1
|
Marjot T, Armstrong MJ, Stine JG. Skeletal muscle and MASLD: Mechanistic and clinical insights. Hepatol Commun 2025; 9:e0711. [PMID: 40408301 DOI: 10.1097/hc9.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is intrinsically linked with widespread metabolic perturbations, including within skeletal muscle. Indeed, MASLD is associated with a range of skeletal muscle abnormalities, including insulin resistance, myosteatosis, and sarcopenia, which all converge on the liver to drive disease progression and adverse patient outcomes. This review explores the mechanistic links between skeletal muscle and MASLD, including the role of abnormal glycemic control, systemic inflammation, and disordered myokine signaling. In turn, we discuss how intrinsic liver pathology can feed back to further exacerbate poor skeletal muscle health. Given the central importance of skeletal muscle in MASLD pathogenesis, it offers clinicians an opportunity to intervene for therapeutic benefit. We, therefore, summarize the role of nutrition and physical activity on skeletal muscle mass, quality, and metabolic function and discuss the knock-on effect this has on the liver. An awareness of these treatment strategies is particularly important in the era of effective pharmacological and surgical weight loss interventions, which can be associated with the development of sarcopenia. Finally, we highlight a number of promising drug agents in the clinical trial pipeline that specifically target skeletal muscle in an attempt to improve metabolic and physical functioning.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew J Armstrong
- Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Jonathan G Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health-Milton S. Hershey Medical Centre, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Cuesta-Margolles G, Schlecht-Louf G, Bachelerie F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J Invest Dermatol 2025; 145:1039-1049. [PMID: 39466217 DOI: 10.1016/j.jid.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
CXCL12 and its receptor CXCR4 emerge as critical regulators within the intricate network of processes ensuring skin homeostasis. In this review, we discuss their spatial distribution and function in steady-state skin; delve into their role in acute wound healing, with emphasis on fibrotic and regenerative responses; and explore their relevance in skin responses to commensals and pathogens. Given the lack of knowledge surrounding ACKR3, the atypical receptor of CXCL12, we speculate whether and how it might be involved in the processes mentioned earlier. Is ACKR3 the (a)typical friend who enjoys missing the party, or do we need to take a closer look?
Collapse
Affiliation(s)
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
3
|
Zhang Q, Su J, Li Z, Han S, Wang C, Sun Z. Migrasomes as intercellular messengers: potential in the pathological mechanism, diagnosis and treatment of clinical diseases. J Nanobiotechnology 2025; 23:302. [PMID: 40254563 PMCID: PMC12009535 DOI: 10.1186/s12951-025-03362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
Migrasomes are newly identified organelles that were first discovered in 2015. Since then, their biological structure, formation process, and physiological functions have been gradually elucidated. Research in recent years has expanded our understanding of these aspects, highlighting their significance in various physiological and pathological processes. Migrasomes have been found to play crucial roles in normal physiological functions, including embryonic development, vascular homeostasis, material transport, and mitochondrial quality control. Additionally, emerging evidence suggests their involvement in various diseases; however, clinical research on their roles remains limited. Current studies indicate that migrasomes may contribute to disease pathogenesis and hold potential for diagnostic and therapeutic applications. This review consolidates existing clinical research on migrasomes, focusing on their role in disease mechanisms and their use in medical applications. By examining their biological structure and function, this review aims to generate insights that encourage further research, ultimately contributing to advancements in disease prevention and treatment.
Collapse
Affiliation(s)
- Qingfu Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China
| | - Jianyao Su
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China
| | - Zhichao Li
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China
| | - Su Han
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China.
| | - Chuanhe Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China.
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China.
| |
Collapse
|
4
|
Baz MH, Valette M, André M, Varin A, Trevisiol E, Sengenès C, Gue AM. Isolation of adipose stromal cells from blood using a two-step microfluidic platform ASCfinder. Sci Rep 2025; 15:10471. [PMID: 40140537 PMCID: PMC11947280 DOI: 10.1038/s41598-025-94353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) hold significant promise for their therapeutic potential and their possible role as disease biomarkers. While evidence suggests the presence of circulating Adipose-derived MSC (ASC) in peripheral blood (PB), isolating them is particularly challenging due to their low abundance, size variability, and incomplete characterization of their native immunophenotype in PB. Consequently, the relationship between ASC frequency in blood and various physiological or pathological conditions has been underexplored. In this study, we introduce ASC-Finder, a label-free isolation method specifically designed for adipose stromal cells (ASCs), a key MSC population. ASC-Finder integrates two independent modules: a size-dependent hydrodynamic filtration unit for sorting erythrocytes directly from PB and a negative enrichment module based on immunological markers to deplete remaining leukocytes. The device enabled removal of 99.98% of erythrocytes while achieving high recovery rates of spiked ASCs (> 81%) at rare-event concentrations (< 100 ASC/mL blood). Remarkably, ASC-Finder operates without clogging, even after multiple runs with donor blood samples. Crucially, our method bypasses the need for harsh lysis, centrifugation, or dilution buffers, preserving both cell integrity and phenotype-key factors for the discovery of novel cellular events. This work represents a significant advancement in the direct enrichment of circulating ASCs from whole PB without cell lysis, offering a crucial step toward investigating the characterization and role of blood-circulating ASCs.
Collapse
Affiliation(s)
- Mohammad-H Baz
- LAAS-CNRS, Université de Toulouse, 31031, Toulouse, France.
- RESTORE Research Center, Université de Toulouse, CNRS, Inserm, EFS, Toulouse, France.
| | - Marion Valette
- LAAS-CNRS, Université de Toulouse, 31031, Toulouse, France
| | - Mireille André
- RESTORE Research Center, Université de Toulouse, CNRS, Inserm, EFS, Toulouse, France
| | - Audrey Varin
- RESTORE Research Center, Université de Toulouse, CNRS, Inserm, EFS, Toulouse, France
| | - Emmanuelle Trevisiol
- LAAS-CNRS, Université de Toulouse, 31031, Toulouse, France
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Coralie Sengenès
- RESTORE Research Center, Université de Toulouse, CNRS, Inserm, EFS, Toulouse, France
| | - Anne-Marie Gue
- LAAS-CNRS, Université de Toulouse, 31031, Toulouse, France.
| |
Collapse
|
5
|
Tan Z, Yang C, Fu S, Wu J, Huang Y, Li H, Gong C, Lv D, Wang J, Ding M, Wang H. Migrasomes, critical players in intercellular communication. Cancer Cell Int 2025; 25:113. [PMID: 40134020 PMCID: PMC11934494 DOI: 10.1186/s12935-025-03754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Migrasomes are a newly discovered type of extracellular vesicle (EV) formed during cell migration, playing a pivotal role in intercellular communication. These vesicles are generated by retracting fibers of migrating cells and encapsulate various molecules, such as proteins, lipids, and RNA, allowing the transfer of biochemical signals to neighboring cells. Current evidence suggests that migrasomes are involved in a wide range of physiological processes such as embryogenesis, angiogenesis, immune modulation, and mitochondrial quality control. Moreover, migrasomes are implicated in pathological conditions, including cancer metastasis, cardiovascular diseases, and viral infections. To fully understand their significance, it is critical to first explore the molecular mechanisms underlying their formation and function. Recent studies have shed light on the biogenesis, release, and biological properties of migrasomes, all of which are key to understanding their role in cell-to-cell communication. In this review, we provide an up-to-date summary of migrasome biogenesis, release, characterization, and their biological activities in intercellular communication, while also proposing potential new functions for these vesicles.
Collapse
Affiliation(s)
- Zhiyong Tan
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Chadanfeng Yang
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Shi Fu
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Junchao Wu
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Yinglong Huang
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Haihao Li
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Chen Gong
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Dihao Lv
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Jiansong Wang
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China
| | - Mingxia Ding
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China.
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China.
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China.
| | - Haifeng Wang
- Department of Urology, Yunnan Institute of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China.
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China.
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, Yunnan, 650101, People's Republic of China.
| |
Collapse
|
6
|
Wang X, Chen C, Li C, Chen X, Xu R, Chen M, Li Y, Liu Y, Liu X, Chen Y, Mo D. Integrating spatial transcriptomics and single-nucleus RNA-seq revealed the specific inhibitory effects of TGF-β on intramuscular fat deposition. SCIENCE CHINA. LIFE SCIENCES 2025; 68:746-763. [PMID: 39422812 DOI: 10.1007/s11427-024-2696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Intramuscular fat (IMF) is a complex adipose tissue within skeletal muscle, appearing specially tissue heterogeneous, and the factors influencing its formation remain unclear. In conditions such as diabetes, aging, and muscle wasting, IMF was deposited in abnormal locations in skeletal muscle, damaged the normal physiological functions of skeletal muscle. Here, we used Longissimus dorsi muscles from pigs with different IMF contents as samples and adopted a method combining spatial transcriptome (ST) and single-nucleus RNA-seq to identify the spatial heterogeneity of IMF. ST revealed that genes involved in TGF-β signaling pathways were specifically highly enriched in IMF. In lean pigs, IMF autocrine produces more TGF-β2, while in obese pigs, IMF received more endothelial-derived TGF-β1. In vitro experiments have proven that porcine endothelial cells in a simulated high-fat environment released more TGF-β1 than TGF-β2. Moreover, under obesity mice, the addition of TGF-β after muscle injury abolished IMF production and slowed muscle repair, whereas TGF-β inhibition accelerated muscle repair. Our findings demonstrate that the TGF-β pathway specifically regulates these processes, suggesting it as a potential therapeutic target for managing muscle atrophy in obese patients and enhancing muscle repair while reducing IMF deposition.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuchu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chenggan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaochang Chen
- Shaanxi Basic and Clinical Translational Research Team for Atherosclerotic Cardiovascular Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongpeng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yihao Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Zheng H, Wang C, Zhou A, Chen X. Transcriptomic and Lipidomic Characteristics of Subcutaneous Fat Deposition in Small-Sized Meat Ducks. Metabolites 2025; 15:158. [PMID: 40137123 PMCID: PMC11944229 DOI: 10.3390/metabo15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Subcutaneous fat deposition is associated with ducks' meat quality and the methods used to cook them. However, the reasons underlying the differences in the lipid deposition of small-sized Wuqin10 meat ducks remain unclear. Method: In the present study, to elucidate the metabolic mechanisms of lipid deposition, we comprehensively analyzed the transcriptomics and lipidomics of subcutaneous fat in Wuqin10 meat ducks with different subcutaneous thicknesses with six replicates. Results: A total of 1120 lipids were detected in the lipidomic analysis, and 39 lipids were inexorably regulated in the ducks with the thick subcutaneous layer compared to those with the thin layer; further, the up-regulated lipids were primarily triglycerides (TGs), which may have resulted in adipocyte enlargement. Furthermore, the transcriptomic analysis identified 265 differentially expressed genes (DEGs), including 119 down-regulated and 146 up-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were significantly enriched in the histidine, arginine, proline metabolism signaling and adipocytokine signaling pathways. The protein-protein interaction (PPI) network in Cytoscape 3.8.2 identified hub genes HSP90AA1, RUNX2, ACTN2, ACTA1, IL10, CXCR4, EGF, SOCS3 and PTK2, which were associated with the JAK-STAT signaling pathway and regulation of adipocyte hypertrophy. Conclusion: Taken together, our findings reveal the patterns of lipids and the gene expression of subcutaneous fat, providing a basis for future studies of subcutaneous fat deposition in small-sized meat ducks.
Collapse
Affiliation(s)
- Hao Zheng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Cui Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430345, China
| |
Collapse
|
8
|
Vieira FT, Cai Y, Gonzalez MC, Goodpaster BH, Prado CM, Haqq AM. Poor muscle quality: A hidden and detrimental health condition in obesity. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09941-0. [PMID: 39833502 DOI: 10.1007/s11154-025-09941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Poor muscle quality (MQ) is a hidden health condition in obesity, commonly disregarded and underdiagnosed, associated with poor health-related outcomes. This narrative review provides an in-depth exploration of MQ in obesity, including definitions, available assessment methods and challenges, pathophysiology, association with health outcomes, and potential interventions. MQ is a broad term that can include imaging, histological, functional, or metabolic assessments, evaluating beyond muscle quantity. MQ assessment is highly heterogeneous and requires further standardization. Common definitions of MQ include 1) muscle-specific strength (or functional MQ), the ratio between muscle strength and muscle quantity, and 2) muscle composition (or morphological MQ), mainly evaluating muscle fat infiltration. An individual with obesity might still have normal or higher muscle quantity despite having poor MQ, and techniques for direct measurements are needed. However, the use of body composition and physical function assessments is still limited in clinical practice. Thus, more accessible techniques for assessing strength, muscle mass, and composition should be further explored. Obesity leads to adipocyte dysfunction, generating a low-grade chronic inflammatory state, which leads to mitochondrial dysfunction. Adipocyte and mitochondrial dysfunction result in metabolic dysfunction manifesting clinically as insulin resistance, dyslipidemia, and fat infiltration into organs such as muscle, which in excess is termed myosteatosis. Myosteatosis decreases muscle cell function and insulin sensitivity, creating a vicious cycle of inflammation and metabolic derangements. Myosteatosis increases the risk of poor muscle function, systemic metabolic complications, and mortality, presenting prognostic potential. Interventions shown to improve MQ include nutrition, physical activity/exercise, pharmacology, and metabolic and bariatric surgery.
Collapse
Affiliation(s)
- Flavio T Vieira
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Yuanjun Cai
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - M Cristina Gonzalez
- Postgraduate Program in Nutrition and Food, Federal University of Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | | | - Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Andrea M Haqq
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Steiner BM, Benvie AM, Lee D, Jiang Y, Berry DC. Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner. Nat Commun 2024; 15:6622. [PMID: 39103342 PMCID: PMC11300861 DOI: 10.1038/s41467-024-50985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Sex steroids modulate the distribution of mammalian white adipose tissues. Moreover, WAT remodeling requires adipocyte progenitor cells. Nevertheless, the sex-dependent mechanisms regulating adipocyte progenitors remain undetermined. Here, we uncover Cxcr4 acting in a sexually dimorphic manner to affect a pool of proliferating cells leading to restriction of female fat mass. We find that deletion of Cxcr4 in Pparγ-expressing cells results in female, not male, lipodystrophy, which cannot be restored by high-fat diet consumption. Additionally, Cxcr4 deletion is associated with a loss of a pool of proliferating adipocyte progenitors. Cxcr4 loss is accompanied by the upregulation of estrogen receptor alpha in adipose-derived PPARγ-labelled cells related to estradiol hypersensitivity and stalled adipogenesis. Estrogen removal or administration of antiestrogens restores WAT accumulation and dynamics of adipose-derived cells in Cxcr4-deficient mice. These findings implicate Cxcr4 as a female adipogenic rheostat, which may inform strategies to target female adiposity.
Collapse
Affiliation(s)
- Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
11
|
Chen Y, Li Y, Li B, Hu D, Dong Z, Lu F. Migrasomes from adipose derived stem cells enrich CXCL12 to recruit stem cells via CXCR4/RhoA for a positive feedback loop mediating soft tissue regeneration. J Nanobiotechnology 2024; 22:219. [PMID: 38698419 PMCID: PMC11067256 DOI: 10.1186/s12951-024-02482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.
Collapse
Affiliation(s)
- Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Delin Hu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China.
| |
Collapse
|
12
|
Yu W, Yao Y, Ye N, Zhao Y, Ye Z, Wei W, Zhang L, Chen J. The myokine CCL5 recruits subcutaneous preadipocytes and promotes intramuscular fat deposition in obese mice. Am J Physiol Cell Physiol 2024; 326:C1320-C1333. [PMID: 38497114 DOI: 10.1152/ajpcell.00591.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.
Collapse
Affiliation(s)
- Wensai Yu
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yao Yao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Nanwei Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yuelei Zhao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Zijian Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Wei Wei
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Lifan Zhang
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Jie Chen
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| |
Collapse
|
13
|
Theret M, Chazaud B. Skeletal muscle niche, at the crossroad of cell/cell communications. Curr Top Dev Biol 2024; 158:203-220. [PMID: 38670706 DOI: 10.1016/bs.ctdb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering and Department of Medical Genetics University of British Columbia, Vancouver, BC, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, Inserm U1315, CNRS UMR 5261, Lyon, France.
| |
Collapse
|
14
|
Yu W, Qiu S, Li M, Yao Y, Zhao Y, Wei W, Zhang L, Chen J. Vitamin K3 promotes CCL5 expression to recruit preadipocytes deposition to skeletal muscle. Biochem Biophys Res Commun 2023; 686:149162. [PMID: 37924666 DOI: 10.1016/j.bbrc.2023.149162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Intramuscular fat (IMF), also known as ectopic fat deposits in skeletal muscle. Researches of IMF mainly focus on increasing the number and size of intramuscular adipocytes in situ. However, recent studies have shown that chemokines secreted by skeletal muscle recruit adipocytes to increase intramuscular fat content. Chemokine ligand 5 (CCL5), a member of chemokine family, is involved in the regulation of cell migration, inflammatory responses, and energy metabolism. In this study, we determined Vitamin K3 (VK3) enhanced Ccl5 transcription and expression, thus resulting in increased preadipocyte migration. VK3-injected vastus lateralis (VL) was observed an increased CCL5 concentration and IMF deposition, whereas blockade of the CCL5/CCR5 axis decreased IMF deposition.VK3 treatment also increased the body weight and VL ratio in mice. In summary, VK3, which targets CCL5, is expected to be a novel pharmacological regulator for promoting IMF content.
Collapse
Affiliation(s)
- Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengda Qiu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Cheng X, Jiang S, Pan B, Xie W, Meng J. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: an interconnected role. Lipids Health Dis 2023; 22:201. [PMID: 38001499 PMCID: PMC10668383 DOI: 10.1186/s12944-023-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered an age-related disease. Age-related changes, along with other factors such as obesity, hormonal imbalances, and various metabolic disorders, lead to ectopic fat deposition (EFD). This accumulation of fat outside of its normal storage sites is associated with detrimental effects such as lipotoxicity, oxidative stress, inflammation, and insulin resistance. This narrative review provides an overview of the connection between ectopic and visceral fat deposition in aging, obesity, and IPF. It also elucidates the mechanism by which ectopic fat deposition in the airways and lungs, pericardium, skeletal muscles, and pancreas contributes to lung injury and fibrosis in patients with IPF, directly or indirectly. Moreover, the review discusses the impact of EFD on the severity of the disease, quality of life, presence of comorbidities, and overall prognosis in IPF patients. The review provides detailed information on recent research regarding representative lipid-lowering drugs, hypoglycemic drugs, and lipid-targeting drugs in animal experiments and clinical studies. This may offer new therapeutic directions for patients with IPF.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Shuhan Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Boyu Pan
- Departments of Orthopedics, The Third Hospital of Changsha, Laodong West Road 176, Tianxin District, Changsha, 410000, China
| | - Wei Xie
- Department of Cardiology, Xiangya Hospital of Central South University, Furong Middle Road 36, Kaifu District, Changsha, 410000, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China.
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China.
| |
Collapse
|
16
|
Mathieu M, Girousse A, Sengenès C. [What if the origin of FAPs was contributing to their heterogeneity in muscle?]. Med Sci (Paris) 2023; 39 Hors série n° 1:15-21. [PMID: 37975765 DOI: 10.1051/medsci/2023129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Fibro-adipogenic progenitors (FAPs) are resident mesenchymal stromal cells (MSCs) of skeletal muscle. They play a crucial role in muscle homeostasis and regeneration through their paracrine activity. Recent technological advances in single-cell RNA sequencing have allowed the characterization of the heterogeneity within this cell population. In this article, we will present the different subpopulations of FAPs under basal, injury, or degenerative conditions, as well as their associated functions in mice and humans. We will then discuss the potential extramuscular origin of a post-injury FAP population. Indeed, our recent work demonstrates that MSCs from adipose tissue, infiltrating the muscle, could contribute to FAP heterogeneity.
Collapse
Affiliation(s)
- Maxime Mathieu
- Institut RESTORE, UMR Inserm 1301 / CNRS 5070, Toulouse, France
| | | | | |
Collapse
|
17
|
Zhang T, Li J, Li X, Liu Y. Intermuscular adipose tissue in obesity and related disorders: cellular origins, biological characteristics and regulatory mechanisms. Front Endocrinol (Lausanne) 2023; 14:1280853. [PMID: 37920255 PMCID: PMC10619759 DOI: 10.3389/fendo.2023.1280853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023] Open
Abstract
Intermuscular adipose tissue (IMAT) is a unique adipose depot interspersed between muscle fibers (myofibers) or muscle groups. Numerous studies have shown that IMAT is strongly associated with insulin resistance and muscular dysfunction in people with metabolic disease, such as obesity and type 2 diabetes. Moreover, IMAT aggravates obesity-related muscle metabolism disorders via secretory factors. Interestingly, researchers have discovered that intermuscular brown adipocytes in rodent models provide new hope for obesity treatment by acting on energy dissipation, which inspired researchers to explore the underlying regulation of IMAT formation. However, the molecular and cellular properties and regulatory processes of IMAT remain debated. Previous studies have suggested that muscle-derived stem/progenitor cells and other adipose tissue progenitors contribute to the development of IMAT. Adipocytes within IMAT exhibit features that are similar to either white adipocytes or uncoupling protein 1 (UCP1)-positive brown adipocytes. Additionally, given the heterogeneity of skeletal muscle, which comprises myofibers, satellite cells, and resident mesenchymal progenitors, it is plausible that interplay between these cellular components actively participate in the regulation of intermuscular adipogenesis. In this context, we review recent studies associated with IMAT to offer insights into the cellular origins, biological properties, and regulatory mechanisms of IMAT. Our aim is to provide novel ideas for the therapeutic strategy of IMAT and the development of new drugs targeting IMAT-related metabolic diseases.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jun Li
- Department of Orthopedics, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| |
Collapse
|
18
|
Lin W, Song H, Shen J, Wang J, Yang Y, Yang Y, Cao J, Xue L, Zhao F, Xiao T, Lin R. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol 2023; 14:1110926. [PMID: 37555019 PMCID: PMC10405179 DOI: 10.3389/fphys.2023.1110926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.
Collapse
Affiliation(s)
- Weimin Lin
- *Correspondence: Weimin Lin, ; Ruiyi Lin,
| | | | | | | | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Sastourné-Arrey Q, Mathieu M, Contreras X, Monferran S, Bourlier V, Gil-Ortega M, Murphy E, Laurens C, Varin A, Guissard C, Barreau C, André M, Juin N, Marquès M, Chaput B, Moro C, O'Gorman D, Casteilla L, Girousse A, Sengenès C. Adipose tissue is a source of regenerative cells that augment the repair of skeletal muscle after injury. Nat Commun 2023; 14:80. [PMID: 36604419 PMCID: PMC9816314 DOI: 10.1038/s41467-022-35524-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.
Collapse
Affiliation(s)
- Quentin Sastourné-Arrey
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Maxime Mathieu
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Xavier Contreras
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Sylvie Monferran
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Marta Gil-Ortega
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Enda Murphy
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Audrey Varin
- RESTORE, Research Center, Team 2 FLAMES, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Christophe Guissard
- RESTORE, Research Center, Team 4 GOT-IT, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Corinne Barreau
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mireille André
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Noémie Juin
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Marie Marquès
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Benoit Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 31100, Toulouse, France
| | - Cédric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Donal O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Louis Casteilla
- RESTORE, Research Center, Team 4 GOT-IT, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Amandine Girousse
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Coralie Sengenès
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.
| |
Collapse
|
20
|
Goodpaster BH, Bergman BC, Brennan AM, Sparks LM. Intermuscular adipose tissue in metabolic disease. Nat Rev Endocrinol 2022; 19:285-298. [PMID: 36564490 DOI: 10.1038/s41574-022-00784-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Intermuscular adipose tissue (IMAT) is a distinct adipose depot described in early reports as a 'fatty replacement' or 'muscle fat infiltration' that was linked to ageing and neuromuscular disease. Later studies quantifying IMAT with modern in vivo imaging methods (computed tomography and magnetic resonance imaging) revealed that IMAT is proportionately higher in men and women with type 2 diabetes mellitus and the metabolic syndrome than in people without these conditions and is associated with insulin resistance and poor physical function with ageing. In parallel, agricultural research has provided extensive insight into the role of IMAT and other muscle lipids in muscle (that is, meat) quality. In addition, studies using rodent models have shown that IMAT is a bona fide white adipose tissue depot capable of robust triglyceride storage and turnover. Insight into the importance of IMAT in human biology has been limited by the dearth of studies on its biological properties, that is, the quality of IMAT. However, in the past few years, investigations have begun to determine that IMAT has molecular and metabolic features that distinguish it from other adipose tissue depots. These studies will be critical to further decipher the role of IMAT in health and disease and to better understand its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea M Brennan
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
21
|
Jiang X, Ji S, Cui S, Wang R, Wang W, Chen Y, Zhu S. Apol9a regulates myogenic differentiation via the ERK1/2 pathway in C2C12 cells. Front Pharmacol 2022; 13:942061. [PMID: 36506560 PMCID: PMC9727217 DOI: 10.3389/fphar.2022.942061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The rising prevalence of obesity and its complications is a big challenge for the global public health. Obesity is accompanied by biological dysfunction of skeletal muscle and the development of muscle atrophy. The deep knowledge of key molecular mechanisms underlying myogenic differentiation is crucial for discovering novel targets for the treatment of obesity and obesity-related muscle atrophy. However, no effective target is currently known for obesity-induced skeletal muscle atrophy. Methods: Transcriptomic analyses were performed to identify genes associated with the regulation of myogenic differentiation and their potential mechanisms of action. C2C12 cells were used to assess the myogenic effect of Apol9a through immunocytochemistry, western blotting, quantitative polymerase chain reaction, RNA interference or overexpression, and lipidomics. Results: RNA-seq of differentiated and undifferentiated C2C12 cells revealed that Apol9a expression significantly increased following myogenic differentiation and decreased during obesity-induced muscle atrophy. Apol9a silencing in these C2C12 cells suppressed the expression of myogenesis-related genes and reduced the accumulation of intracellular triglycerides. Furthermore, RNA-seq and western blot results suggest that Apol9a regulates myogenic differentiation through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). This assumption was subsequently confirmed by intervention with PD98059. Conclusion: In this study, we found that Apol9a regulates myogenic differentiation via the ERK1/2 pathway. These results broaden the putative function of Apol9a during myogenic differentiation and provide a promising therapeutic target for intervention in obesity and obesity-induced muscle atrophy.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- The Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China,*Correspondence: Shenglong Zhu,
| |
Collapse
|
22
|
Kozlov AP. Mammalian tumor-like organs. 2. Mammalian adipose has many tumor features and obesity is a tumor-like process. Infect Agent Cancer 2022; 17:15. [PMID: 35395810 PMCID: PMC8994355 DOI: 10.1186/s13027-022-00423-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In previous publications, the author developed the theory of carcino-evo-devo, which predicts that evolutionarily novel organs should recapitulate some features of tumors in their development. MAIN TEXT Mammalian adipose is currently recognized as a multi-depot metabolic and endocrine organ consisting of several adipose tissues. Although lipid-storing cells and proteins are ancient, the adipose organ as a whole is evolutionarily novel to mammals. The adipose expansion has remarkable similarities with the growth of solid tumors. These similarities are the following: (1) The capability to unlimited expansion; (2) Reversible plasticity; (3) Induction of angiogenesis; (4) Chronic inflammation; (5) Remodeling and disfunction; (6) Systemic influence on the organism; (7) Hormone production; (8) Production of miRNAs that influence other tissues; (9) Immunosuppression; (10) DNA damage and resistance to apoptosis; (11) Destructive infiltration in other organs and tissues. These similarities include the majority of "hallmarks of cancer". In addition, lipomas are the most frequent soft tissue tumors, and similar drugs may be used for the treatment of obesity and cancer by preventing infiltration. This raises the possibility that obesity, at least in part, may represent an oncological problem. The existing similarities between adipose and tumors suggest the possible evolutionary origin of mammalian adipose from some ancestral benign mesenchymal hereditary tumors. Indeed, using a transgenic inducible zebrafish tumor model, we described many genes, which originated in fish and were expressed in fish tumors. Their human orthologs LEP, NOTCH1, SPRY1, PPARG, ID2, and CIDEA acquired functions connected with the adipose organ. They are also involved in tumor development in humans. CONCLUSION If the hypothesis of the evolutionary origin of the adipose organ from the ancestral hereditary tumor is correct, it may open new opportunities to resolve the oncological problem and the problem of the obesity epidemic. New interventions targeting LEP, NOTCH1, SPRY1, PPARG, ID2, and CIDEA gene network, in addition to what already is going on, can be designed for treatment and prevention of both obesity and tumors.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971.
- Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
- The Biomedical Center, 8, Viborgskaya Street, St. Petersburg, Russia, 194044.
| |
Collapse
|
23
|
Renal tubule ectopic lipid deposition in diabetic kidney disease rat model and in vitro mechanism of leptin intervention. J Physiol Biochem 2022; 78:389-399. [PMID: 35192189 DOI: 10.1007/s13105-022-00874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
Diabetic kidney disease (DKD) is a major health burden closely related to lipid metabolism disorders. Leptin has lipid-lowering efficacy, but the specific mechanism of its local effects on kidney is still unclear. This study aims to investigate the role of ectopic lipid deposition (ELD) in DKD and evaluate the lipid-lowering efficacy of leptin in the palmitic acid (PA)-induced renal tubular epithelial cells (NRK-52E). DKD model was established in Sprague-Dawley (SD) rats by giving single intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) after high-fat diet for 8 weeks. Then, the expression changes of lipid metabolism-related markers were observed. At week 12, the protein expression level of lipid-deposited marker adipose differentiation-related protein (ADRP) was significantly increased. Besides, the lipid synthesis marker sterol regulatory element-binding protein 1c (SREBP 1c) was highly expressed while the expression of insulin-induced gene 1 (Insig-1), a key molecular of inhibiting SREBP 1c, was decreased. Leptin and compound c were incubated with the PA-induced NRK-52E cells to investigate the lipid-lowering effects and whether this effect was mediated by the AMPK/Insig-1/SREBP 1c signaling pathways. mRNA and protein of ADRP and SREBP 1c were reduced after leptin treatment, while Insig-1 and phosphorylated AMP-activated protein kinase (AMPK) were increased. Conversely, inhibition of AMPK phosphorylation by compound c mostly eliminated lipid-lowering efficacy of leptin in PA-induced cells. Collectively, these results suggested that there was ELD of renal tubular epithelial cells in DKD rats. Leptin upregulated the expression level of Insig-1 by activating AMPK to attenuate ELD in PA-induced NRK-52E cells.
Collapse
|
24
|
Favaretto F, Bettini S, Busetto L, Milan G, Vettor R. Adipogenic progenitors in different organs: Pathophysiological implications. Rev Endocr Metab Disord 2022; 23:71-85. [PMID: 34716543 PMCID: PMC8873140 DOI: 10.1007/s11154-021-09686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
In physiological conditions, the adipose organ resides in well-defined areas, where it acts providing an energy supply and as an endocrine organ involved in the control of whole-body energy metabolism. Adipose tissue adipokines connect the body's nutritional status to the regulation of energy balance. When it surrounds organs, it provides also for mechanical protection. Adipose tissue has a complex and heterogenous cellular composition that includes adipocytes, adipose tissue-derived stromal and stem cells (ASCs) which are mesenchymal stromal cells, and endothelial and immune cells, which signal to each other and to other tissues to maintain homeostasis. In obesity and in other nutrition related diseases, as well as in age-related diseases, biological and functional changes of adipose tissue give rise to several complications. Obesity triggers alterations of ASCs, impairing adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance and other metabolic disorders. Adipose tissue grows by hyperplasia recruiting new ASCs and by hypertrophy, up to its expandability limit. To overcome this limitation and to store the excess of nutrients, adipose tissue develops ectopically, involving organs such as muscle, bone marrow and the heart. The origin of ectopic adipose organ is not clearly elucidated, and a possible explanation lies in the stimulation of the adipogenic differentiation of mesenchymal precursor cells which normally differentiate toward a lineage specific for the organ in which they reside. The chronic exposition of these newly-formed adipose depots to the pathological environment, will confer to them all the phenotypic characteristics of a dysfunctional adipose tissue, perpetuating the organ alterations. Visceral fat, but also ectopic fat, either in the liver, muscle or heart, can increase the risk of developing insulin resistance, type 2 diabetes, and cardiovascular diseases. Being able to prevent and to target dysfunctional adipose tissue will avoid the progression towards the complications of obesity and other nutrition-related diseases. The aim of this review is to summarize some of the knowledge regarding the presence of adipose tissue in particular tissues (where it is not usually present), describing the composition of its adipogenic precursors, and the interactions responsible for the development of organ pathologies.
Collapse
Affiliation(s)
- Francesca Favaretto
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Silvia Bettini
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Luca Busetto
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Gabriella Milan
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Roberto Vettor
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| |
Collapse
|
25
|
Chan PC, Hsieh PS. The Chemokine Systems at the Crossroads of Inflammation and Energy Metabolism in the Development of Obesity. Int J Mol Sci 2021; 22:ijms222413528. [PMID: 34948325 PMCID: PMC8709111 DOI: 10.3390/ijms222413528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue accompanied with alterations in the immune and metabolic responses. Although the chemokine systems have been documented to be involved in the control of tissue inflammation and metabolism, the dual role of chemokines and chemokine receptors in the pathogenesis of the inflammatory milieu and dysregulated energy metabolism in obesity remains elusive. The objective of this review is to present an update on the link between chemokines and obesity-related inflammation and metabolism dysregulation under the light of recent knowledge, which may present important therapeutic targets that could control obesity-associated immune and metabolic disorders and chronic complications in the near future. In addition, the cellular and molecular mechanisms of chemokines and chemokine receptors including the potential effect of post-translational modification of chemokines in the regulation of inflammation and energy metabolism will be discussed in this review.
Collapse
Affiliation(s)
- Pei-Chi Chan
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
| | - Po-Shiuan Hsieh
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
- Graduate Institute of Medical Science, NDMC, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18622); Fax: +886-2-87924827
| |
Collapse
|
26
|
Chaiyasing R, Ishikawa T, Warita K, Hosaka YZ. Absence of estrogen receptors delays myoregeneration and leads to intermuscular adipogenesis in a low estrogen status: Morphological comparisons in estrogen receptor alpha and beta knock out mice. J Vet Med Sci 2021; 83:1022-1030. [PMID: 33967186 PMCID: PMC8349812 DOI: 10.1292/jvms.20-0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the function of estrogen receptors (ERs) in myoregeneration and intermuscular adipogenesis. Ovariectomized (OVX) ERα knockout
(KO) mice and ERβ KO mice were used to assess the effect of estrogen on the myoregenerative process. Tibialis anterior muscle was collected on days 7, 10, and
14 after cardiotoxin injection to assess myotube morphology and adipogenesis area. Regenerated myotubes from OVX-ERβ KO mice were consistently smaller in
diameter than those from OVX-ERα KO and OVX-wild-type mice, whereas the adipogenesis area of OVX-ERβ KO mice was consistently greater than that of the other
types. Therefore, ERβ may be an influential factor in promoting myoregeneration and adipogenesis inhibition compared to ERα.
Collapse
Affiliation(s)
- Rattanatrai Chaiyasing
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Faculty of Veterinary Sciences, Office of Academic Affairs, Maha Sarakham University, Maha Sarakham 44000, Thailand
| | - Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
27
|
Trim WV, Walhin JP, Koumanov F, Bouloumié A, Lindsay MA, Chen YC, Travers RL, Turner JE, Thompson D. Divergent immunometabolic changes in adipose tissue and skeletal muscle with ageing in healthy humans. J Physiol 2021; 600:921-947. [PMID: 33895996 DOI: 10.1113/jp280977] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ageing is associated with increased systemic inflammation and metabolic dysfunction that contributes to the development of age-associated diseases. The role of adipose tissue in immunometabolic alterations that take place with ageing is unknown in humans. We show, in healthy, active and lean older adults, that adipose tissue, but not skeletal muscle, displays considerable pro-inflammatory transcriptomic, cellular and secretory changes, as well as a reduction in insulin signalling proteins compared to younger adults. These findings indicate that adipose tissue undergoes substantial immunometabolic alterations with ageing, and that these changes are tissue-specific and more profound than those observed in skeletal muscle or in the circulation. These results identify adipose tissue as an important tissue in the biological ageing process in humans, which may exhibit signs of immunometabolic dysfunction prior to systemic manifestation. ABSTRACT Ageing and obesity are both characterized by inflammation and a deterioration in metabolic health. It is now clear that adipose tissue plays a major role in inflammation and metabolic control in obesity, although little is known about the role of adipose tissue in human ageing. To understand how ageing impacts adipose tissue, we characterized subcutaneous adipose tissue and skeletal muscle samples from twelve younger (27 ± 4 years [Young]) and twelve older (66 ± 5 years [Old]) active/non-obese males. We performed a wide-range of whole-body and tissue measures, including RNA-sequencing and multicolour flow cytometry. We also measured a range of inflammatory and metabolic proteins in the circulation and their release by adipose tissue, ex vivo. Both adipose tissue and muscle had ∼2-fold more immune cells per gram of tissue with ageing. In adipose tissue, this immune cell infiltration was driven by increased memory/effector T-cells, whereas, in muscle, the accumulation was driven by memory/effector T-cells and macrophages. Transcriptomic analysis revealed that, with ageing, adipose tissue, but not muscle, was enriched for inflammatory transcripts/pathways related to acquired and innate immunity. Ageing also increased the adipose tissue pro-inflammatory secretory profile. Insulin signalling protein content was reduced in adipose tissue, but not muscle. Our findings indicate that adipose tissue undergoes substantial immunometabolic changes with ageing in humans, and that these changes are tissue-specific and more profound than those observed in the circulation and skeletal muscle.
Collapse
Affiliation(s)
- William V Trim
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Jean-Philippe Walhin
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Françoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Anne Bouloumié
- INSERM UMR1048, Université Paul Sabatier, I2MC, Toulouse, France
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, Somerset, UK
| | - Yung-Chih Chen
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Rebecca L Travers
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - James E Turner
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Dylan Thompson
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| |
Collapse
|
28
|
Yang C, Zhang J, Wu T, Zhao K, Wu X, Shi J, Sun W, Kong X. Multi-Omics Analysis to Examine Gene Expression and Metabolites From Multisite Adipose-Derived Mesenchymal Stem Cells. Front Genet 2021; 12:627347. [PMID: 33679891 PMCID: PMC7930907 DOI: 10.3389/fgene.2021.627347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/08/2021] [Indexed: 01/03/2023] Open
Abstract
This study aimed at exploring the gene expression and metabolites among multisite adipose-derived mesenchymal stem cells (ASCs) and investigate the metabolic pathway using a multi-omics analysis. Subcutaneous adipose-derived mesenchymal stem cells (SASCs), perirenal adipose-derived mesenchymal stem cells (PASCs), and epididymal adipose-derived mesenchymal stem cells (EASCs) were isolated from Sprague Dawley rats. RNA and metabolites were extracted and sequenced using transcriptomics and metabolomics analyses, respectively. There were 720 differentially expressed genes (DEGs) in EASCs and 688 DEGs in PASCs compared with SASCs; there were 166 unique DEGs in EASCs, 134 unique DEGs in PASCs, and 554 common DEGs between EASCs and PASCs. Furthermore, there were 226 differential metabolites in EASCs, 255 differential metabolites in PASCs, 83 unique differential metabolites in EASCs, 112 unique differential metabolites in PASCs, and 143 common differential metabolites between EASCs and PASCs. The transcriptomics and metabolomics analyses identified four hub genes, one in EASCs and three in PASCs. There are functional differences among multisite ASCs that may be related to the hub genes Atac2, Rrm1, Rrm2, and Gla. The relevant signaling pathways are the Ras signaling pathway, HIF-1 signaling pathway, and the p53 signaling pathway. In conclusion, compared with SASCs, our multi-omics analysis identified that EASCs with higher Acat2 expression may be more correlated to fat metabolism and insulin resistance, while PASCs with abnormal expression of Rrm1/2 and Gla may be more correlated with some malignant tumors and cardiac-cerebral vascular disease.
Collapse
Affiliation(s)
- Chuanxi Yang
- Department of Cardiology, Medical School of Southeast University, Nanjing, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoguang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front Cell Dev Biol 2021; 8:598520. [PMID: 33490065 PMCID: PMC7820193 DOI: 10.3389/fcell.2020.598520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.
Collapse
Affiliation(s)
- Amandine Girousse
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Maxime Mathieu
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Quentin Sastourné-Arrey
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Monferran
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Coralie Sengenès
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
30
|
Zhang X, Xu D, Chen M, Wang Y, He L, Wang L, Wu J, Yin J. Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Adv Nutr 2021; 12:1305-1316. [PMID: 33418570 PMCID: PMC8321846 DOI: 10.1093/advances/nmaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
As the largest tissue in the body, skeletal muscle not only plays key roles in movement and glucose uptake and utilization but also mediates insulin sensitivity in the body by myokines. Insulin resistance in the skeletal muscle is a major feature of type 2 diabetes (T2D). A weakened response to insulin could lead to muscle mass loss and dysfunction. Increasing evidence in skeletal muscle cells, rodents, nonhuman primates, and humans has shown that restriction of caloric or protein intake positively mediates insulin sensitivity. Restriction of essential or nonessential amino acids was reported to facilitate glucose utilization and regulate protein turnover in skeletal muscle under certain conditions. Furthermore, some minerals, such as zinc, chromium, vitamins, and some natural phytochemicals such as curcumin, resveratrol, berberine, astragalus polysaccharide, emodin, and genistein, have been shown recently to protect skeletal muscle cells, mice, or humans with or without diabetes from insulin resistance. In this review, we discuss the roles of nutritional interventions in the regulation of skeletal muscle insulin sensitivity. A comprehensive understanding of the nutritional regulation of insulin signaling would contribute to the development of tools and treatment programs for improving skeletal muscle health and for preventing T2D.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | | |
Collapse
|
31
|
Ling L, Mulligan JA, Ouyang Y, Shimpi AA, Williams RM, Beeghly GF, Hopkins BD, Spector JA, Adie SG, Fischbach C. Obesity-associated Adipose Stromal Cells Promote Breast Cancer Invasion Through Direct Cell Contact and ECM Remodeling. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910650. [PMID: 33692663 PMCID: PMC7939099 DOI: 10.1002/adfm.201910650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 05/17/2023]
Abstract
Obesity increases the risk and worsens the prognosis for breast cancer due, in part, to altered adipose stromal cell (ASC) behavior. Whether ASCs from obese individuals increase migration of breast cancer cells relative to their lean counterparts, however, remains unclear. To test this connection, multicellular spheroids composed of MCF10A-derived tumor cell lines of varying malignant potential and lean or obese ASCs were embedded into collagen scaffolds mimicking the elastic moduli of interstitial breast adipose tissue. Confocal image analysis suggests that tumor cells alone migrate insignificantly under these conditions. However, direct cell-cell contact with either lean or obese ASCs enables them to migrate collectively, whereby obese ASCs activate tumor cell migration more effectively than their lean counterparts. Time-resolved optical coherence tomography (OCT) imaging suggests that obese ASCs facilitate tumor cell migration by mediating contraction of local collagen fibers. Matrix metalloproteinase (MMP)-dependent proteolytic activity significantly contributes to ASC-mediated tumor cell invasion and collagen deformation. However, ASC contractility is also important, as co-inhibition of both MMPs and contractility is necessary to completely abrogate ASC-mediated tumor cell migration. These findings imply that obesity-mediated changes of ASC phenotype may impact tumor cell migration and invasion with potential implications for breast cancer malignancy in obese patients.
Collapse
Affiliation(s)
- Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey A. Mulligan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Yunxin Ouyang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | | | - Garrett F. Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Jason A. Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Division of Plastic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Response of adult stem cell populations to a high-fat/high-fiber diet in skeletal muscle and adipose tissue of growing pigs divergently selected for feed efficiency. Eur J Nutr 2020; 60:2397-2408. [PMID: 33125577 DOI: 10.1007/s00394-020-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The control of body composition by genetics and dietary nutrients is of the upmost importance for both human and animal physiology. Adult stem cells (aSC) may represent a relevant level of tissue adaptation. The purpose of this study was to determine the impact of macronutrient composition on aSC populations isolated from adipose tissue or muscle in growing pigs. METHODS Pigs from two lines divergently selected for feed efficiency were fed ad libitum either a high-fat/high-fiber (HF) diet or a low-fat/low-fiber (LF) diet (n = 6 per line and diet) from 74 to 132 days of age. Stroma vascular cells were isolated from adipose tissue and muscle and characterized with cell surface markers. RESULTS In both lines, pigs fed the HF diet exhibited a reduced adiposity (P < 0.001) compared with pigs fed the LF diet. In the four groups, CD90 and PDGFRα markers were predominantly expressed in adipose cells, whereas CD90 and CD56 markers were highly expressed in muscle cells. In adipose tissue, the proportions of CD56+/PDGFRα + and of CD90+/PDGFRα + cells were lower (P < 0.05) in HF pigs than in LF pigs. On the opposite, in muscle, these proportions were higher (P < 0.001) in HF pigs. CONCLUSION This study indicates that dietary nutrients affected the relative proportions of CD56+/PDGFRα + cells with opposite effects between muscle and adipose tissue. These cell populations exhibiting adipogenic potential in adipose tissue and myogenic potential in muscle may be a target to modulate body composition.
Collapse
|
33
|
ssc-miR-451 Regulates Porcine Primary Adipocyte Differentiation by Targeting ACACA. Animals (Basel) 2020; 10:ani10101891. [PMID: 33081100 PMCID: PMC7602835 DOI: 10.3390/ani10101891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
miRNA is a small non-coding RNA, which plays an important role in diverse biological processes. In the present study, we explore the effect of ssc-miR-451 on porcine adipose development and meat quality. We observed that ssc-miR-451 was downregulated during porcine primary adipocyte differentiation. Overexpression of ssc-miR-451 inhibited adipogenic differentiation, while inhibition of ssc-miR-451 promoted adipogenic differentiation. The dual luciferase reporter system indicated Acetyl-CoA carboxylase alpha (ACACA) as a target gene of ssc-miR-451. Correlation analysis negatively correlated miR-451 expression with intramuscular fat content (IMF) and positively correlated ACACA expression with IMF. Further analysis of fatty acid composition revealed that pigs with high expression of ssc-miR-451 had higher monounsaturated fatty acid (MUFA) and lower polyunsaturated fatty acid (PUFA). Taken together, our study suggests that ssc-miR-451 regulates lipid deposition and fatty acid composition by targeting ACACA, and ssc-miR-451 may serve as a potential genetic marker to improve pork quality.
Collapse
|
34
|
Eisner C, Cummings M, Johnston G, Tung LW, Groppa E, Chang C, Rossi FM. Murine Tissue-Resident PDGFRα+ Fibro-Adipogenic Progenitors Spontaneously Acquire Osteogenic Phenotype in an Altered Inflammatory Environment. J Bone Miner Res 2020; 35:1525-1534. [PMID: 32251540 DOI: 10.1002/jbmr.4020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 01/11/2023]
Abstract
Acquired heterotopic ossifications (HO) arising as a result of various traumas, including injury or surgical interventions, often result in pain and loss of motion. Though triggers for HO have been identified, the cellular source of these heterotopic lesions as well as the underlying mechanisms that drive the formation of acquired HO remain poorly understood, and treatment options, including preventative treatments, remain limited. Here, we explore the cellular source of HO and a possible underlying mechanism for their spontaneous osteogenic differentiation. We demonstrate that HO lesions arise from tissue-resident PDGFRα+ fibro/adipogenic progenitors (FAPs) in skeletal muscle and not from circulating bone marrow-derived progenitors. Further, we show that accumulation of these cells in the tissue after damage due to alterations in the inflammatory environment can result in activation of their inherent osteogenic potential. This work suggests a mechanism by which an altered inflammatory cell and FAP interactions can lead to the formation of HO after injury and presents potential targets for therapeutics in acquired HO. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christine Eisner
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Michael Cummings
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | - Lin Wei Tung
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Elena Groppa
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Chihkai Chang
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Fabio Mv Rossi
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Tilves C, Zmuda JM, Kuipers AL, Carr JJ, Terry JG, Wheeler V, Peddada S, Nair S, Miljkovic I. Associations of Thigh and Abdominal Adipose Tissue Radiodensity with Glucose and Insulin in Nondiabetic African-Ancestry Men. Obesity (Silver Spring) 2020; 28:404-411. [PMID: 31872575 PMCID: PMC6980942 DOI: 10.1002/oby.22695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Decreased radiodensity of adipose tissue (AT) located in the visceral AT (VAT), subcutaneous AT (SAT), and intermuscular AT (IMAT) abdominal depots is associated with hyperglycemia, hyperinsulinemia, and insulin resistance independent of AT volumes. These associations were sought in African-ancestry men, who have higher risk for type 2 diabetes and have been underrepresented in previous studies. METHODS This cross-sectional analysis included 505 nondiabetic men of African-Caribbean ancestry (median age: 61 years; median BMI: 26.8 kg/m2 ) from the Tobago Health Study. AT volumes and radiodensities were assessed using computed tomography, including abdominal (VAT and SAT) and thigh (IMAT) depots. Associations between AT radiodensities were assessed with fasting serum glucose and insulin and with insulin resistance (updated homeostatic model assessment of insulin resistance, HOMA2-IR). RESULTS Higher radiodensity in any AT depot was associated with lower log-insulin and log-HOMA2-IR (β range: -0.16 to -0.18 for each; all P < 0.0001). No AT radiodensity was associated with glucose. Thigh IMAT radiodensity associations were independent of, and similar in magnitude to, VAT radiodensities. Model fit statistics suggested that AT radiodensities were a better predictor for insulin and insulin resistance compared with AT volumes in individuals with overweight and obesity. CONCLUSIONS AT radiodensities at multiple depots are significantly associated with insulin and insulin resistance in African-ancestry men.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M. Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison L. Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Jeffrey Carr
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victor Wheeler
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad & Tobago
| | - Shyamal Peddada
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sangeeta Nair
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
di Somma M, Vliora M, Grillo E, Castro B, Dakou E, Schaafsma W, Vanparijs J, Corsini M, Ravelli C, Sakellariou E, Mitola S. Role of VEGFs in metabolic disorders. Angiogenesis 2019; 23:119-130. [PMID: 31853841 DOI: 10.1007/s10456-019-09700-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Obesity and metabolic disorders are important public health problems. In this review, the role of vasculature network and VEGF in the adipose tissue maintenance and supplementation is discussed. Angiogenesis is a key process implicated in regulation of tissues homeostasis. Dysregulation of new blood vessels formation may be crucial and contribute to the onset of several pathological conditions, including metabolic syndrome-associated disorders. Adipose tissue homeostasis is fine regulated by vascular network. Vessels support adipose structure. Vasculature modulates the balance between positive and negative regulator factors. In white adipose tissue, vascular endothelial growth factor (VEGF) controls the metabolic activities of adipocytes promoting the trans-differentiation from white to beige phenotype. Trans-differentiation results in an increase of energy consumption. VEGF exerts an opposite effect on brown adipose tissue, where VEGF increases oxygen supply and improves energy expenditure inducing the whitening of adipocytes.
Collapse
Affiliation(s)
- M di Somma
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M Vliora
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - E Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - B Castro
- Histocell, S.L.Parque Tecnológico 801A, 2º, 48160, Derio, Bizkaia, Spain
| | - E Dakou
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - W Schaafsma
- Histocell, S.L.Parque Tecnológico 801A, 2º, 48160, Derio, Bizkaia, Spain
| | - J Vanparijs
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - M Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - C Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - E Sakellariou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - S Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
37
|
Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity. Cells 2019; 8:cells8101288. [PMID: 31640218 PMCID: PMC6830091 DOI: 10.3390/cells8101288] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are considered to be a useful tool for regenerative medicine, owing to their capabilities in differentiation, self-renewal, and immunomodulation. These cells have become a focus in the clinical setting due to their abundance and easy isolation. However, ASCs from different depots are not well characterized. Here, we analyzed the functional similarities and differences of subcutaneous and visceral ASCs. Subcutaneous ASCs have an extraordinarily directed mode of motility and a highly dynamic focal adhesion turnover, even though they share similar surface markers, whereas visceral ASCs move in an undirected random pattern with more stable focal adhesions. Visceral ASCs have a higher potential to differentiate into adipogenic and osteogenic cells when compared to subcutaneous ASCs. In line with these observations, visceral ASCs demonstrate a more active sonic hedgehog pathway that is linked to a high expression of cilia/differentiation related genes. Moreover, visceral ASCs secrete higher levels of inflammatory cytokines interleukin-6, interleukin-8, and tumor necrosis factor α relative to subcutaneous ASCs. These findings highlight, that both ASC subpopulations share multiple cellular features, but significantly differ in their functions. The functional diversity of ASCs depends on their origin, cellular context and surrounding microenvironment within adipose tissues. The data provide important insight into the biology of ASCs, which might be useful in choosing the adequate ASC subpopulation for regenerative therapies.
Collapse
|
38
|
Rabhi N, Farmer SR. Adipose Progenitor Cells Contribute to Lipid Spillover during Obesity. Trends Endocrinol Metab 2019; 30:416-418. [PMID: 31153731 DOI: 10.1016/j.tem.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 01/16/2023]
Abstract
A recent study (Girousse et al. Cell Rep. 2019;27:323-333) shows that CXCR4+ adipose progenitors (APCs) contribute to lipid spillover during high-fat feeding through their release from subcutaneous fat depots (ScATs) and migration to skeletal muscle where they differentiate into adipocytes. Pharmacological antagonism of CXCR4, which prevents the CXCL12-dependent retention of APCs in ScAT, mimics the effects of overfeeding.
Collapse
Affiliation(s)
- Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|