1
|
Velasco‐Silva JN, Wilkerson JL, Ramos D, Low HK, Bowman F, Evason KJ, Boudina S, Holland WL, Ducker GS. Loss of hepatic autophagy induces α-cell proliferation through impaired glutamine-dependent gluconeogenesis. Physiol Rep 2025; 13:e70381. [PMID: 40420631 PMCID: PMC12106947 DOI: 10.14814/phy2.70381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Autophagy, the highly conserved process of protein and organelle degradation, is suppressed in the liver by obesity and metabolic dysfunction-associated fatty liver disease and associated with the development of insulin resistance. We generated adult liver-inducible ATG3 knockout mice (Atg3iLKO) to characterize pathways linking hepatic autophagy with metabolic homeostasis. Genetic loss of hepatic autophagy leads to a reduction in 16-h fasted glucose levels, a decrease in endogenous glucose production rates, and an increase in serum amino acids across the fed and fasted states. These changes collectively reflect a loss of hepatic gluconeogenic enzyme activity and not a general inability to degrade amino acids in the liver. Increased circulating glutamine levels resulting from this are associated with an induction of α-cell hyperplasia, leading to constitutively elevated glucagon levels. However, the loss of hepatic gluconeogenesis renders these animals highly glucagon resistant. Collectively, our data demonstrate that loss of hepatic autophagy is sufficient to activate the hepatic α-islet cell axis, leading to hyperglucagonemia with impaired glucose production.
Collapse
Affiliation(s)
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Daniela Ramos
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Hayden K. Low
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
| | - Faith Bowman
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | | - Sihem Boudina
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - William L. Holland
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | |
Collapse
|
2
|
Snyder J, Jiang CS, Choi RH, Morgan T, Roman J, Underwood L, Lucchese AM, Montgomery S, Grisanti LA, Doliba N, Holland WL, Sato PY. Cardioprotective effect of genetic ablation of the G-protein-coupled receptor kinase GRK2 in adult pancreatic β-cells during high-fat diet. J Biol Chem 2025; 301:108388. [PMID: 40054692 PMCID: PMC12018985 DOI: 10.1016/j.jbc.2025.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
Cardiovascular diseases are a major comorbidity factor in patients with type 2 diabetes and a leading cause of death among them. Yet, mechanistically, how impairment in pancreatic islets alters cardiac function under different metabolic states remains largely unknown. Here, we investigate the role of the G-protein-coupled receptor kinase 2 (GRK2) in regulating islet adaptations to an obesogenic diet and its impact on myocardial function. Using a novel inducible β-cell-specific GRK2 knockout mouse model (βGRK2KO), we establish that loss of adult β-cell GRK2 delays metabolic islet maladaptation, protecting the heart against obesity-induced cardiac dysfunction. βGRK2KO are more insulin-sensitive than control mice and have improved cardiac function and myocardial morphology. Thus, genetic ablation of GRK2 in adult β-cells during an obesogenic diet play a cardioprotective role. This study prompts a novel therapeutic window for GRK2 intervention strategies for diabetic patients prone to cardiac dysfunction.
Collapse
Affiliation(s)
- Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Chun-Sun Jiang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ran Hee Choi
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Taylor Morgan
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jeffrey Roman
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lilly Underwood
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anna Maria Lucchese
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Sarah Montgomery
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Nicolai Doliba
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Priscila Y Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Bertinat R, Holyoak T, Gatica R, Jara N, González-Chavarría I, Westermeier F. The neglected PCK1/glucagon (inter)action in nutrient homeostasis beyond gluconeogenesis: Disease pathogenesis and treatment. Mol Metab 2025; 94:102112. [PMID: 39954782 PMCID: PMC11909762 DOI: 10.1016/j.molmet.2025.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glucagon plays a central role in hepatic adaptation during fasting, with the upregulation of hepatic phosphoenolpyruvate carboxykinase 1 (PCK1) traditionally associated with increased gluconeogenesis. However, recent experimental models and clinical studies have challenged this view, suggesting a more complex interplay between PCK1 and glucagon, which extends beyond gluconeogenesis and has broader implications for metabolic regulation in health and disease. SCOPE OF REVIEW This review provides a comprehensive overview of the current evidence on the multifaceted roles of PCK1 in glucagon-dependent hepatic adaptation during fasting, which is crucial for maintaining systemic homeostasis not only of glucose, but also of lipids and amino acids. We explore the relationship between PCK1 deficiency and glucagon resistance in metabolic disorders, including inherited PCK1 deficiency and metabolic dysfunction-associated steatotic liver disease (MASLD), and compare findings from experimental animal models with whole-body or tissue-specific ablation of PCK1 or the glucagon receptor. We propose new research platforms to advance the therapeutic potential of targeting PCK1 in metabolic diseases. MAJOR CONCLUSIONS We propose that hepatic PCK1 deficiency might be an acquired metabolic disorder linking alterations in lipid metabolism with impaired glucagon signaling. Our findings highlight interesting links between glycerol, PCK1 deficiency, elevated plasma alanine levels and glucagon resistance. We conclude that the roles of PCK1 and glucagon in metabolic regulation are more complex than previously assumed. In this (un)expected scenario, hepatic PCK1 deficiency and glucagon resistance appear to exert limited control over glycemia, but have broader metabolic effects related to lipid and amino acid dysregulation. Given the shift in glucagon research from receptor inhibition to activation, we propose that a similar paradigm shift is needed in the study of hepatic PCK1. Understanding PCK1 expression and activity in the glucagon-dependent hepatic adaptation to fasting might provide new perspectives and therapeutic opportunities for metabolic diseases.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile.
| | - Todd Holyoak
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nery Jara
- Departamento de Farmacología, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH JOANNEUM University of Applied Sciences, Graz, Austria; Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
4
|
Montefusco D, Jamil M, Canals D, Saligrama S, Yue Y, Allegood J, Cowart LA. SPTLC3 regulates plasma membrane sphingolipid composition to facilitate hepatic gluconeogenesis. Cell Rep 2024; 43:115054. [PMID: 39661520 PMCID: PMC12004358 DOI: 10.1016/j.celrep.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024] Open
Abstract
SPTLC3, an inducible subunit of the serine palmitoyltransferase (SPT) complex, causes production of alternative sphingoid bases, including a 16-carbon dihydrosphingosine, whose biological function is only beginning to emerge. High-fat feeding induced SPTLC3 in the liver, prompting us to produce a liver-specific knockout mouse line. Following high-fat feeding, knockout mice showed decreased fasting blood glucose, and knockout primary hepatocytes showed suppressed glucose production, a core function of hepatocytes. Stable isotope tracing revealed suppression of the gluconeogenic pathway, finding that SPTLC3 was required to maintain expression of key gluconeogenic genes via adenylate cyclase/cyclic AMP (cAMP)/cAMP response element binding protein (CREB) signaling. Additionally, by employing a combination of a recently developed lipidomics methodology, exogenous C14/C16 fatty acid treatment, and in situ adenylate cyclase activity, we implicated a functional interaction between sphingomyelin with a d16 backbone and adenylate cyclase at the plasma membrane. This work pinpoints a specific sphingolipid-protein functional interaction with broad implications for understanding sphingolipid signaling and metabolic disease.
Collapse
Affiliation(s)
- David Montefusco
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Maryam Jamil
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Siri Saligrama
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yang Yue
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Allegood
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - L Ashley Cowart
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Mullur N, Morissette A, Morrow NM, Mulvihill EE. GLP-1 receptor agonist-based therapies and cardiovascular risk: a review of mechanisms. J Endocrinol 2024; 263:e240046. [PMID: 39145614 PMCID: PMC11466209 DOI: 10.1530/joe-24-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Cardiovascular outcome trials (CVOTs) in people living with type 2 diabetes mellitus and obesity have confirmed the cardiovascular benefits of glucagon-like peptide 1 receptor agonists (GLP-1RAs), including reduced cardiovascular mortality, lower rates of myocardial infarction, and lower rates of stroke. The cardiovascular benefits observed following GLP-1RA treatment could be secondary to improvements in glycemia, blood pressure, postprandial lipidemia, and inflammation. Yet, the GLP-1R is also expressed in the heart and vasculature, suggesting that GLP-1R agonism may impact the cardiovascular system. The emergence of GLP-1RAs combined with glucose-dependent insulinotropic polypeptide and glucagon receptor agonists has shown promising results as new weight loss medications. Dual-agonist and tri-agonist therapies have demonstrated superior outcomes in weight loss, lowered blood sugar and lipid levels, restoration of tissue function, and enhancement of overall substrate metabolism compared to using GLP-1R agonists alone. However, the precise mechanisms underlying their cardiovascular benefits remain to be fully elucidated. This review aims to summarize the findings from CVOTs of GLP-1RAs, explore the latest data on dual and tri-agonist therapies, and delve into potential mechanisms contributing to their cardioprotective effects. It also addresses current gaps in understanding and areas for further research.
Collapse
Affiliation(s)
- Neerav Mullur
- The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | | | - Nadya M Morrow
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
7
|
Gao C, Xiong Z, Liu Y, Wang M, Wang M, Liu T, Liu J, Ren S, Cao N, Yan H, Drucker DJ, Rau CD, Yokota T, Huang J, Wang Y. Glucagon Receptor Antagonist for Heart Failure With Preserved Ejection Fraction. Circ Res 2024; 135:614-628. [PMID: 39011638 PMCID: PMC11325917 DOI: 10.1161/circresaha.124.324706] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.
Collapse
MESH Headings
- Animals
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/drug therapy
- Heart Failure/etiology
- Stroke Volume/drug effects
- Mice, Inbred C57BL
- Mice
- Male
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Obese
- Ventricular Function, Left/drug effects
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/complications
- Disease Models, Animal
- Signal Transduction
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (Z.X.)
| | - Yunxia Liu
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Meng Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Tian Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Shuxun Ren
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Nancy Cao
- School of Medicine and Public Health, University of Wisconsin, Madison (N.C.)
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA (Y.H.)
| | - Daniel J. Drucker
- Department of Medicine, Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada (D.J.D.)
| | - Christoph Daniel Rau
- Computational Medicine Program and Department of Human Genetics, University of North Carolina at Chapel Hill (C.D.R.)
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, and the VA Greater Los Angeles Healthcare System (T.Y.)
| | - Jijun Huang
- Division of Endocrinology, Department of medicine, David Geffen School of Medicine, University of California, Los Angeles (J.H.)
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
- Department of Medicine, Duke University School of Medicine, Durham, NC (Y.W.)
| |
Collapse
|
8
|
Wang L, Sun Y, Yang L, Wang S, Liu C, Wang Y, Niu Y, Huang Z, Zhang J, Wang C, Dong L. Engineering an energy-dissipating hybrid tissue in vivo for obesity treatment. Cell Rep 2024; 43:114425. [PMID: 38970789 DOI: 10.1016/j.celrep.2024.114425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse. The immunomodulatory signals induce the host stromal cells to create an immunosuppressive niche that protects the functional cells, which are overexpressing the uncoupling protein 1 (UCP1), from immune rejection. Consequently, these endogenous and exogenous cells co-develop a hybrid tissue that sustainedly produces UCP1 to accelerate the host's energy expenditure. Systematic experiments in high-fat diet (HFD) and transgenic (ob/ob) mice show that EDHT efficiently reduces body weight and relieves obesity-associated pathological conditions. Importantly, an 18-month observation for safety assessment excludes cell leakage from EDHT and reports no adverse physiological responses. Overall, EDHT demonstrates convincing efficacy and safety in controlling body weight.
Collapse
Affiliation(s)
- Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yajie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Lifang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunyan Liu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Yulian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Medical School, Nanjing University, Nanjing 210093, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
9
|
Nishida K, Ueno S, Seino Y, Hidaka S, Murao N, Asano Y, Fujisawa H, Shibata M, Takayanagi T, Ohbayashi K, Iwasaki Y, Iizuka K, Okuda S, Tanaka M, Fujii T, Tochio T, Yabe D, Yamada Y, Sugimura Y, Hirooka Y, Hayashi Y, Suzuki A. Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2024; 16:2270. [PMID: 39064713 PMCID: PMC11280123 DOI: 10.3390/nu16142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.
Collapse
Affiliation(s)
- Koki Nishida
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Shinji Ueno
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yusuke Seino
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Shihomi Hidaka
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Naoya Murao
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yuki Asano
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Haruki Fujisawa
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Megumi Shibata
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Takeshi Takayanagi
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan;
| | - Shoei Okuda
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Mamoru Tanaka
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
- Center for One Medicine Innovative Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yoshihisa Sugimura
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan;
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Suzuki
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| |
Collapse
|
10
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
11
|
Gandasi NR, Gao R, Kothegala L, Pearce A, Santos C, Acreman S, Basco D, Benrick A, Chibalina MV, Clark A, Guida C, Harris M, Johnson PRV, Knudsen JG, Ma J, Miranda C, Shigeto M, Tarasov AI, Yeung HY, Thorens B, Asterholm IW, Zhang Q, Ramracheya R, Ladds G, Rorsman P. GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion. Diabetologia 2024; 67:528-546. [PMID: 38127123 PMCID: PMC10844371 DOI: 10.1007/s00125-023-06060-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by β-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.
Collapse
Affiliation(s)
- Nikhil R Gandasi
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lakshmi Kothegala
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Cristiano Santos
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Samuel Acreman
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Anna Benrick
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford, UK
- Biomedical Research Centre, Oxford National Institute for Health Research, Churchill Hospital, Oxford, UK
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Caroline Miranda
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Makoto Shigeto
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Ho Yan Yeung
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ingrid W Asterholm
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Patrik Rorsman
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden.
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK.
- Biomedical Research Centre, Oxford National Institute for Health Research, Churchill Hospital, Oxford, UK.
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| |
Collapse
|
12
|
Asadi F, Gunawardana SC, Dolle RE, Piston DW. An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes. JCI Insight 2024; 9:e172626. [PMID: 38258903 PMCID: PMC10906223 DOI: 10.1172/jci.insight.172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.
Collapse
Affiliation(s)
| | | | - Roland E. Dolle
- Center for Drug Discovery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
13
|
Lasher AT, Sun LY. Distinct physiological characteristics and altered glucagon signaling in GHRH knockout mice: Implications for longevity. Aging Cell 2023; 22:e13985. [PMID: 37667562 PMCID: PMC10726877 DOI: 10.1111/acel.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
Our previous research has demonstrated that mice lacking functional growth hormone-releasing hormone (GHRH) exhibit distinct physiological characteristics, including an extended lifespan, a preference for lipid utilization during rest, mild hypoglycemia, and heightened insulin sensitivity. They also show a further increase in lifespan when subjected to caloric restriction. These findings suggest a unique response to fasting, which motivated our current study on the response to glucagon, a key hormone released from the pancreas during fasting that regulates glucose levels, energy expenditure, and metabolism. Our study investigated the effects of an acute glucagon challenge on female GHRH knockout mice and revealed that they exhibit reduced glucose production, likely due to suppressed gluconeogenesis. However, these mice showed an increase in energy expenditure. We also observed alterations in pancreatic islet architecture, with smaller islets and a reduction of insulin-producing beta cells but no changes in glucagon-producing alpha cells. Additionally, the analysis of hepatic glucagon signaling showed a decrease in glucagon receptor expression and phosphorylated CREB. In conclusion, our findings suggest that the unique metabolic phenotype observed in these long-lived mice may be partly explained by changes in glucagon signaling. Further exploration of this pathway may lead to new insights into the regulation of longevity in mammals.
Collapse
Affiliation(s)
- A. Tate Lasher
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
14
|
Wang P, Wei R, Cui X, Jiang Z, Yang J, Zu L, Hong T. Fatty acid β-oxidation and mitochondrial fusion are involved in cardiac microvascular endothelial cell protection induced by glucagon receptor antagonism in diabetic mice. J Diabetes 2023; 15:1081-1094. [PMID: 37596940 PMCID: PMC10755618 DOI: 10.1111/1753-0407.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β-oxidation and mitochondrial fusion in CMECs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Rui Wei
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Zongzhe Jiang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jin Yang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
15
|
Neumann J, Hofmann B, Dhein S, Gergs U. Glucagon and Its Receptors in the Mammalian Heart. Int J Mol Sci 2023; 24:12829. [PMID: 37629010 PMCID: PMC10454195 DOI: 10.3390/ijms241612829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Glucagon exerts effects on the mammalian heart. These effects include alterations in the force of contraction, beating rate, and changes in the cardiac conduction system axis. The cardiac effects of glucagon vary according to species, region, age, and concomitant disease. Depending on the species and region studied, the contractile effects of glucagon can be robust, modest, or even absent. Glucagon is detected in the mammalian heart and might act with an autocrine or paracrine effect on the cardiac glucagon receptors. The glucagon levels in the blood and glucagon receptor levels in the heart can change with disease or simultaneous drug application. Glucagon might signal via the glucagon receptors but, albeit less potently, glucagon might also signal via glucagon-like-peptide-1-receptors (GLP1-receptors). Glucagon receptors signal in a species- and region-dependent fashion. Small molecules or antibodies act as antagonists to glucagon receptors, which may become an additional treatment option for diabetes mellitus. Hence, a novel review of the role of glucagon and the glucagon receptors in the mammalian heart, with an eye on the mouse and human heart, appears relevant. Mouse hearts are addressed here because they can be easily genetically modified to generate mice that may serve as models for better studying the human glucagon receptor.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, D-06097 Halle (Saale), Germany;
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany;
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| |
Collapse
|
16
|
Ajmal N, Bogart MC, Khan P, Max-Harry IM, Nunemaker CS. Emerging Anti-Diabetic Drugs for Beta-Cell Protection in Type 1 Diabetes. Cells 2023; 12:1472. [PMID: 37296593 PMCID: PMC10253164 DOI: 10.3390/cells12111472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not halt disease progression. Thus, an effective therapy may require beta-cell restoration and suppression of the autoimmune response. However, currently, there are no treatment options available that can halt T1D. Within the National Clinical Trial (NCT) database, a vast majority of over 3000 trials to treat T1D are devoted to insulin therapy. This review focuses on non-insulin pharmacological therapies. Many investigational new drugs fall under the category of immunomodulators, such as the recently FDA-approved CD-3 monoclonal antibody teplizumab. Four intriguing candidate drugs fall outside the category of immunomodulators, which are the focus of this review. Specifically, we discuss several non-immunomodulators that may have more direct action on beta cells, such as verapamil (a voltage-dependent calcium channel blocker), gamma aminobutyric acid (GABA, a major neurotransmitter with effects on beta cells), tauroursodeoxycholic acid (TUDCA, an endoplasmic reticulum chaperone), and volagidemab (a glucagon receptor antagonist). These emerging anti-diabetic drugs are expected to provide promising results in both beta-cell restoration and in suppressing cytokine-derived inflammation.
Collapse
Affiliation(s)
- Nida Ajmal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
| | | | - Palwasha Khan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
| | - Ibiagbani M. Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
17
|
Caruso I, Marrano N, Biondi G, Genchi VA, D'Oria R, Sorice GP, Perrini S, Cignarelli A, Natalicchio A, Laviola L, Giorgino F. Glucagon in type 2 diabetes: Friend or foe? Diabetes Metab Res Rev 2023; 39:e3609. [PMID: 36637256 DOI: 10.1002/dmrr.3609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Hyperglucagonemia is one of the 'ominous' eight factors underlying the pathogenesis of type 2 diabetes (T2D). Glucagon is a peptide hormone involved in maintaining glucose homoeostasis by increasing hepatic glucose output to counterbalance insulin action. Long neglected, the introduction of dual and triple agonists exploiting glucagon signalling pathways has rekindled the interest in this hormone beyond its classic effect on glycaemia. Glucagon can promote weight loss by regulating food intake, energy expenditure, and brown and white adipose tissue functions through mechanisms still to be fully elucidated, thus its role in T2D pathogenesis should be further investigated. Moreover, the role of glucagon in the development of T2D micro- and macro-vascular complications is elusive. Mounting evidence suggests its beneficial effect in non-alcoholic fatty liver disease, while few studies postulated its favourable role in peripheral neuropathy and retinopathy. Contrarily, glucagon receptor agonism might induce renal changes resembling diabetic nephropathy, and data concerning glucagon actions on the cardiovascular system are conflicting. This review aims to summarise the available findings on the role of glucagon in the pathogenesis of T2D and its complications. Further experimental and clinical data are warranted to better understand the implications of glucagon signalling modulation with new antidiabetic drugs.
Collapse
Affiliation(s)
- Irene Caruso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Annamaria Genchi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Rossella D'Oria
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Gian Pio Sorice
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Cignarelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Laviola
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Effects of 6-Shogaol on Glucose Uptake and Intestinal Barrier Integrity in Caco-2 Cells. Foods 2023; 12:foods12030503. [PMID: 36766032 PMCID: PMC9913893 DOI: 10.3390/foods12030503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
As the main bioactive component in dried ginger, 6-shogaol has potential hypoglycemic activity, but its mechanism is still unclear. The process of carbohydrate digestion and glucose absorption is closely related to the enzymatic activity of epithelial brush cells, expression of glucose transporters, and permeability of intestinal epithelial cells. Therefore, this study explored the hypoglycemic mechanism of 6-shogaol from the perspective of glucose uptake, absorption transport, and protection of intestinal barrier function. Based on molecular docking, the binding energy of 6-shogaol and α-glucosidase is -6.24 kcal/mol, showing a high binding affinity. Moreover, a-glucosidase enzymatic activity was reduced (-78.96%) when the 6-shogaol concentration was 500 µg/mL. After 6-shogaol intervention, the glucose uptake was reduced; the relative expression of glucose transporters GLUT2 and SGLT1 were down regulated; and tight junction proteins ZO-1, Occludin and Claudin were up regulated in differentiated Caco-2 cells. This study confirmed that 6-shogaol effectively inhibits the activity of α-glucosidase and has beneficial effects on glucose uptake, protection of intestinal barrier function, and promotion of intestinal material absorption.
Collapse
|
19
|
Wang K, Cui X, Li F, Xia L, Wei T, Liu J, Fu W, Yang J, Hong T, Wei R. Glucagon receptor blockage inhibits β-cell dedifferentiation through FoxO1. Am J Physiol Endocrinol Metab 2023; 324:E97-E113. [PMID: 36383639 DOI: 10.1152/ajpendo.00101.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucagon-secreting pancreatic α-cells play pivotal roles in the development of diabetes. Glucagon promotes insulin secretion from β-cells. However, the long-term effect of glucagon on the function and phenotype of β-cells had remained elusive. In this study, we found that long-term glucagon intervention or glucagon intervention with the presence of palmitic acid downregulated β-cell-specific markers and inhibited insulin secretion in cultured β-cells. These results suggested that glucagon induced β-cell dedifferentiation under pathological conditions. Glucagon blockage by a glucagon receptor (GCGR) monoclonal antibody (mAb) attenuated glucagon-induced β-cell dedifferentiation. In primary islets, GCGR mAb treatment upregulated β-cell-specific markers and increased insulin content, suggesting that blockage of endogenous glucagon-GCGR signaling inhibited β-cell dedifferentiation. To investigate the possible mechanism, we found that glucagon decreased FoxO1 expression. FoxO1 inhibitor mimicked the effect of glucagon, whereas FoxO1 overexpression reversed the glucagon-induced β-cell dedifferentiation. In db/db mice and β-cell lineage-tracing diabetic mice, GCGR mAb lowered glucose level, upregulated plasma insulin level, increased β-cell area, and inhibited β-cell dedifferentiation. In aged β-cell-specific FoxO1 knockout mice (with the blood glucose level elevated as a diabetic model), the glucose-lowering effect of GCGR mAb was attenuated and the plasma insulin level, β-cell area, and β-cell dedifferentiation were not affected by GCGR mAb. Our results proved that glucagon induced β-cell dedifferentiation under pathological conditions, and the effect was partially mediated by FoxO1. Our study reveals a novel cross talk between α- and β-cells and is helpful to understand the pathophysiology of diabetes and discover new targets for diabetes treatment.NEW & NOTEWORTHY Glucagon-secreting pancreatic α-cells can interact with β-cells. However, the long-term effect of glucagon on the function and phenotype of β-cells has remained elusive. Our new finding shows that long-term glucagon induces β-cell dedifferentiation in cultured β-cells. FoxO1 inhibitor mimicks whereas glucagon signaling blockage by GCGR mAb reverses the effect of glucagon. In type 2 diabetic mice, GCGR mAb increases β-cell area, improves β-cell function, and inhibits β-cell dedifferentiation, and the effect is partially mediated by FoxO1.
Collapse
Affiliation(s)
- Kangli Wang
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
| | - Fei Li
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
| | - Li Xia
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
| | - Wei Fu
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, https://ror.org/04wwqze12Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
20
|
Kalwat MA, Rodrigues-dos-Santos K, Binns DD, Wei S, Zhou A, Evans MR, Posner BA, Roth MG, Cobb MH. Small molecule glucagon release inhibitors with activity in human islets. Front Endocrinol (Lausanne) 2023; 14:1114799. [PMID: 37152965 PMCID: PMC10157210 DOI: 10.3389/fendo.2023.1114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose Type 1 diabetes (T1D) accounts for an estimated 5% of all diabetes in the United States, afflicting over 1.25 million individuals. Maintaining long-term blood glucose control is the major goal for individuals with T1D. In T1D, insulin-secreting pancreatic islet β-cells are destroyed by the immune system, but glucagon-secreting islet α-cells survive. These remaining α-cells no longer respond properly to fluctuating blood glucose concentrations. Dysregulated α-cell function contributes to hyper- and hypoglycemia which can lead to macrovascular and microvascular complications. To this end, we sought to discover small molecules that suppress α-cell function for their potential as preclinical candidate compounds. Prior high-throughput screening identified a set of glucagon-suppressing compounds using a rodent α-cell line model, but these compounds were not validated in human systems. Results Here, we dissociated and replated primary human islet cells and exposed them to 24 h treatment with this set of candidate glucagon-suppressing compounds. Glucagon accumulation in the medium was measured and we determined that compounds SW049164 and SW088799 exhibited significant activity. Candidate compounds were also counter-screened in our InsGLuc-MIN6 β-cell insulin secretion reporter assay. SW049164 and SW088799 had minimal impact on insulin release after a 24 h exposure. To further validate these hits, we treated intact human islets with a selection of the top candidates for 24 h. SW049164 and SW088799 significantly inhibited glucagon release into the medium without significantly altering whole islet glucagon or insulin content. In concentration-response curves SW088799 exhibited significant inhibition of glucagon release with an IC50 of 1.26 µM. Conclusion Given the set of tested candidates were all top hits from the primary screen in rodent α-cells, this suggests some conservation of mechanism of action between human and rodents, at least for SW088799. Future structure-activity relationship studies of SW088799 may aid in elucidating its protein target(s) or enable its use as a tool compound to suppress α-cell activity in vitro.
Collapse
Affiliation(s)
- Michael A. Kalwat
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Indiana University School of Medicine, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, United States
- *Correspondence: Michael A. Kalwat, ;
| | - Karina Rodrigues-dos-Santos
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Derk D. Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shuguang Wei
- Department Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anwu Zhou
- Department Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Matthew R. Evans
- Department Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bruce A. Posner
- Department Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael G. Roth
- Department Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Melanie H. Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
22
|
Kang Q, Zheng J, Jia J, Xu Y, Bai X, Chen X, Zhang XK, Wong FS, Zhang C, Li M. Disruption of the glucagon receptor increases glucagon expression beyond α-cell hyperplasia in zebrafish. J Biol Chem 2022; 298:102665. [PMID: 36334626 PMCID: PMC9719020 DOI: 10.1016/j.jbc.2022.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jihong Zheng
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ying Xu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuanxuan Bai
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
23
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
24
|
Insights into the Role of Glucagon Receptor Signaling in Metabolic Regulation from Pharmacological Inhibition and Tissue-Specific Knockout Models. Biomedicines 2022; 10:biomedicines10081907. [PMID: 36009454 PMCID: PMC9405517 DOI: 10.3390/biomedicines10081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
While glucagon has long been recognized as the primary counter hormone to insulin’s actions, it has recently gained recognition as a metabolic regulator with its effects extending beyond control of glycemia. Recently developed models of tissue-specific glucagon receptor knockouts have advanced our understanding of this hormone, providing novel insight into the role it plays within organs as well as its systemic effects. Studies where the pharmacological blockade of the glucagon receptor has been employed have proved similarly valuable in the study of organ-specific and systemic roles of glucagon signaling. Studies carried out employing these tools demonstrate that glucagon indeed plays a role in regulating glycemia, but also in amino acid and lipid metabolism, systemic endocrine, and paracrine function, and in the response to cardiovascular injury. Here, we briefly review recent progress in our understanding of glucagon’s role made through inhibition of glucagon receptor signaling utilizing glucagon receptor antagonists and tissue specific genetic knockout models.
Collapse
|
25
|
Cui X, Feng J, Wei T, Gu L, Wang D, Lang S, Yang K, Yang J, Yan H, Wei R, Hong T. Pro-α-cell-derived β-cells contribute to β-cell neogenesis induced by antagonistic glucagon receptor antibody in type 2 diabetic mice. iScience 2022; 25:104567. [PMID: 35789836 PMCID: PMC9249614 DOI: 10.1016/j.isci.2022.104567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
The deficiency of pancreatic β-cells is the key pathogenesis of diabetes, while glucagon-secreting α-cells are another player in the development of diabetes. Here, we aimed to investigate the effects of glucagon receptor (GCGR) antagonism on β-cell neogenesis in type 2 diabetic (T2D) mice and explore the origins of the neogenic β-cells. We showed that GCGR monoclonal antibody (mAb) elevated plasma insulin level and increased β-cell mass in T2D mice. By using α-cell lineage-tracing (glucagon-cre-β-gal) mice and inducible Ngn3+ pancreatic endocrine progenitor lineage-tracing (Ngn3-CreERT2-tdTomato) mice, we found that GCGR mAb treatment promoted α-cell regression to progenitors, and induced Ngn3+ progenitor reactivation and differentiation toward β-cells. Besides, GCGR mAb upregulated the expression levels of β-cell regeneration-associated genes and promoted insulin secretion in primary mouse islets, indicative of a direct effect on β-cell identity. Our findings suggest that GCGR antagonism not only increases insulin secretion but also promotes pro-α-cell-derived β-cell neogenesis in T2D mice. Blockage of α-cell-derived glucagon promotes β-cell regeneration in situ in type 2 diabetic (T2D) mice Glucagon receptor (GCGR) mAb induces the trans-differentiation of α-cells to β-cells GCGR mAb promotes α-cell regression to pancreatic endocrine progenitors GCGR mAb induces Ngn3+ progenitor reactivation and differentiation toward β-cells
Collapse
Affiliation(s)
- Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Dandan Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA
- Beijing Cosci-REMD, Beijing 102206, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
- Corresponding author
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
- Corresponding author
| |
Collapse
|
26
|
Doliba NM, Rozo AV, Roman J, Qin W, Traum D, Gao L, Liu J, Manduchi E, Liu C, Golson ML, Vahedi G, Naji A, Matschinsky FM, Atkinson MA, Powers AC, Brissova M, Kaestner KH, Stoffers DA, for the HPAP Consortium. α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody-positive individuals. J Clin Invest 2022; 132:156243. [PMID: 35642629 PMCID: PMC9151702 DOI: 10.1172/jci156243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDMultiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODSHere, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTSSimilar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSIONWe found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDINGThis work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
Collapse
Affiliation(s)
- Nicolai M. Doliba
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | - Wei Qin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | | | | | | | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria L. Golson
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Golnaz Vahedi
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Mark A. Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, Florida, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | |
Collapse
|
27
|
Qiao L, Saget S, Lu C, Zang T, Dzyuba B, Hay WW, Shao J. The Essential Role of Pancreatic α-Cells in Maternal Metabolic Adaptation to Pregnancy. Diabetes 2022; 71:978-988. [PMID: 35147704 PMCID: PMC9044124 DOI: 10.2337/db21-0923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022]
Abstract
Pancreatic α-cells are important in maintaining metabolic homeostasis, but their role in regulating maternal metabolic adaptations to pregnancy has not been studied. The objective of this study was to determine whether pancreatic α-cells respond to pregnancy and their contribution to maternal metabolic adaptation. With use of C57BL/6 mice, the findings of our study showed that pregnancy induced a significant increase of α-cell mass by promoting α-cell proliferation that was associated with a transitory increase of maternal serum glucagon concentration in early pregnancy. Maternal pancreatic GLP-1 content also was significantly increased during pregnancy. Using the inducible Cre/loxp technique, we ablated the α-cells (α-null) before and during pregnancy while maintaining enteroendocrine L-cells and serum GLP-1 in the normal range. In contrast to an improved glucose tolerance test (GTT) before pregnancy, significantly impaired GTT and remarkably higher serum glucose concentrations in the fed state were observed in α-null dams. Glucagon receptor antagonism treatment, however, did not affect measures of maternal glucose metabolism, indicating a dispensable role of glucagon receptor signaling in maternal glucose homeostasis. However, the GLP-1 receptor agonist improved insulin production and glucose metabolism of α-null dams. Furthermore, GLP-1 receptor antagonist Exendin (9-39) attenuated pregnancy-enhanced insulin secretion and GLP-1 restored glucose-induced insulin secretion of cultured islets from α-null dams. Together, these results demonstrate that α-cells play an essential role in controlling maternal metabolic adaptation to pregnancy by enhancing insulin secretion.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Sarah Saget
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Cindy Lu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Tianyi Zang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Brianna Dzyuba
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | - Jianhua Shao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Corresponding author: Jianhua Shao,
| |
Collapse
|
28
|
Godfrey J, Riscal R, Skuli N, Simon MC. Glucagon signaling via supraphysiologic GCGR can reduce cell viability without stimulating gluconeogenic gene expression in liver cancer cells. Cancer Metab 2022; 10:4. [PMID: 35123542 PMCID: PMC8817478 DOI: 10.1186/s40170-022-00280-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Deregulated glucose metabolism is a critical component of cancer growth and survival, clinically evident via FDG-PET imaging of enhanced glucose uptake in tumor nodules. Tumor cells utilize glucose in a variety of interconnected biochemical pathways to generate energy, anabolic precursors, and other metabolites necessary for growth. Glucagon-stimulated gluconeogenesis opposes glycolysis, potentially representing a pathway-specific strategy for targeting glucose metabolism in tumor cells. Here, we test the hypothesis of whether glucagon signaling can activate gluconeogenesis to reduce tumor proliferation in models of liver cancer.
Methods
The glucagon receptor, GCGR, was overexpressed in liver cancer cell lines consisting of a range of etiologies and genetic backgrounds. Glucagon signaling transduction was measured by cAMP ELISAs, western blots of phosphorylated PKA substrates, and qPCRs of relative mRNA expression of multiple gluconeogenic enzymes. Lastly, cell proliferation and apoptosis assays were performed to quantify the biological effect of glucagon/GCGR stimulation.
Results
Signaling analyses in SNU398 GCGR cells treated with glucagon revealed an increase in cAMP abundance and phosphorylation of downstream PKA substrates, including CREB. qPCR data indicated that none of the three major gluconeogenic genes, G6PC, FBP1, or PCK1, exhibit significantly higher mRNA levels in SNU398 GCGR cells when treated with glucagon; however, this could be partially increased with epigenetic inhibitors. In glucagon-treated SNU398 GCGR cells, flow cytometry analyses of apoptotic markers and growth assays reproducibly measured statistically significant reductions in cell viability. Finally, proliferation experiments employing siCREB inhibition showed no reversal of cell death in SNU398 GCGR cells treated with glucagon, indicating the effects of glucagon in this setting are independent of CREB.
Conclusions
For the first time, we report a potential tumor suppressive role for glucagon/GCGR in liver cancer. Specifically, we identified a novel cell line-specific phenotype, whereby glucagon signaling can induce apoptosis via an undetermined mechanism. Future studies should explore the potential effects of glucagon in diabetic liver cancer patients.
Collapse
|
29
|
Wada E, Kobayashi M, Kohno D, Kikuchi O, Suga T, Matsui S, Yokota-Hashimoto H, Honzawa N, Ikeuchi Y, Tsuneoka H, Hirano T, Obinata H, Sasaki T, Kitamura T. Disordered branched chain amino acid catabolism in pancreatic islets is associated with postprandial hypersecretion of glucagon in diabetic mice. J Nutr Biochem 2021; 97:108811. [PMID: 34197915 DOI: 10.1016/j.jnutbio.2021.108811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/01/2023]
Abstract
Dysregulation of glucagon is associated with the pathophysiology of type 2 diabetes. We previously reported that postprandial hyperglucagonemia is more obvious than fasting hyperglucagonemia in type 2 diabetes patients. However, which nutrient stimulates glucagon secretion in the diabetic state and the underlying mechanism after nutrient intake are unclear. To answer these questions, we measured plasma glucagon levels in diabetic mice after oral administration of various nutrients. The effects of nutrients on glucagon secretion were assessed using islets isolated from diabetic mice and palmitate-treated islets. In addition, we analyzed the expression levels of branched chain amino acid (BCAA) catabolism-related enzymes and their metabolites in diabetic islets. We found that protein, but not carbohydrate or lipid, increased plasma glucagon levels in diabetic mice. Among amino acids, BCAAs, but not the other essential or nonessential amino acids, increased plasma glucagon levels. BCAAs also directly increased the intracellular calcium concentration in α cells. When BCAAs transport was suppressed by an inhibitor of system L-amino acid transporters, glucagon secretion was reduced even in the presence of BCAAs. We also found that the expression levels of BCAA catabolism-related enzymes and their metabolite contents were altered in diabetic islets and palmitate-treated islets compared to control islets, indicating disordered BCAA catabolism in diabetic islets. Furthermore, BCKDK inhibitor BT2 suppressed BCAA-induced hypersecretion of glucagon in diabetic islets and palmitate-treated islets. Taken together, postprandial hypersecretion of glucagon in the diabetic state is attributable to disordered BCAA catabolism in pancreatic islet cells.
Collapse
Affiliation(s)
- Eri Wada
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Osamu Kikuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takayoshi Suga
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Sho Matsui
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan; Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiromi Yokota-Hashimoto
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Norikiyo Honzawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yuichi Ikeuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Haruka Tsuneoka
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Touko Hirano
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsutomu Sasaki
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan; Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
30
|
Huang HX, Shen LL, Huang HY, Zhao LH, Xu F, Zhang DM, Zhang XL, Chen T, Wang XQ, Xie Y, Su JB. Associations of Plasma Glucagon Levels with Estimated Glomerular Filtration Rate, Albuminuria and Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2021; 45:868-879. [PMID: 33752319 PMCID: PMC8640146 DOI: 10.4093/dmj.2020.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by elevated fasting glucagon and impaired suppression of postprandial glucagon secretion, which may participate in diabetic complications. Therefore, we investigated the associations of plasma glucagon with estimated glomerular filtration rate (eGFR), albuminuria and diabetic kidney disease (DKD) in T2DM patients. METHODS Fasting glucagon and postchallenge glucagon (assessed by area under the glucagon curve [AUCgla]) levels were determined during oral glucose tolerance tests. Patients with an eGFR <60 mL/min/1.73 m2 and/or a urinary albumin-to-creatinine ratio (UACR) ≥30 mg/g who presented with diabetic retinopathy were identified as having DKD. RESULTS Of the 2,436 recruited patients, fasting glucagon was correlated with eGFR and UACR (r=-0.112 and r=0.157, respectively; P<0.001), and AUCgla was also correlated with eGFR and UACR (r=-0.267 and r=0.234, respectively; P<0.001). Moreover, 31.7% (n=771) presented with DKD; the prevalence of DKD was 27.3%, 27.6%, 32.5%, and 39.2% in the first (Q1), second (Q2), third (Q3), and fourth quartile (Q4) of fasting glucagon, respectively; and the corresponding prevalence for AUCgla was 25.9%, 22.7%, 33.7%, and 44.4%, respectively. Furthermore, after adjusting for other clinical covariates, the adjusted odds ratios (ORs; 95% confidence intervals) for DKD in Q2, Q3, and Q4 versus Q1 of fasting glucagon were 0.946 (0.697 to 1.284), 1.209 (0.895 to 1.634), and 1.521 (1.129 to 2.049), respectively; the corresponding ORs of AUCgla were 0.825 (0.611 to 1.114), 1.323 (0.989 to 1.769), and 2.066 (1.546 to 2.760), respectively. Additionally, when we restricted our analysis in patients with glycosylated hemoglobin <7.0% (n=471), we found fasting glucagon and AUCgla were still independently associated with DKD. CONCLUSION Both increased fasting and postchallenge glucagon levels were independently associated with DKD in T2DM patients.
Collapse
Affiliation(s)
- Hua-Xing Huang
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Liang-Lan Shen
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Hai-Yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Dong-Mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Tong Chen
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Yan Xie
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| | - Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| |
Collapse
|
31
|
Zhou HM, Ti Y, Wang H, Shang YY, Liu YP, Ni XN, Wang D, Wang ZH, Zhang W, Zhong M. Cell death-inducing DFFA-like effector C/CIDEC gene silencing alleviates diabetic cardiomyopathy via upregulating AMPKa phosphorylation. FASEB J 2021; 35:e21504. [PMID: 33913563 DOI: 10.1096/fj.202002562r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Cell death-inducing DFFA-like effector C (CIDEC) is responsible for metabolic disturbance and insulin resistance, which are considered to be important triggers in the development of diabetic cardiomyopathy (DCM). To investigate whether CIDEC plays a critical role in DCM, DCM rat model was induced by a high-fat diet and a single injection of low-dose streptozotocin (27.5 mg/kg). DCM rats showed severe metabolic disturbance, insulin resistance, myocardial hypertrophy, interstitial fibrosis, ectopic lipid deposition, inflammation and cardiac dysfunction, accompanied by CIDEC elevation. With CIDEC gene silencing, the above pathophysiological characteristics were significantly ameliorated accompanied by significant improvements in cardiac function in DCM rats. Enhanced AMP-activated protein kinase (AMPK) α activation was involved in the underlying pathophysiological molecular mechanisms. To further explore the underlying mechanisms that CIDEC facilitated collagen syntheses in vitro, insulin-resistant cardiac fibroblast (CF) model was induced by high glucose (15.5 mmol/L) and high insulin (104 μU/mL). We observed that insulin-resistant stimulation dramatically raised CIDEC expression and promoted CIDEC nuclear translocation in CFs. Meanwhile, AMPKα2 was observed to distribute almost completely inside CF nucleus. The results further proved that CIDEC biochemically interacted and co-localized with AMPKα2 rather than AMPKα1 in CF nucleus, which provided a novel mechanism of CIDEC in promoting collagen syntheses. This study suggested that CIDEC gene silencing alleviates DCM via AMPKα signaling both in vivo and in vitro, implicating CIDEC may be a promising target for treatment of human DCM.
Collapse
Affiliation(s)
- Hui-Min Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicines, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Peng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ning Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong key Laboratory of Cardiovascular Proteomics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
32
|
He J, Liu R, Zheng W, Guo H, Yang Y, Zhao R, Yao W. High ambient temperature exposure during late gestation disrupts glycolipid metabolism and hepatic mitochondrial function tightly related to gut microbial dysbiosis in pregnant mice. Microb Biotechnol 2021; 14:2116-2129. [PMID: 34272826 PMCID: PMC8449678 DOI: 10.1111/1751-7915.13893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
As global warming intensifies, emerging evidence has demonstrated high ambient temperature during pregnancy negatively affects maternal physiology with compromised pregnant outcomes; however, little is known about the roles of gut microbiota and its underlying mechanisms in this process. Here, for the first time, we explored the potential mechanisms of gut microbiota involved in the disrupted glycolipid metabolism via hepatic mitochondrial function. Our results indicate heat stress (HS) reduces fat and protein contents and serum levels of insulin and triglyceride (TG), while increases that of non-esterified fatty acid (NEFA), β-hydroxybutyric acid (B-HBA), creatinine and blood urea nitrogen (BUN) (P < 0.05). Additionally, HS downregulates both mitochondrial genes (mtDNA) and nuclear encoding mitochondrial functional genes with increasing serum levels of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) (P < 0.05). Regarding microbial response, HS boosts serum levels of lipopolysaccharide (LPS) (P < 0.05) and alters β-diversity (ANOSIM, P < 0.01), increasing the proportions of Escherichia-Shigella, Acinetobacter and Klebsiella (q < 0.05), while reducing that of Ruminiclostridium, Blautia, Lachnospiraceae_NK4A136_group, Clostridium VadinBB60 and Muribaculaceae (q < 0.05). PICRUSt analysis predicts that HS upregulates 11 KEGG pathways, mainly including bile secretion and bacterial invasion of epithelial cells. The collective results suggest that microbial dysbiosis due to late gestational HS has strong associations with damaged hepatic mitochondrial function and disrupted metabolic profiles.
Collapse
Affiliation(s)
- Jianwen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Riliang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huiduo Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunnan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruqian Zhao
- Key Lab of Animal Physiology and Biochemistry, Nanjing Agricultural University, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210095, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Physiology and Biochemistry, Nanjing Agricultural University, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210095, China
| |
Collapse
|
33
|
GRK2 contributes to glucose mediated calcium responses and insulin secretion in pancreatic islet cells. Sci Rep 2021; 11:11129. [PMID: 34045505 PMCID: PMC8159944 DOI: 10.1038/s41598-021-90253-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a metabolic syndrome rooted in impaired insulin and/or glucagon secretory responses within the pancreatic islets of Langerhans (islets). Insulin secretion is primarily regulated by two key factors: glucose-mediated ATP production and G-protein coupled receptors (GPCRs) signaling. GPCR kinase 2 (GRK2), a key regulator of GPCRs, is reported to be downregulated in the pancreas of spontaneously obesogenic and diabetogenic mice (ob/ob). Moreover, recent studies have shown that GRK2 non-canonically localizes to the cardiac mitochondrion, where it can contribute to glucose metabolism. Thus, islet GRK2 may impact insulin secretion through either mechanism. Utilizing Min6 cells, a pancreatic ß-cell model, we knocked down GRK2 and measured glucose-mediated intracellular calcium responses and insulin secretion. Silencing of GRK2 attenuated calcium responses, which were rescued by pertussis toxin pre-treatment, suggesting a Gαi/o-dependent mechanism. Pancreatic deletion of GRK2 in mice resulted in glucose intolerance with diminished insulin secretion. These differences were due to diminished insulin release rather than decreased insulin content or gross differences in islet architecture. Furthermore, a high fat diet feeding regimen exacerbated the metabolic phenotype in this model. These results suggest a new role for pancreatic islet GRK2 in glucose-mediated insulin responses that is relevant to type 2 diabetes disease progression.
Collapse
|
34
|
Chen X, Maldonado E, DeFronzo RA, Tripathy D. Impaired Suppression of Glucagon in Obese Subjects Parallels Decline in Insulin Sensitivity and Beta-Cell Function. J Clin Endocrinol Metab 2021; 106:1398-1409. [PMID: 33524152 PMCID: PMC8063259 DOI: 10.1210/clinem/dgab019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/23/2022]
Abstract
AIM To examine the relationship between plasma glucagon levels and insulin sensitivity and insulin secretion in obese subjects. METHODS Suppression of plasma glucagon was examined in 275 obese Hispanic Americans with varying glucose tolerance. All subjects received a 2-hour oral glucose tolerance test (OGTT) and a subset (n = 90) had euglycemic hyperinsulinemic clamp. During OGTT, we quantitated suppression of plasma glucagon concentration, Matsuda index of insulin sensitivity, and insulin secretion/insulin resistance (disposition) index. Plasma glucagon suppression was compared between quartiles of insulin sensitivity and beta-cell function. RESULTS Fasting plasma glucagon levels were similar in obese subjects with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes (T2D), but the fasting glucagon/insulin ratio decreased progressively from NGT to prediabetes to T2D (9.28 ± 0.66 vs 6.84 ± 0.44 vs 5.84 ± 0.43; P < 0.001). Fasting and 2-hour plasma glucagon levels during OGTT progressively increased and correlated positively with severity of insulin resistance (both Matsuda index and euglycemic hyperinsulinemic clamp). The fasting glucagon/insulin ratio declined with worsening insulin sensitivity and beta-cell function, and correlated with whole-body insulin sensitivity (Matsuda index, r = 0.81; P < 0.001) and beta-cell function (r = 0.35; P < 0.001). The glucagon/insulin ratio also correlated and with beta-cell function during OGTT at 60 and 120 minutes (r = -0.47; P < 0.001 and r = -0.32; P < 0.001). CONCLUSION Insulin-mediated suppression of glucagon secretion in obese subjects is impaired with increasing severity of glucose intolerance and parallels the severity of insulin resistance and beta-cell dysfunction.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Enrique Maldonado
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ralph A DeFronzo
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
- Audie L Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Devjit Tripathy
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
- Audie L Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
- Correspondence: Devjit Tripathy, MD, PhD, Division of Diabetes, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
35
|
Ferrara PJ, Rong X, Maschek JA, Verkerke AR, Siripoksup P, Song H, Green TD, Krishnan KC, Johnson JM, Turk J, Houmard JA, Lusis AJ, Drummond MJ, McClung JM, Cox JE, Shaikh SR, Tontonoz P, Holland WL, Funai K. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J Clin Invest 2021; 131:135963. [PMID: 33591957 DOI: 10.1172/jci135963] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Aberrant lipid metabolism promotes the development of skeletal muscle insulin resistance, but the exact identity of lipid-mediated mechanisms relevant to human obesity remains unclear. A comprehensive lipidomic analysis of primary myocytes from individuals who were insulin-sensitive and lean (LN) or insulin-resistant with obesity (OB) revealed several species of lysophospholipids (lyso-PLs) that were differentially abundant. These changes coincided with greater expression of lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme involved in phospholipid transacylation (Lands cycle). Strikingly, mice with skeletal muscle-specific knockout of LPCAT3 (LPCAT3-MKO) exhibited greater muscle lysophosphatidylcholine/phosphatidylcholine, concomitant with improved skeletal muscle insulin sensitivity. Conversely, skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) promoted glucose intolerance. The absence of LPCAT3 reduced phospholipid packing of cellular membranes and increased plasma membrane lipid clustering, suggesting that LPCAT3 affects insulin receptor phosphorylation by modulating plasma membrane lipid organization. In conclusion, obesity accelerates the skeletal muscle Lands cycle, whose consequence might induce the disruption of plasma membrane organization that suppresses muscle insulin action.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and
| | - Anthony Rp Verkerke
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center and.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Haowei Song
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Jordan M Johnson
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - John Turk
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph A Houmard
- East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Aldons J Lusis
- Cardiology Division, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center and.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - James E Cox
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Saame Raza Shaikh
- East Carolina Diabetes and Obesity Institute and.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - William L Holland
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
36
|
Yang B, Gelfanov VM, Perez-Tilve D, DuBois B, Rohlfs R, Levy J, Douros JD, Finan B, Mayer JP, DiMarchi RD. Optimization of Truncated Glucagon Peptides to Achieve Selective, High Potency, Full Antagonists. J Med Chem 2021; 64:4697-4708. [PMID: 33821647 DOI: 10.1021/acs.jmedchem.0c02069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antagonism of glucagon's biological action is a proven strategy for decreasing glucose in diabetic animals and patients. To achieve full, potent, and selective suppression, we chemically optimized N-terminally truncated glucagon fragments for the identification and establishment of the minimum sequence peptide, [Glu9]glucagon(6-29) amide (11) as a full antagonist in cellular signaling and receptor binding (IC50 = 36 nM). Substitution of Phe6 with l-3-phenyllactic acid (Pla) produced [Pla6, Glu9]glucagon(6-29) amide (21), resulting in a 3-fold improvement in receptor binding (IC50 = 12 nM) and enhanced antagonist potency. Further substitution of Glu9 and Asn28 with aspartic acid yielded [Pla6, Asp28]glucagon amide (26), which demonstrated a further increase in inhibitory potency (IC50 = 9 nM), and improved aqueous solubility. Peptide 26 and a palmitoylated analogue, [Pla6, Lys10(γGluγGlu-C16), Asp28]glucagon(6-29) amide (31), displayed sustained duration in vivo action that successfully reversed glucagon-induced glucose elevation in mice.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.,Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily M Gelfanov
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.,Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Diego Perez-Tilve
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Barent DuBois
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Rebecca Rohlfs
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Jay Levy
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Jonathan D Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - John P Mayer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
37
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
38
|
Characterization of a naturally occurring mutation V368M in the human glucagon receptor and its association with metabolic disorders. Biochem J 2020; 477:2581-2594. [PMID: 32677665 DOI: 10.1042/bcj20200235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023]
Abstract
Glucagon is a peptide hormone secreted by islet α cells. It plays crucial roles in glucose homeostasis and metabolism by activating its cognate glucagon receptor (GCGR). A naturally occurring deleterious mutation V368M in the human GCGR leads to reduced ligand binding and down-regulation of glucagon signaling. To examine the association between this mutation and metabolic disorders, a knock-in mouse model bearing homozygous V369M substitution (equivalent to human V368M) in GCGR was made using CRISPR-Cas9 technology. These GcgrV369M+/+ mice displayed lower fasting blood glucose levels with improved glucose tolerance compared with wild-type controls. They also exhibited hyperglucagonemia, pancreas enlargement and α cell hyperplasia with a lean phenotype. Additionally, V369M mutation resulted in a reduction in adiposity with normal body weight and food intake. Our findings suggest a key role of V369M/V368M mutation in GCGR-mediated glucose homeostasis and pancreatic functions, thereby pointing to a possible interplay between GCGR defect and metabolic disorders.
Collapse
|
39
|
Li L, Chen X, Su C, Wang Q, Li R, Jiao W, Luo H, Tian Y, Tang J, Li X, Liu B, Wang W, Zhang D, Guo S. Si-Miao-Yong-An decoction preserves cardiac function and regulates GLC/AMPK/NF-κB and GLC/PPARα/PGC-1α pathways in diabetic mice. Biomed Pharmacother 2020; 132:110817. [DOI: 10.1016/j.biopha.2020.110817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
|
40
|
Field BC, Gordillo R, Scherer PE. The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Front Endocrinol (Lausanne) 2020; 11:569250. [PMID: 33133017 PMCID: PMC7564167 DOI: 10.3389/fendo.2020.569250] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction is intertwined with the pathophysiology of both diabetes and cardiovascular disease. Recently, one particular lipid class has been shown to influence the development and sustainment of these diseases: ceramides. As a subtype of sphingolipids, these species are particularly central to many sphingolipid pathways. Increased levels of ceramides are known to correlate with impaired cardiovascular and metabolic health. Furthermore, the interaction between ceramides and adipokines, most notably adiponectin and leptin, appears to play a role in the pathophysiology of these conditions. Adiponectin appears to counteract the detrimental effects of elevated ceramides, largely through activation of the ceramidase activity of its receptors. Elevated ceramides appear to worsen leptin resistance, which is an important phenomenon in the pathophysiology of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Bianca C. Field
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
41
|
Kobayashi M, Satoh H, Matsuo T, Kusunoki Y, Tokushima M, Watada H, Namba M, Kitamura T. Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocr J 2020; 67:903-922. [PMID: 32448820 DOI: 10.1507/endocrj.ej20-0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glucagon dysfunction as well as insulin dysfunction is associated with the pathogenesis of type 2 diabetes (T2DM). However, it is still unclear whether the measurement of plasma glucagon levels is useful in understanding the pathophysiology of T2DM. We recently reported that sandwich ELISA provides more accurate plasma glucagon values than conventional RIA in healthy subjects. Here we used sandwich ELISA as well as RIA to assess plasma glucagon levels, comparing them in T2DM patients and healthy subjects during oral glucose (OGTT) or meal tolerance tests (MTT). We confirmed that sandwich ELISA was able to detect more significant difference between healthy subjects and T2DM patients in the fasting levels and the response dynamics of plasma glucagon than RIA. We also found significant differences in the following glucagon parameters: (1) fasting glucagon, (2) the area under the curve (AUC) of glucagon in OGTT, and (3) the change in glucagon between 0 and 30 min (ΔGlucagon0-0.5h) in OGTT or MTT. Among these, the most apparent difference was ΔGlucagon0-0.5h in MTT. When we divided T2DM patients into two groups whose ΔGlucagon0-0.5h in MTT was either below or above the maximum value in healthy subjects, the group with higher ΔGlucagon0-0.5h showed more significant impairment of glucose tolerance. These results suggest that the assessment of plasma glucagon levels by sandwich ELISA might enhance our understanding of the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Hiroaki Satoh
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshihiro Matsuo
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yoshiki Kusunoki
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Namba
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
42
|
Abstract
Diabetes is a chronic, progressive disease that calls for longitudinal data and analysis. We introduce a longitudinal mathematical model that is capable of representing the metabolic state of an individual at any point in time during their progression from normal glucose tolerance to type 2 diabetes (T2D) over a period of years. As an application of the model, we account for the diversity of pathways typically followed, focusing on two extreme alternatives, one that goes through impaired fasting glucose (IFG) first and one that goes through impaired glucose tolerance (IGT) first. These two pathways are widely recognized to stem from distinct metabolic abnormalities in hepatic glucose production and peripheral glucose uptake, respectively. We confirm this but go beyond to show that IFG and IGT lie on a continuum ranging from high hepatic insulin resistance and low peripheral insulin resistance to low hepatic resistance and high peripheral resistance. We show that IFG generally incurs IGT and IGT generally incurs IFG on the way to T2D, highlighting the difference between innate and acquired defects and the need to assess patients early to determine their underlying primary impairment and appropriately target therapy. We also consider other mechanisms, showing that IFG can result from impaired insulin secretion, that non-insulin-dependent glucose uptake can also mediate or interact with these pathways, and that impaired incretin signaling can accelerate T2D progression. We consider whether hyperinsulinemia can cause insulin resistance in addition to being a response to it and suggest that this is a minor effect.
Collapse
Affiliation(s)
- Joon Ha
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
43
|
Cheng C, Jabri S, Taoka BM, Sinz CJ. Small molecule glucagon receptor antagonists: an updated patent review (2015–2019). Expert Opin Ther Pat 2020; 30:509-526. [DOI: 10.1080/13543776.2020.1769600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chen Cheng
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Salman Jabri
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Brandon M Taoka
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Christopher J Sinz
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
- Current Address: Maze Therapeutics, South San Francisco, California, USA
| |
Collapse
|
44
|
Funakoshi-Tago M, Yu S, Kushida A, Takeuchi K, Tamura H. Kampo medicines, Rokumigan, Hachimijiogan, and Goshajinkigan, significantly inhibit glucagon-induced CREB activation. Heliyon 2020; 6:e03598. [PMID: 32215330 PMCID: PMC7090351 DOI: 10.1016/j.heliyon.2020.e03598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/28/2019] [Accepted: 03/11/2020] [Indexed: 01/09/2023] Open
Abstract
The pathophysiology of type 2 diabetes mellitus (T2DM) is characterized by not only insulin resistance, but also the abnormal regulation of glucagon secretion, suggesting that antagonizing the glucagon-induced signaling pathway has therapeutic potential in the treatment of T2DM. Although various Kampo medicines (traditional herbal medicines) are often utilized to ameliorate the symptoms of T2DM, their effects on glucagon signaling have not yet been clarified. In the present study, we examined the effects of nine types of representative Kampo formulations prescribed for T2DM on glucagon-induced CREB activation in HEK293T cells stably expressing glucagon receptor (Gcgr) and a hepatic cell line HepG2. Among these Kampo medicines, Rokumigan, Hachimijiogan, and Goshajinkigan significantly suppressed the glucagon-induced transactivation of the cAMP-responsive element (CRE)-binding protein (CREB) by inhibiting its interaction with CREB-binding protein (CBP), which led to a reduction in the expression of phosphoenolpyruvate carboxykinase (PEPCK) mRNA. Furthermore, among the crude drugs commonly contained in these three Kampo medicines, Rehmannia Root (Jio), Moutan Bark (Botampi), and Cornus Fruit (Shanzhuyu) exerted inhibitory effects on glucagon-induced CREB activation. Collectively, the present results provide a novel mechanism, the inhibition of glucagon signaling, by which Rokumigan, Hachimijiogan, and Goshajinkigan improve the symptoms of T2DM.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Seisho Yu
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Akira Kushida
- Cosmic Corporation Co., Ltd., Tomisaka Building, 7-3 Koishikawa 2-chome, Bunkyo-ku, Tokyo 112-0002, Japan
| | - Kazusane Takeuchi
- Cosmic Corporation Co., Ltd., Tomisaka Building, 7-3 Koishikawa 2-chome, Bunkyo-ku, Tokyo 112-0002, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
45
|
Knerr PJ, Mowery SA, Finan B, Perez-Tilve D, Tschöp MH, DiMarchi RD. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides 2020; 125:170225. [PMID: 31786282 DOI: 10.1016/j.peptides.2019.170225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
The continued global growth in the prevalence of obesity coupled with the limited number of efficacious and safe treatment options elevates the importance of innovative pharmaceutical approaches. Combinatorial strategies that harness the metabolic benefits of multiple hormonal mechanisms have emerged at the preclinical and more recently clinical stages of drug development. A priority has been anti-obesity unimolecular peptides that function as balanced, high potency poly-agonists at two or all the cellular receptors for the endocrine hormones glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon. This report reviews recent progress in this area, with emphasis on what the initial clinical results demonstrate and what remains to be addressed.
Collapse
Affiliation(s)
- Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Garching, Germany
| | - Richard D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
46
|
Liu Y, Yang L, Zhang Y, Liu X, Wu Z, Gilbert RG, Deng B, Wang K. Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112308. [PMID: 31622745 DOI: 10.1016/j.jep.2019.112308] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale polysaccharide (DOP) is the main active ingredient of Dendrobium officinale Kimura & Migo, which is a precious traditional Chinese medicine and often used in treatment of hepatitis, diabetes, obesity and rheumatoid arthritis. AIM OF THE STUDY DOP exhibits significant hypoglycemic activity, while its mechanism remains unclear. The present study aims to investigate the hypoglycemic mechanisms of DOP based on the glucagon-mediated signaling pathways and the liver glycogen structure, which catalyze hepatic glucose metabolism, and provide new knowledge about the antidiabetic mechanism of DOP and further evidence for its clinical use for diabetes. MATERIALS AND METHODS DOP were obtained from the dry stems of Dendrobium officinale by water extraction and alcohol precipitation method. T2DM mice model was established by high-fat diet combined with streptozotocin. Liver histopathological changes were observed by H&E and PAS straining. Pancreatic histology was studied by H&E staining and immunofluorescence analysis. The levels of glucagon and insulin were detected by Elisa Kit and the hepatic glycogen content was detected by GOPOD. The expressions of the hepatic glycogen-related metabolism enzymes, hepatic gluconeogenesis enzymes, and the related protein in cAMP-PKA and Akt/FoxO1 signaling pathways were detected by western blots. Liver glycogen was extracted from the liver tissues by sucrose density gradient centrifugation, and size exclusion chromatography (SEC) was used to analyze the structure of liver glycogen. RESULTS DOP could significantly affect the glucagon-mediated signaling pathways, cAMP-PKA and Akt/FoxO1, to further promote hepatic glycogen synthesis, inhibit hepatic glycogen degradation and hepatic gluconeogenesis. Moreover, DOP could reverse the instability of the liver glycogen structure and thus probably suppressed glycogen degradation. Thus, DOP finally would ameliorate hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure in diabetic mice. CONCLUSIONS The hypoglycemic mechanism of DOP might be associated with the regulation of glucagon-mediated hepatic glycogen metabolism and gluconeogenesis, and of liver glycogen structure, contributing to improved hepatic glucose metabolism in diabetic mice.
Collapse
Affiliation(s)
- Yage Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Linlin Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1227, Jiefang Road, 430030, Wuhan, China
| | - Xiaocui Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1227, Jiefang Road, 430030, Wuhan, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1227, Jiefang Road, 430030, Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
47
|
Li X, Wang YX, Shi P, Liu YP, Li T, Liu SQ, Wang CJ, Wang LX, Cao Y. Icariin treatment reduces blood glucose levels in type 2 diabetic rats and protects pancreatic function. Exp Ther Med 2020; 19:2690-2696. [PMID: 32256750 PMCID: PMC7086278 DOI: 10.3892/etm.2020.8490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Icariin, a flavonoid isolated from traditional oriental herbal medicines, has been demonstrated to exhibit several health benefits in animal models and in humans. The aim of the present study was to investigate the effect of Icariin on hyperglycemia in type 2 diabetes mellitus (T2DM) in rats. A model of diabetes was established in 50 Sprague Dawley rats using a high-sugar and high-fat diet and peritoneal injection of streptozotocin. Diabetic rats were divided into five groups: Diabetic control; metformin; and rats treated with three different doses of Icariin, 5, 10 and 20 mg/kg. Body weight and blood glucose levels were measured, and serum adiponectin levels, expression of phospho-AMP mediated protein kinase (p-AMPK) and glucose transporter isoform 4 (GLUT-4) were measured using ELISA, Realtime PCR and western blotting, respectively. Diabetic rats without drug treatment exhibited reduced body weight, increased blood glucose levels and decreased the number of islets. In T2DM rats treated with 10 or 20 mg/kg Icariin, the blood glucose levels were reduced, whereas serum adiponectin levels were not affected. Additionally, the mRNA and protein expression levels of p-AMPK and GLUT-4 protein were increased in the T2DM rats treated with Icariin. In conclusion, in the diabetes rat model, Icariin alleviated the severity of diabetes, and the effects may be associated with reduction of hyperglycemia by activating an AMPK/GLUT-4 pathway.
Collapse
Affiliation(s)
- Xin Li
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yun-Xiao Wang
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ping Shi
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yan-Ping Liu
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ting Li
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shu-Qin Liu
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chen-Jing Wang
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Le-Xin Wang
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China.,School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Yu Cao
- Office of Drug Clinical Trial Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
48
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
49
|
Cell Autonomous Dysfunction and Insulin Resistance in Pancreatic α Cells. Int J Mol Sci 2019; 20:ijms20153699. [PMID: 31357734 PMCID: PMC6695724 DOI: 10.3390/ijms20153699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
To date, type 2 diabetes is considered to be a "bi-hormonal disorder" rather than an "insulin-centric disorder," suggesting that glucagon is as important as insulin. Although glucagon increases hepatic glucose production and blood glucose levels, paradoxical glucagon hypersecretion is observed in diabetes. Recently, insulin resistance in pancreatic α cells has been proposed to be associated with glucagon dysregulation. Moreover, cell autonomous dysfunction of α cells is involved in the etiology of diabetes. In this review, we summarize the current knowledge about the physiological and pathological roles of glucagon.
Collapse
|
50
|
Wen J, Xu B, Sun Y, Lian M, Li Y, Lin Y, Chen D, Diao Y, Almoiliqy M, Wang L. Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacol Res 2019; 146:104308. [PMID: 31181335 DOI: 10.1016/j.phrs.2019.104308] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a common pathological process with high clinical morbidity and mortality. Paeoniflorin, a monoterpene glucoside, is found to have diverse health beneficial effects including autophagy modulation, anti-inflammatory, anti-apoptotic, and anti-oxidative effects. Based on our pre-experiments, we proposed that paeoniflorin could ameliorate intestinal I/R injury and restore autophagy through activating LKB1/AMPK signal pathway. Our proposal was verified using rat intestinal I/R model in vivo and intestinal epithelial cell line (IEC-6 cells) hypoxia/reoxygenation (H/R) model in vitro. Our results showed that paeoniflorin pretreatment exerted protective effects in rat intestinal I/R injury by reducing intestinal morphological damage, inflammation, oxidative stress, and apoptosis. Paeoniflorin restored H/R-impaired autophagy flux by up-regulating autophagy-related protein p62/SQSTM1 degradation, LC3II and beclin-1 expression, and autophagosomes synthesis without significantly affecting control IEC-6 cells. Paeoniflorin pretreatment significantly activated LKB1/AMPK signaling pathway by reversing the decreased LKB1 and AMPK phosphorylation without affecting total LKB1 both in vivo and in vitro. LKB1 knockdown reduced AMPK phosphorylation, suppressed LC3II and Beclin-1 level, and decreased the degradation of SQSTM/p62, and the knockdown weakened the effects of paeoniflorin in restoring the impaired autophagy flux in H/R injured IEC-6 cells, suggesting that paeoniflorin mitigated the intestinal I/R-impaired autophagy flux by activating LKB1/AMPK signaling pathway. Our study may provide valuable information for further studies.
Collapse
Affiliation(s)
- Jin Wen
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Bin Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuchao Sun
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Mengqiao Lian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yanli Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuan Lin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Marwan Almoiliqy
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Li Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|