1
|
Hu Y, Zhu Y, Tang G, Shan M, Tan P, Yi Y, Zhang X, Liu M, Li X, Wu L, Chen J, Zheng H, Huang Y, Li Z, Li X, Wang D. Accurate Transcription Factor Activity Inference to Decipher Cell Identity from Single-Cell Transcriptomic Data with MetaTF. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e10745. [PMID: 40397381 DOI: 10.1002/advs.202410745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/21/2025] [Indexed: 05/22/2025]
Abstract
Cellular heterogeneity within cancer tissues determines cancer progression and treatment response. Single-cell RNA sequencing (scRNA-seq) has provided a powerful approach for investigating the cellular heterogeneity of both cancer cells and stroma cells in the tumor microenvironment. However, the common practice to characterize cell identity based on the similarity of their gene expression profiles may not really indicate distinct cellular populations with unique roles. Generally, the cell identity and function are orchestrated by the expression of given specific genes tightly regulated by transcription factors (TFs). Therefore, deciphering TF activity is essential for gaining a better understanding of the uniqueness and functionality of each cell type. Herein, metaTF, a computational framework designed to infer TF activity in scRNA-seq data, is introduced and existing methods are outperformed for estimating TF activity. It presents the improved effectiveness in characterizing cell identity during mouse hematopoietic stem cell development. Furthermore, metaTF provides a superior characterization of the functional identity of breast cancer epithelial cells, and identifies a novel subset of neural-regulated T cells within the tumor immune microenvironment, which potentially activates BCL6 in response to neural-related signals. Overall, metaTF enables robust TF activity analysis from scRNA-seq data, significantly enhancing the characterization of cell identity and function.
Collapse
Affiliation(s)
- Yongfei Hu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yuanyuan Zhu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Guangjue Tang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Shan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150000, China
| | - Puwen Tan
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Yi
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xiyuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Man Liu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xinyu Li
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Le Wu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Chen
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hailong Zheng
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510060, China
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Dong Wang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
2
|
Skribbe M, Soneson C, Stadler MB, Schwaiger M, Suma Sreechakram VN, Iesmantavicius V, Hess D, Moreno EPF, Braun S, Seebacher J, Smallwood SA, Bühler M. A comprehensive Schizosaccharomyces pombe atlas of physical transcription factor interactions with proteins and chromatin. Mol Cell 2025; 85:1426-1444.e8. [PMID: 40015273 DOI: 10.1016/j.molcel.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Transcription factors (TFs) are key regulators of gene expression, yet many of their targets and modes of action remain unknown. In Schizosaccharomyces pombe, one-third of TFs are solely homology predicted, with few experimentally validated. We created a comprehensive library of 89 endogenously tagged S. pombe TFs, mapping their protein and chromatin interactions using immunoprecipitation-mass spectrometry and chromatin immunoprecipitation sequencing. Our study identified protein interactors for half the TFs, with over a quarter potentially forming stable complexes. We discovered DNA-binding sites for most TFs across 2,027 unique genomic regions, revealing motifs for 38 TFs and uncovering a complex network of extensive TF cross- and autoregulation. Characterization of the largest TF family revealed conserved DNA sequence preferences but diverse binding patterns and identified a repressive heterodimer, Ntu1/Ntu2, linked to perinuclear gene localization. Our TFexplorer webtool makes all data interactively accessible, offering insights into TF interactions and regulatory mechanisms with broad biological relevance.
Collapse
Affiliation(s)
- Merle Skribbe
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; University of Basel, Petersplatz 10, Basel, Switzerland.
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; University of Basel, Petersplatz 10, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | | | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Sebastien A Smallwood
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland; University of Basel, Petersplatz 10, Basel, Switzerland.
| |
Collapse
|
3
|
Mekkaoui F, Drewell RA, Dresch JM, Spratt DE. Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195074. [PMID: 39644990 PMCID: PMC11832328 DOI: 10.1016/j.bbagrm.2024.195074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Homeodomain transcription factors (TFs) bind to specific DNA sequences to regulate the expression of target genes. Structural work has provided insight into molecular identities and aided in unraveling structural features of these TFs. However, the detailed affinity and specificity by which these TFs bind to DNA sequences is still largely unknown. Qualitative methods, such as DNA footprinting, Electrophoretic Mobility Shift Assays (EMSAs), Systematic Evolution of Ligands by Exponential Enrichment (SELEX), Bacterial One Hybrid (B1H) systems, Surface Plasmon Resonance (SPR), and Protein Binding Microarrays (PBMs) have been widely used to investigate the biochemical characteristics of TF-DNA binding events. In addition to these qualitative methods, bioinformatic approaches have also assisted in TF binding site discovery. Here we discuss the advantages and limitations of these different approaches, as well as the benefits of utilizing more quantitative approaches, such as Mechanically Induced Trapping of Molecular Interactions (MITOMI), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC), in determining the biophysical basis of binding specificity of TF-DNA complexes and improving upon existing computational approaches aimed at affinity predictions.
Collapse
Affiliation(s)
- Fadwa Mekkaoui
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America.
| |
Collapse
|
4
|
Hu Y, Rodiger J, Liu Y, Gao C, Liu Y, Qadiri M, Veal A, Bulyk ML, Perrimon N. TF2TG: an online resource mining the potential gene targets of transcription factors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638157. [PMID: 39990429 PMCID: PMC11844531 DOI: 10.1101/2025.02.13.638157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sequence-specific transcription factors (TFs) are key regulators of many biological processes, controlling the expression of their target genes through binding to the cis- regulatory regions such as promoters and enhancers. Each TF has unique DNA binding site motifs, and large-scale experiments have been conducted to characterize TF-DNA binding preferences. However, no comprehensive resource currently integrates these datasets for Drosophila. To address this need, we developed TF2TG ("transcription factor to target gene"), a comprehensive resource that combines both in vitro and in vivo datasets to link transcription factors (TFs) to their target genes based on TF-DNA binding preferences along with the protein-protein interaction data, tissue-specific transcriptomic data, and chromatin accessibility data. Although the genome offers numerous potential binding sites for each TF, only a subset is actually bound in vivo, and of these, only a fraction is functionally relevant. For instance, some TFs bind to their specific sites due to synergistic interactions with other factors nearby. This integration provides users with a comprehensive list of potential candidates as well as aids users in ranking candidate genes and determining condition-specific TF binding for studying transcriptional regulation in Drosophila.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chenxi Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Mujeeb Qadiri
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Austin Veal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| |
Collapse
|
5
|
Parisot N, Ribeiro Lopes M, Peignier S, Baa-Puyoulet P, Charles H, Calevro F, Callaerts P. Annotation of transcription factors, chromatin-associated factors, and basal transcription machinery in the pea aphid, Acyrthosiphon pisum, and development of the ATFdb database, a resource for studies of transcriptional regulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104217. [PMID: 39579797 DOI: 10.1016/j.ibmb.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The pea aphid, Acyrthosiphon pisum, is an emerging model system in functional and comparative genomics, in part due to the availability of new genomic approaches and the different sequencing and annotation efforts that the community has dedicated to this important crop pest insect. The pea aphid is also used as a model to study fascinating biological traits of aphids, such as their extensive polyphenisms, their bacteriocyte-confined nutritional symbiosis, or their adaptation to the highly unbalanced diet represented by phloem sap. To get insights into the molecular basis of all these processes, it is important to have an appropriate annotation of transcription factors (TFs), which would enable the reconstruction/inference of gene regulatory networks in aphids. Using the latest version of the A. pisum genome assembly and annotation, which represents the first chromosome-level pea aphid genome, we annotated the complete repertoire of A. pisum TFs and complemented this information by annotating genes encoding chromatin-associated and basal transcription machinery proteins. These annotations were done combining information from the model Drosophila melanogaster, for which we also provide a revisited list of these proteins, and de novo prediction. The comparison between the two model systems allowed the identification of major losses or expansions in each genome, while a deeper analysis was made of ZNF TFs (with certain families expanded in the pea aphid), and the Hox gene cluster (showing reorganization in gene position in the pea aphid compared to D. melanogaster). All annotations are available to the community through the Aphid Transcription Factors database (ATFdb), consolidating the various annotations we generated. ATFdb serves as a valuable resource for gene regulation studies in aphids.
Collapse
Affiliation(s)
- Nicolas Parisot
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | | | - Sergio Peignier
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Hubert Charles
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Patrick Callaerts
- KU Leuven, University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Biondi G, McCormick G, Fernandez MP. The Drosophila circadian clock gene cycle controls the development of clock neurons. PLoS Genet 2024; 20:e1011441. [PMID: 39432537 PMCID: PMC11527286 DOI: 10.1371/journal.pgen.1011441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/31/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Daily behavioral and physiological rhythms are controlled by the brain's circadian timekeeping system, a synchronized network of neurons that maintains endogenous molecular oscillations. These oscillations are based on transcriptional feedback loops of clock genes, which in Drosophila include the transcriptional activators Clock (Clk) and cycle (cyc). While the mechanisms underlying this molecular clock are very well characterized, the roles that the core clock genes play in neuronal physiology and development are much less understood. The Drosophila timekeeping center is composed of ~150 clock neurons, among which the four small ventral lateral neurons (sLNvs) are the most dominant pacemakers under constant conditions. Here, we show that downregulating the clock gene cyc specifically in the Pdf-expressing neurons leads to decreased fasciculation both in larval and adult brains. This effect is due to a developmental role of cyc, as both knocking down cyc or expressing a dominant negative form of cyc exclusively during development lead to defasciculation phenotypes in adult clock neurons. Clk downregulation also leads to developmental effects on sLNv morphology. Our results reveal a non-circadian role for cyc, shedding light on the additional functions of circadian clock genes in the development of the nervous system.
Collapse
Affiliation(s)
- Grace Biondi
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Gina McCormick
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Maria P. Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, United States of America
| |
Collapse
|
7
|
Zhou H, Huang Y, Jia C, Pang Y, Liu L, Xu Y, Jin P, Qian J, Ma F. NF-κB factors cooperate with Su(Hw)/E4F1 to balance Drosophila/human immune responses via modulating dynamic expression of miR-210. Nucleic Acids Res 2024; 52:6906-6927. [PMID: 38742642 PMCID: PMC11229355 DOI: 10.1093/nar/gkae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial regulatory roles in controlling immune responses, but their dynamic expression mechanisms are poorly understood. Here, we firstly confirm that the conserved miRNA miR-210 negatively regulates innate immune responses of Drosophila and human via targeting Toll and TLR6, respectively. Secondly, our findings demonstrate that the expression of miR-210 is dynamically regulated by NF-κB factor Dorsal in immune response of Drosophila Toll pathway. Thirdly, we find that Dorsal-mediated transcriptional inhibition of miR-210 is dependent on the transcriptional repressor Su(Hw). Mechanistically, Dorsal interacts with Su(Hw) to modulate cooperatively the dynamic expression of miR-210 in a time- and dose-dependent manner, thereby controlling the strength of Drosophila Toll immune response and maintaining immune homeostasis. Fourthly, we reveal a similar mechanism in human cells, where NF-κB/RelA cooperates with E4F1 to regulate the dynamic expression of hsa-miR-210 in the TLR immune response. Overall, our study reveals a conservative regulatory mechanism that maintains animal innate immune homeostasis and provides new insights into the dynamic regulation of miRNA expression in immune response.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Chaolong Jia
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, Jiangsu, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
8
|
Htet M, Lei S, Bajpayi S, Gangrade H, Arvanitis M, Zoitou A, Murphy S, Chen EZ, Koleini N, Lin BL, Kwon C, Tampakakis E. A transcriptional enhancer regulates cardiac maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:666-684. [PMID: 39196225 DOI: 10.1038/s44161-024-00484-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/02/2024] [Indexed: 08/29/2024]
Abstract
Cardiomyocyte maturation is crucial for generating adult cardiomyocytes and the application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). However, regulation at the cis-regulatory element level and its role in heart disease remain unclear. Alpha-actinin 2 (ACTN2) levels increase during CM maturation. In this study, we investigated a clinically relevant, conserved ACTN2 enhancer's effects on CM maturation using hPSC and mouse models. Heterozygous ACTN2 enhancer deletion led to abnormal CM morphology, reduced function and mitochondrial respiration. Transcriptomic analyses in vitro and in vivo showed disrupted CM maturation and upregulated anabolic mammalian target for rapamycin (mTOR) signaling, promoting senescence and hindering maturation. As confirmation, ACTN2 enhancer deletion induced heat shock protein 90A expression, a chaperone mediating mTOR activation. Conversely, targeting the ACTN2 enhancer via enhancer CRISPR activation (enCRISPRa) promoted hPSC-CM maturation. Our studies reveal the transcriptional enhancer's role in cardiac maturation and disease, offering insights into potentially fine-tuning gene expression to modulate cardiomyocyte physiology.
Collapse
Grants
- K99 HL155840 NHLBI NIH HHS
- 2023- MSCRFL-5984 Maryland Stem Cell Research Fund (MSCRF)
- 5K08HL166690 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDA34660077 American Heart Association (American Heart Association, Inc.)
- TPA1058685 American Heart Association (American Heart Association, Inc.)
- T32HL007227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL-145135 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL156947 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL145135 NHLBI NIH HHS
- MSCRFD-6139 Maryland Stem Cell Research Fund (MSCRF)
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Harshi Gangrade
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean Murphy
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Elaine Zhelan Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Navid Koleini
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Brian Leei Lin
- Department of Cell Biology, Neurobiology, and Anatomy and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chulan Kwon
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Rinehart L, Stewart WE, Luffman N, Wawersik M, Kerscher O. Chigno/CG11180 and SUMO are Chinmo-interacting proteins with a role in Drosophila testes somatic support cells. PeerJ 2024; 12:e16971. [PMID: 38495765 PMCID: PMC10944633 DOI: 10.7717/peerj.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Stem cells are critical for replenishment of cells lost to death, damage or differentiation. Drosophila testes are a key model system for elucidating mechanisms regulating stem cell maintenance and differentiation. An intriguing gene identified through such studies is the transcription factor, chronologically inappropriate morphogenesis (Chinmo). Chinmo is a downstream effector of the Jak-STAT signaling pathway that acts in testis somatic stem cells to ensure maintenance of male stem cell fate and sexual identity. Defects in these processes can lead to infertility and the formation of germ cell tumors. While Chinmo's effect on testis stem cell behavior has been investigated in detail, there is still much to be learned about its structure, function, and interactions with other proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins (CG4318, Ova (ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs (SIMs), we analyzed their interaction in more detail. Using site-directed mutagenesis of a unique SIM in CG11180, we demonstrate that Chinmo's interaction with CG11180 is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO are required in somatic cells of adult testes, and that reduction of either protein causes formation of germ cell tumors. Overall, our work suggests that SUMO may be involved in the interaction of Chinmo and CG11180 and that these genes are required in somatic cells of the adult Drosophila testis. Consistent with the CG11180 knockdown phenotype in male testes, and to underscore its connection to Chinmo, we propose the name Chigno (Childless Gambino) for CG11180.
Collapse
Affiliation(s)
- Leanna Rinehart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Wendy E. Stewart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Natalie Luffman
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Matthew Wawersik
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Oliver Kerscher
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| |
Collapse
|
10
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Bresnahan ST, Galbraith D, Ma R, Anton K, Rangel J, Grozinger CM. Beyond conflict: Kinship theory of intragenomic conflict predicts individual variation in altruistic behaviour. Mol Ecol 2023; 32:5823-5837. [PMID: 37746895 DOI: 10.1111/mec.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate Anton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Yao X, Ni J, Lin L, Jin P, Ma F. The NF-κB/Relish Activates miR-308 to Negatively Regulate Imd Pathway Immune Signaling in Drosophila. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:591-600. [PMID: 37358278 DOI: 10.4049/jimmunol.2200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
The strength and duration of the NF-κB signaling response must be tightly modulated to avoid an inadequate or excessive immune response. Relish, a core NF-κB transcription factor of the Drosophila Imd pathway, can control the expression of antimicrobial peptides, including Dpt and AttA, to defend against Gram-negative bacterial infections, but whether Relish may regulate miRNA expression to participate in the immune response remains unclear. In this study, taking advantage of Drosophila S2 cells and different overexpression/knockout/knockdown flies, we first found that Relish could directly activate the expression of miR-308 to negatively regulate the immune response and promote the survival of Drosophila during Enterobacter cloacae infection. Second, our results demonstrated that Relish-mediated expression of miR-308 could suppress target gene Tab2 to attenuate the Drosophila Imd pathway signal during the middle and late stages of the immune response. Third, we detected the dynamic expression patterns of Dpt, AttA, Relish, miR-308, and Tab2 in wild-type flies after E. coli infection, which further revealed that the feedback regulatory loop of Relish-miR-308-Tab2 plays a crucial role in the immune response and homeostasis maintenance of the Drosophila Imd pathway. Overall, our present study not only illustrates an important mechanism by which this Relish-miR-308-Tab2 regulatory axis can negatively control the Drosophila immune response and participate in homeostasis maintenance but also provides new insights into the dynamic regulation of the NF-κB/miRNA expression network of animal innate immunity.
Collapse
Affiliation(s)
- Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jiajia Ni
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Chen SJ, Zhang JL, Ma WJ, Wu HJ, Li Y, Shen XX, Xu HJ. FoxO and rotund form a binding complex governing wing polyphenism in planthoppers. iScience 2023; 26:107182. [PMID: 37456837 PMCID: PMC10338296 DOI: 10.1016/j.isci.2023.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Wing polyphenism is found in a variety of insects and offers an attractive model system for studying the evolutionary significance of dispersal. The Forkhead box O (FoxO) transcription factor (TF) acts as a wing-morph switch that directs wing buds developing into long-winged (LW) or short-winged morphs in wing-dimorphic planthoppers, yet the regulatory mechanism of the FoxO module remains elusive. Here, we identified the zinc finger TF rotund as a potential wing-morph regulator via transcriptomic analysis and phenotypic screening in the brown plathopper, Nilaparvata lugens. RNA interference-mediated knockdown of rotund antagonized the LW development derived from in the context of FoxO depletion or the activation of the insulin/insulin-like growth factor signaling cascade, reversing long wings into intermediate wings. In vitro binding assays indicated that rotund physically binds to FoxO to form the FoxO combinatorial code. These findings broaden our understanding of the complexity of transcriptional regulation governing wing polyphenism in insects.
Collapse
Affiliation(s)
- Sun-Jie Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University; 866 Yu-Hang-Tang Avenue, Hangzhou 310058, China
| | - Jin-Li Zhang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University; 866 Yu-Hang-Tang Avenue, Hangzhou 310058, China
| | - Wen-Jing Ma
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University; 866 Yu-Hang-Tang Avenue, Hangzhou 310058, China
| | - Hui-Jie Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University; 866 Yu-Hang-Tang Avenue, Hangzhou 310058, China
| | - Yang Li
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University; 866 Yu-Hang-Tang Avenue, Hangzhou 310058, China
| | - Xing-Xing Shen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University; 866 Yu-Hang-Tang Avenue, Hangzhou 310058, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University; 866 Yu-Hang-Tang Avenue, Hangzhou 310058, China
| |
Collapse
|
14
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
15
|
Palli SR. Juvenile hormone receptor Methoprene tolerant: Functions and applications. VITAMINS AND HORMONES 2023; 123:619-644. [PMID: 37718000 DOI: 10.1016/bs.vh.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
During the past 15years, after confirming Methoprene tolerant (Met) as a juvenile hormone (JH) receptor, tremendous progress has been made in understanding the function of Met in supporting JH signal transduction. Met role in JH regulation of development, including metamorphosis, reproduction, diapause, cast differentiation, behavior, im`munity, sleep and epigenetic modifications, have been elucidated. Met's Heterodimeric partners involved in performing some of these functions were discovered. The availability of JH response elements (JHRE) and JH receptor allowed the development of screening assays in cell lines and yeast. These screening assays facilitated the identification of new chemicals that function as JH agonists and antagonists. These new chemicals and others that will likely be discovered in the near future by using JH receptor and JHRE will lead to highly effective species-specific environmentally friendly insecticides for controlling pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
16
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Li X, Tang X, Bing X, Catalano C, Li T, Dolsten G, Wu C, Levine M. GAGA-associated factor fosters loop formation in the Drosophila genome. Mol Cell 2023; 83:1519-1526.e4. [PMID: 37003261 PMCID: PMC10396332 DOI: 10.1016/j.molcel.2023.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
The impact of genome organization on the control of gene expression persists as a major challenge in regulatory biology. Most efforts have focused on the role of CTCF-enriched boundary elements and TADs, which enable long-range DNA-DNA associations via loop extrusion processes. However, there is increasing evidence for long-range chromatin loops between promoters and distal enhancers formed through specific DNA sequences, including tethering elements, which bind the GAGA-associated factor (GAF). Previous studies showed that GAF possesses amyloid properties in vitro, bridging separate DNA molecules. In this study, we investigated whether GAF functions as a looping factor in Drosophila development. We employed Micro-C assays to examine the impact of defined GAF mutants on genome topology. These studies suggest that the N-terminal POZ/BTB oligomerization domain is important for long-range associations of distant GAGA-rich tethering elements, particularly those responsible for promoter-promoter interactions that coordinate the activities of distant paralogous genes.
Collapse
Affiliation(s)
- Xiao Li
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Xiaona Tang
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyang Bing
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | | | - Taibo Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriel Dolsten
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael Levine
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Tang HW, Spirohn K, Hu Y, Hao T, Kovács IA, Gao Y, Binari R, Yang-Zhou D, Wan KH, Bader JS, Balcha D, Bian W, Booth BW, Coté AG, de Rouck S, Desbuleux A, Goh KY, Kim DK, Knapp JJ, Lee WX, Lemmens I, Li C, Li M, Li R, Lim HJ, Liu Y, Luck K, Markey D, Pollis C, Rangarajan S, Rodiger J, Schlabach S, Shen Y, Sheykhkarimli D, TeeKing B, Roth FP, Tavernier J, Calderwood MA, Hill DE, Celniker SE, Vidal M, Perrimon N, Mohr SE. Next-generation large-scale binary protein interaction network for Drosophila melanogaster. Nat Commun 2023; 14:2162. [PMID: 37061542 PMCID: PMC10105736 DOI: 10.1038/s41467-023-37876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Kerstin Spirohn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Tong Hao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - István A Kovács
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Physics and Astronomy, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- Northwestern Institute on Complex Systems, Chambers Hall, Northwestern University, 600 Foster St, Evanston, IL, 60208, USA
| | - Yue Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Donghui Yang-Zhou
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kenneth H Wan
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
- High-Throughput Biology Center, Institute of Basic Biological Sciences, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Dawit Balcha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Wenting Bian
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Benjamin W Booth
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Atina G Coté
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Steffi de Rouck
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Alice Desbuleux
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Dae-Kyum Kim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm St., Buffalo, NY, 14203, USA
| | - Jennifer J Knapp
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Irma Lemmens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Cathleen Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Mian Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Roujia Li
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Hyobin Julianne Lim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm St., Buffalo, NY, 14203, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Katja Luck
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Dylan Markey
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Carl Pollis
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Sudharshan Rangarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Sadie Schlabach
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Yun Shen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Dayag Sheykhkarimli
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Bridget TeeKing
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Frederick P Roth
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
- Department of Computer Science, University of Toronto, 40 St George St, Toronto, ON, M5S 2E4, Canada
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Michael A Calderwood
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - David E Hill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - Marc Vidal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Fisher WW, Hammonds AS, Weiszmann R, Booth BW, Gevirtzman L, Patton JEJ, Kubo CA, Waterston RH, Celniker SE. A modERN resource: identification of Drosophila transcription factor candidate target genes using RNAi. Genetics 2023; 223:iyad004. [PMID: 36652461 PMCID: PMC10078917 DOI: 10.1093/genetics/iyad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Transcription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change -3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.
Collapse
Affiliation(s)
- William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ann S Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin W Booth
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jaeda E J Patton
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Connor A Kubo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Cheatle Jarvela AM, Trelstad CS, Pick L. Anterior-posterior patterning of segments in Anopheles stephensi offers insights into the transition from sequential to simultaneous segmentation in holometabolous insects. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:116-130. [PMID: 34734470 PMCID: PMC9061899 DOI: 10.1002/jez.b.23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022]
Abstract
The gene regulatory network for segmentation in arthropods offers valuable insights into how networks evolve owing to the breadth of species examined and the extremely detailed knowledge gained in the model organism Drosophila melanogaster. These studies have shown that Drosophila's network represents a derived state that acquired changes to accelerate segment patterning, whereas most insects specify segments gradually as the embryo elongates. Such heterochronic shifts in segmentation have potentially emerged multiple times within holometabolous insects, resulting in many mechanistic variants and difficulties in isolating underlying commonalities that permit such shifts. Recent studies identified regulatory genes that work as timing factors, coordinating gene expression transitions during segmentation. These studies predict that changes in timing factor deployment explain shifts in segment patterning relative to other developmental events. Here, we test this hypothesis by characterizing the temporal and spatial expression of the pair-rule patterning genes in the malaria vector mosquito, Anopheles stephensi. This insect is a Dipteran (fly), like Drosophila, but represents an ancient divergence within this clade, offering a useful counterpart for evo-devo studies. In mosquito embryos, we observe anterior to posterior sequential addition of stripes for many pair-rule genes and a wave of broad timer gene expression across this axis. Segment polarity gene stripes are added sequentially in the wake of the timer gene wave and the full pattern is not complete until the embryo is fully elongated. This "progressive segmentation" mode in Anopheles displays commonalities with both Drosophila's rapid segmentation mechanism and sequential modes used by more distantly related insects.
Collapse
Affiliation(s)
- Alys M. Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Catherine S. Trelstad
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| |
Collapse
|
21
|
Yheskel M, Sidoli S, Secombe J. Proximity labeling reveals a new in vivo network of interactors for the histone demethylase KDM5. Epigenetics Chromatin 2023; 16:8. [PMID: 36803422 PMCID: PMC9938590 DOI: 10.1186/s13072-023-00481-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND KDM5 family proteins are multi-domain regulators of transcription that when dysregulated contribute to cancer and intellectual disability. KDM5 proteins can regulate transcription through their histone demethylase activity in addition to demethylase-independent gene regulatory functions that remain less characterized. To expand our understanding of the mechanisms that contribute to KDM5-mediated transcription regulation, we used TurboID proximity labeling to identify KDM5-interacting proteins. RESULTS Using Drosophila melanogaster, we enriched for biotinylated proteins from KDM5-TurboID-expressing adult heads using a newly generated control for DNA-adjacent background in the form of dCas9:TurboID. Mass spectrometry analyses of biotinylated proteins identified both known and novel candidate KDM5 interactors, including members of the SWI/SNF and NURF chromatin remodeling complexes, the NSL complex, Mediator, and several insulator proteins. CONCLUSIONS Combined, our data shed new light on potential demethylase-independent activities of KDM5. In the context of KDM5 dysregulation, these interactions may play key roles in the alteration of evolutionarily conserved transcriptional programs implicated in human disorders.
Collapse
Affiliation(s)
- Matanel Yheskel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
22
|
Mukherjee K, Moroz LL. Transposon-derived transcription factors across metazoans. Front Cell Dev Biol 2023; 11:1113046. [PMID: 36960413 PMCID: PMC10027918 DOI: 10.3389/fcell.2023.1113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Transposable elements (TE) could serve as sources of new transcription factors (TFs) in plants and some other model species, but such evidence is lacking for most animal lineages. Here, we discovered multiple independent co-options of TEs to generate 788 TFs across Metazoa, including all early-branching animal lineages. Six of ten superfamilies of DNA transposon-derived conserved TF families (ZBED, CENPB, FHY3, HTH-Psq, THAP, and FLYWCH) were identified across nine phyla encompassing the entire metazoan phylogeny. The most extensive convergent domestication of potentially TE-derived TFs occurred in the hydroid polyps, polychaete worms, cephalopods, oysters, and sea slugs. Phylogenetic reconstructions showed species-specific clustering and lineage-specific expansion; none of the identified TE-derived TFs revealed homologs in their closest neighbors. Together, our study established a framework for categorizing TE-derived TFs and informing the origins of novel genes across phyla.
Collapse
Affiliation(s)
- Krishanu Mukherjee
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
- *Correspondence: Leonid L. Moroz, ; Krishanu Mukherjee,
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: Leonid L. Moroz, ; Krishanu Mukherjee,
| |
Collapse
|
23
|
Destefanis F, Manara V, Santarelli S, Zola S, Brambilla M, Viola G, Maragno P, Signoria I, Viero G, Pasini ME, Penzo M, Bellosta P. Reduction of nucleolar NOC1 leads to the accumulation of pre-rRNAs and induces Xrp1, affecting growth and resulting in cell competition. J Cell Sci 2022; 135:285861. [PMID: 36314272 PMCID: PMC9789402 DOI: 10.1242/jcs.260110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
NOC1 is a nucleolar protein necessary in yeast for both transport and maturation of ribosomal subunits. Here, we show that Drosophila NOC1 (annotated CG7839) is necessary for rRNAs maturation and for a correct animal development. Its ubiquitous downregulation results in a dramatic decrease in polysome level and of protein synthesis. NOC1 expression in multiple organs, such as the prothoracic gland and the fat body, is necessary for their proper functioning. Reduction of NOC1 in epithelial cells from the imaginal discs results in clones that die by apoptosis, an event that is partially rescued in a Minute/+ background, suggesting that reduction of NOC1 induces the cells to become less fit and to acquire a 'loser' state. NOC1 downregulation activates the pro-apoptotic Eiger-JNK pathway and leads to an increase of Xrp1, which results in the upregulation of DILP8, a member of the insulin/relaxin-like family known to coordinate organ growth with animal development. Our data underline NOC1 as an essential gene in ribosome biogenesis and highlight its novel functions in the control of growth and cell competition.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Sheri Zola
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Marco Brambilla
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Giacomo Viola
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Paola Maragno
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Signoria
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy,Center for Applied Biomedical Research, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy,Department of Medicine, NYU Langone School of Medicine, 550 First Avenue, New York, 10016 NY, USA,Author for correspondence ()
| |
Collapse
|
24
|
Lama J, Srivastav S, Tasnim S, Hubbard D, Hadjipanteli S, Smith BR, Macdonald SJ, Green L, Kelleher ES. Genetic variation in P-element dysgenic sterility is associated with double-strand break repair and alternative splicing of TE transcripts. PLoS Genet 2022; 18:e1010080. [PMID: 36477699 PMCID: PMC9762592 DOI: 10.1371/journal.pgen.1010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/19/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
The germline mobilization of transposable elements (TEs) by small RNA mediated silencing pathways is conserved across eukaryotes and critical for ensuring the integrity of gamete genomes. However, genomes are recurrently invaded by novel TEs through horizontal transfer. These invading TEs are not targeted by host small RNAs, and their unregulated activity can cause DNA damage in germline cells and ultimately lead to sterility. Here we use hybrid dysgenesis-a sterility syndrome of Drosophila caused by transposition of invading P-element DNA transposons-to uncover host genetic variants that modulate dysgenic sterility. Using a panel of highly recombinant inbred lines of Drosophila melanogaster, we identified two linked quantitative trait loci (QTL) that determine the severity of dysgenic sterility in young and old females, respectively. We show that ovaries of fertile genotypes exhibit increased expression of splicing factors that suppress the production of transposase encoding transcripts, which likely reduces the transposition rate and associated DNA damage. We also show that fertile alleles are associated with decreased sensitivity to double-stranded breaks and enhanced DNA repair, explaining their ability to withstand high germline transposition rates. Together, our work reveals a diversity of mechanisms whereby host genotype modulates the cost of an invading TE, and points to genetic variants that were likely beneficial during the P-element invasion.
Collapse
Affiliation(s)
- Jyoti Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Satyam Srivastav
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sadia Tasnim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Donald Hubbard
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Savana Hadjipanteli
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Llewellyn Green
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
25
|
Shapiro-Kulnane L, Selengut M, Salz HK. Safeguarding Drosophila female germ cell identity depends on an H3K9me3 mini domain guided by a ZAD zinc finger protein. PLoS Genet 2022; 18:e1010568. [PMID: 36548300 PMCID: PMC9822104 DOI: 10.1371/journal.pgen.1010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
H3K9me3-based gene silencing is a conserved strategy for securing cell fate, but the mechanisms controlling lineage-specific installation of this epigenetic mark remain unclear. In Drosophila, H3K9 methylation plays an essential role in securing female germ cell fate by silencing lineage inappropriate phf7 transcription. Thus, phf7 regulation in the female germline provides a powerful system to dissect the molecular mechanism underlying H3K9me3 deposition onto protein coding genes. Here we used genetic studies to identify the essential cis-regulatory elements, finding that the sequences required for H3K9me3 deposition are conserved across Drosophila species. Transposable elements are also silenced by an H3K9me3-mediated mechanism. But our finding that phf7 regulation does not require the dedicated piRNA pathway components, piwi, aub, rhino, panx, and nxf2, indicates that the mechanisms of H3K9me3 recruitment are distinct. Lastly, we discovered that an uncharacterized member of the zinc finger associated domain (ZAD) containing C2H2 zinc finger protein family, IDENTITY CRISIS (IDC; CG4936), is necessary for H3K9me3 deposition onto phf7. Loss of idc in germ cells interferes with phf7 transcriptional regulation and H3K9me3 deposition, resulting in ectopic PHF7 protein expression. IDC's role is likely to be direct, as it localizes to a conserved domain within the phf7 gene. Collectively, our findings support a model in which IDC guides sequence-specific establishment of an H3K9me3 mini domain, thereby preventing accidental female-to-male programming.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Micah Selengut
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Helen K. Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
26
|
Doyle T, Jimenez‐Guri E, Hawkes WLS, Massy R, Mantica F, Permanyer J, Cozzuto L, Hermoso Pulido T, Baril T, Hayward A, Irimia M, Chapman JW, Bass C, Wotton KR. Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Mol Ecol 2022; 31:4332-4350. [PMID: 35801824 PMCID: PMC9546057 DOI: 10.1111/mec.16588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Insects are capable of extraordinary feats of long-distance movement that have profound impacts on the function of terrestrial ecosystems. The ability to undertake these movements arose multiple times through the evolution of a suite of traits that make up the migratory syndrome, however the underlying genetic pathways involved remain poorly understood. Migratory hoverflies (Diptera: Syrphidae) are an emerging model group for studies of migration. They undertake seasonal movements in huge numbers across large parts of the globe and are important pollinators, biological control agents and decomposers. Here, we assembled a high-quality draft genome of the marmalade hoverfly (Episyrphus balteatus). We leveraged this genomic resource to undertake a genome-wide transcriptomic comparison of actively migrating Episyrphus, captured from a high mountain pass as they flew south to overwinter, with the transcriptomes of summer forms which were non-migratory. We identified 1543 genes with very strong evidence for differential expression. Interrogation of this gene set reveals a remarkable range of roles in metabolism, muscle structure and function, hormonal regulation, immunity, stress resistance, flight and feeding behaviour, longevity, reproductive diapause and sensory perception. These features of the migrant phenotype have arisen by the integration and modification of pathways such as insulin signalling for diapause and longevity, JAK/SAT for immunity, and those leading to octopamine production and fuelling to boost flight capabilities. Our results provide a powerful genomic resource for future research, and paint a comprehensive picture of global expression changes in an actively migrating insect, identifying key genomic components involved in this important life-history strategy.
Collapse
Affiliation(s)
- Toby Doyle
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Eva Jimenez‐Guri
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Will L. S. Hawkes
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Richard Massy
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Federica Mantica
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jon Permanyer
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luca Cozzuto
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Toni Hermoso Pulido
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tobias Baril
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Alex Hayward
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Manuel Irimia
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
- Environment and Sustainability InstituteUniversity of Exeter, Cornwall CampusPenrynUK
- Department of Entomology, College of Plant ProtectionNanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Chris Bass
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Karl R. Wotton
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| |
Collapse
|
27
|
Guo X, Wu C, Pan Y, Zhu X, Peng K, Ma X, Xue L. Mechanistic insights and implications of FOXO-SNAI interplay. Bioessays 2022; 44:e2200070. [PMID: 35832016 DOI: 10.1002/bies.202200070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2021] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
Autophagy promotes both health and disease, depending on tissue types and genetic contexts, yet the regulatory mechanism remain incompletely understood. Our recent publication has uncovered a coherent FOXO-SNAI feed-forward loop in autophagy, which is evolutionarily conserved from Drosophila to human. In addition, it's revealed that DNA binding plays a critical role in intracellular localization of nucleocytoplasmic shuttling proteins. Based on these findings, herein we further integrate mechanistic insights of FOXO-SNAI regulatory interplay in autophagy and unravel the potential link of FOXO-induced autophagy with SNAI in diseases. Besides, the generality of DNA-retention mechanism on transcription factor nuclear localization is illustrated with wide-ranging discussion, and more functions potentially regulated by FOXO-SNAI feedforward loop are provided. Elucidation of these unsolved paradigms will expand the understanding of FOXO-SNAI interplay and facilitate the development of new therapeutics targeting FOXO-SNAI axis in diseases.
Collapse
Affiliation(s)
- Xiaowei Guo
- School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute of Intervention Vessel, Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chenxi Wu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yu Pan
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaojie Zhu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Kai Peng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xianjue Ma
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
28
|
Chetverina D, Vorobyeva NE, Mazina MY, Fab LV, Lomaev D, Golovnina A, Mogila V, Georgiev P, Ziganshin RH, Erokhin M. Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cell Mol Life Sci 2022; 79:353. [PMID: 35676368 PMCID: PMC11072172 DOI: 10.1007/s00018-022-04383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Mazina
- Group of Hormone-Dependent Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Alexandra Golovnina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Vladic Mogila
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
29
|
Jiménez-Mejía G, Montalvo-Méndez R, Hernández-Bautista C, Altamirano-Torres C, Vázquez M, Zurita M, Reséndez-Pérez D. Trimeric complexes of Antp-TBP with TFIIEβ or Exd modulate transcriptional activity. Hereditas 2022; 159:23. [PMID: 35637493 PMCID: PMC9150345 DOI: 10.1186/s41065-022-00239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hox proteins finely coordinate antero-posterior axis during embryonic development and through their action specific target genes are expressed at the right time and space to determine the embryo body plan. As master transcriptional regulators, Hox proteins recognize DNA through the homeodomain (HD) and interact with a multitude of proteins, including general transcription factors and other cofactors. HD binding specificity increases by protein–protein interactions with a diversity of cofactors that outline the Hox interactome and determine the transcriptional landscape of the selected target genes. All these interactions clearly demonstrate Hox-driven transcriptional regulation, but its precise mechanism remains to be elucidated. Results Here we report Antennapedia (Antp) Hox protein–protein interaction with the TATA-binding protein (TBP) and the formation of novel trimeric complexes with TFIIEβ and Extradenticle (Exd), as well as its participation in transcriptional regulation. Using Bimolecular Fluorescence Complementation (BiFC), we detected the interaction of Antp-TBP and, in combination with Förster Resonance Energy Transfer (BiFC-FRET), the formation of the trimeric complex with TFIIEβ and Exd in living cells. Mutational analysis showed that Antp interacts with TBP through their N-terminal polyglutamine-stretches. The trimeric complexes of Antp-TBP with TFIIEβ and Exd were validated using different Antp mutations to disrupt the trimeric complexes. Interestingly, the trimeric complex Antp-TBP-TFIIEβ significantly increased the transcriptional activity of Antp, whereas Exd diminished its transactivation. Conclusions Our findings provide important insights into the Antp interactome with the direct interaction of Antp with TBP and the two new trimeric complexes with TFIIEβ and Exd. These novel interactions open the possibility to analyze promoter function and gene expression to measure transcription factor binding dynamics at target sites throughout the genome. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00239-8.
Collapse
|
30
|
Bhogale S, Sinha S. Thermodynamics-based modeling reveals regulatory effects of indirect transcription factor-DNA binding. iScience 2022; 25:104152. [PMID: 35465052 PMCID: PMC9018382 DOI: 10.1016/j.isci.2022.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) influence gene expression by binding to DNA, yet experimental data suggests that they also frequently bind regulatory DNA indirectly by interacting with other DNA-bound proteins. Here, we used a data modeling approach to test if such indirect binding by TFs plays a significant role in gene regulation. We first incorporated regulatory function of indirectly bound TFs into a thermodynamics-based model for predicting enhancer-driven expression from its sequence. We then fit the new model to a rich data set comprising hundreds of enhancers and their regulatory activities during mesoderm specification in Drosophila embryogenesis and showed that the newly incorporated mechanism results in significantly better agreement with data. In the process, we derived the first sequence-level model of this extensively characterized regulatory program. We further showed that allowing indirect binding of a TF explains its localization at enhancers more accurately than with direct binding only. Our model also provided a simple explanation of how a TF may switch between activating and repressive roles depending on context. Inclusion of indirect DNA binding of transcription factor improves enhancer function prediction Context specific activating or repressive roles of TFs Indirect binding improves fits to experimental TF-DNA binding data Role of Tinman depends on its DNA-binding mode (direct or indirect)
Collapse
|
31
|
Gramates LS, Agapite J, Attrill H, Calvi BR, Crosby MA, dos Santos G, Goodman JL, Goutte-Gattat D, Jenkins VK, Kaufman T, Larkin A, Matthews BB, Millburn G, Strelets VB. FlyBase: a guided tour of highlighted features. Genetics 2022; 220:iyac035. [PMID: 35266522 PMCID: PMC8982030 DOI: 10.1093/genetics/iyac035] [Citation(s) in RCA: 340] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
FlyBase provides a centralized resource for the genetic and genomic data of Drosophila melanogaster. As FlyBase enters our fourth decade of service to the research community, we reflect on our unique aspects and look forward to our continued collaboration with the larger research and model organism communities. In this study, we emphasize the dedicated reports and tools we have constructed to meet the specialized needs of fly researchers but also to facilitate use by other research communities. We also highlight ways that we support the fly community, including an external resources page, help resources, and multiple avenues by which researchers can interact with FlyBase.
Collapse
Affiliation(s)
- L Sian Gramates
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julie Agapite
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madeline A Crosby
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gilberto dos Santos
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua L Goodman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Damien Goutte-Gattat
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victoria K Jenkins
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Aoife Larkin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Beverley B Matthews
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gillian Millburn
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victor B Strelets
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
32
|
Fedele G, Loh SHY, Celardo I, Leal NS, Lehmann S, Costa AC, Martins LM. Suppression of intestinal dysfunction in a Drosophila model of Parkinson's disease is neuroprotective. NATURE AGING 2022; 2:317-331. [PMID: 37117744 DOI: 10.1038/s43587-022-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
33
|
Miozzo F, Valencia-Alarcón EP, Stickley L, Majcin Dorcikova M, Petrelli F, Tas D, Loncle N, Nikonenko I, Bou Dib P, Nagoshi E. Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor. Nat Commun 2022; 13:1426. [PMID: 35301315 PMCID: PMC8931002 DOI: 10.1038/s41467-022-29075-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Progressive degeneration of dopaminergic (DA) neurons in the substantia nigra is a hallmark of Parkinson’s disease (PD). Dysregulation of developmental transcription factors is implicated in dopaminergic neurodegeneration, but the underlying molecular mechanisms remain largely unknown. Drosophila Fer2 is a prime example of a developmental transcription factor required for the birth and maintenance of midbrain DA neurons. Using an approach combining ChIP-seq, RNA-seq, and genetic epistasis experiments with PD-linked genes, here we demonstrate that Fer2 controls a transcriptional network to maintain mitochondrial structure and function, and thus confers dopaminergic neuroprotection against genetic and oxidative insults. We further show that conditional ablation of Nato3, a mouse homolog of Fer2, in differentiated DA neurons causes mitochondrial abnormalities and locomotor impairments in aged mice. Our results reveal the essential and conserved role of Fer2 homologs in the mitochondrial maintenance of midbrain DA neurons, opening new perspectives for modeling and treating PD. Mitochondrial dysfunction in dopaminergic neurons is a pathological hallmark of Parkinson’s disease. Here, the authors find a conserved mechanism by which a single transcription factor controls mitochondrial health in dopaminergic neurons during the aging process.
Collapse
Affiliation(s)
- Federico Miozzo
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,Neuroscience Institute - CNR (IN-CNR), Milan, Italy
| | - Eva P Valencia-Alarcón
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Luca Stickley
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Michaëla Majcin Dorcikova
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | | | - Damla Tas
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,The Janssen Pharmaceutical Companies of Johnson & Johnson, Bern, Switzerland
| | - Nicolas Loncle
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,Puma Biotechnology, Inc., Berkeley, CA, USA
| | - Irina Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Peter Bou Dib
- Institute of Cell Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
34
|
Abstract
Understanding autophagy regulation is instrumental in developing therapeutic interventions for autophagy-associated disease. Here, we identified SNAI2 as a regulator of autophagy from a genome-wide screen in HeLa cells. Upon energy stress, SNAI2 is transcriptionally activated by FOXO3 and interacts with FOXO3 to form a feed-forward regulatory loop to reinforce the expression of autophagy genes. Of note, SNAI2-increased FOXO3-DNA binding abrogates CRM1-dependent FOXO3 nuclear export, illuminating a pivotal role of DNA in the nuclear retention of nucleocytoplasmic shuttling proteins. Moreover, a dFoxO-Snail feed-forward loop regulates both autophagy and cell size in Drosophila, suggesting this evolutionarily conserved regulatory loop is engaged in more physiological activities. Autophagy is a highly conserved programmed degradation process that regulates a variety of physiological and pathological activities in health, aging, and disease. To identify additional factors that modulate autophagy, we utilized serum-free starvation or Torin1 to induce autophagy in HeLa cells for unbiased mRNA-sequencing analysis and identified SNAI2, a crucial player in epithelial-to-mesenchymal transition and cancer progression, as a regulator of autophagy. Mechanistically, SNAI2 promotes autophagy by physically interacting with FOXO3 and enhancing FOXO3 binding affinity to its response elements in autophagy-related genes. Intriguingly, binding to the DNA targets appears necessary and sufficient for FOXO3 to antagonize its CRM1-dependent nuclear export, illustrating a critical role of DNA in regulating protein nuclear localization. Moreover, stress-elevated SNAI2 expression is mediated by FOXO3, which activates SNAI2 transcription by directly binding to its promoter. Herein, FOXO3 and SNAI2 form a coherent feed-forward regulatory loop to reinforce autophagy genes induction in response to energy stress. Strikingly, a dFoxO-Snail feed-forward circuit also regulates autophagy in Drosophila, suggesting this mechanism is evolutionarily conserved from fly to human.
Collapse
|
35
|
Banzai K, Izumi S. Cis-regulatory elements of the cholinergic gene locus in the silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:73-84. [PMID: 34549831 DOI: 10.1111/imb.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Genes of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter are encoded in the same gene locus, called the cholinergic gene locus. They are essential in cholinergic neurons to maintain their functional phenotype. The genomic structure of the cholinergic gene locus is conserved among invertebrates to mammals. However, the cholinergic gene expression in a specific subset of neurons is unknown in insects except for Drosophila melanogaster. In this study, we analysed the upstream sequence of cholinergic gene locus in the silkworm Bombyx mori to identify specific cis-regulatory regions. We found multiple enhancer regions that are localized within 1 kb upstream of the cholinergic gene locus. The combination of promoter assays using small deletions and bioinformatic analysis among insect species illuminates two conserved sequences in the cis-regulatory region: TGACGTA and CCAAT, which are known as the cAMP response element and CAAT box, respectively. We found that dibutyryl-cAMP, an analogue of cAMP, influences the expression of ChAT in B. mori. Tissue-specific expression analysis of transcriptional factors identified potential candidates that control the cholinergic gene locus expression. Our investigation provides new insight into the regulation mechanism of cholinergic neuron-specific gene machinery in this lepidopteran insect.
Collapse
Affiliation(s)
- K Banzai
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - S Izumi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
36
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
37
|
Jauregui-Lozano J, Hall H, Stanhope SC, Bakhle K, Marlin MM, Weake VM. The Clock:Cycle complex is a major transcriptional regulator of Drosophila photoreceptors that protects the eye from retinal degeneration and oxidative stress. PLoS Genet 2022; 18:e1010021. [PMID: 35100266 PMCID: PMC8830735 DOI: 10.1371/journal.pgen.1010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Makayla M. Marlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
38
|
Waters CT, Gisselbrecht SS, Sytnikova YA, Cafarelli TM, Hill DE, Bulyk ML. Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue. Genome Biol 2021; 22:348. [PMID: 34930411 PMCID: PMC8686523 DOI: 10.1186/s13059-021-02574-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.
Collapse
Affiliation(s)
- Colin T Waters
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuliya A Sytnikova
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tiziana M Cafarelli
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Cain B, Gebelein B. Mechanisms Underlying Hox-Mediated Transcriptional Outcomes. Front Cell Dev Biol 2021; 9:787339. [PMID: 34869389 PMCID: PMC8635045 DOI: 10.3389/fcell.2021.787339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.
Collapse
Affiliation(s)
- Brittany Cain
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
40
|
Karkali K, Martin-Blanco E. Dissection of the Regulatory Elements of the Complex Expression Pattern of Puckered, a Dual-Specificity JNK Phosphatase. Int J Mol Sci 2021; 22:ijms222212205. [PMID: 34830088 PMCID: PMC8623796 DOI: 10.3390/ijms222212205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
For developmental processes, we know most of the gene networks controlling specific cell responses. We still have to determine how these networks cooperate and how signals become integrated. The JNK pathway is one of the key elements modulating cellular responses during development. Yet, we still know little about how the core components of the pathway interact with additional regulators or how this network modulates cellular responses in the whole organism in homeostasis or during tissue morphogenesis. We have performed a promoter analysis, searching for potential regulatory sequences of puckered (puc) and identified different specific enhancers directing gene expression in different tissues and at different developmental times. Remarkably, some of these domains respond to the JNK activity, but not all. Altogether, these analyses show that puc expression regulation is very complex and that JNK activities participate in non-previously known processes during the development of Drosophila.
Collapse
|
41
|
Drum ZA, Lanno SM, Gregory SM, Shimshak SJ, Ahamed M, Barr W, Bekele B, Biester A, Castro C, Connolly L, DelGaudio N, Humphrey W, Karimi H, Karolczak S, Lawrence TS, McCracken A, Miller-Medzon N, Murphy L, Park C, Park S, Qiu C, Serra K, Snyder G, Strauss A, Tang S, Vyzas C, Coolon JD. Genomics analysis of hexanoic acid exposure in Drosophila species. G3-GENES GENOMES GENETICS 2021; 12:6402009. [PMID: 34718544 PMCID: PMC8727985 DOI: 10.1093/g3journal/jkab354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/10/2021] [Indexed: 12/04/2022]
Abstract
Drosophila sechellia is a dietary specialist endemic to the Seychelles islands that has evolved to consume the fruit of Morinda citrifolia. When ripe, the fruit of M. citrifolia contains octanoic acid and hexanoic acid, two medium-chain fatty acid volatiles that deter and are toxic to generalist insects. Drosophila sechellia has evolved resistance to these volatiles allowing it to feed almost exclusively on this host plant. The genetic basis of octanoic acid resistance has been the focus of multiple recent studies, but the mechanisms that govern hexanoic acid resistance in D. sechellia remain unknown. To understand how D. sechellia has evolved to specialize on M. citrifolia fruit and avoid the toxic effects of hexanoic acid, we exposed adult D. sechellia, D. melanogaster and D. simulans to hexanoic acid and performed RNA sequencing comparing their transcriptional responses to identify D. sechellia specific responses. Our analysis identified many more genes responding transcriptionally to hexanoic acid in the susceptible generalist species than in the specialist D. sechellia. Interrogation of the sets of differentially expressed genes showed that generalists regulated the expression of many genes involved in metabolism and detoxification whereas the specialist primarily downregulated genes involved in the innate immunity. Using these data, we have identified interesting candidate genes that may be critically important in aspects of adaptation to their food source that contains high concentrations of HA. Understanding how gene expression evolves during dietary specialization is crucial for our understanding of how ecological communities are built and how evolution shapes trophic interactions.
Collapse
Affiliation(s)
- Zachary A Drum
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Stephen M Lanno
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Sara M Gregory
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Serena J Shimshak
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Mukshud Ahamed
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Will Barr
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Bethlehem Bekele
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Alison Biester
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Colleen Castro
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Lauren Connolly
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Nicole DelGaudio
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - William Humphrey
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Helen Karimi
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Sophie Karolczak
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | | | - Andrew McCracken
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | | | - Leah Murphy
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Cameron Park
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Sojeong Park
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Chloe Qiu
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Kevin Serra
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Gigi Snyder
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Alexa Strauss
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Spencer Tang
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Christina Vyzas
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University,Middletown, CT 06457, USA
| |
Collapse
|
42
|
Cai X, Rondeel I, Baumgartner S. Modulating the bicoid gradient in space and time. Hereditas 2021; 158:29. [PMID: 34404481 PMCID: PMC8371787 DOI: 10.1186/s41065-021-00192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. Results We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15th nuclear cycle by means of the maternal haploid (mh) mutation showed no effect, neither on the appearance of the gradient nor on the control of downstream target. This suggests that the segmental anlagen are determined during the first 14 nuclear cycles. Finally, we identify the Cyclin B (CycB) gene as a trans-acting factor that modulates the movement of Bcd such that Bcd movement is allowed to move through the interior of the egg. Conclusions Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.
Collapse
Affiliation(s)
- Xiaoli Cai
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden
| | - Inge Rondeel
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden.,Present address: Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - Stefan Baumgartner
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
43
|
Cuesta-Astroz Y, Gischkow Rucatti G, Murgas L, SanMartín CD, Sanhueza M, Martin AJM. Filtering of Data-Driven Gene Regulatory Networks Using Drosophila melanogaster as a Case Study. Front Genet 2021; 12:649764. [PMID: 34394179 PMCID: PMC8355599 DOI: 10.3389/fgene.2021.649764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Gene Regulatory Networks (GRNs) allow the study of regulation of gene expression of whole genomes. Among the most relevant advantages of using networks to depict this key process, there is the visual representation of large amounts of information and the application of graph theory to generate new knowledge. Nonetheless, despite the many uses of GRNs, it is still difficult and expensive to assign Transcription Factors (TFs) to the regulation of specific genes. ChIP-Seq allows the determination of TF Binding Sites (TFBSs) over whole genomes, but it is still an expensive technique that can only be applied one TF at a time and requires replicates to reduce its noise. Once TFBSs are determined, the assignment of each TF and its binding sites to the regulation of specific genes is not trivial, and it is often performed by carrying out site-specific experiments that are unfeasible to perform in all possible binding sites. Here, we addressed these relevant issues with a two-step methodology using Drosophila melanogaster as a case study. First, our protocol starts by gathering all transcription factor binding sites (TFBSs) determined with ChIP-Seq experiments available at ENCODE and FlyBase. Then each TFBS is used to assign TFs to the regulation of likely target genes based on the TFBS proximity to the transcription start site of all genes. In the final step, to try to select the most likely regulatory TF from those previously assigned to each gene, we employ GENIE3, a random forest-based method, and more than 9,000 RNA-seq experiments from D. melanogaster. Following, we employed known TF protein-protein interactions to estimate the feasibility of regulatory events in our filtered networks. Finally, we show how known interactions between co-regulatory TFs of each gene increase after the second step of our approach, and thus, the consistency of the TF-gene assignment. Also, we employed our methodology to create a network centered on the Drosophila melanogaster gene Hr96 to demonstrate the role of this transcription factor on mitochondrial gene regulation.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Colombian Institute of Tropical Medicine, CES University, Medellin, Colombia
| | | | - Leandro Murgas
- Laboratorio de Biologia de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
| | - Carol D SanMartín
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile.,Centro de Investigacíon Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Mario Sanhueza
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Biologia de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
44
|
Tseng CC, Wong MC, Liao WT, Chen CJ, Lee SC, Yen JH, Chang SJ. Genetic Variants in Transcription Factor Binding Sites in Humans: Triggered by Natural Selection and Triggers of Diseases. Int J Mol Sci 2021; 22:ijms22084187. [PMID: 33919522 PMCID: PMC8073710 DOI: 10.3390/ijms22084187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Variants of transcription factor binding sites (TFBSs) constitute an important part of the human genome. Current evidence demonstrates close links between nucleotides within TFBSs and gene expression. There are multiple pathways through which genomic sequences located in TFBSs regulate gene expression, and recent genome-wide association studies have shown the biological significance of TFBS variation in human phenotypes. However, numerous challenges remain in the study of TFBS polymorphisms. This article aims to cover the current state of understanding as regards the genomic features of TFBSs and TFBS variants; the mechanisms through which TFBS variants regulate gene expression; the approaches to studying the effects of nucleotide changes that create or disrupt TFBSs; the challenges faced in studies of TFBS sequence variations; the effects of natural selection on collections of TFBSs; in addition to the insights gained from the study of TFBS alleles related to gout, its associated comorbidities (increased body mass index, chronic kidney disease, diabetes, dyslipidemia, coronary artery disease, ischemic heart disease, hypertension, hyperuricemia, osteoporosis, and prostate cancer), and the treatment responses of patients.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Man-Chun Wong
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan;
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biological Science and Technology, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| |
Collapse
|
45
|
Chetverina D, Erokhin M, Schedl P. GAGA factor: a multifunctional pioneering chromatin protein. Cell Mol Life Sci 2021; 78:4125-4141. [PMID: 33528710 DOI: 10.1007/s00018-021-03776-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer-promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a "pioneer" factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
46
|
Waiho K, Afiqah‐Aleng N, Iryani MTM, Fazhan H. Protein–protein interaction network: an emerging tool for understanding fish disease in aquaculture. REVIEWS IN AQUACULTURE 2021; 13:156-177. [DOI: 10.1111/raq.12468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2025]
Abstract
AbstractProtein–protein interactions (PPIs) play integral roles in a wide range of biological processes that regulate the overall growth, development, physiology and disease in living organisms. With the advancement of high‐throughput sequencing technologies, increasing numbers of PPI networks are being predicted and annotated, and these contribute greatly towards the understanding of pathogenesis and the discovery of novel drug targets for the treatment of diseases. The use of this tool is gaining popularity in the identification, understanding and treatment of diseases in humans and plants. Due to the importance of aquaculture in tackling the global food crisis by producing cheap and high‐quality protein source, the maintenance of the overall health status of aquaculture species is essential. With the increasing omics data on aquaculture species, the PPI network is an emerging tool for fish health maintenance. In this review, we first introduce the concept of PPI network, how they are discovered and their general application. Then, the current status of aquaculture and disease in aquaculture are discussed. The different applications of PPI network in aquaculture fish disease management such as biomarker identification, mechanism prediction, understanding of host–pathogen interaction, understanding of pathogen co‐infection interaction, and potential development of vaccines and treatments are subsequently highlighted. It is hoped that this emerging tool – PPI network – would deepen our understanding of the pathogenesis of various diseases and hasten the prevention and treatment processes in aquaculture species.
Collapse
Affiliation(s)
- Khor Waiho
- Institute of Tropical Aquaculture and Fisheries Universiti Malaysia Terengganu Terengganu Malaysia
| | - Nor Afiqah‐Aleng
- Institute of Marine Biotechnology Universiti Malaysia Terengganu Terengganu Malaysia
| | - Mat Taib Mimi Iryani
- Institute of Marine Biotechnology Universiti Malaysia Terengganu Terengganu Malaysia
| | - Hanafiah Fazhan
- Institute of Tropical Aquaculture and Fisheries Universiti Malaysia Terengganu Terengganu Malaysia
- Guangdong Provincial Key Laboratory of Marine Biotechnology Shantou University Guangdong China
| |
Collapse
|
47
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
48
|
Bordet G, Lodhi N, Guo D, Kossenkov A, Tulin AV. Poly(ADP-ribose) polymerase 1 in genome-wide expression control in Drosophila. Sci Rep 2020; 10:21151. [PMID: 33273587 PMCID: PMC7712786 DOI: 10.1038/s41598-020-78116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme involved in DNA repair and transcription regulation, among other processes. Malignant transformations, tumor progression, the onset of some neuropathies and other disorders have been linked to misregulation of PARP-1 activity. Despite intensive studies during the last few decades, the role of PARP-1 in transcription regulation is still not well understood. In this study, a transcriptomic analysis in Drosophila melanogaster third instar larvae was carried out. A total of 602 genes were identified, showing large-scale changes in their expression levels in the absence of PARP-1 in vivo. Among these genes, several functional gene groups were present, including transcription factors and cytochrome family members. The transcription levels of genes from the same functional group were affected by the absence of PARP-1 in a similar manner. In the absence of PARP-1, all misregulated genes coding for transcription factors were downregulated, whereas all genes coding for members of the cytochrome P450 family were upregulated. The cytochrome P450 proteins contain heme as a cofactor and are involved in oxidoreduction. Significant changes were also observed in the expression of several mobile elements in the absence of PARP-1, suggesting that PARP-1 may be involved in regulating the expression of mobile elements.
Collapse
Affiliation(s)
- Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | - Niraj Lodhi
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | | | - Alexei V Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA.
| |
Collapse
|
49
|
Panta M, Kump AJ, Dalloul JM, Schwab KR, Ahmad SM. Three distinct mechanisms, Notch instructive, permissive, and independent, regulate the expression of two different pericardial genes to specify cardiac cell subtypes. PLoS One 2020; 15:e0241191. [PMID: 33108408 PMCID: PMC7591092 DOI: 10.1371/journal.pone.0241191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
The development of a complex organ involves the specification and differentiation of diverse cell types constituting that organ. Two major cell subtypes, contractile cardial cells (CCs) and nephrocytic pericardial cells (PCs), comprise the Drosophila heart. Binding sites for Suppressor of Hairless [Su(H)], an integral transcription factor in the Notch signaling pathway, are enriched in the enhancers of PC-specific genes. Here we show three distinct mechanisms regulating the expression of two different PC-specific genes, Holes in muscle (Him), and Zn finger homeodomain 1 (zfh1). Him transcription is activated in PCs in a permissive manner by Notch signaling: in the absence of Notch signaling, Su(H) forms a repressor complex with co-repressors and binds to the Him enhancer, repressing its transcription; upon alleviation of this repression by Notch signaling, Him transcription is activated. In contrast, zfh1 is transcribed by a Notch-instructive mechanism in most PCs, where mere alleviation of repression by preventing the binding of Su(H)-co-repressor complex is not sufficient to activate transcription. Our results suggest that upon activation of Notch signaling, the Notch intracellular domain associates with Su(H) to form an activator complex that binds to the zfh1 enhancer, and that this activator complex is necessary for bringing about zfh1 transcription in these PCs. Finally, a third, Notch-independent mechanism activates zfh1 transcription in the remaining, even skipped-expressing, PCs. Collectively, our data show how the same feature, enrichment of Su(H) binding sites in PC-specific gene enhancers, is utilized by two very distinct mechanisms, one permissive, the other instructive, to contribute to the same overall goal: the specification and differentiation of a cardiac cell subtype by activation of the pericardial gene program. Furthermore, our results demonstrate that the zfh1 enhancer drives expression in two different domains using distinct Notch-instructive and Notch-independent mechanisms.
Collapse
Affiliation(s)
- Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - Andrew J. Kump
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - John M. Dalloul
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
- Terre Haute South Vigo High School, Terre Haute, Indiana, United States of America
- Stanford University, Stanford, California, United States of America
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
50
|
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae 2020; 12:66-85. [PMID: 33456979 PMCID: PMC7800605 DOI: 10.32607/actanaturae.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.
Collapse
Affiliation(s)
- D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|