1
|
Armas JMB, Taoro-González L, Fisher EMC, Acevedo-Arozena A. Challenges of modelling TDP-43 pathology in mice. Mamm Genome 2025:10.1007/s00335-025-10131-1. [PMID: 40301152 DOI: 10.1007/s00335-025-10131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
TDP-43 is a normally nuclear RNA binding protein that under pathological conditions may be excluded from the nucleus and deposited in the cytoplasm in the form of insoluble polyubiquitinated and polyphosphorylated inclusions. This nuclear exclusion coupled with cytoplasmic accumulation is called TDP-43 pathology and contributes to a range of disorders collectively known as TDP-43 proteinopathies. These include the great majority of amyotrophic lateral sclerosis (ALS) cases, all limbic-predominant age-related TDP-43 encephalopathy (LATE), as well as up to 50% of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) cases. Thus, TDP-43 pathology is a common feature underlying a wide range of neurodegenerative conditions. However, modelling it has proven to be challenging, particularly generating models with concomitant TDP-43 loss of nuclear function and cytoplasmic inclusions. Here, focussing exclusively on mice, we discuss TDP-43 genetic models in terms of the presence of TDP-43 pathology, and we consider other models with TDP-43 pathology due to mutations in disparate genes. We also consider manipulations aimed at producing TDP-43 pathology, and we look at potential strategies to develop new, much needed models to address the many outstanding questions regarding how and why TDP-43 protein leaves the nucleus and accumulates in the cytoplasm, causing downstream dysfunction and devastating disease.
Collapse
Affiliation(s)
- José Miguel Brito Armas
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain
| | - Lucas Taoro-González
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases and Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK.
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain.
| |
Collapse
|
2
|
Maetani Y, Kurashige T, Tada Y, Kume K, Watanabe T, Sotomaru Y, Yamanaka K, Maruyama H, Kawakami H. Optineurin knock-out forms TDP-43 aggregates to regulate TDP-43 protein levels despite autophagic up-regulation and aberrant TDP-43 expression. Neurosci Res 2025:S0168-0102(25)00064-1. [PMID: 40127736 DOI: 10.1016/j.neures.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Optineurin is a causative gene of amyotrophic lateral sclerosis (ALS) and has many roles in processes such as autophagy and inflammation. However, it is unclear how optineurin causes ALS. Optineurin knock-out (Optn-KO) mice, which have been generated by several researchers, exhibit motor neuron degeneration and TDP-43 aggregates, but no motor deficits. Motor dysfunction in ALS model mice is associated with TDP-43 in the spinal cord. We bred Optn-KO mice with TDP-43 overexpression transgenic mice and evaluated whether increased TDP-43 protein causes motor deficits and whether Optn-KO affects TDP-43 protein level. Optn-KO mice had spinal TDP-43 protein levels and motor function comparable to wild-type mice, and TDP-43-transgenic (TDP-43-tg) mice resulted in motor dysfunction and early death. However, double-mutant TDP-43-tg / Optn-KO mice had lower TDP-43 protein levels than TDP-43-tg mice at 18 months age, and showed inhibition of the TBK1-optinerurin autophagic pathway with aging. Furthermore, Optn-KO caused TDP-43-positive cytoplasmic aggregates. TDP-43 overexpression by itself induced spinal microgliosis, but Optn-KO suppressed that microgliosis. Finally, we showed that Optn-KO mice could not exhibit behavioral dysfunction because TDP-43 protein levels were not elevated despite autophagy inhibition. Thus, downregulation of Optn may suppress TDP-43 toxicity by regulating its abundance through aggregate formation.
Collapse
Affiliation(s)
- Yuta Maetani
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan; Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Takashi Kurashige
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan; Department of Neurology, NHO Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyamacho, Kure, Hiroshima 737-0023, Japan.
| | - Yui Tada
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Kodai Kume
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Tomoaki Watanabe
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan; Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Hideshi Kawakami
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Okada K, Ito D, Morimoto S, Kato C, Oguma Y, Warita H, Suzuki N, Aoki M, Kuramoto J, Kobayashi R, Shinozaki M, Ikawa M, Nakahara J, Takahashi S, Nishimoto Y, Shibata S, Okano H. Multiple lines of evidence for disruption of nuclear lamina and nucleoporins in FUS amyotrophic lateral sclerosis. Brain 2024; 147:3933-3948. [PMID: 39312484 DOI: 10.1093/brain/awae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 06/09/2024] [Indexed: 09/25/2024] Open
Abstract
Advanced pathological and genetic approaches have revealed that mutations in fused in sarcoma/translated in liposarcoma (FUS/TLS), which is pivotal for DNA repair, alternative splicing, translation and RNA transport, cause familial amyotrophic lateral sclerosis (ALS). The generation of suitable animal models for ALS is essential for understanding its pathogenesis and developing therapies. Therefore, we used CRISPR-Cas9 to generate FUS-ALS mutation in the non-classical nuclear localization signal (NLS), H517D (mouse position: H509D) and genome-edited mice. Fus WT/H509D mice showed progressive motor impairment (accelerating rotarod and DigiGait system) with age, which was associated with the loss of motor neurons and disruption of the nuclear lamina and nucleoporins and DNA damage in spinal cord motor neurons. We confirmed the validity of our model by showing that nuclear lamina and nucleoporin disruption were observed in lower motor neurons differentiated from patient-derived human induced pluripotent stem cells (hiPSC-LMNs) with FUS-H517D and in the post-mortem spinal cord of patients with ALS. RNA sequence analysis revealed that most nuclear lamina and nucleoporin-linking genes were significantly decreased in FUS-H517D hiPSC-LMNs. This evidence suggests that disruption of the nuclear lamina and nucleoporins is crucial for ALS pathomechanisms. Combined with patient-derived hiPSC-LMNs and autopsy samples, this mouse model might provide a more reliable understanding of ALS pathogenesis and might aid in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Memory Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuki Oguma
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Yoshinori Nishimoto
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
- Laboratory for Marmoset Models of Neural Diseases, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
5
|
Hu Y, Hruscha A, Pan C, Schifferer M, Schmidt MK, Nuscher B, Giera M, Kostidis S, Burhan Ö, van Bebber F, Edbauer D, Arzberger T, Haass C, Schmid B. Mis-localization of endogenous TDP-43 leads to ALS-like early-stage metabolic dysfunction and progressive motor deficits. Mol Neurodegener 2024; 19:50. [PMID: 38902734 PMCID: PMC11188230 DOI: 10.1186/s13024-024-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The key pathological signature of ALS/ FTLD is the mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm. However, TDP-43 gain of function in the cytoplasm is still poorly understood since TDP-43 animal models recapitulating mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm are missing. METHODS CRISPR/Cas9 technology was used to generate a zebrafish line (called CytoTDP), that mis-locates endogenous TDP-43 from the nucleus to the cytoplasm. Phenotypic characterization of motor neurons and the neuromuscular junction was performed by immunostaining, microglia were immunohistochemically localized by whole-mount tissue clearing and muscle ultrastructure was analyzed by scanning electron microscopy. Behavior was investigated by video tracking and quantitative analysis of swimming parameters. RNA sequencing was used to identify mis-regulated pathways with validation by molecular analysis. RESULTS CytoTDP fish have early larval phenotypes resembling clinical features of ALS such as progressive motor defects, neurodegeneration and muscle atrophy. Taking advantage of zebrafish's embryonic development that solely relys on yolk usage until 5 days post fertilization, we demonstrated that microglia proliferation and activation in the hypothalamus is independent from food intake. By comparing CytoTDP to a previously generated TDP-43 knockout line, transcriptomic analyses revealed that mis-localization of endogenous TDP-43, rather than TDP-43 nuclear loss of function, leads to early onset metabolic dysfunction. CONCLUSIONS The new TDP-43 model mimics the ALS/FTLD hallmark of progressive motor dysfunction. Our results suggest that functional deficits of the hypothalamus, the metabolic regulatory center, might be the primary cause of weight loss in ALS patients. Cytoplasmic gain of function of endogenous TDP-43 leads to metabolic dysfunction in vivo that are reminiscent of early ALS clinical non-motor metabolic alterations. Thus, the CytoTDP zebrafish model offers a unique opportunity to identify mis-regulated targets for therapeutic intervention early in disease progression.
Collapse
Affiliation(s)
- Yiying Hu
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
| | - Alexander Hruscha
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Chenchen Pan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael K Schmidt
- Zentrum Für Neuropathologie, Ludwig-Maximilians University, Munich, Germany
| | - Brigitte Nuscher
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Martin Giera
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Özge Burhan
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Frauke van Bebber
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Zentrum Für Neuropathologie, Ludwig-Maximilians University, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
6
|
Carmen-Orozco RP, Tsao W, Ye Y, Sinha IR, Chang K, Trinh VT, Chung W, Bowden K, Troncoso JC, Blackshaw S, Hayes LR, Sun S, Wong PC, Ling JP. Elevated nuclear TDP-43 induces constitutive exon skipping. Mol Neurodegener 2024; 19:45. [PMID: 38853250 PMCID: PMC11163724 DOI: 10.1186/s13024-024-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. METHODS We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon repression and disease. RESULTS Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. CONCLUSIONS Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Rogger P Carmen-Orozco
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Tsao
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Irika R Sinha
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Vickie T Trinh
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Chung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kyra Bowden
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Brenner D, Sieverding K, Srinidhi J, Zellner S, Secker C, Yilmaz R, Dyckow J, Amr S, Ponomarenko A, Tunaboylu E, Douahem Y, Schlag JS, Rodríguez Martínez L, Kislinger G, Niemann C, Nalbach K, Ruf WP, Uhl J, Hollenbeck J, Schirmer L, Catanese A, Lobsiger CS, Danzer KM, Yilmazer-Hanke D, Münch C, Koch P, Freischmidt A, Fetting M, Behrends C, Parlato R, Weishaupt JH. A TBK1 variant causes autophagolysosomal and motoneuron pathology without neuroinflammation in mice. J Exp Med 2024; 221:e20221190. [PMID: 38517332 PMCID: PMC10959724 DOI: 10.1084/jem.20221190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.
Collapse
Affiliation(s)
- David Brenner
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Jahnavi Srinidhi
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Susanne Zellner
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rüstem Yilmaz
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Julia Dyckow
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Shady Amr
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna Ponomarenko
- Department of Neurology, University of Ulm, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Esra Tunaboylu
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Yasmin Douahem
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Joana S. Schlag
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucía Rodríguez Martínez
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Georg Kislinger
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cornelia Niemann
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Karsten Nalbach
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | | | - Jonathan Uhl
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Johanna Hollenbeck
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucas Schirmer
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christian S. Lobsiger
- Institut du Cerveau—Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm, Centre National de la Recherche Scientifique, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Karin M. Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurology, Clinical Neuroanatomy Unit, University of Ulm, Ulm, Germany
| | - Christian Münch
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Philipp Koch
- University of Heidelberg/Medical Faculty Mannheim, Central Institute of Mental Health, Mannheim, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | | | - Martina Fetting
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Christian Behrends
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Rosanna Parlato
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Godoy-Corchuelo JM, Ali Z, Brito Armas JM, Martins-Bach AB, García-Toledo I, Fernández-Beltrán LC, López-Carbonero JI, Bascuñana P, Spring S, Jimenez-Coca I, Muñoz de Bustillo Alfaro RA, Sánchez-Barrena MJ, Nair RR, Nieman BJ, Lerch JP, Miller KL, Ozdinler HP, Fisher EMC, Cunningham TJ, Acevedo-Arozena A, Corrochano S. TDP-43-M323K causes abnormal brain development and progressive cognitive and motor deficits associated with mislocalised and increased levels of TDP-43. Neurobiol Dis 2024; 193:106437. [PMID: 38367882 PMCID: PMC10988218 DOI: 10.1016/j.nbd.2024.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.
Collapse
Affiliation(s)
- Juan M Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK
| | - Jose M Brito Armas
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain
| | | | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Pablo Bascuñana
- Brain Mapping Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | | | - Maria J Sánchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, Madrid, Spain
| | - Remya R Nair
- MRC Harwell Institute, Oxfordshire, UK; Nucleic Acid Therapy Accelerator (NATA), Harwell Campus, Oxfordshire, UK
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hande P Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, and UCL Queen Square Motor Neuron Disease Centre, UCL, Institute of Neurology, London, UK
| | - Thomas J Cunningham
- MRC Harwell Institute, Oxfordshire, UK; MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain.
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK.
| |
Collapse
|
9
|
Spence H, Waldron FM, Saleeb RS, Brown AL, Rifai OM, Gilodi M, Read F, Roberts K, Milne G, Wilkinson D, O'Shaughnessy J, Pastore A, Fratta P, Shneider N, Tartaglia GG, Zacco E, Horrocks MH, Gregory JM. RNA aptamer reveals nuclear TDP-43 pathology is an early aggregation event that coincides with STMN-2 cryptic splicing and precedes clinical manifestation in ALS. Acta Neuropathol 2024; 147:50. [PMID: 38443601 PMCID: PMC10914926 DOI: 10.1007/s00401-024-02705-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.
Collapse
Affiliation(s)
- Holly Spence
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Fergal M Waldron
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Rebecca S Saleeb
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Olivia M Rifai
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Martina Gilodi
- RNA System Biology Lab, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Fiona Read
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kristine Roberts
- Department of Pathology, NHS Grampian Tissue Biorepository, Aberdeen, UK
| | - Gillian Milne
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Debbie Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Judi O'Shaughnessy
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Neil Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | | | - Elsa Zacco
- RNA System Biology Lab, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Jenna M Gregory
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- Department of Pathology, NHS Grampian Tissue Biorepository, Aberdeen, UK.
| |
Collapse
|
10
|
Ocharán-Mercado A, Loaeza-Loaeza J, Castro-Coronel Y, Acosta-Saavedra LC, Hernández-Kelly LC, Hernández-Sotelo D, Ortega A. RNA-Binding Proteins: A Role in Neurotoxicity? Neurotox Res 2023; 41:681-697. [PMID: 37776476 PMCID: PMC10682104 DOI: 10.1007/s12640-023-00669-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/15/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Despite sustained efforts to treat neurodegenerative diseases, little is known at the molecular level to understand and generate novel therapeutic approaches for these malignancies. Therefore, it is not surprising that neurogenerative diseases are among the leading causes of death in the aged population. Neurons require sophisticated cellular mechanisms to maintain proper protein homeostasis. These cells are generally sensitive to loss of gene expression control at the post-transcriptional level. Post-translational control responds to signals that can arise from intracellular processes or environmental factors that can be regulated through RNA-binding proteins. These proteins recognize RNA through one or more RNA-binding domains and form ribonucleoproteins that are critically involved in the regulation of post-transcriptional processes from splicing to the regulation of association of the translation machinery allowing a relatively rapid and precise modulation of the transcriptome. Neurotoxicity is the result of the biological, chemical, or physical interaction of agents with an adverse effect on the structure and function of the central nervous system. The disruption of the proper levels or function of RBPs in neurons and glial cells triggers neurotoxic events that are linked to neurodegenerative diseases such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), fragile X syndrome (FXS), and frontotemporal dementia (FTD) among many others. The connection between RBPs and neurodegenerative diseases opens a new landscape for potentially novel therapeutic targets for the intervention of these neurodegenerative pathologies. In this contribution, a summary of the recent findings of the molecular mechanisms involved in the plausible role of RBPs in RNA processing in neurodegenerative disease is discussed.
Collapse
Affiliation(s)
- Andrea Ocharán-Mercado
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Jaqueline Loaeza-Loaeza
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Yaneth Castro-Coronel
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas 88, Chilpancingo, Guerrero, 39086, México
| | - Leonor C Acosta-Saavedra
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas 88, Chilpancingo, Guerrero, 39086, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
11
|
Necarsulmer JC, Simon JM, Evangelista BA, Chen Y, Tian X, Nafees S, Marquez AB, Jiang H, Wang P, Ajit D, Nikolova VD, Harper KM, Ezzell JA, Lin FC, Beltran AS, Moy SS, Cohen TJ. RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy. eLife 2023; 12:RP85921. [PMID: 37819053 PMCID: PMC10567115 DOI: 10.7554/elife.85921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julie C Necarsulmer
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Baggio A Evangelista
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Youjun Chen
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Xu Tian
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Sara Nafees
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Ariana B Marquez
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
| | - Huijun Jiang
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Ping Wang
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Deepa Ajit
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Viktoriya D Nikolova
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - J Ashley Ezzell
- Department of Cell Biology & Physiology, Histology Research Core Facility, University of North CarolinaChapel HillUnited States
| | - Feng-Chang Lin
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Adriana S Beltran
- Department of Genetics, University of North CarolinaChapel HillUnited States
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Todd J Cohen
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Department of Biochemistry and Biophysics, University of North CarolinaChapel HillUnited States
| |
Collapse
|
12
|
You J, Youssef MMM, Santos JR, Lee J, Park J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. BIOLOGY 2023; 12:1307. [PMID: 37887017 PMCID: PMC10603852 DOI: 10.3390/biology12101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Mohieldin M. M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
13
|
De Lorenzo F, Lüningschrör P, Nam J, Beckett L, Pilotto F, Galli E, Lindholm P, Rüdt von Collenberg C, Mungwa ST, Jablonka S, Kauder J, Thau-Habermann N, Petri S, Lindholm D, Saxena S, Sendtner M, Saarma M, Voutilainen MH. CDNF rescues motor neurons in models of amyotrophic lateral sclerosis by targeting endoplasmic reticulum stress. Brain 2023; 146:3783-3799. [PMID: 36928391 PMCID: PMC10473573 DOI: 10.1093/brain/awad087] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Francesca De Lorenzo
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Jinhan Nam
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Liam Beckett
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Federica Pilotto
- Department of Neurology, Inselspital University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Emilia Galli
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | - Simon Tii Mungwa
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Julia Kauder
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, FIN-00014 Helsinki, Finland
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
14
|
Alhindi A, Shand M, Smith HL, Leite AS, Huang YT, van der Hoorn D, Ridgway Z, Faller KME, Jones RA, Gillingwater TH, Chaytow H. Neuromuscular junction denervation and terminal Schwann cell loss in the hTDP-43 overexpression mouse model of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2023; 49:e12925. [PMID: 37465879 DOI: 10.1111/nan.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with complex aetiology. Despite evidence of neuromuscular junction (NMJ) denervation and 'dying-back' pathology in models of SOD1-dependent ALS, evidence in other genetic forms of ALS is limited by a lack of suitable animal models. TDP-43, a key mediator protein in ALS, is overexpressed in neurons in Thy1-hTDP-43WT mice. We therefore aimed to comprehensively analyse NMJ pathology in this model of ALS. METHODS Expression of TDP-43 was assessed via western blotting. Immunohistochemistry techniques, alongside NMJ-morph quantification, were used to analyse motor neuron number, NMJ denervation status and terminal Schwann cell morphology. RESULTS We present a time course of progressive, region-specific motor neuron pathology in Thy1-hTDP-43WT mice. Thy1-driven hTDP-43 expression increased steadily, correlating with developing hindlimb motor weakness and associated motor neuron loss in the spinal cord with a median survival of 21 days. Pronounced NMJ denervation was observed in hindlimb muscles, mild denervation in cranial muscles but no evidence of denervation in either forelimb or trunk muscles. NMJ pathology was restricted to motor nerve terminals, with denervation following the same time course as motor neuron loss. Terminal Schwann cells were lost from NMJs in hindlimb muscles, directly correlating with denervation status. CONCLUSIONS Thy1-hTDP-43WT mice represent a severe model of ALS, with NMJ pathology/denervation of distal muscles and motor neuron loss, as observed in ALS patients. This model therefore provides an ideal platform to investigate mechanisms of dying-back pathology, as well as NMJ-targeting disease-modifying therapies in ALS.
Collapse
Affiliation(s)
- Abrar Alhindi
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
- Faculty of Medicine, Department of Anatomy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Megan Shand
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Hannah L Smith
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Ana S Leite
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
- School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil
| | - Yu-Ting Huang
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Zara Ridgway
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Kiterie M E Faller
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| |
Collapse
|
15
|
Fisher EM, Greensmith L, Malaspina A, Fratta P, Hanna MG, Schiavo G, Isaacs AM, Orrell RW, Cunningham TJ, Arozena AA. Opinion: more mouse models and more translation needed for ALS. Mol Neurodegener 2023; 18:30. [PMID: 37143081 PMCID: PMC10161557 DOI: 10.1186/s13024-023-00619-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.
Collapse
Affiliation(s)
- Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Michael G. Hanna
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
| | - Adrian M. Isaacs
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Richard W. Orrell
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Courtauld Building, 33 Cleveland Street, London, W1W 7FF UK
| | - Abraham Acevedo Arozena
- Research Unit, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, 38320 Spain
| |
Collapse
|
16
|
van Hummel A, Sabale M, Przybyla M, van der Hoven J, Chan G, Feiten AF, Chung RS, Ittner LM, Ke YD. TDP-43 pathology and functional deficits in wild-type and ALS/FTD mutant cyclin F mouse models. Neuropathol Appl Neurobiol 2023; 49:e12902. [PMID: 36951214 PMCID: PMC10946706 DOI: 10.1111/nan.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is characterised by a progressive loss of upper and lower motor neurons leading to muscle weakness and eventually death. Frontotemporal dementia (FTD) presents clinically with significant behavioural decline. Approximately 10% of cases have a known family history, and disease-linked mutations in multiple genes have been identified in FTD and ALS. More recently, ALS and FTD-linked variants have been identified in the CCNF gene, which accounts for an estimated 0.6% to over 3% of familial ALS cases. METHODS In this study, we developed the first mouse models expressing either wild-type (WT) human CCNF or its mutant pathogenic variant S621G to recapitulate key clinical and neuropathological features of ALS and FTD linked to CCNF disease variants. We expressed human CCNF WT or CCNFS621G throughout the murine brain by intracranial delivery of adeno-associated virus (AAV) to achieve widespread delivery via somatic brain transgenesis. RESULTS These mice developed behavioural abnormalities, similar to the clinical symptoms of FTD patients, as early as 3 months of age, including hyperactivity and disinhibition, which progressively deteriorated to include memory deficits by 8 months of age. Brains of mutant CCNF_S621G mice displayed an accumulation of ubiquitinated proteins with elevated levels of phosphorylated TDP-43 present in both CCNF_WT and mutant CCNF_S621G mice. We also investigated the effects of CCNF expression on interaction targets of CCNF and found elevated levels of insoluble splicing factor proline and glutamine-rich (SFPQ). Furthermore, cytoplasmic TDP-43 inclusions were found in both CCNF_WT and mutant CCNF_S621G mice, recapitulating the key hallmark of FTD/ALS pathology. CONCLUSIONS In summary, CCNF expression in mice reproduces clinical presentations of ALS, including functional deficits and TDP-43 neuropathology with altered CCNF-mediated pathways contributing to the pathology observed.
Collapse
Affiliation(s)
- Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Miheer Sabale
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Magdalena Przybyla
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Gabriella Chan
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Astrid F. Feiten
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of MedicineLudwig‐Maximilians‐Universität MünchenMunich81377Germany
| | - Roger S. Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lars M. Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Yazi D. Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
17
|
Ni J, Ren Y, Su T, Zhou J, Fu C, Lu Y, Li D, Zhao J, Li Y, Zhang Y, Fang Y, Liu N, Geng Y, Chen Y. Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Mol Psychiatry 2023; 28:931-945. [PMID: 34697451 DOI: 10.1038/s41380-021-01346-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
TDP-43 proteinopathy is linked to neurodegenerative diseases that feature synaptic loss in the cortex and hippocampus, although it remains unclear how TDP-43 regulates mature synapses. We report that, in adult mouse hippocampus, TDP-43 knockdown, but not overexpression, induces robust structural and functional damage to excitatory synapses, supporting a role for TDP-43 in maintaining mature synapses. Dendritic spine loss induced by TDP-43 knockdown is rescued by wild-type TDP-43, but not ALS/FTLD-associated mutants, suggesting a common TDP-43 functional deficiency in neurodegenerative diseases. Interestingly, M337V and A90V mutants also display dominant negative activities against WT TDP-43, partially explaining why M337V transgenic mice develop hippocampal degeneration similar to that in excitatory neuronal TDP-43 knockout mice, and why A90V mutation is associated with Alzheimer's disease. Further analyses reveal that a TDP-43 knockdown-induced reduction in GluN2A contributes to synaptic loss. Our results show that loss of TDP-43 function underlies hippocampal and cortical synaptic degeneration in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Jiangxia Ni
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongfei Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De'an Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| |
Collapse
|
18
|
Paul S, Dansithong W, Gandelman M, Figueroa KP, Zu T, Ranum LPW, Scoles DR, Pulst SM. Staufen Impairs Autophagy in Neurodegeneration. Ann Neurol 2023; 93:398-416. [PMID: 36151701 PMCID: PMC9892312 DOI: 10.1002/ana.26515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The mechanistic target of rapamycin (mTOR) kinase is one of the master coordinators of cellular stress responses, regulating metabolism, autophagy, and apoptosis. We recently reported that staufen1 (STAU1), a stress granule (SG) protein, was overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis, frontotemporal degeneration, Huntington's, Alzheimer's, and Parkinson's diseases as well as animal models, and patient tissues. STAU1 overabundance is associated with mTOR hyperactivation and links SG formation with autophagy. Our objective was to determine the mechanism of mTOR regulation by STAU1. METHODS We determined STAU1 abundance with disease- and chemical-induced cellular stressors in patient cells and animal models. We also used RNA-binding assays to contextualize STAU1 interaction with MTOR mRNA. RESULTS STAU1 and mTOR were overabundant in bacterial artificial chromosome (BAC)-C9ORF72, ATXN2Q127 , and Thy1-TDP-43 transgenic mouse models. Reducing STAU1 levels in these mice normalized mTOR levels and activity and autophagy-related marker proteins. We also saw increased STAU1 levels in HEK293 cells transfected to express C9ORF72-relevant dipeptide repeats (DPRs). Conversely, DPR accumulations were not observed in cells treated by STAU1 RNA interference (RNAi). Overexpression of STAU1 in HEK293 cells increased mTOR levels through direct MTOR mRNA interaction, activating downstream targets and impairing autophagic flux. Targeting mTOR by rapamycin or RNAi normalized STAU1 abundance in an SCA2 cellular model. INTERPRETATION STAU1 interaction with mTOR drives its hyperactivation and inhibits autophagic flux in multiple models of neurodegeneration. Staufen, therefore, constitutes a novel target to modulate mTOR activity and autophagy, and for the treatment of neurodegenerative diseases. ANN NEUROL 2023;93:398-416.
Collapse
Affiliation(s)
- Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT
| | | | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT
| | | | - Tao Zu
- Center for NeuroGenetics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Laura P W Ranum
- Center for NeuroGenetics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| |
Collapse
|
19
|
Dubinski A, Gagné M, Peyrard S, Gordon D, Talbot K, Vande Velde C. Stress granule assembly in vivo is deficient in the CNS of mutant TDP-43 ALS mice. Hum Mol Genet 2023; 32:319-332. [PMID: 35994036 PMCID: PMC9840205 DOI: 10.1093/hmg/ddac206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 01/19/2023] Open
Abstract
Responding effectively to external stress is crucial for neurons. Defective stress granule dynamics has been hypothesized as one of the pathways that renders motor neurons in amyotrophic lateral sclerosis (ALS) more prone to early death. Specifically, it is thought that stress granules seed the cytoplasmic TDP-43 inclusions that are observed in the neurons of most ALS patients, as well as ~50% of all frontotemporal dementia (FTD) patients. In this study, we tested this hypothesis in an intact mammalian nervous system. We established an in vivo heat stress paradigm in mice that effectively triggers the eIF2α pathway and the formation of stress granules in the CNS. In non-transgenic mice, we report an age-dependent decline in the formation of heat-induced stress granules, with 18-month-old animals showing a significant impairment. Furthermore, although neuronal stress granules were robustly observed in non-transgenic mice and SOD1G93A mice, they were largely absent in age-matched TDP-43M337V animals. The observed defect in stress granule formation in TDP-43M337V mice correlated with deficits in expression of key protein components typically required for phase separation. Lastly, while TDP-43 was not localized to stress granules, we observed complete nuclear depletion of TDP-43 in a subset of neurons, with the highest proportion being in the TDP-43M337V mice. Overall, our results indicate that mutant TDP-43 expression is associated with defective stress granule assembly and increased TDP-43 nuclear depletion in the mammalian nervous system, which could be relevant to ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Alicia Dubinski
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Myriam Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sarah Peyrard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Christine Vande Velde
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
20
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
21
|
Riku Y, Yoshida M, Iwasaki Y, Sobue G, Katsuno M, Ishigaki S. TDP-43 Proteinopathy and Tauopathy: Do They Have Pathomechanistic Links? Int J Mol Sci 2022; 23:ijms232415755. [PMID: 36555399 PMCID: PMC9779029 DOI: 10.3390/ijms232415755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Transactivation response DNA binding protein 43 kDa (TDP-43) and tau are major pathological proteins of neurodegenerative disorders, of which neuronal and glial aggregates are pathological hallmarks. Interestingly, accumulating evidence from neuropathological studies has shown that comorbid TDP-43 pathology is observed in a subset of patients with tauopathies, and vice versa. The concomitant pathology often spreads in a disease-specific manner and has morphological characteristics in each primary disorder. The findings from translational studies have suggested that comorbid TDP-43 or tau pathology has clinical impacts and that the comorbid pathology is not a bystander, but a part of the disease process. Shared genetic risk factors or molecular abnormalities between TDP-43 proteinopathies and tauopathies, and direct interactions between TDP-43 and tau aggregates, have been reported. Further investigations to clarify the pathogenetic factors that are shared by a broad spectrum of neurodegenerative disorders will establish key therapeutic targets.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Correspondence: or
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Gen Sobue
- Graduate School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
| | - Shinsuke Ishigaki
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
22
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
23
|
Li F, Chen Y, Liu X, Tang Y, Dong X, Wei G. Atomistic Insights into A315E Mutation-Enhanced Pathogenicity of TDP-43 Core Fibrils. ACS Chem Neurosci 2022; 13:2743-2754. [PMID: 36053560 DOI: 10.1021/acschemneuro.2c00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) into fibrillary deposits is implicated in amyotrophic lateral sclerosis (ALS), and some hereditary mutations localized in the low complexity domain (LCD) facilitate the formation of pathogenic TDP-43 fibrils. A recent cryo-EM study reported the atomic-level structures of the A315E TDP-43 LCD (residues 288-319, TDP-43288-319) core fibril in which the protofilaments have R-shaped structures and hypothesized that A315E U-shaped protofilaments can readily convert to R-shaped protofilaments compared to the wild-type (WT) ones. There are no atomic structures of WT protofilaments available yet. Herein, we performed extensive all-atom explicit-solvent molecular dynamics simulations on A315E and WT protofilaments starting from both the cryo-EM-determined R-shaped and our constructed U-shaped structures. Our simulations show that WT protofilaments also adopt the R-shaped structures but are less stable than their A315E counterparts. Except for R293-E315 salt bridges, N312-F316 hydrophobic interactions and F316-F316 π-π stacking interactions are also crucial for the stabilization of the neck region of the R-shaped A315E protofilaments. The loss of R293-E315 salt bridges and the weakened interactions of N312-F316 and F316-F316 result in the reduced stability of the R-shaped WT protofilaments. Simulations starting from U-shaped folds reveal that A315E protofilaments can spontaneously convert to the cryo-EM-derived R-shaped protofilaments, whereas WT protofilaments convert to R-shape-like structures with remodeled neck regions. The R-shape-like WT protofilaments could act as intermediate states slowing down the U-to-R transition. This study reveals that A315E mutation can not only enhance the structural stability of the R-shaped TDP-43288-319 protofilaments but also promote the U-to-R transition, which provides atomistic insights into the A315E mutation-enhanced TDP-43 pathogenicity in ALS.
Collapse
Affiliation(s)
- Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Tosolini AP, Sleigh JN, Surana S, Rhymes ER, Cahalan SD, Schiavo G. BDNF-dependent modulation of axonal transport is selectively impaired in ALS. Acta Neuropathol Commun 2022; 10:121. [PMID: 35996201 PMCID: PMC9396851 DOI: 10.1186/s40478-022-01418-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
Axonal transport ensures long-range delivery of essential cargoes between proximal and distal compartments, and is needed for neuronal development, function, and survival. Deficits in axonal transport have been detected at pre-symptomatic stages in the SOD1G93A and TDP-43M337V mouse models of amyotrophic lateral sclerosis (ALS), suggesting that impairments in this critical process are fundamental for disease pathogenesis. Strikingly, in ALS, fast motor neurons (FMNs) degenerate first whereas slow motor neurons (SMNs) are more resistant, and this is a currently unexplained phenomenon. The main aim of this investigation was to determine the effects of brain-derived neurotrophic factor (BDNF) on in vivo axonal transport in different α-motor neuron (MN) subtypes in wild-type (WT) and SOD1G93A mice. We report that despite displaying similar basal transport speeds, stimulation of wild-type MNs with BDNF enhances in vivo trafficking of signalling endosomes specifically in FMNs. This BDNF-mediated enhancement of transport was also observed in primary ventral horn neuronal cultures. However, FMNs display selective impairment of axonal transport in vivo in symptomatic SOD1G93A mice, and are refractory to BDNF stimulation, a phenotype that was also observed in primary embryonic SOD1G93A neurons. Furthermore, symptomatic SOD1G93A mice display upregulation of the classical non-pro-survival truncated TrkB and p75NTR receptors in muscles, sciatic nerves, and Schwann cells. Altogether, these data indicate that cell- and non-cell autonomous BDNF signalling is impaired in SOD1G93A MNs, thus identifying a new key deficit in ALS.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
| | - James N Sleigh
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Elena R Rhymes
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
| | - Stephen D Cahalan
- Comparative Neuromuscular Disease Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
25
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
26
|
Liu T, Woo JAA, Bukhari MZ, Wang X, Yan Y, Buosi SC, Ermekbaeva A, Sista A, Kotsiviras P, LePochat P, Chacko A, Zhao X, Kang DE. Modulation of synaptic plasticity, motor unit physiology, and TDP-43 pathology by CHCHD10. Acta Neuropathol Commun 2022; 10:95. [PMID: 35787294 PMCID: PMC9254494 DOI: 10.1186/s40478-022-01386-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations in CHCHD10, a gene coding for a mitochondrial intermembrane space protein, are associated with Frontotemporal dementia (FTD)-Amyotrophic lateral sclerosis (ALS) spectrum disorders, which are pathologically characterized by cytoplasmic inclusions containing TDP-43. FTD/ALS-linked CHCHD10 mutations and TDP-43 inclusions similarly induce mitochondrial defects in respiration, fusion/fission, mtDNA stability, and cristae structure, while sizeable amounts of cytoplasmic TDP-43 aggregates are found in mitochondria. However, the mechanistic link between CHCHD10 and TDP-43 pathogenesis remains unclear. In this study, we present immunohistochemical and biochemical evidence demonstrating that insoluble CHCHD10 aggregates accumulate and colocalize with phospho-TDP-43 inclusions in brains of FTLD-TDP and AD patients, and that insoluble CHCHD10 levels tightly correlate with insoluble TDP-43 levels in control and FTLD-TDP brains. In an experimental exploration of this pathological phenotype, transgenic mice neuronally expressing FTD/ALS-linked CHCHD10R15L or CHCHDS59L mutations but not CHCHD10WT transgenic mice exhibit significantly increased CHCHD10 aggregation and phospho-TDP-43 pathology, which often colocalize within the same inclusions. Such pathologies are reflected in poor functional outcomes in long-term synaptic plasticity, motor unit physiology, and behavior in CHCHD10R15L and CHCHDS59L transgenic mice. In contrast, expression of CHCHD10WT in hTDP-43 transgenic mice (TAR4;CHCHD10WT) significantly mitigates phospho-TDP-43 pathology and rescues TDP-43-induced impairments in synaptic integrity and long-term synaptic plasticity. In isolated mitochondria, the S59L mutation induces the aggregation of resident CHCHD10S59L protein as well as the aggregation and slower turnover of recombinant TDP-43 imported into mitochondria. Likewise, in an in vitro cell-free system, the S59L mutation induces the aggregation of CHCHD10S59L protein while simultaneously enhancing the aggregation of recombinant TDP-43, as evidenced by filter trap assays and atomic force microscopy. In contrast, recombinant CHCHD10WT inhibits the growth of TDP-43 aggregates. These results in human brains, transgenic mice, and in vitro systems substantiate the role of wild type and mutant CHCHD10 in modulating mitochondrial CHCHD10 and TDP-43 pathogenesis together with associated phenotypes in long-term synaptic plasticity and motor unit physiology in mice and humans.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Jung-A A Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Mohammed Zaheen Bukhari
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Xinming Wang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yan Yan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Sara Cazzaro Buosi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Aizara Ermekbaeva
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Apoorva Sista
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Peter Kotsiviras
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Patrick LePochat
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ann Chacko
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Xingyu Zhao
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - David E Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA.
| |
Collapse
|
27
|
Krus KL, Strickland A, Yamada Y, Devault L, Schmidt RE, Bloom AJ, Milbrandt J, DiAntonio A. Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Rep 2022; 39:111001. [PMID: 35767949 PMCID: PMC9327139 DOI: 10.1016/j.celrep.2022.111001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
TDP-43 mediates proper Stathmin-2 (STMN2) mRNA splicing, and STMN2 protein is reduced in the spinal cord of most patients with amyotrophic lateral sclerosis (ALS). To test the hypothesis that STMN2 loss contributes to ALS pathogenesis, we generated constitutive and conditional STMN2 knockout mice. Constitutive STMN2 loss results in early-onset sensory and motor neuropathy featuring impaired motor behavior and dramatic distal neuromuscular junction (NMJ) denervation of fast-fatigable motor units, which are selectively vulnerable in ALS, without axon or motoneuron degeneration. Selective excision of STMN2 in motoneurons leads to similar NMJ pathology. STMN2 knockout heterozygous mice, which better model the partial loss of STMN2 protein found in patients with ALS, display a slowly progressive, motor-selective neuropathy with functional deficits and NMJ denervation. Thus, our findings strongly support the hypothesis that STMN2 reduction owing to TDP-43 pathology contributes to ALS pathogenesis.
Collapse
Affiliation(s)
- Kelsey L Krus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yurie Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Devault
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Zamani A, Walker AK, Rollo B, Ayers KL, Farah R, O'Brien TJ, Wright DK. Early and progressive dysfunction revealed by in vivo neurite imaging in the rNLS8 TDP-43 mouse model of ALS. Neuroimage Clin 2022; 34:103016. [PMID: 35483133 PMCID: PMC9125783 DOI: 10.1016/j.nicl.2022.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
Are neurite density and dispersion altered in amyotropic lateral sclerosis (ALS)? Both measures are affected in the rNLS8 TDP-43 mouse model of ALS. Diffusion tensor imaging metrics were also affected. Group-wise changes were observed early in the disease course. Together these diffusion imaging metrics may aid in the timelier diagnosis of ALS.
Amyotrophic lateral sclerosis (ALS) is characterized by transactive response DNA-binding protein 43 (TDP-43) pathology, progressive loss of motor neurons and muscle dysfunction. Symptom onset can be insidious and diagnosis challenging. Conventional neuroimaging is used to exclude ALS mimics, however more advanced neuroimaging techniques may facilitate an earlier diagnosis. Here, we investigate the potential for neurite orientation dispersion and density imaging and diffusion tensor imaging (DTI) to detect microstructural changes in an experimental model of ALS with neuronal doxycycline (Dox)-suppressible overexpression of human TDP-43 (hTDP-43). In vivo diffusion-weighted imaging (DWI) was acquired 1- and 3- weeks following the initiation of hTDP-43 expression (post-Dox) to investigate whether neurite density imaging (NDI) and orientation dispersion imaging (ODI) are affected early in this preclinical model of ALS and if so, how these metrics compare to those derived from the diffusion tensor. Tract-based spatial statistics at 1-week post-Dox, i.e. very early in the disease stage, demonstrated increased NDI in TDP-43 mice but no change in ODI or DTI metrics. At 3-weeks post-Dox, a reduced pattern of increased NDI was observed along with widespread increases in ODI, and decreased fractional anisotropy (FA), apparent diffusion coefficient (ADC) and axial diffusivity (AD). A hypothesis driven analysis of the bilateral corticospinal tracts demonstrated that at 1-week post-Dox, ODI was significantly increased caudally but decreased in the motor cortex of TDP-43 mice. Decreased cortical ODI had normalized by 3-weeks post-Dox and only significant increases were observed. A similar, but inverse pattern in FA was also observed. Together, these results suggest a non-monotonic relationship between DWI metrics and pathophysiological progression with TDP-43 mice exhibiting significantly altered diffusion metrics consistent with early inflammation followed by progressive axonal degeneration. Importantly, significant group-wise changes were observed in the earliest stages of disease when subtle pathology may be more elusive to traditional structural imaging techniques.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Adam K Walker
- Queensland Brain Institute, The University of Queensland, QLD 4072, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Katie L Ayers
- The Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Pediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Raysha Farah
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
29
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
30
|
Lye YS, Chen YR. TAR DNA-binding protein 43 oligomers in physiology and pathology. IUBMB Life 2022; 74:794-811. [PMID: 35229461 DOI: 10.1002/iub.2603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA/DNA-binding protein involved in RNA regulation and diseases. In 2006, TDP-43 inclusions were found in the disease lesions of several neurodegenerative diseases. It is the pathological hallmark in both amyotrophic lateral sclerosis and frontotemporal lobar dementia. It also presents in a large portion of patients with Alzheimer's disease. TDP-43 is prone to aggregate; however, the role of TDP-43 oligomers remains poorly understood in both physiological and pathological conditions. In this review, we emphasize the role of oligomeric TDP-43 in both physiological and pathological conditions and discuss the potential mechanisms of oligomer formation. Finally, we suggest therapeutic strategies against the TDP-43 oligomers in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuh Shen Lye
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
Yang C, Qiao T, Yu J, Wang H, Guo Y, Salameh J, Metterville J, Parsi S, Yusuf I, Brown RH, Cai H, Xu Z. Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice. PLoS One 2022; 17:e0255710. [PMID: 35113871 PMCID: PMC8812852 DOI: 10.1371/journal.pone.0255710] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Modestly increased expression of transactive response DNA binding protein (TDP-43) gene have been reported in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neuromuscular diseases. However, whether this modest elevation triggers neurodegeneration is not known. Although high levels of TDP-43 overexpression have been modeled in mice and shown to cause early death, models with low-level overexpression that mimic the human condition have not been established. In this study, transgenic mice overexpressing wild type TDP-43 at less than 60% above the endogenous CNS levels were constructed, and their phenotypes analyzed by a variety of techniques, including biochemical, molecular, histological, behavioral techniques and electromyography. The TDP-43 transgene was expressed in neurons, astrocytes, and oligodendrocytes in the cortex and predominantly in astrocytes and oligodendrocytes in the spinal cord. The mice developed a reproducible progressive weakness ending in paralysis in mid-life. Detailed analysis showed ~30% loss of large pyramidal neurons in the layer V motor cortex; in the spinal cord, severe demyelination was accompanied by oligodendrocyte injury, protein aggregation, astrogliosis and microgliosis, and elevation of neuroinflammation. Surprisingly, there was no loss of lower motor neurons in the lumbar spinal cord despite the complete paralysis of the hindlimbs. However, denervation was detected at the neuromuscular junction. These results demonstrate that low-level TDP-43 overexpression can cause diverse aspects of ALS, including late-onset and progressive motor dysfunction, neuroinflammation, and neurodegeneration. Our findings suggest that persistent modest elevations in TDP-43 expression can lead to ALS and other neurological disorders involving TDP-43 proteinopathy. Because of the predictable and progressive clinical paralytic phenotype, this transgenic mouse model will be useful in preclinical trial of therapeutics targeting neurological disorders associated with elevated levels of TDP-43.
Collapse
Affiliation(s)
- Chunxing Yang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tao Qiao
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Yu
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Hongyan Wang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yansu Guo
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Johnny Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sepideh Parsi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Issa Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- RNA Therapeutic Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- RNA Therapeutic Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
32
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
33
|
Jiang L, Zhang T, Lu K, Qi S. The progress in C9orf72 research: ALS/FTD pathogenesis, functions and structure. Small GTPases 2022; 13:56-76. [PMID: 33663328 PMCID: PMC9707547 DOI: 10.1080/21541248.2021.1892443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hexanucleotide repeat (GGGGCC) expansion in C9orf72 is accounted for a large proportion of the genetic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The hypotheses of how the massive G4C2 repeats in C9orf72 destroy the neurons and lead to ALS/FTD are raised and improving. As a multirole player, C9orf72 exerts critical roles in many cellular processes, including autophagy, membrane trafficking, immune response, and so on. Notably, the partners of C9orf72, through which C9orf72 participates in the cell activities, have been identified. Notably, the structures of the C9orf72-SMCR8-WDR41 complex shed light on its activity as GTPase activating proteins (GAP). In this manuscript, we reviewed the latest research progress in the C9orf72-mediated ALS/FTD, the physiological functions of C9orf72, and the putative function models of C9orf72/C9orf72-containing complex.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tizhong Zhang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China,CONTACT Shiqian Qi Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
These authors contributed equally to this work.
| |
Collapse
|
34
|
van Bruggen R, Maksimovic K, You J, Tran DD, Lee HJ, Khan M, Kao CS, Kim JR, Cho W, Chen XXL, Park J. MATR3 F115C knock-in mice do not exhibit motor defects or neuropathological features of ALS. Biochem Biophys Res Commun 2021; 568:48-54. [PMID: 34182213 DOI: 10.1016/j.bbrc.2021.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
The F115C mutation in the MATR3 gene has been linked to amyotrophic lateral sclerosis (ALS). To determine the pathogenicity of the F115C mutation and the mechanism by which this mutation causes ALS, we generated mice that harbor the F115C mutation in the endogenous murine Matr3 locus. Heterozygous or homozygous MATR3 F115C knock-in mice were viable and did not exhibit motor deficits up to 2 years of age. The mutant mice showed no significant differences in the number of Purkinje cells or motor neurons compared to wild-type littermates. Neuropathological examination revealed an absence of MATR3 and TDP-43 pathology in Purkinje cells and motor neurons in the mutant mice. Together, our results suggest that the F115C mutation in MATR3 may not confer pathogenicity.
Collapse
Affiliation(s)
- Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David Duc Tran
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Hyeok Jun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Mashiat Khan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ching Serena Kao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Wooin Cho
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
Alhindi A, Boehm I, Chaytow H. Small junction, big problems: Neuromuscular junction pathology in mouse models of amyotrophic lateral sclerosis (ALS). J Anat 2021; 241:1089-1107. [PMID: 34101196 PMCID: PMC9558162 DOI: 10.1111/joa.13463] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with an extremely heterogeneous clinical and genetic phenotype. In our efforts to find therapies for ALS, the scientific community has developed a plethora of mouse models, each with their own benefits and drawbacks. The peripheral nervous system, specifically the neuromuscular junction (NMJ), is known to be affected in ALS patients and shows marked dysfunction across mouse models. Evidence of pathology at the NMJ includes denervated NMJs, changes in endplate size and loss of terminal Schwann cells. This review compares the temporal disease progression with severity of disease at the NMJ in mouse models with the most commonly mutated genes in ALS patients (SOD1, C9ORF72, TARDBP and FUS). Despite variability, early NMJ dysfunction seems to be a common factor in models with SOD1, TARDBP and FUS mutations, while C9ORF72 models do not appear to follow the same pattern of pathology. Further work into determining the timing of NMJ pathology, particularly in newer ALS mouse models, will confirm its pivotal role in ALS pathogenesis and therefore highlight the NMJ as a potential therapeutic target.
Collapse
Affiliation(s)
- Abrar Alhindi
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Ines Boehm
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Mitsuzawa S, Suzuki N, Akiyama T, Ishikawa M, Sone T, Kawada J, Funayama R, Shirota M, Mitsuhashi H, Morimoto S, Ikeda K, Shijo T, Ohno A, Nakamura N, Ono H, Ono R, Osana S, Nakagawa T, Nishiyama A, Izumi R, Kaneda S, Ikeuchi Y, Nakayama K, Fujii T, Warita H, Okano H, Aoki M. Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations. Stem Cell Reports 2021; 16:1527-1541. [PMID: 34048688 PMCID: PMC8190591 DOI: 10.1016/j.stemcr.2021.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation. Human iPSCs were established from a familial ALS with the TARDBP p.G376D mutation PHOX2B mRNA was identified to be decreased in TARDBP mutant MNs by RNA sequencing PHOX2B mRNA bind to TDP-43 and its stability was reduced in TARDBP mutant MNs PHOX2B knockdown reduced neurite length and impaired motor functions in vivo/vitro
Collapse
Affiliation(s)
- Shio Mitsuzawa
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jiro Kawada
- Jiksak Bioengineering Inc. 7-7 Shinkawasaki, Saiwai-ku, Kawasaki 212-0032, Japan; Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroaki Mitsuhashi
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Risako Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shohei Kaneda
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Department of Mechanical Systems Engineering, Faculty of Engineering, Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo, 163-8677, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Teruo Fujii
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
37
|
NeuriTES. Monitoring neurite changes through transfer entropy and semantic segmentation in bright-field time-lapse microscopy. PATTERNS 2021; 2:100261. [PMID: 34179845 PMCID: PMC8212146 DOI: 10.1016/j.patter.2021.100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
One of the most challenging frontiers in biological systems understanding is fluorescent label-free imaging. We present here the NeuriTES platform that revisits the standard paradigms of video analysis to detect unlabeled objects and adapt to the dynamic evolution of the phenomenon under observation. Object segmentation is reformulated using robust algorithms to assure regular cell detection and transfer entropy measures are used to study the inter-relationship among the parameters related to the evolving system. We applied the NeuriTES platform to the automatic analysis of neurites degeneration in presence of amyotrophic lateral sclerosis (ALS) and to the study of the effects of a chemotherapy drug on living prostate cancer cells (PC3) cultures. Control cells have been considered in both the two cases study. Accuracy values of 93% and of 92% are achieved, respectively. NeuriTES not only represents a tool for investigation in fluorescent label-free images but demonstrates to be adaptable to individual needs. Monitoring of cell phenotype changes by fluorescence label-free time-lapse microscopy Adaptive semantic segmentation for the robust detection of cell shape TE to correlate morphological and textural soma descriptors along time Directed TE graph for the representation of mutual relationship among descriptors
One of the most challenging frontiers for the automatic understanding of biological systems is fluorescent label-free imaging in which the behavior changes of living being are characterized without cell staining. To this aim, we present here the NeuriTES platform that revisits standard paradigms of video analysis to detect unlabeled objects and correlate the analysis to phenotype evolution of the mechanisms under observation. Through the exploitation of adaptive algorithms and of transfer entropy measures, the platform assures regular cell detection and the possibility to extract reliable parameters related to the evolving cell system. As a proof-of-concept, NeuriTES is applied to two fascinating phenotype investigation scenarios, amyotrophic lateral sclerosis (ALS) disease mechanism and the study of the effects of a chemotherapy drug on living prostate cancer cells (PC3) cultures. Directed graphs assist the biologists with a visual understanding of the mechanisms identified.
Collapse
|
38
|
Chhangani D, Martín-Peña A, Rincon-Limas DE. Molecular, functional, and pathological aspects of TDP-43 fragmentation. iScience 2021; 24:102459. [PMID: 34013172 PMCID: PMC8113996 DOI: 10.1016/j.isci.2021.102459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transactive response DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in transcriptional regulation and RNA processing. It is linked to sporadic and familial amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is predominantly nuclear, but it translocates to the cytoplasm under pathological conditions. Cytoplasmic accumulation, phosphorylation, ubiquitination and truncation of TDP-43 are the main hallmarks of TDP-43 proteinopathies. Among these processes, the pathways leading to TDP-43 fragmentation remain poorly understood. We review here the molecular and biochemical properties of several TDP-43 fragments, the mechanisms and factors mediating their production, and their potential role in disease progression. We also address the presence of TDP-43 C-terminal fragments in several neurological disorders, including Alzheimer's disease, and highlight their respective implications. Finally, we discuss features of animal models expressing TDP-43 fragments as well as recent therapeutic strategies to approach TDP-43 truncation.
Collapse
Affiliation(s)
- Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Alfonso Martín-Peña
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
39
|
Pathway from TDP-43-Related Pathology to Neuronal Dysfunction in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Int J Mol Sci 2021; 22:ijms22083843. [PMID: 33917673 PMCID: PMC8068029 DOI: 10.3390/ijms22083843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Transactivation response DNA binding protein 43 kDa (TDP-43) is known to be a pathologic protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43 is normally a nuclear protein, but affected neurons of ALS or FTLD patients exhibit mislocalization of nuclear TDP-43 and cytoplasmic inclusions. Basic studies have suggested gain-of-neurotoxicity of aggregated TDP-43 or loss-of-function of intrinsic, nuclear TDP-43. It has also been hypothesized that the aggregated TDP-43 functions as a propagation seed of TDP-43 pathology. However, a mechanistic discrepancy between the TDP-43 pathology and neuronal dysfunctions remains. This article aims to review the observations of TDP-43 pathology in autopsied ALS and FTLD patients and address pathways of neuronal dysfunction related to the neuropathological findings, focusing on impaired clearance of TDP-43 and synaptic alterations in TDP-43-related ALS and FTLD. The former may be relevant to intraneuronal aggregation of TDP-43 and exocytosis of propagation seeds, whereas the latter may be related to neuronal dysfunction induced by TDP-43 pathology. Successful strategies of disease-modifying therapy might arise from further investigation of these subcellular alterations.
Collapse
|
40
|
Ma P, Li Y, Wang H, Mao B. Haploinsufficiency of the TDP43 ubiquitin E3 ligase RNF220 leads to ALS-like motor neuron defects in the mouse. J Mol Cell Biol 2021; 13:374-382. [PMID: 33386850 PMCID: PMC8373269 DOI: 10.1093/jmcb/mjaa072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 11/14/2022] Open
Abstract
TDP43 pathology is seen in a large majority of amyotrophic lateral sclerosis (ALS) cases, suggesting a central pathogenic role of this regulatory protein. Clarifying the molecular mechanism controlling TDP43 stability and subcellular location might provide important insights into ALS therapy. The ubiquitin E3 ligase RNF220 is involved in different neural developmental processes through various molecular targets in the mouse. Here, we report that the RNF220+/− mice showed progressively decreasing mobility to different extents, some of which developed typical ALS pathological characteristics in spinal motor neurons, including TDP43 cytoplasmic accumulation, atrocytosis, muscle denervation, and atrophy. Mechanistically, RNF220 interacts with TDP43 in vitro and in vivo and promotes its polyubiquitination and proteasomal degradation. In conclusion, we propose that RNF220 might be a modifier of TDP43 function in vivo and contribute to TDP43 pathology in neurodegenerative disease like ALS.
Collapse
Affiliation(s)
- Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
41
|
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122687. [PMID: 33333804 PMCID: PMC7765192 DOI: 10.3390/cells9122687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the oldest and most frequently mutated ALS genes as well as several new important genetic variants in ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD, S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS, and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial insights for the development of therapeutic approaches to treat ALS.
Collapse
|
42
|
Zhang X, Wang F, Hu Y, Chen R, Meng D, Guo L, Lv H, Guan J, Jia Y. In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model. Brain 2020; 143:1350-1367. [PMID: 32358598 DOI: 10.1093/brain/awaa076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Many RNA-binding proteins, including TDP-43, FUS, and TIA1, are stress granule components, dysfunction of which causes amyotrophic lateral sclerosis (ALS). However, whether a mutant RNA-binding protein disrupts stress granule processing in vivo in pathogenesis is unknown. Here we establish a FUS ALS mutation, p.R521C, knock-in mouse model that carries impaired motor ability and late-onset motor neuron loss. In disease-susceptible neurons, stress induces mislocalization of mutant FUS into stress granules and upregulation of ubiquitin, two hallmarks of disease pathology. Additionally, stress aggravates motor performance decline in the mutant mouse. By using two-photon imaging in TIA1-EGFP transduced animals, we document more intensely TIA1-EGFP-positive granules formed hours but cleared weeks after stress challenge in neurons in the mutant cortex. Moreover, neurons with severe granule misprocessing die days after stress challenge. Therefore, we argue that stress granule misprocessing is pathogenic in ALS, and the model we provide here is sound for further disease mechanistic study.
Collapse
Affiliation(s)
- Xue Zhang
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Fengchao Wang
- Animal core facility, National Institute of Biological Sciences, Beijing, China
| | - Yi Hu
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Runze Chen
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Dawei Meng
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Liang Guo
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Hailong Lv
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Jisong Guan
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| |
Collapse
|
43
|
Shabir O, Moll TA, Matuszyk MM, Eyre B, Dake MD, Berwick J, Francis SE. Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mech Ageing Dev 2020; 192:111361. [PMID: 32998028 DOI: 10.1016/j.mad.2020.111361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
44
|
Lin Y, Zhou X, Kato M, Liu D, Ghaemmaghami S, Tu BP, McKnight SL. Redox-mediated regulation of an evolutionarily conserved cross-β structure formed by the TDP43 low complexity domain. Proc Natl Acad Sci U S A 2020; 117:28727-28734. [PMID: 33144500 PMCID: PMC7682574 DOI: 10.1073/pnas.2012216117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A methionine-rich low complexity (LC) domain is found within a C-terminal region of the TDP43 RNA-binding protein. Self-association of this domain leads to the formation of labile cross-β polymers and liquid-like droplets. Treatment with H2O2 caused phenomena of methionine oxidation and droplet melting that were reversed upon exposure of the oxidized protein to methionine sulfoxide reductase enzymes. Morphological features of the cross-β polymers were revealed by H2O2-mediated footprinting. Equivalent TDP43 LC domain footprints were observed in polymerized hydrogels, liquid-like droplets, and living cells. The ability of H2O2 to impede cross-β polymerization was abrogated by the prominent M337V amyotrophic lateral sclerosis-causing mutation. These observations may offer insight into the biological role of TDP43 in facilitating synapse-localized translation as well as aberrant aggregation of the protein in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Lin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152
| | - Xiaoming Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152
| | - Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555 Chiba, Japan
| | - Daifei Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152
| | | | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152
| | - Steven L McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9152;
| |
Collapse
|
45
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS. Nat Commun 2020; 11:5304. [PMID: 33082323 PMCID: PMC7576598 DOI: 10.1038/s41467-020-18949-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
A missense mutation, S85C, in the MATR3 gene is a genetic cause for amyotrophic lateral sclerosis (ALS). It is unclear how the S85C mutation affects MATR3 function and contributes to disease. Here, we develop a mouse model that harbors the S85C mutation in the endogenous Matr3 locus using the CRISPR/Cas9 system. MATR3 S85C knock-in mice recapitulate behavioral and neuropathological features of early-stage ALS including motor impairment, muscle atrophy, neuromuscular junction defects, Purkinje cell degeneration and neuroinflammation in the cerebellum and spinal cord. Our neuropathology data reveals a loss of MATR3 S85C protein in the cell bodies of Purkinje cells and motor neurons, suggesting that a decrease in functional MATR3 levels or loss of MATR3 function contributes to neuronal defects. Our findings demonstrate that the MATR3 S85C mouse model mimics aspects of early-stage ALS and would be a promising tool for future basic and preclinical research.
Collapse
|
47
|
Han HJ, Park HJ, Yun U, Choi YC. First Case of TARDBP-Related Amyotrophic Lateral Sclerosis in Korea. J Clin Neurol 2020; 16:709-710. [PMID: 33029983 PMCID: PMC7541977 DOI: 10.3988/jcn.2020.16.4.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hee Jo Han
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - UnKyu Yun
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Sieverding K, Ulmer J, Bruno C, Satoh T, Tsao W, Freischmidt A, Akira S, Wong PC, Ludolph AC, Danzer KM, Lobsiger CS, Brenner D, Weishaupt JH. Hemizygous deletion of Tbk1 worsens neuromuscular junction pathology in TDP-43 G298S transgenic mice. Exp Neurol 2020; 335:113496. [PMID: 33038415 DOI: 10.1016/j.expneurol.2020.113496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the genes TARDBP (encoding the TDP-43 protein) and TBK1 can cause familial ALS. Neuronal cytoplasmatic accumulations of the misfolded, hyperphosphorylated RNA-binding protein TDP-43 are the pathological hallmark of most ALS cases and have been suggested to be a key aspect of ALS pathogenesis. Pharmacological induction of autophagy has been shown to reduce mutant TDP-43 aggregates and alleviate motor deficits in mice. TBK1 is exemplary for several other ALS genes that regulate autophagy. Consequently, we employed double mutant mice with both a heterozygous Tbk1 deletion and transgenic expression of human TDP-43G298S to test the hypothesis that impaired autophagy reduces intracellular clearance of an aggregation-prone protein and enhances toxicity of mutant TDP-43. The heterozygous deletion of Tbk1 did not change expression or cellular distribution of TDP-43 protein, motor neuron loss or reactive gliosis in the spinal cord of double-mutant mice at the age of 19 months. However, it aggravated muscle denervation and, albeit to a small and variable degree, motor dysfunction in TDP-43G298S transgenic mice, as similarly observed in the SOD1G93A transgenic mouse model for ALS before. Conclusively, our findings suggest that TBK1 mutations can affect the neuromuscular synapse.
Collapse
Affiliation(s)
| | - Johannes Ulmer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Clara Bruno
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - William Tsao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Karin M Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Christian S Lobsiger
- Institut du Cerveau et de la Moelle Épinière, Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, Sorbonne Université, Paris, France
| | - David Brenner
- Department of Neurology, University of Ulm, Ulm, Germany; Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University of Ulm, Ulm, Germany; Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
49
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
50
|
Briese M, Saal-Bauernschubert L, Lüningschrör P, Moradi M, Dombert B, Surrey V, Appenzeller S, Deng C, Jablonka S, Sendtner M. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol Commun 2020; 8:116. [PMID: 32709255 PMCID: PMC7379803 DOI: 10.1186/s40478-020-00987-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/02/2023] Open
Abstract
Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.
Collapse
|