1
|
Montarolo F, Rominto AM, Berrino L, Bertolotto A, Laezza F, Tempia F, Hoxha E. Deletion of Fgf14 confers resilience to basal and stress-induced depressive-like behavior and reduces anxiety in mice. Transl Psychiatry 2025; 15:136. [PMID: 40204701 PMCID: PMC11982207 DOI: 10.1038/s41398-025-03361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Depression is a mental illness characterized by despair behavior, inability to feel pleasure, and social withdrawal. Causes are not yet clarified, but stress is a condition that induces depression. Neuronal alterations, comprising maladaptive neuronal plasticity and excitability, are present in both responses to stress and depression. Fibroblast growth factor 14 (Fgf14) controls neuronal excitability and proper action potential firing by stabilizing voltage-dependent sodium (Nav) channels into the axon. Fgf14-Nav channels complex is regulated by glycogen synthase kinase 3. Recently, Fgf14 has been genetically associated to depression. However, little is known about its role in controlling stress-induced depression. This study demonstrates that female Fgf14-/- mice are resilient to depression, as reported by reduced level of despair behavior, anhedonia, and increased sociability. Also, a reduction of anxious-like behavior was highlighted. Fgf14-/- mice showed increased expression of cannabinoid receptor without alterations of dopaminergic system in mPFC, suggesting a link between Fgf14 and endocannabinoid system in the control mechanisms underlying depression. Neuronal activity was assessed by analyzing cFOS expression during basal and following acute stress induced by tail suspension test (TST). The analysis revealed that neuronal activation in mPFC and VTA was correlated to immobility, where ratio of cFOS expression over immobility was significantly higher in Fgf14-/- mice. This suggests that higher neuronal activity might be involved in resilience to depression. In resilient Fgf14-/- mice, TST-induced acute stress caused activation only in pyramidal neurons. Our findings suggest that Fgf14 is involved in stress-coping mechanisms and could be targeted to improve resilience to depression.
Collapse
Affiliation(s)
- Francesca Montarolo
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, TO, Italy
| | - Anita Maria Rominto
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, TO, Italy
| | - Luna Berrino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, TO, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, TO, Italy
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Filippo Tempia
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, TO, Italy
| | - Eriola Hoxha
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, TO, Italy.
| |
Collapse
|
2
|
Jenkins PM, Bender KJ. Axon initial segment structure and function in health and disease. Physiol Rev 2025; 105:765-801. [PMID: 39480263 DOI: 10.1152/physrev.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
At the simplest level, neurons are structured to integrate synaptic input and perform computational transforms on that input, converting it into an action potential (AP) code. This process, converting synaptic input into AP output, typically occurs in a specialized region of the axon termed the axon initial segment (AIS). The AIS, as its name implies, is often contained to the first section of axon abutted to the soma and is home to a dizzying array of ion channels, attendant scaffolding proteins, intracellular organelles, extracellular proteins, and, in some cases, synapses. The AIS serves multiple roles as the final arbiter for determining if inputs are sufficient to evoke APs, as a gatekeeper that physically separates the somatodendritic domain from the axon proper, and as a regulator of overall neuronal excitability, dynamically tuning its size to best suit the needs of parent neurons. These complex roles have received considerable attention from experimentalists and theoreticians alike. Here, we review recent advances in our understanding of the AIS and its role in neuronal integration and polarity in health and disease.
Collapse
Affiliation(s)
- Paul M Jenkins
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Kevin J Bender
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States
| |
Collapse
|
3
|
María-Ríos CE, Murphy GG, Morrow JD. Individual Variation in Intrinsic Neuronal Properties of Nucleus Accumbens Core and Shell Medium Spiny Neurons in Animals Prone to Sign- or Goal-Track. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644332. [PMID: 40236090 PMCID: PMC11996421 DOI: 10.1101/2025.03.24.644332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The "sign-tracking" and "goal-tracking" model of individual variation in associative learning permits the identification of rats with different cue-reactivity and predisposition to addiction-like behaviors. Certainly, compared to "goal-trackers" (GTs), "sign-trackers" (STs) show more susceptibility traits such as increased cue-induced 'relapse' of drugs of abuse. Different cue- and reward-evoked patterns of activity in the nucleus accumbens (NAc) have been a hallmark of the ST/GT phenotype. However, it is unknown whether differences in the intrinsic neuronal properties of NAc medium spiny neurons (MSNs) in the core and shell subregions are also a physiological correlate of these phenotypes. We performed whole-cell slice electrophysiology in outbred male rats and found that STs exhibited the lowest excitability in the NAc core, with lower number of action potentials and firing frequency as well as a blunted voltage/current relationship curve in response to hyperpolarized potentials in both the NAc core and shell. Although firing properties of shell MSNs did not differ between STs and GTs, intermediate responders that engage in both behaviors showed greater excitability compared to both STs and GTs. These findings suggest that intrinsic excitability in the NAc may contribute to individual differences in the attribution of incentive salience. Significance Statement During associative learning, cues acquire predictive value, but in some instances, they also acquire incentive salience, meaning they take on some of the motivational properties of the reward. The propensity to attribute cues with incentive salience varies between individuals, and excessive attribution can lead to maladaptive behaviors. The "sign-and goal-tracking" model allows us to isolate these two properties and disambiguate the neurobiological processes that govern them. To our knowledge this is the first study characterizing passive and active membrane properties of MSNs in the NAc core and shell of STs and GTs, as well as IRs. These findings are meant to better inform investigations of the distinct role of the NAc in reward learning, particularly in the attribution of incentive salience and addiction predisposition.
Collapse
|
4
|
Baumgartner TJ, Dvorak NM, Goode NA, Haghighijoo Z, Marosi M, Singh J, Singh AK, Laezza F. Axin-binding domain of glycogen synthase kinase 3β facilitates functional interactions with voltage-gated Na+ channel Na v1.6. J Biol Chem 2025; 301:108162. [PMID: 39793889 PMCID: PMC11847078 DOI: 10.1016/j.jbc.2025.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3β (GSK3β) has been previously identified as a modulator of Nav1.6-encoded currents and neuronal excitability through PPI formation with Nav1.6 and phosphorylation of its C-terminal domain (CTD). Here, we hypothesized that GSK3β functions as a scaffold in a regulatory PPI complex with the Nav1.6 CTD. Mutagenesis screening using the split-luciferase complementation assay indicated that the axin-binding domain (ABD) of GSK3β (262-299) is necessary for complex formation between the Nav1.6 CTD and GSK3β, and that residues within this domain are drivers of GSK3β-mediated regulation of the channel. Overexpression of an ABD-GFP fusion construct in human embryonic kidney 293 cells stably expressing Nav1.6 significantly reduced Nav1.6 nanocluster density compared with GFP alone. In addition, overexpression of the ABD-GFP fusion construct ablates GSK3β-mediated potentiation of Nav1.6-encoded currents and alters channel kinetics. Finally, in vivo AAV-mediated overexpression of the ABD-GFP construct in the CA1 hippocampal region induced a reduction in maximal action potential firing and an increase in action potential current threshold in a manner resembling previously reported effects of GSK3β silencing in neurons. Taken together, these results not only suggest that GSK3β-mediated regulation of Nav1.6 extends beyond transient phosphorylation but also implicates the ABD as a critical regulatory domain that facilitates GSK3β's functional effects on Nav1.6 and neuronal excitability.
Collapse
Affiliation(s)
- Timothy John Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nolan Michael Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nana Aboadwe Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zahra Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jully Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aditya Kumar Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
5
|
Singh AK, Singh J, Goode NA, Laezza F. Crosstalk among WEE1 Kinase, AKT, and GSK3 in Nav1.2 Channelosome Regulation. Int J Mol Sci 2024; 25:8069. [PMID: 39125637 PMCID: PMC11311446 DOI: 10.3390/ijms25158069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1-critical to the cell cycle-selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor's opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase-in concert with the AKT/GSK3 pathway-in regulating the Nav1.2 channelosome.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (J.S.); (N.A.G.); (F.L.)
| | | | | | | |
Collapse
|
6
|
Dvorak NM, Domingo ND, Tapia CM, Wadsworth PA, Marosi M, Avchalumov Y, Fongsaran C, Koff L, Di Re J, Sampson CM, Baumgartner TJ, Wang P, Villarreal PP, Solomon OD, Stutz SJ, Aditi, Porter J, Gbedande K, Prideaux B, Green TA, Seeley EH, Samir P, Dineley KT, Vargas G, Zhou J, Cisneros I, Stephens R, Laezza F. TNFR1 signaling converging on FGF14 controls neuronal hyperactivity and sickness behavior in experimental cerebral malaria. J Neuroinflammation 2023; 20:306. [PMID: 38115011 PMCID: PMC10729485 DOI: 10.1186/s12974-023-02992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nadia D Domingo
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paul A Wadsworth
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mate Marosi
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yosef Avchalumov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Leandra Koff
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Catherine M Sampson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Timothy J Baumgartner
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pingyuan Wang
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paula P Villarreal
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Clinical Sciences Program, The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Olivia D Solomon
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sonja J Stutz
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Aditi
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jacob Porter
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA
| | - Brendan Prideaux
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Parimal Samir
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kelley T Dineley
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gracie Vargas
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Irma Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA.
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
7
|
Dvorak NM, Di Re J, Vasquez TES, Marosi M, Shah P, Contreras YMM, Bernabucci M, Singh AK, Stallone J, Green TA, Laezza F. Fibroblast growth factor 13-mediated regulation of medium spiny neuron excitability and cocaine self-administration. Front Neurosci 2023; 17:1294567. [PMID: 38099204 PMCID: PMC10720079 DOI: 10.3389/fnins.2023.1294567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Cocaine use disorder (CUD) is a prevalent neuropsychiatric disorder with few existing treatments. Thus, there is an unmet need for the identification of new pharmacological targets for CUD. Previous studies using environmental enrichment versus isolation paradigms have found that the latter induces increased cocaine self-administration with correlative increases in the excitability of medium spiny neurons (MSN) of the nucleus accumbens shell (NAcSh). Expanding upon these findings, we sought in the present investigation to elucidate molecular determinants of these phenomena. To that end, we first employed a secondary transcriptomic analysis and found that cocaine self-administration differentially regulates mRNA for fibroblast growth factor 13 (FGF13), which codes for a prominent auxiliary protein of the voltage-gated Na+ (Nav) channel, in the NAcSh of environmentally enriched rats (i.e., resilient behavioral phenotype) compared to environmentally isolated rats (susceptible phenotype). Based upon this finding, we used in vivo genetic silencing to study the causal functional and behavioral consequences of knocking down FGF13 in the NAcSh. Functional studies revealed that knockdown of FGF13 in the NAcSh augmented excitability of MSNs by increasing the activity of Nav channels. These electrophysiological changes were concomitant with a decrease in cocaine demand elasticity (i.e., susceptible phenotype). Taken together, these data support FGF13 as being protective against cocaine self-administration, which positions it well as a pharmacological target for CUD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas A. Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
8
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
9
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
10
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Albeely AM, Williams OOF, Perreault ML. GSK-3β Disrupts Neuronal Oscillatory Function to Inhibit Learning and Memory in Male Rats. Cell Mol Neurobiol 2022; 42:1341-1353. [PMID: 33392916 PMCID: PMC11421759 DOI: 10.1007/s10571-020-01020-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Alterations in glycogen synthase kinase-3β (GSK-3β) activity have been implicated in disorders of cognitive impairment, including Alzheimer's disease and schizophrenia. Cognitive dysfunction is also characterized by the dysregulation of neuronal oscillatory activity, macroscopic electrical rhythms in brain that are critical to systems communication. A direct functional relationship between GSK-3β and neuronal oscillations has not been elucidated. Therefore, in the present study, using an adeno-associated viral vector containing a persistently active mutant form of GSK-3β, GSK-3β(S9A), the impact of elevated kinase activity in prefrontal cortex (PFC) or ventral hippocampus (vHIP) of rats on neuronal oscillatory activity was evaluated. GSK-3β(S9A)-induced changes in learning and memory were also assessed and the phosphorylation status of tau protein, a substrate of GSK-3β, examined. It was demonstrated that increasing GSK-3β(S9A) activity in either the PFC or vHIP had similar effects on neuronal oscillatory activity, enhancing theta and/or gamma spectral power in one or both regions. Increasing PFC GSK-3β(S9A) activity additionally suppressed high gamma PFC-vHIP coherence. These changes were accompanied by deficits in recognition memory, spatial learning, and/or reversal learning. Elevated pathogenic tau phosphorylation was also evident in regions where GSK-3β(S9A) activity was upregulated. The neurophysiological and learning and memory deficits induced by GSK-3β(S9A) suggest that aberrant GSK-3β signalling may not only play an early role in cognitive decline in Alzheimer's disease but may also have a more central involvement in disorders of cognitive dysfunction through the regulation of neurophysiological network function.
Collapse
Affiliation(s)
- Abdalla M Albeely
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada.
| |
Collapse
|
12
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
13
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
14
|
Marosi M, Nenov MN, Di Re J, Dvorak NM, Alshammari M, Laezza F. Inhibition of the Akt/PKB Kinase Increases Na v1.6-Mediated Currents and Neuronal Excitability in CA1 Hippocampal Pyramidal Neurons. Int J Mol Sci 2022; 23:ijms23031700. [PMID: 35163623 PMCID: PMC8836202 DOI: 10.3390/ijms23031700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
In neurons, changes in Akt activity have been detected in response to the stimulation of transmembrane receptors. However, the mechanisms that lead to changes in neuronal function upon Akt inhibition are still poorly understood. In the present study, we interrogate how Akt inhibition could affect the activity of the neuronal Nav channels with while impacting intrinsic excitability. To that end, we employed voltage-clamp electrophysiological recordings in heterologous cells expressing the Nav1.6 channel isoform and in hippocampal CA1 pyramidal neurons in the presence of triciribine, an inhibitor of Akt. We showed that in both systems, Akt inhibition resulted in a potentiation of peak transient Na+ current (INa) density. Akt inhibition correspondingly led to an increase in the action potential firing of the CA1 pyramidal neurons that was accompanied by a decrease in the action potential current threshold. Complementary confocal analysis in the CA1 pyramidal neurons showed that the inhibition of Akt is associated with the lengthening of Nav1.6 fluorescent intensity along the axonal initial segment (AIS), providing a mechanism for augmented neuronal excitability. Taken together, these findings provide evidence that Akt-mediated signal transduction might affect neuronal excitability in a Nav1.6-dependent manner.
Collapse
Affiliation(s)
- Mate Marosi
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Miroslav N. Nenov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Nolan M. Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Musaad Alshammari
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Center for Addiction Research, Center for Biomedical Engineering and Mitchell, Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-(409)-772-9672; Fax: +1-(409)-772-9642
| |
Collapse
|
15
|
Dvorak NM, Tapia CM, Singh AK, Baumgartner TJ, Wang P, Chen H, Wadsworth PA, Zhou J, Laezza F. Pharmacologically Targeting the Fibroblast Growth Factor 14 Interaction Site on the Voltage-Gated Na + Channel 1.6 Enables Isoform-Selective Modulation. Int J Mol Sci 2021; 22:ijms222413541. [PMID: 34948337 PMCID: PMC8708424 DOI: 10.3390/ijms222413541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein–protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.
Collapse
|
16
|
Dvorak NM, Tapia CM, Baumgartner TJ, Singh J, Laezza F, Singh AK. Pharmacological Inhibition of Wee1 Kinase Selectively Modulates the Voltage-Gated Na + Channel 1.2 Macromolecular Complex. Cells 2021; 10:3103. [PMID: 34831326 PMCID: PMC8619224 DOI: 10.3390/cells10113103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated Na+ (Nav) channels are a primary molecular determinant of the action potential (AP). Despite the canonical role of the pore-forming α subunit in conferring this function, protein-protein interactions (PPI) between the Nav channel α subunit and its auxiliary proteins are necessary to reconstitute the full physiological activity of the channel and to fine-tune neuronal excitability. In the brain, the Nav channel isoforms 1.2 (Nav1.2) and 1.6 (Nav1.6) are enriched, and their activities are differentially regulated by the Nav channel auxiliary protein fibroblast growth factor 14 (FGF14). Despite the known regulation of neuronal Nav channel activity by FGF14, less is known about cellular signaling molecules that might modulate these regulatory effects of FGF14. To that end, and building upon our previous investigations suggesting that neuronal Nav channel activity is regulated by a kinase network involving GSK3, AKT, and Wee1, we interrogate in our current investigation how pharmacological inhibition of Wee1 kinase, a serine/threonine and tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint, affects the Nav1.2 and Nav1.6 channel macromolecular complexes. Our results show that the highly selective inhibitor of Wee1 kinase, called Wee1 inhibitor II, modulates FGF14:Nav1.2 complex assembly, but does not significantly affect FGF14:Nav1.6 complex assembly. These results are functionally recapitulated, as Wee1 inhibitor II entirely alters FGF14-mediated regulation of the Nav1.2 channel, but displays no effects on the Nav1.6 channel. At the molecular level, these effects of Wee1 inhibitor II on FGF14:Nav1.2 complex assembly and FGF14-mediated regulation of Nav1.2-mediated Na+ currents are shown to be dependent upon the presence of Y158 of FGF14, a residue known to be a prominent site for phosphorylation-mediated regulation of the protein. Overall, our data suggest that pharmacological inhibition of Wee1 confers selective modulatory effects on Nav1.2 channel activity, which has important implications for unraveling cellular signaling pathways that fine-tune neuronal excitability.
Collapse
Affiliation(s)
| | | | | | | | | | - Aditya K. Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 75901, USA; (N.M.D.); (C.M.T.); (T.J.B.); (J.S.); (F.L.)
| |
Collapse
|
17
|
Di Re J, Hsu WCJ, Kayasandik CB, Fularczyk N, James TF, Nenov MN, Negi P, Marosi M, Scala F, Prasad S, Labate D, Laezza F. Inhibition of AKT Signaling Alters βIV Spectrin Distribution at the AIS and Increases Neuronal Excitability. Front Mol Neurosci 2021; 14:643860. [PMID: 34276302 PMCID: PMC8278006 DOI: 10.3389/fnmol.2021.643860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
The axon initial segment (AIS) is a highly regulated subcellular domain required for neuronal firing. Changes in the AIS protein composition and distribution are a form of structural plasticity, which powerfully regulates neuronal activity and may underlie several neuropsychiatric and neurodegenerative disorders. Despite its physiological and pathophysiological relevance, the signaling pathways mediating AIS protein distribution are still poorly studied. Here, we used confocal imaging and whole-cell patch clamp electrophysiology in primary hippocampal neurons to study how AIS protein composition and neuronal firing varied in response to selected kinase inhibitors targeting the AKT/GSK3 pathway, which has previously been shown to phosphorylate AIS proteins. Image-based features representing the cellular pattern distribution of the voltage-gated Na+ (Nav) channel, ankyrin G, βIV spectrin, and the cell-adhesion molecule neurofascin were analyzed, revealing βIV spectrin as the most sensitive AIS protein to AKT/GSK3 pathway inhibition. Within this pathway, inhibition of AKT by triciribine has the greatest effect on βIV spectrin localization to the AIS and its subcellular distribution within neurons, a phenotype that Support Vector Machine classification was able to accurately distinguish from control. Treatment with triciribine also resulted in increased excitability in primary hippocampal neurons. Thus, perturbations to signaling mechanisms within the AKT pathway contribute to changes in βIV spectrin distribution and neuronal firing that may be associated with neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jessica Di Re
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Wei-Chun J. Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
- Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, TX, United States
- M.D./Ph.D. Combined Degree Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Cihan B. Kayasandik
- Department of Mathematics, University of Houston, Houston, TX, United States
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey
| | - Nickolas Fularczyk
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - T. F. James
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Miroslav N. Nenov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Pooran Negi
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Federico Scala
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Saurabh Prasad
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| | - Demetrio Labate
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
18
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Manz KM, Becker JC, Grueter CA, Grueter BA. Histamine H 3 Receptor Function Biases Excitatory Gain in the Nucleus Accumbens. Biol Psychiatry 2021; 89:588-599. [PMID: 33012522 PMCID: PMC7865000 DOI: 10.1016/j.biopsych.2020.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Histamine (HA), a wake-promoting monoamine implicated in stress-related arousal states, is synthesized in histidine decarboxylase-expressing hypothalamic neurons of the tuberomammillary nucleus. Histidine decarboxylase-containing varicosities diffusely innervate striatal and mesolimbic networks, including the nucleus accumbens (NAc). The NAc integrates diverse monoaminergic inputs to coordinate motivated behavior. While the NAc expresses various HA receptor subtypes, mechanisms by which HA modulates NAc circuit dynamics are undefined. METHODS Using male D1tdTomato transgenic reporter mice, whole-cell patch-clamp electrophysiology, and input-specific optogenetics, we employed a targeted pharmacological approach to interrogate synaptic mechanisms recruited by HA signaling at glutamatergic synapses in the NAc. We incorporated an immobilization stress protocol to assess whether acute stress engages these mechanisms at glutamatergic synapses onto D1 receptor-expressing [D1(+)] medium spiny neurons (MSNs) in the NAc core. RESULTS HA negatively regulates excitatory gain onto D1(+)-MSNs via presynaptic H3 receptor-dependent long-term depression that requires Gβγ-directed Akt-GSK3β signaling. Furthermore, HA asymmetrically regulates glutamatergic transmission from the prefrontal cortex and mediodorsal thalamus, with inputs from the prefrontal cortex undergoing robust HA-induced long-term depression. Finally, we report that acute immobilization stress attenuates this long-term depression by recruiting endogenous H3 receptor signaling in the NAc at glutamatergic synapses onto D1(+)-MSNs. CONCLUSIONS Stress-evoked HA signaling in the NAc recruits H3 heteroreceptor signaling to shift thalamocortical input onto D1(+)-MSNs in the NAc. Our findings provide novel insight into an understudied neuromodulatory system within the NAc and implicate HA in stress-associated physiological states.
Collapse
Affiliation(s)
- Kevin M Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer C Becker
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carrie A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
20
|
Crofton EJ, Nenov MN, Zhang Y, Tapia CM, Donnelly J, Koshy S, Laezza F, Green TA. Topographic transcriptomics of the nucleus accumbens shell: Identification and validation of fatty acid binding protein 5 as target for cocaine addiction. Neuropharmacology 2021; 183:108398. [PMID: 33181146 PMCID: PMC7755097 DOI: 10.1016/j.neuropharm.2020.108398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Substance use disorders for cocaine are major public health concerns with few effective treatment options. Therefore, identification of novel pharmacotherapeutic targets is critical for future therapeutic development. Evolution has ensured that genes are expressed largely only where they are needed. Therefore, examining the gene expression landscape of the nucleus accumbens shell (NAcSh), a brain region important for reward related behaviors, may lead to the identification of novel targets for cocaine use disorder. In this study, we conducted a novel two-step topographic transcriptomic analysis using five seed transcripts with enhanced expression in the NAcSh to identify transcripts with similarly enhanced expression utilizing the correlation feature to search the more than 20,000 in situ hybridization experiments of the Allen Mouse Brain Atlas. Transcripts that correlated with at least three seed transcripts were analyzed with Ingenuity Pathway Analysis (IPA). We identified 7-fold more NAcSh-enhanced transcripts than our previous analysis using single voxels in the NAcSh as the seed. Analysis of the resulting transcripts with IPA identified many previously identified signaling pathways such as retinoic acid signaling as well as novel pathways. Manipulation of the retinoic acid pathway specifically in the NAcSh of male rats via viral vector-mediated RNA interference targeting fatty acid binding protein 5 (FABP5) decreased cocaine self-administration and modulates excitability of medium spiny neurons in the NAcSh. These results not only validate the prospective strategy of conducting a topographic transcriptomic analysis, but also further validate retinoic acid signaling as a promising pathway for pharmacotherapeutic development against cocaine use disorder.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA; Neuroscience Graduate Program University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Miroslav N Nenov
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yafang Zhang
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA; Pharmacology and Toxicology Graduate Program University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cynthia M Tapia
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA; Pharmacology and Toxicology Graduate Program University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Joseph Donnelly
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shyny Koshy
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Fernanda Laezza
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas A Green
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
21
|
Alshammari TK. The Ketamine Antidepressant Story: New Insights. Molecules 2020; 25:molecules25235777. [PMID: 33297563 PMCID: PMC7730956 DOI: 10.3390/molecules25235777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is a versatile agent primarily utilized as a dissociative anesthetic, which acts by blocking the excitatory receptor N-methyl-d-aspartate receptor (NMDA). It functions to inhibit the current of both Na+ and K+ voltage-gated channels, thus preventing serotonin and dopamine reuptake. Studies have indicated that administering a single subanesthetic dose of ketamine relieves depression rapidly and that the effect is sustained. For decades antidepressant agents were based on the monoamine theory. Although ketamine may not be the golden antidepressant, it has opened new avenues toward mechanisms involved in the pathology of treatment-resistant depression and achieving rapid antidepressant effects. Thus, preclinical studies focusing on deciphering the molecular mechanisms involved in the antidepressant action of ketamine will assist in the development of a new antidepressant. This review was conducted to elucidate the emerging pathways that can explain the complex dose-dependent mechanisms achieved by administering ketamine to treat major depressive disorders. Special attention was paid to reviewing the literature on hydroxynorketamines, which are ketamine metabolites that have recently attracted attention in the context of depression.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2475, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Wang P, Wadsworth PA, Dvorak NM, Singh AK, Chen H, Liu Z, Zhou R, Holthauzen LMF, Zhou J, Laezza F. Design, Synthesis, and Pharmacological Evaluation of Analogues Derived from the PLEV Tetrapeptide as Protein-Protein Interaction Modulators of Voltage-Gated Sodium Channel 1.6. J Med Chem 2020; 63:11522-11547. [PMID: 33054193 DOI: 10.1021/acs.jmedchem.0c00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The voltage-gated Na+ (Nav) channel is the molecular determinant of excitability. Disruption of protein-protein interactions (PPIs) between Nav1.6 and fibroblast growth factor 14 (FGF14) leads to impaired excitability of neurons in clinically relevant brain areas associated with channelopathies. Here, we designed, synthesized, and pharmacologically characterized new peptidomimetics based on a PLEV tetrapeptide scaffold derived from the FGF14:Nav1.6 PPI interface. Addition of an N-terminal 1-adamantanecarbonyl pharmacophore significantly improved peptidomimetic inhibitory potency. Surface plasmon resonance studies revealed that while this moiety was sufficient to confer binding to FGF14, altering the C-terminal moiety from methoxy (21a) to π bond-containing (23a and 23b) or cycloalkane substituents (23e) abrogated the binding to Nav1.6. Whole-cell patch-clamp electrophysiology subsequently revealed that 21a had functionally relevant interactions with both the C-terminal tail of Nav1.6 and FGF14. Collectively, these findings support that 21a (PW0564) may serve as a promising lead to develop target-selective neurotherapeutics by modulating protein-channel interactions.
Collapse
|
23
|
Wadsworth PA, Singh AK, Nguyen N, Dvorak NM, Tapia CM, Russell WK, Stephan C, Laezza F. JAK2 regulates Nav1.6 channel function via FGF14 Y158 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118786. [PMID: 32599005 PMCID: PMC7984254 DOI: 10.1016/j.bbamcr.2020.118786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
Collapse
Affiliation(s)
- Paul A Wadsworth
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Nolan M Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
24
|
Bidirectional Modulation of the Voltage-Gated Sodium (Nav1.6) Channel by Rationally Designed Peptidomimetics. Molecules 2020; 25:molecules25153365. [PMID: 32722255 PMCID: PMC7435778 DOI: 10.3390/molecules25153365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Disruption of protein:protein interactions (PPIs) that regulate the function of voltage-gated Na+ (Nav) channels leads to neural circuitry aberrations that have been implicated in numerous channelopathies. One example of this pathophysiology is mediated by dysfunction of the PPI between Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). Thus, peptides derived from FGF14 might exert modulatory actions on the FGF14:Nav1.6 complex that are functionally relevant. The tetrapeptide Glu-Tyr-Tyr-Val (EYYV) mimics surface residues of FGF14 at the β8–β9 loop, a structural region previously implicated in its binding to Nav1.6. Here, peptidomimetics derived from EYYV (6) were designed, synthesized, and pharmacologically evaluated to develop probes with improved potency. Addition of hydrophobic protective groups to 6 and truncation to a tripeptide (12) produced a potent inhibitor of FGF14:Nav1.6 complex assembly. Conversely, addition of hydrophobic protective groups to 6 followed by addition of an N-terminal benzoyl substituent (19) produced a potentiator of FGF14:Nav1.6 complex assembly. Subsequent functional evaluation using whole-cell patch-clamp electrophysiology confirmed their inverse activities, with 12 and 19 reducing and increasing Nav1.6-mediated transient current densities, respectively. Overall, we have identified a negative and positive allosteric modulator of Nav1.6, both of which could serve as scaffolds for the development of target-selective neurotherapeutics.
Collapse
|
25
|
Singh AK, Wadsworth PA, Tapia CM, Aceto G, Ali SR, Chen H, D'Ascenzo M, Zhou J, Laezza F. Mapping of the FGF14:Nav1.6 complex interface reveals FLPK as a functionally active peptide modulating excitability. Physiol Rep 2020; 8:e14505. [PMID: 32671946 PMCID: PMC7363588 DOI: 10.14814/phy2.14505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-gated sodium (Nav) channel complex is comprised of pore-forming α subunits (Nav1.1-1.9) and accessory regulatory proteins such as the intracellular fibroblast growth factor 14 (FGF14). The cytosolic Nav1.6 C-terminal tail binds directly to FGF14 and this interaction modifies Nav1.6-mediated currents with effects on intrinsic excitability in the brain. Previous studies have identified the FGF14V160 residue within the FGF14 core domain as a hotspot for the FGF14:Nav1.6 complex formation. Here, we used three short amino acid peptides around FGF14V160 to probe for the FGF14 interaction with the Nav1.6 C-terminal tail and to evaluate the activity of the peptide on Nav1.6-mediated currents. In silico docking predicts FLPK to bind to FGF14V160 with the expectation of interfering with the FGF14:Nav1.6 complex formation, a phenotype that was confirmed by the split-luciferase assay (LCA) and surface plasmon resonance (SPR), respectively. Whole-cell patch-clamp electrophysiology studies demonstrate that FLPK is able to prevent previously reported FGF14-dependent phenotypes of Nav1.6 currents, but that its activity requires the FGF14 N-terminal tail, a domain that has been shown to contribute to Nav1.6 inactivation independently from the FGF14 core domain. In medium spiny neurons in the nucleus accumbens, where both FGF14 and Nav1.6 are abundantly expressed, FLPK significantly increased firing frequency by a mechanism consistent with the ability of the tetrapeptide to interfere with Nav1.6 inactivation and potentiate persistent Na+ currents. Taken together, these results indicate that FLPK might serve as a probe for characterizing molecular determinants of neuronal excitability and a peptide scaffold to develop allosteric modulators of Nav channels.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paul A. Wadsworth
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- M.D.‐Ph.D. Combined Degree ProgramUniversità Cattolica del Sacro CuoreRomeItaly
- Biochemistry and Molecular Biology Graduate ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Cynthia M. Tapia
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- NIEHS Environmental Toxicology Training ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Giuseppe Aceto
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Syed R. Ali
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Haiying Chen
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marcello D'Ascenzo
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Jia Zhou
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
| | - Fernanda Laezza
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
- Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
26
|
Green TA, Bardo MT. Opposite regulation of conditioned place preference and intravenous drug self-administration in rodent models: Motivational and non-motivational examples. Neurosci Biobehav Rev 2020; 116:89-98. [PMID: 32534899 DOI: 10.1016/j.neubiorev.2020.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Although developed from a common antecedent, conditioned place preference (CPP) and intravenous drug self-administration (SA) represent different behavioral paradigms, each with strong face validity. The field has treated results from these studies largely interchangeably; however, there is considerable evidence of opposite modulation of CPP vs. SA. This review outlines four manipulations that differentially affect CPP and SA based on alterations of motivation. These examples are contrasted with one example of differential CPP and SA results that can be explained by simple parallel shifts in dose-response functions. The final two examples have yet to be classified as motivation-based or parallel shifts. Important aspects, including motivation, volitional control of drug administration, reward, and the role of cues are discussed. One major conclusion of this paper is that explanations for apparent discrepancies between CPP and SA require full dose effect functions and assessment of PR breakpoints. Overall, this manuscript offers a more nuanced insight into how CPP and SA can be used to study different aspects of substance use disorders.
Collapse
Affiliation(s)
- Thomas A Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, United States.
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, United States.
| |
Collapse
|
27
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
28
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. Neurobehavioral Effects of Restricted and Unpredictable Environmental Enrichment in Rats. Front Pharmacol 2020; 11:674. [PMID: 32477137 PMCID: PMC7235364 DOI: 10.3389/fphar.2020.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
To study how motivational factors modulate experience-dependent neurobehavioral plasticity, we modify a protocol of environmental enrichment (EE) in rats. We assumed that the benefits derived from EE might vary according to the level of incentive salience attributed to it. To enhance the rewarding properties of EE, access to the EE cage varied randomly from 2 to 48 h for 30 days (REE). The REE group was enriched only 50% of the time and was compared to standard housing and continuous EE (CEE) groups. As behavioral readout, we analyzed the spontaneous activity and the ultrasonic vocalizations (USVs) within the EE cage weekly, and in the open field test at the end of the experiment. In the cage, REE increased the utilization of materials, physical activity, and the rate of appetitive USVs. In the OF, the CEE-induced enhancements in novelty habituation and social signaling were equaled by the REE. At the neural level, we measured the expression of genes related to neural plasticity and epigenetic regulations in different brain regions. In the dorsal striatum and hippocampus, REE upregulated the expression of the brain-derived neurotrophic factor, its tropomyosin kinase B receptor, and the DNA methyltransferase 3A. Altogether, our results suggest that the higher activity within the cage and the augmented incentive motivation provoked by the REE boosted its neurobehavioral effects equaling or surpassing those observed in the CEE condition. As constant exposures to treatments or stimulating environments are virtually impossible for humans, restricted EE protocols would have greater translational value than traditional ones.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Health Research, University of Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
29
|
Tapia CM, Folorunso O, Singh AK, McDonough K, Laezza F. Effects of Deltamethrin Acute Exposure on Nav1.6 Channels and Medium Spiny Neurons of the Nucleus Accumbens. Toxicology 2020; 440:152488. [PMID: 32387285 DOI: 10.1016/j.tox.2020.152488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Exposure to pyrethroids, a popular insecticide class that targets voltage-gated Na+ (Nav) channels, has been correlated to an increase in diagnosis of neurodevelopmental disorders, such as attention deficit hyperactive disorder (ADHD), in children. Dysregulation of medium spiny neurons (MSNs) firing in the nucleus accumbens (NAc) is thought to play a critical role in the pathophysiology of ADHD and other neurodevelopmental disorders. The Nav1.6 channel is the primary molecular determinant of MSN firing and is sensitive to modification by pyrethroids. Building on previous studies demonstrating that deltamethrin (DM), a commonly used pyrethroid, leads to use-dependent enhancement of sodium currents, we characterized the effect of the toxin on long-term inactivation (LTI) of the Nav1.6 channel, a parameter known to affect neuronal firing, and characterized changes in MSN intrinsic excitability. We employed whole-cell patch-clamp electrophysiology to measure sodium currents in HEK-293 cells stably expressing Nav1.6 channels and intrinsic excitability of MSNs in the brain slice preparation. We found that in response to repetitive stimulation acute exposure to 10 μM DM potentiated a build-up of residual sodium currents and modified availability of Nav1.6 by inducing LTI. In the NAc, DM modified MSN intrinsic excitability increasing evoked action potential firing frequency and inducing aberrant action potentials with low amplitude and depolarized voltage threshold, phenotypes that could be explained by DM induced changes on the Nav1.6 channel. These results provide a potential initial mechanism of toxicity of DM that could lead to disruption of the NAc circuitry overtime, increasing the risk of ADHD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA; NIEHS Enviornmental Toxicology Training Program, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Kathleen McDonough
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| |
Collapse
|
30
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
31
|
Chronic mild stress alters synaptic plasticity in the nucleus accumbens through GSK3β-dependent modulation of Kv4.2 channels. Proc Natl Acad Sci U S A 2020; 117:8143-8153. [PMID: 32209671 DOI: 10.1073/pnas.1917423117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that glycogen-synthase kinase 3β (GSK3β) plays a key role in memory formation, yet its role in mood regulation remains controversial. Here, we investigated whether GSK3β activity in the nucleus accumbens (NAc) is associated with depression-like behaviors and synaptic plasticity. We performed whole-cell patch-clamp recordings of medium spiny neurons (MSNs) in the NAc and determined the role of GSK3β in spike timing-dependent long-term potentiation (tLTP) in the chronic unpredictable mild stress (CUMS) mouse model of depression. To assess the specific role of GSK3β in tLTP, we used in vivo genetic silencing by an adeno-associated viral vector (AAV2) short hairpin RNA against GSK3β. In addition, we examined the role of the voltage-gated potassium Kv4.2 subunit, a molecular determinant of A-type K+ currents, as a potential downstream target of GSK3β. We found increased levels of active GSK3β and augmented tLTP in CUMS mice, a phenotype that was prevented by selective GSK3β knockdown. Furthermore, knockdown of GSK3β in the NAc ameliorated depressive-like behavior in CUMS mice. Electrophysiological, immunohistochemical, biochemical, and pharmacological experiments revealed that inhibition of the Kv4.2 channel through direct phosphorylation at Ser-616 mediated the GSK3β-dependent tLTP changes in CUMS mice. Our results identify GSK3β regulation of Kv4.2 channels as a molecular mechanism of MSN maladaptive plasticity underlying depression-like behaviors and suggest that the GSK3β-Kv4.2 axis may be an attractive therapeutic target for MDD.
Collapse
|
32
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
33
|
Sopjani M, Millaku L, Nebija D, Emini M, Rifati-Nixha A, Dërmaku-Sopjani M. The Glycogen Synthase Kinase-3 in the Regulation of Ion Channels and Cellular Carriers. Curr Med Chem 2020; 26:6817-6829. [PMID: 30306852 DOI: 10.2174/0929867325666181009122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly evolutionarily conserved and ubiquitously expressed serine/threonine kinase, an enzyme protein profoundly specific for glycogen synthase (GS). GSK-3 is involved in various cellular functions and physiological processes, including cell proliferation, differentiation, motility, and survival as well as glycogen metabolism, protein synthesis, and apoptosis. There are two isoforms of human GSK-3 (named GSK-3α and GSK-3β) encoded by two distinct genes. Recently, GSK-3β has been reported to function as a powerful regulator of various transport processes across the cell membrane. This kinase, GSK-3β, either directly or indirectly, may stimulate or inhibit many different types of transporter proteins, including ion channel and cellular carriers. More specifically, GSK-3β-sensitive cellular transport regulation involves various calcium, chloride, sodium, and potassium ion channels, as well as a number of Na+-coupled cellular carriers including excitatory amino acid transporters EAAT2, 3 and 4, high-affinity Na+ coupled glucose carriers SGLT1, creatine transporter 1 CreaT1, and the type II sodium/phosphate cotransporter NaPi-IIa. The GSK-3β-dependent cellular transport regulations are a part of the kinase functions in numerous physiological and pathophysiological processes. Clearly, additional studies are required to examine the role of GSK-3β in many other types of cellular transporters as well as further elucidating the underlying mechanisms of GSK-3β-mediated cellular transport regulation.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Lulzim Millaku
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | - Dashnor Nebija
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Merita Emini
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Arleta Rifati-Nixha
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | | |
Collapse
|
34
|
Wadsworth PA, Folorunso O, Nguyen N, Singh AK, D'Amico D, Powell RT, Brunell D, Allen J, Stephan C, Laezza F. High-throughput screening against protein:protein interaction interfaces reveals anti-cancer therapeutics as potent modulators of the voltage-gated Na + channel complex. Sci Rep 2019; 9:16890. [PMID: 31729429 PMCID: PMC6858373 DOI: 10.1038/s41598-019-53110-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple voltage-gated Na+ (Nav) channelopathies can be ascribed to subtle changes in the Nav macromolecular complex. Fibroblast growth factor 14 (FGF14) is a functionally relevant component of the Nav1.6 channel complex, a causative link to spinocerebellar ataxia 27 (SCA27) and an emerging risk factor for neuropsychiatric disorders. Yet, how this protein:channel complex is regulated in the cell is still poorly understood. To search for key cellular pathways upstream of the FGF14:Nav1.6 complex, we have developed, miniaturized and optimized an in-cell assay in 384-well plates by stably reconstituting the FGF14:Nav1.6 complex using the split-luciferase complementation assay. We then conducted a high-throughput screening (HTS) of 267 FDA-approved compounds targeting known mediators of cellular signaling. Of the 65 hits initially detected, 24 were excluded based on counter-screening and cellular toxicity. Based on target analysis, potency and dose-response relationships, 5 compounds were subsequently repurchased for validation and confirmed as hits. Among those, the tyrosine kinase inhibitor lestaurtinib was highest ranked, exhibiting submicromolar inhibition of FGF14:Nav1.6 assembly. While providing evidence for a robust in-cell HTS platform that can be adapted to search for any channelopathy-associated regulatory proteins, these results lay the potential groundwork for repurposing cancer drugs for neuropsychopharmacology.
Collapse
Affiliation(s)
- Paul A Wadsworth
- MD/PhD Combined Degree Program and Biochemistry and Molecular Biology Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.,Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Daniela D'Amico
- Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Reid T Powell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - David Brunell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - John Allen
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.
| |
Collapse
|
35
|
Zhang XQ, Yu ZP, Ling Y, Zhao QQ, Zhang ZY, Wang ZC, Shen HW. Enduring effects of juvenile social isolation on physiological properties of medium spiny neurons in nucleus accumbens. Psychopharmacology (Berl) 2019; 236:3281-3289. [PMID: 31197434 DOI: 10.1007/s00213-019-05284-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
RATIONALE Juvenile social isolation (SI) and neglect is associated with a wide range of psychiatric disorders. While dysfunction of the corticolimbic pathway is considered to link various abnormal behaviors in SI models of schizophrenia, the enduring effects of early social deprivation on physiological properties of medium spiny neurons (MSNs) in nucleus accumbens (NAc) are not well understood. OBJECTIVES This study investigated the impacts of juvenile SI on locomotor activity to methamphetamine (METH) and neurophysiological characteristics of MSNs in the core of NAc. METHODS Socially isolated C57BL/6 mice experienced single housing for 4 weeks on postnatal day (PND) 21. The locomotor response to METH (1.0 mg/kg) was observed in both socially isolated and group-housed mice at PND 56. The effects of juvenile SI on the excitatory synaptic events in MSNs and the intrinsic excitability of MSNs in NAc core were investigated in other batches during PND 63-70. RESULTS Socially isolated mice showed locomotor hypersensitivity to METH, although the expression of locomotor sensitization to METH in socially isolated mice was not different from group-housed mice. The recordings from MSNs of SI-reared mice exhibited higher frequency and smaller amplitude of miniature/spontaneous excitatory postsynaptic current than those from group-reared mice. Moreover, SI resulted in increased intrinsic excitability of MSNs in adult mice. CONCLUSIONS These results demonstrate neuronal hyperactivity in the NAc of socially isolated mice, which could contribute to locomotor hypersensitivity to METH. Furthermore, the findings indicate a biological link between early negative life events and the vulnerability to psychostimulant-induced psychosis in adulthood.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Yu Ling
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Qi-Qi Zhao
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhong-Yu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Zheng-Chun Wang
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Hao-Wei Shen
- Department of Pharmacology, Medical School of Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
36
|
Vestlund J, Kalafateli AL, Studer E, Westberg L, Jerlhag E. Neuromedin U induces self-grooming in socially-stimulated mice. Neuropharmacology 2019; 162:107818. [PMID: 31647973 DOI: 10.1016/j.neuropharm.2019.107818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
Abstract
Emerging evidence suggest that appetite-regulating peptides modulate social behaviors. We here investigate whether the anorexigenic peptide neuromedin U (NMU) modulates sexual behavior in male mice. However, instead of modulating sexual behaviors, NMU administered into the third ventricle increased self-grooming behavior. In addition, NMU-treatment increased self-grooming behavior when exposed to other mice or olfactory social-cues, but not when exposed to non-social environments. As the neuropeptide oxytocin is released during social investigation and exogenous oxytocin induces self-grooming, its role in NMU-induced self-grooming behavior was investigated. In line with our hypothesis, the oxytocin receptor antagonist inhibited NMU-induced self-grooming behavior in mice exposed to olfactory social-cues. Moreover, dopamine in the mesocorticolimbic system is known to be a key regulator of self-grooming behavior. In line with this, we proved that infusion of NMU into nucleus accumbens increased self-grooming behavior in mice confronted with an olfactory social-cue and that this behavior was inhibited by antagonism of dopamine D2, but not D1/D5, receptors. Moreover repeated NMU treatment enhanced ex vivo dopamine levels and decreased the expression of dopamine D2 receptors in nucleus accumbens in socially housed mice. On the other hand, the olfactory stimuli-dependent NMU-induced self-grooming was not affected by a corticotrophin-releasing hormone antagonist, and NMU-treatment did not influence repetitive behaviors in the marble burying test. In conclusion, our results suggest that NMU treatment and, social cues - potentially triggering oxytocin release - together induce excessive grooming behavior in male mice. The mesolimbic dopamine system, including accumbal dopamine D2 receptors, was identified as a crucial downstream mechanism.
Collapse
Affiliation(s)
- Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Studer
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Westberg
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Eshra A, Hirrlinger P, Hallermann S. Enriched Environment Shortens the Duration of Action Potentials in Cerebellar Granule Cells. Front Cell Neurosci 2019; 13:289. [PMID: 31379501 PMCID: PMC6646744 DOI: 10.3389/fncel.2019.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment for rodents is known to enhance motor performance. Structural and molecular changes have been reported to be coupled with an enriched environment, but functional alterations of single neurons remain elusive. Here, we compared mice raised under control conditions and an enriched environment. We tested the motor performance on a rotarod and subsequently performed whole-cell patch-clamp recordings in cerebellar slices focusing on granule cells of lobule IX, which is known to receive vestibular input. Mice raised in an enriched environment were able to remain on an accelerating rotarod for a longer period of time. Electrophysiological analyses revealed normal passive properties of granule cells and a functional adaptation to the enriched environment, manifested in faster action potentials (APs) with a higher depolarized voltage threshold and larger AP overshoot. Furthermore, the maximal firing frequency of APs was higher in mice raised in an enriched environment. These data show that enriched environment causes specific alterations in the biophysical properties of neurons. Furthermore, we speculate that the ability of cerebellar granule cells to generate higher firing frequencies improves motor performance.
Collapse
Affiliation(s)
- Abdelmoneim Eshra
- Medical Faculty, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Petra Hirrlinger
- Medical Faculty, Medizinisch-Experimentelles Zentrum, Leipzig University, Leipzig, Germany
| | - Stefan Hallermann
- Medical Faculty, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| |
Collapse
|
38
|
Cerebellar Stellate Cell Excitability Is Coordinated by Shifts in the Gating Behavior of Voltage-Gated Na + and A-Type K + Channels. eNeuro 2019; 6:ENEURO.0126-19.2019. [PMID: 31110133 PMCID: PMC6553571 DOI: 10.1523/eneuro.0126-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023] Open
Abstract
Neuronal excitability in the vertebrate brain is governed by the coordinated activity of both ligand- and voltage-gated ion channels. In the cerebellum, spontaneous action potential (AP) firing of inhibitory stellate cells (SCs) is variable, typically operating within the 5- to 30-Hz frequency range. AP frequency is shaped by the activity of somatodendritic A-type K+ channels and the inhibitory effect of GABAergic transmission. An added complication, however, is that whole-cell recording from SCs induces a time-dependent and sustained increase in membrane excitability making it difficult to define the full range of firing rates. Here, we show that whole-cell recording in cerebellar SCs of both male and female mice augments firing rates by reducing the membrane potential at which APs are initiated. AP threshold is lowered due to a hyperpolarizing shift in the gating behavior of voltage-gated Na+ channels. Whole-cell recording also elicits a hyperpolarizing shift in the gating behavior of A-type K+ channels which contributes to increased firing rates. Hodgkin–Huxley modeling and pharmacological experiments reveal that gating shifts in A-type K+ channel activity do not impact AP threshold, but rather promote channel inactivation which removes restraint on the upper limit of firing rates. Taken together, our work reveals an unappreciated impact of voltage-gated Na+ channels that work in coordination with A-type K+ channels to regulate the firing frequency of cerebellar SCs.
Collapse
|
39
|
Sex-Specific Proteomic Changes Induced by Genetic Deletion of Fibroblast Growth Factor 14 (FGF14), a Regulator of Neuronal Ion Channels. Proteomes 2019; 7:proteomes7010005. [PMID: 30678040 PMCID: PMC6473632 DOI: 10.3390/proteomes7010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGFs, which is a group of proteins involved in neuronal ion channel regulation and synaptic transmission. We previously demonstrated that male Fgf14−/− mice recapitulate the salient endophenotypes of synaptic dysfunction and behaviors that are associated with schizophrenia (SZ). As the underlying etiology of SZ and its sex-specific onset remain elusive, the Fgf14−/− model may provide a valuable tool to interrogate pathways related to disease mechanisms. Here, we performed label-free quantitative proteomics to identify enriched pathways in both male and female hippocampi from Fgf14+/+ and Fgf14−/− mice. We discovered that all of the differentially expressed proteins measured in Fgf14−/− animals, relative to their same-sex wildtype counterparts, are associated with SZ based on genome-wide association data. In addition, measured changes in the proteome were predominantly sex-specific, with the male Fgf14−/− mice distinctly enriched for pathways associated with neuropsychiatric disorders. In the male Fgf14−/− mouse, we found molecular characteristics that, in part, may explain a previously described neurotransmission and behavioral phenotype. This includes decreased levels of ALDH1A1 and protein kinase A (PRKAR2B). ALDH1A1 has been shown to mediate an alternative pathway for gamma-aminobutyric acid (GABA) synthesis, while PRKAR2B is essential for dopamine 2 receptor signaling, which is the basis of current antipsychotics. Collectively, our results provide new insights in the role of FGF14 and support the use of the Fgf14−/− mouse as a useful preclinical model of SZ for generating hypotheses on disease mechanisms, sex-specific manifestation, and therapy.
Collapse
|