proteins involved in RGNNV infection was identified. However, the impact of Rab1 on RGNNV infection has not yet been reported. In this study, a novel Rab1 homolog (EcRab1) from Epinephelus coioides was cloned, and its roles during virus infection and host immune responses were investigated. EcRab1 encoded a 202 amino acid polypeptide, showing 98% and 78% identity to Epinephelus lanceolatus and Homo sapiens, respectively. After challenge with RGNNV or poly(I:C), the transcription of EcRab1 was altered both in vitro and in vivo, implying that EcRab1 was involved in virus infection. Subcellular localization showed that EcRab1 was displayed as punctate structures in the cytoplasm, which was affected by EcRab1 mutants. The dominant negative (DN) EcRab1, enabling EcRab1 to remain in the GDP-binding state, caused EcRab1 to be diffusely distributed in the cytoplasm. Constitutively active (CA) EcRab1, enabling EcRab1 to remain in the GTP-binding state, induced larger cluster structures of EcRab1. During the late stage of RGNNV infection, some EcRab1 co-localized with RGNNV, and the size of EcRab1 clusters was enlarged. Importantly, overexpression of EcRab1 significantly inhibited RGNNV infection, and knockdown of EcRab1 promoted RGNNV infection. Furthermore, EcRab1 inhibited the entry of RGNNV to host cells. Compared with EcRab1, overexpression of DN EcRab1 or CA EcRab1 also promoted RGNNV infection, suggesting that EcRab1 regulated RGNNV infection, depending on the cycles of GTP- and GDP-binding states. In addition, EcRab1 positively regulated interferon (IFN) immune and inflammatory responses. Taken together, these results suggest that EcRab1 affects RGNNV infection, possibly by regulating host immunity. Our study furthers the understanding of Rab1 function during virus infection, thus helping to design new antiviral strategies.
Collapse
Affiliation(s)
- Lingfeng Guan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhi Wen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zihan Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
6
|
He S, Liang Y, Zhang Y, Liu X, Gong S, Ye M, Huang S, Tan X, Zhou S, Zhao Y, Liu N, Li Y. LINC00173 facilitates tumor progression by stimulating RAB1B-mediated PA2G4 and SDF4 secretion in nasopharyngeal carcinoma. Mol Oncol 2023; 17:518-533. [PMID: 36606322 PMCID: PMC9980309 DOI: 10.1002/1878-0261.13375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
An increasing number of studies have found that long non-coding RNA (lncRNA) play important roles in driving the progression of nasopharyngeal carcinoma (NPC). Our microarray screening revealed that expression of the lncRNA long intergenic non-protein coding RNA 173 (LINC00173) was upregulated in NPC. However, its role and mechanism in NPC have not yet been elucidated. In this study, we demonstrate that high LINC00173 expression indicated a poor prognosis in NPC patients. Knockdown of LINC00173 significantly inhibited NPC cell proliferation, migration and invasion in vitro. Mechanistically, LINC00173 interacted and colocalized with Ras-related protein Rab-1B (RAB1B) in the cytoplasm, but the modulation of LINC00173 expression did not affect the expression of RAB1B at either the mRNA or protein levels. Instead, relying on the stimulation of RAB1B, LINC00173 could facilitate the extracellular secretion of proliferation-associated 2G4 (PA2G4) and stromal cell-derived factor 4 (SDF4; also known as 45-kDa calcium-binding protein) proteins, and knockdown of these proteins could reverse the NPC aggressive phenotype induced by LINC00173 overexpression. Moreover, in vivo LINC00173-knockdown models exhibited a marked slowdown in tumor growth and a significant reduction in lymph node and lung metastases. In summary, LINC00173 serves as a crucial driver for NPC progression, and the LINC00173-RAB1B-PA2G4/SDF4 axis might provide a potential therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Shi‐Wei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ye‐Lin Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ming‐Liang Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sheng‐Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xi‐Rong Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shi‐Qing Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying‐Qing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
7
|
Syndecan-4 Mediates the Cellular Entry of Adeno-Associated Virus 9. Int J Mol Sci 2023; 24:ijms24043141. [PMID: 36834552 PMCID: PMC9963952 DOI: 10.3390/ijms24043141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Due to their low pathogenicity, immunogenicity, and long-term gene expression, adeno-associated virus (AAV) vectors emerged as safe and efficient gene delivery tools, over-coming setbacks experienced with other viral gene delivery systems in early gene therapy trials. Among AAVs, AAV9 can translocate through the blood-brain barrier (BBB), making it a promising gene delivery tool for transducing the central nervous system (CNS) via systemic administration. Recent reports on the shortcomings of AAV9-mediated gene delivery into the CNS require reviewing the molecular base of AAV9 cellular biology. A more detailed understanding of AAV9's cellular entry would eradicate current hurdles and enable more efficient AAV9-based gene therapy approaches. Syndecans, the transmembrane family of heparan-sulfate proteoglycans, facilitate the cellular uptake of various viruses and drug delivery systems. Utilizing human cell lines and syndecan-specific cellular assays, we assessed the involvement of syndecans in AAV9's cellular entry. The ubiquitously expressed isoform, syndecan-4 proved its superiority in facilitating AAV9 internalization among syndecans. Introducing syndecan-4 into poorly transducible cell lines enabled robust AAV9-dependent gene transduction, while its knockdown reduced AAV9's cellular entry. Attachment of AAV9 to syndecan-4 is mediated not just by the polyanionic heparan-sulfate chains but also by the cell-binding domain of the extracellular syndecan-4 core protein. Co-immunoprecipitation assays and affinity proteomics also confirmed the role of syndecan-4 in the cellular entry of AAV9. Overall, our findings highlight the universally expressed syndecan-4 as a significant contributor to the cellular internalization of AAV9 and provide a molecular-based, rational explanation for the low gene delivery potential of AAV9 into the CNS.
Collapse
|
8
|
Peng Y, Zeng Q, Wan L, Ma E, Li H, Yang X, Zhang Y, Huang L, Lin H, Feng J, Xu Y, Li J, Liu M, Liu J, Lin C, Sun Z, Cheng G, Zhang X, Liu J, Li D, Wei M, Mo Y, Mu X, Deng X, Zhang D, Dong S, Huang H, Fang Y, Gao Q, Yang X, Wu F, Zhong H, Wei C. GP73 is a TBC-domain Rab GTPase-activating protein contributing to the pathogenesis of non-alcoholic fatty liver disease without obesity. Nat Commun 2021; 12:7004. [PMID: 34853313 PMCID: PMC8636488 DOI: 10.1038/s41467-021-27309-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
The prevalence of non-obese nonalcoholic fatty liver disease (NAFLD) is increasing worldwide with unclear etiology and pathogenesis. Here, we show GP73, a Golgi protein upregulated in livers from patients with a variety of liver diseases, exhibits Rab GTPase-activating protein (GAP) activity regulating ApoB export. Upon regular-diet feeding, liver-GP73-high mice display non-obese NAFLD phenotype, characterized by reduced body weight, intrahepatic lipid accumulation, and gradual insulin resistance development, none of which can be recapitulated in liver-GAP inactive GP73-high mice. Common and specific gene expression signatures associated with GP73-induced non-obese NAFLD and high-fat diet (HFD)-induced obese NAFLD are revealed. Notably, metformin inactivates the GAP activity of GP73 and alleviates GP73-induced non-obese NAFLD. GP73 is pathologically elevated in NAFLD individuals without obesity, and GP73 blockade improves whole-body metabolism in non-obese NAFLD mouse model. These findings reveal a pathophysiological role of GP73 in triggering non-obese NAFLD and may offer an opportunity for clinical intervention. Dysregulation of lipid metabolism and transport contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here the authors identify GP73 as a TBC-domain Rab GTPase-activating protein that regulates very low-density lipoprotein export and promotes NAFLD development in mice.
Collapse
Affiliation(s)
- Yumeng Peng
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Qiang Zeng
- Health management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huilong Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Haotian Lin
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiangyue Feng
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yixin Xu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Changqin Lin
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Zhiwei Sun
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuemiao Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongrui Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Meng Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yunhai Mo
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xuetao Mu
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Deng
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dandan Zhang
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siqing Dong
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hanqing Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yi Fang
- Department of Endocrinology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Xiaoli Yang
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| |
Collapse
|
9
|
McNeal AS, Belote RL, Zeng H, Urquijo M, Barker K, Torres R, Curtin M, Shain AH, Andtbacka RHI, Holmen S, Lum DH, McCalmont TH, VanBrocklin MW, Grossman D, Wei ML, Lang UE, Judson-Torres RL. BRAF V600E induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. eLife 2021; 10:e70385. [PMID: 34812139 PMCID: PMC8610417 DOI: 10.7554/elife.70385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.
Collapse
Affiliation(s)
- Andrew S McNeal
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Hanlin Zeng
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | | | - Rodrigo Torres
- University of California, San FranciscoSan FranciscoUnited States
| | | | - A Hunter Shain
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert HI Andtbacka
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Sheri Holmen
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - David H Lum
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | - Matt W VanBrocklin
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Douglas Grossman
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Maria L Wei
- University of California, San FranciscoSan FranciscoUnited States
| | - Ursula E Lang
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert L Judson-Torres
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| |
Collapse
|
10
|
Bunz M, Ritter M, Schindler M. HCV egress - unconventional secretion of assembled viral particles. Trends Microbiol 2021; 30:364-378. [PMID: 34483048 DOI: 10.1016/j.tim.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
It is believed that hepatitis C virus (HCV) particles are released through the canonical secretory route: from the endoplasmic reticulum (ER), via the Golgi, to the plasma membrane. While the Golgi is important for HCV release per se, its direct involvement in the trafficking of assembled virions has not yet been established. In fact, data from studies analyzing HCV egress are compatible with several potential pathways of HCV secretion. Here, we summarize and discuss the current knowledge related to the HCV export pathway. Apart from the prototypical anterograde transport, possible routes of HCV release include ER-to-endosomal transport, secretory autophagy, and poorly described mechanisms of unconventional protein secretion. Studying HCV egress promises to shed light on unconventional cellular trafficking and secretory routes.
Collapse
Affiliation(s)
- Maximilian Bunz
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Embarc-Buh A, Francisco-Velilla R, Martinez-Salas E. RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses 2021; 13:952. [PMID: 34064059 PMCID: PMC8224014 DOI: 10.3390/v13060952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.
Collapse
Affiliation(s)
| | | | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain; (A.E.-B.); (R.F.-V.)
| |
Collapse
|
12
|
Assembly and Cellular Exit of Coronaviruses: Hijacking an Unconventional Secretory Pathway from the Pre-Golgi Intermediate Compartment via the Golgi Ribbon to the Extracellular Space. Cells 2021; 10:cells10030503. [PMID: 33652973 PMCID: PMC7996754 DOI: 10.3390/cells10030503] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that—besides traditional ER-Golgi communication—the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.
Collapse
|
13
|
Zhang L, Zhao D, Jin M, Song M, Liu S, Guo K, Zhang Y. Rab18 binds to classical swine fever virus NS5A and mediates viral replication and assembly in swine umbilical vein endothelial cells. Virulence 2021; 11:489-501. [PMID: 32419589 PMCID: PMC7239025 DOI: 10.1080/21505594.2020.1767356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Classical swine fever virus (CSFV), a positive-sense RNA virus, hijacks cell host proteins for its own replication. Rab18, a small Rab GTPase, regulates intracellular membrane-trafficking events between various compartments in cells and is involved in the life cycle of multiple viruses. However, the effect of Rab18 on the production of CSFV remains uncertain. In this study, we showed that knockdown of Rab18 by lentiviruses inhibited CSFV production, while overexpression of Rab18 by lentiviruses enhanced CSFV production. Subsequent experiments revealed that the negative-mutant Rab18-S22 N inhibited CSFV infection, while the positive-mutant Rab18-Q67 L enhanced CSFV infection. Furthermore, we showed that CSFV RNA replication and virion assembly, measured by real-time fluorescence quantitative PCR (RT-qPCR), indirect immunofluorescence assay (IFA), and confocal microscopy, were reduced in cells lacking Rab18 expression. In addition, co-immunoprecipitation, GST-pulldown, and confocal microscopy assays revealed that Rab18 bound to the viral protein NS5A. Further, NS5A was shown to be redistributed in Rab18 knockdown cells. Taken together, these findings demonstrate Rab18 as a novel host factor required for CSFV RNA replication and particle assembly by interaction with the viral protein NS5A.
Collapse
Affiliation(s)
- Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Di Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingxing Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanchuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Westrate LM, Hoyer MJ, Nash MJ, Voeltz GK. Vesicular and uncoated Rab1-dependent cargo carriers facilitate ER to Golgi transport. J Cell Sci 2020; 133:jcs239814. [PMID: 32616562 PMCID: PMC7390636 DOI: 10.1242/jcs.239814] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 06/19/2020] [Indexed: 01/24/2023] Open
Abstract
Secretory cargo is recognized, concentrated and trafficked from endoplasmic reticulum (ER) exit sites (ERES) to the Golgi. Cargo export from the ER begins when a series of highly conserved COPII coat proteins accumulate at the ER and regulate the formation of cargo-loaded COPII vesicles. In animal cells, capturing live de novo cargo trafficking past this point is challenging; it has been difficult to discriminate whether cargo is trafficked to the Golgi in a COPII-coated vesicle. Here, we describe a recently developed live-cell cargo export system that can be synchronously released from ERES to illustrate de novo trafficking in animal cells. We found that components of the COPII coat remain associated with the ERES while cargo is extruded into COPII-uncoated, non-ER associated, Rab1 (herein referring to Rab1a or Rab1b)-dependent carriers. Our data suggest that, in animal cells, COPII coat components remain stably associated with the ER at exit sites to generate a specialized compartment, but once cargo is sorted and organized, Rab1 labels these export carriers and facilitates efficient forward trafficking.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Melissa J Hoyer
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Michael J Nash
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Gia K Voeltz
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Zhang L, Wang T, Song M, Jin M, Liu S, Guo K, Zhang Y. Rab1b-GBF1-ARFs mediated intracellular trafficking is required for classical swine fever virus replication in swine umbilical vein endothelial cells. Vet Microbiol 2020; 246:108743. [PMID: 32605744 DOI: 10.1016/j.vetmic.2020.108743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 01/24/2023]
Abstract
Classical swine fever virus (CSFV), a plus-sense RNA virus, utilizes host intracellular membrane organelles for its replication. Our previous studies have shown that disruption of the intracellular membrane-trafficking events can inhibit CSFV replication. However, the underlying mechanism of this process in CSFV infection has not been elucidated. To determine the role of Golgi-associated anterograde and retrograde trafficking in CSFV replication, we revealed the effect of vesicular transport between Golgi and ER inhibitors Brefeldin A (BFA) and 2,2-methyl-N-(2,4,6,-trimethoxyphenyl) dodecanamide (CI-976), the GBF1 inhibitor golgicide A (GCA) on virus production. Our results showed that disruption of vesicular trafficking by BFA, CI-976, and GCA significantly inhibited CSFV infection. Subsequent experiments revealed that knockdown of Rab1b by lentiviruses and negative-mutant Rab1b-N121I transfection inhibited CSFV infection. Furthermore, we showed that the Rab1b downstream vesicular component effectors GBF1, and class I and class II ADP-ribosylation factors (ARFs) were also involved in virus replication. In addition, confocal microscopy assay showed that CSFV infection disrupted the Golgi apparatus resulting in extended Golgi distribution around the nucleus. We also showed that cell secretory pathway, measured using Gaussia luciferase flash assay, was blocked in CSFV infected cells. Taken together, these findings demonstrate that CSFV utilizes Rab1b-GBF1-ARFs mediated trafficking to promote its own replication. These findings also provide new insights into the intracellular trafficking pathways utilized for CSFV life cycle.
Collapse
Affiliation(s)
- Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingxing Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanchuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Whole Lotta Lipids-from HCV RNA Replication to the Mature Viral Particle. Int J Mol Sci 2020; 21:ijms21082888. [PMID: 32326151 PMCID: PMC7215355 DOI: 10.3390/ijms21082888] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Replication of the hepatitis C virus (HCV) strongly relies on various lipid metabolic processes in different steps of the viral life cycle. In general, HCV changes the cells' lipidomic profile by differentially regulating key pathways of lipid synthesis, remodeling, and utilization. In this review, we sum up the latest data mainly from the past five years, emphasizing the role of lipids in HCV RNA replication, assembly, and egress. In detail, we highlight changes in the fatty acid content as well as alterations of the membrane lipid composition during replication vesicle formation. We address the role of lipid droplets as a lipid provider during replication and as an essential hub for HCV assembly. Finally, we depict different ideas of HCV maturation and egress including lipoprotein association and potential secretory routes.
Collapse
|
17
|
Cosset FL, Mialon C, Boson B, Granier C, Denolly S. HCV Interplay with Lipoproteins: Inside or Outside the Cells? Viruses 2020; 12:v12040434. [PMID: 32290553 PMCID: PMC7232430 DOI: 10.3390/v12040434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major public health issue leading to chronic liver diseases. HCV particles are unique owing to their particular lipid composition, namely the incorporation of neutral lipids and apolipoproteins. The mechanism of association between HCV virion components and these lipoproteins factors remains poorly understood as well as its impact in subsequent steps of the viral life cycle, such as entry into cells. It was proposed that the lipoprotein biogenesis pathway is involved in HCV morphogenesis; yet, recent evidence indicated that HCV particles can mature and evolve biochemically in the extracellular medium after egress. In addition, several viral, cellular and blood components have been shown to influence and regulate this specific association. Finally, this specific structure and composition of HCV particles was found to influence entry into cells as well as their stability and sensitivity to neutralizing antibodies. Due to its specific particle composition, studying the association of HCV particles with lipoproteins remains an important goal towards the rational design of a protective vaccine.
Collapse
|
18
|
Dao Thi VL, Wu X, Belote RL, Andreo U, Takacs CN, Fernandez JP, Vale-Silva LA, Prallet S, Decker CC, Fu RM, Qu B, Uryu K, Molina H, Saeed M, Steinmann E, Urban S, Singaraja RR, Schneider WM, Simon SM, Rice CM. Stem cell-derived polarized hepatocytes. Nat Commun 2020; 11:1677. [PMID: 32245952 PMCID: PMC7125181 DOI: 10.1038/s41467-020-15337-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Human stem cell-derived hepatocyte-like cells (HLCs) offer an attractive platform to study liver biology. Despite their numerous advantages, HLCs lack critical in vivo characteristics, including cell polarity. Here, we report a stem cell differentiation protocol that uses transwell filters to generate columnar polarized HLCs with clearly defined basolateral and apical membranes separated by tight junctions. We show that polarized HLCs secrete cargo directionally: Albumin, urea, and lipoproteins are secreted basolaterally, whereas bile acids are secreted apically. Further, we show that enterically transmitted hepatitis E virus (HEV) progeny particles are secreted basolaterally as quasi-enveloped particles and apically as naked virions, recapitulating essential steps of the natural infectious cycle in vivo. We also provide proof-of-concept that polarized HLCs can be used for pharmacokinetic and drug-drug interaction studies. This novel system provides a powerful tool to study hepatocyte biology, disease mechanisms, genetic variation, and drug metabolism in a more physiologically relevant setting.
Collapse
Affiliation(s)
- Viet Loan Dao Thi
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.
| | - Xianfang Wu
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| | - Rachel L Belote
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84105, USA
| | - Ursula Andreo
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Constantin N Takacs
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Joseph P Fernandez
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Luis Andre Vale-Silva
- Department of Biology, New York University, New York, NY, USA
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, BIOQUANT, IPMB, University of Heidelberg, Heidelberg, Germany
| | - Sarah Prallet
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Charlotte C Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Urban
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Roshni R Singaraja
- A*STAR (Agency for Science, Technology and Research) Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - William M Schneider
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
19
|
Belote RL, Simon SM. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol 2019; 219:132739. [PMID: 31821412 PMCID: PMC7039208 DOI: 10.1083/jcb.201902014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/19/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023] Open
Abstract
Melanocytes are the neural crest-derived pigment-producing cells of the skin that possess dendrites. Yet little is known about how melanocyte dendrites receive and process information from neighboring cells. Here, using a co-culture system to interrogate the interaction between melanocyte dendrites and keratinocytes, we show that signals from neighboring keratinocytes trigger local compartmentalized Ca2+ transients within the melanocyte dendrites. The localized dendritic Ca2+ transients could be triggered by two keratinocyte-secreted factors, endothelin and acetylcholine, which acted via specific melanocyte receptors. Furthermore, compartmentalized Ca2+ transients were also generated on discrete dendritic spine-like structures on the melanocytes. These spines were also present in intact human skin. Our findings provide insights into how melanocyte dendrites communicate with neighboring cells and offer a new model system for studying compartmentalized signaling in dendritic structures.
Collapse
|
20
|
Castro V, Calvo G, Ávila-Pérez G, Dreux M, Gastaminza P. Differential Roles of Lipin1 and Lipin2 in the Hepatitis C Virus Replication Cycle. Cells 2019; 8:cells8111456. [PMID: 31752156 PMCID: PMC6912735 DOI: 10.3390/cells8111456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although their origin, nature and structure are not identical, a common feature of positive-strand RNA viruses is their ability to subvert host lipids and intracellular membranes to generate replication and assembly complexes. Recently, lipin1, a cellular enzyme that converts phosphatidic acid into diacylglycerol, has been implicated in the formation of the membranous web that hosts hepatitis C virus (HCV) replicase. In the liver, lipin1 cooperates with lipin2 to maintain glycerolipid homeostasis. We extended our previous study of the lipin family on HCV infection, by determining the impact of the lipin2 silencing on viral replication. Our data reveal that lipin2 silencing interferes with HCV virion secretion at late stages of the infection, without significantly affecting viral replication or assembly. Moreover, uninfected lipin2-, but not lipin1-deficient cells display alterations in mitochondrial and Golgi apparatus morphology, suggesting that lipin2 contributes to the maintenance of the overall organelle architecture. Finally, our data suggest a broader function of lipin2 for replication of HCV and other RNA viruses, in contrast with the specific impact of lipin1 silencing on HCV replication. Overall, this study reveals distinctive functions of lipin1 and lipin2 in cells of hepatic origin, a context in which they are often considered functionally redundant.
Collapse
Affiliation(s)
- Victoria Castro
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Gema Calvo
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France;
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
- Correspondence: ; Tel.: +34-91-585-4678; Fax: +34-91-585-4506
| |
Collapse
|
21
|
Vieyres G, Pietschmann T. HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat before Exit. Cells 2019; 8:cells8030233. [PMID: 30871009 PMCID: PMC6468556 DOI: 10.3390/cells8030233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
The replication cycle of the liver-tropic hepatitis C virus (HCV) is tightly connected to the host lipid metabolism, during the virus entry, replication, assembly and egress stages, but also while the virus circulates in the bloodstream. This interplay coins viral particle properties, governs viral cell tropism, and facilitates immune evasion. This review summarizes our knowledge of these interactions focusing on the late steps of the virus replication cycle. It builds on our understanding of the cell biology of lipid droplets and the biosynthesis of liver lipoproteins and attempts to explain how HCV hijacks these organelles and pathways to assemble its lipo-viro-particles. In particular, this review describes (i) the mechanisms of viral protein translocation to and from the lipid droplet surface and the orchestration of an interface between replication and assembly complexes, (ii) the importance of the triglyceride mobilization from the lipid droplets for HCV assembly, (iii) the interplay between HCV and the lipoprotein synthesis pathway including the role played by apolipoproteins in virion assembly, and finally (iv) the consequences of these complex virus–host interactions on the virion composition and its biophysical properties. The wealth of data accumulated in the past years on the role of the lipid metabolism in HCV assembly and its imprint on the virion properties will guide vaccine design efforts and reinforce our understanding of the hepatic lipid metabolism in health and disease.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
22
|
Tsai P, Lin TY, Cheng SL, Sun HY, Chen SF, Young KC. Differential dynamics of hepatic protein expressions with long-term cultivated hepatitis C virus infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:715-723. [PMID: 30837187 DOI: 10.1016/j.jmii.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The liver maintains blood chemical homeostasis by active uptake and secretion through endocytosis, exocytosis, and intracellular trafficking between the plasma and intracellular membranes. Hepatitis C virus (HCV) infection affects the host membrane architecture and might thus impair the regulation of the cellular transportation machinery. Additionally, the hepatic expressions of differential protein dynamics with long-term HCV infection remain fully recover. METHODS In this study, comparative proteomic analysis was performed in HCV-infected and mock-control Huh7 cells according to the viral dynamics of exponential, plateau, declined, and silencing phases at the acute stage, and the chronic stage. The proteins with <0.8-fold and ≥1.25-fold changes in expression were analyzed using functional pathway clustering prediction. RESULTS The combined experimental repetitions identified full-spectrum cellular proteins in each of 5 sample sets from acute exponential, plateau, declined, and silencing phases, and the chronic stage. The clustering results revealed that HCV infection might differentiate regulatory pathways involving extracellular exosome, cadherin, melanosome, and RNA binding. Overall host proteins in HCV-infected cells exhibited kinetic pattern 1, in which cellular expression was downregulated from the acute exponential to plateau phases, reached a nadir, and was then elevated at the chronic stage. The proteins involved in the membrane-budding pathway exhibited kinetic pattern 2, in which their expressions were distinctly downregulated at the chronic stage. CONCLUSION The current comparative proteomics revealed the differential regulatory effects of HCV infection on host intracellular transport functional pathways, which might contribute to the pathogenic mechanisms of HCV in hepatocytes that sustain long-term infection.
Collapse
Affiliation(s)
- Peiju Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tze-Yu Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Shiang-Lin Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| | - Kung-Chia Young
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Fernandez-Chamorro J, Francisco-Velilla R, Ramajo J, Martinez-Salas E. Rab1b and ARF5 are novel RNA-binding proteins involved in FMDV IRES-driven RNA localization. Life Sci Alliance 2019; 2:e201800131. [PMID: 30655362 PMCID: PMC6337736 DOI: 10.26508/lsa.201800131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/07/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are organized in domains that guide internal initiation of translation. Here, we have combined proteomic and imaging analysis to study novel foot-and-mouth disease virus IRES interactors recognizing specific RNA structural subdomains. Besides known picornavirus IRES-binding proteins, we identified novel factors belonging to networks involved in RNA and protein transport. Among those, Rab1b and ARF5, two components of the ER-Golgi, revealed direct binding to IRES transcripts. However, whereas Rab1b stimulated IRES function, ARF5 diminished IRES activity. RNA-FISH studies revealed novel features of the IRES element. First, IRES-RNA formed clusters within the cell cytoplasm, whereas cap-RNA displayed disperse punctate distribution. Second, the IRES-driven RNA localized in close proximity with ARF5 and Rab1b, but not with the dominant-negative of Rab1b that disorganizes the Golgi. Thus, our data suggest a role for domain 3 of the IRES in RNA localization around ER-Golgi, a ribosome-rich cellular compartment.
Collapse
Affiliation(s)
- Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge Ramajo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Encarnación Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Lassen S, Grüttner C, Nguyen-Dinh V, Herker E. Perilipin-2 is critical for efficient lipoprotein and hepatitis C virus particle production. J Cell Sci 2019; 132:jcs.217042. [PMID: 30559250 DOI: 10.1242/jcs.217042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
In hepatocytes, PLIN2 is the major protein coating lipid droplets (LDs), an organelle the hepatitis C virus (HCV) hijacks for virion morphogenesis. We investigated the consequences of PLIN2 deficiency on LDs and on HCV infection. Knockdown of PLIN2 did not affect LD homeostasis, likely due to compensation by PLIN3, but severely impaired HCV particle production. PLIN2-knockdown cells had slightly larger LDs with altered protein composition, enhanced local lipase activity and higher β-oxidation capacity. Electron micrographs showed that, after PLIN2 knockdown, LDs and HCV-induced vesicular structures were tightly surrounded by ER-derived double-membrane sacs. Strikingly, the LD access for HCV core and NS5A proteins was restricted in PLIN2-deficient cells, which correlated with reduced formation of intracellular HCV particles that were less infectious and of higher density, indicating defects in maturation. PLIN2 depletion also reduced protein levels and secretion of ApoE due to lysosomal degradation, but did not affect the density of ApoE-containing lipoproteins. However, ApoE overexpression in PLIN2-deficient cells did not restore HCV spreading. Thus, PLIN2 expression is required for trafficking of core and NS5A proteins to LDs, and for formation of functional low-density HCV particles prior to ApoE incorporation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Susan Lassen
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Cordula Grüttner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Van Nguyen-Dinh
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany .,Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
25
|
Elgner F, Hildt E, Bender D. Relevance of Rab Proteins for the Life Cycle of Hepatitis C Virus. Front Cell Dev Biol 2018; 6:166. [PMID: 30564577 PMCID: PMC6288913 DOI: 10.3389/fcell.2018.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Although potent direct-acting antiviral drugs for the treatment of chronic hepatitis C virus (HCV) infection are licensed, there are more than 70 million individuals suffering from chronic HCV infection. In light of the limited access to these drugs, high costs, and a lot of undiagnosed cases, it is expected that the number of HCV cases will not decrease worldwide in the next years. Therefore, and due to the paradigmatic character of HCV for deciphering the crosstalk between viral pathogens and the host cell, characterization of HCV life cycle remains a challenge. HCV belongs to the family of Flaviviridae. As an enveloped virus HCV life cycle depends in many steps on intracellular trafficking. Rab GTPases, a large family of small GTPases, play a central role in intracellular trafficking processes controlling fusion, uncoating, vesicle budding, motility by recruiting specific effector proteins. This review describes the relevance of various Rab proteins for the different steps of the HCV life cycle.
Collapse
Affiliation(s)
- Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
26
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Abstract
Successful viral infection, as well as any resultant antiviral response, relies on numerous sequential interactions between host and viral factors. These interactions can take the form of affinity-based interactions between viral and host macromolecules or active, enzyme-based interactions, consisting both of direct enzyme activity performed by viral enzymes and indirect modulation of the activity of the host cell's enzymes via viral interference. This activity has the potential to transform the local microenvironment to the benefit or detriment of both the virus and the host, favouring either the continuation of the viral life cycle or the host's antiviral response. Comprehensive characterisation of enzymatic activity during viral infection is therefore necessary for the understanding of virally induced diseases. Activity-based protein profiling techniques have been established as effective and practicable tools with which to interrogate the regulation of enzymes' catalytic activity and the roles played by these enzymes in various cell processes. This paper will review the contributions of these techniques in characterising the roles of both host and viral enzymes during viral infection in humans.
Collapse
Affiliation(s)
- Benjamin F. Cravatt
- grid.214007.00000000122199231Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Ku-Lung Hsu
- grid.27755.320000 0000 9136 933XDepartment of Chemistry, University of Virginia, Charlottesville, VA USA
| | - Eranthie Weerapana
- grid.208226.c0000 0004 0444 7053Department of Chemistry, Boston College, Chestnut Hill, MA USA
| |
Collapse
|