1
|
Yaman Y, Bay V, Kişi YE. Discovery of host genetic factors through multi-locus GWAS against toxoplasmosis in sheep: addressing one health perspectives. BMC Vet Res 2025; 21:263. [PMID: 40221787 PMCID: PMC11992896 DOI: 10.1186/s12917-025-04719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Toxoplasma gondii stands as one of the most successful pathogens, capable of infecting nearly all warm-blooded species. It is estimated that up to 50% of human population might harbor Toxoplasmosis infections. One of the primary transmission routes is the consumption of tissue cysts from infected farm animals used for food production. Thus, controlling Toxoplasmosis in farm animals is of vital importance for human health and food safety. Selective breeding in farm animals, where available, could complement classical control measures like biosecurity measures, vaccination, and test-and-cull methods. This multidisciplinary approach will make the eradication of Toxoplasmosis more effective. For this purpose, we conducted four multi-locus genome-wide association (GWA) approaches to identify the polygenic factors underlying innate resistance to Toxoplasma gondii in naturally infected sheep. Our findings indicate that 16 single nucleotide polymorphisms (SNPs), exhibiting varying degrees of statistical power, play a significant role in host immunity against T. gondii infection. We propose the genes containing these SNPs or located within 100 ± Kb of them (PLSCR5, EPHA3, DGKB, IL12B, CGA, WDR64, TMEM158, CLMP, and SIAE) as potential candidate genes. This study represents the first exploration of host genetic factors against Toxoplasmosis in livestock, utilizing the ovine paradigm as its foundation.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Genetics, Faculty of Veterinary Medicine, Siirt University, Siirt, 56000, Turkey.
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir, 35100, Turkey
| | - Yiğit Emir Kişi
- Sheep Breeding and Research Institute, Bandırma/Balıkesir, 10200, Turkey
| |
Collapse
|
2
|
Cantrell R, Feldman HA, Rosenfeldt L, Ali A, Gourley B, Sprague C, Leino D, Crosby J, Revenko A, Monia B, Waggoner SN, Palumbo JS. Prothrombin prevents fatal T cell-dependent anemia during chronic virus infection of mice. JCI Insight 2025; 10:e181063. [PMID: 39820014 PMCID: PMC11949038 DOI: 10.1172/jci.insight.181063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
Thrombin promotes the proliferation and function of CD8+ T cells. To test if thrombin prevents exhaustion and sustains antiviral T cell activity during chronic viral infection, we depleted the thrombin-precursor prothrombin to 10% of normal levels in mice prior to infection with the clone 13 strain of lymphocytic choriomeningitis virus. Unexpectedly, prothrombin insufficiency resulted in 100% mortality after infection that was prevented by depletion of CD8+ T cells, suggesting that reduced availability of prothrombin enhances virus-induced immunopathology. Yet, the number, function, and apparent exhaustion of virus-specific T cells were measurably unaffected by prothrombin depletion. Histological analysis of the lung, heart, liver, kidney, spleen, intestine, and brain did not reveal any evidence of hemorrhage or increased tissue damage in mice with low levels of prothrombin that could explain mortality. Viral loads were also similar in infected mice regardless of prothrombin levels. Instead, infection of prothrombin-depleted mice resulted in a severe, T cell-dependent anemia associated with increased hemolysis. Thus, thrombin plays an unexpected protective role in preventing hemolytic anemia during virus infection, with potential implications for patients who are using direct thrombin inhibitors as an anticoagulant therapy.
Collapse
Affiliation(s)
- Rachel Cantrell
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - H. Alex Feldman
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leah Rosenfeldt
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ayad Ali
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Benjamin Gourley
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cassandra Sprague
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Daniel Leino
- Division of Pathology, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeff Crosby
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - Brett Monia
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Stephen N. Waggoner
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joseph S. Palumbo
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Tibbs TN, Donoghue LJ, Buzzelli AA, Misumi I, DeMonia M, Ferris MT, Kelada SN, Whitmire JK. Mice with FVB-derived sequence on chromosome 17 succumb to disseminated virus infection due to aberrant NK cell and T cell responses. iScience 2023; 26:108348. [PMID: 38026197 PMCID: PMC10665959 DOI: 10.1016/j.isci.2023.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Zoonotic arenavirus infections can result in viral hemorrhagic disease, characterized by platelet loss, petechia, and multi-organ injury. The mechanisms governing these outcomes are likely impacted by virus strain and infection dose, as well as an individual's genetic background and immune constitution. To better understand the processes leading to severe pathogenesis, we compared two strains of inbred mice, C57BL/6J (B6) and FVB/NJ (FVB), that have diametrically opposed outcomes during disseminated lymphocytic choriomeningitis virus (LCMV) infection. Infection caused minimal pathogenesis in B6 mice, whereas FVB mice developed acute hepatitis and perished due, in part, to aberrant NK cell and T cell responses. Susceptible mice showed an outgrowth of cytolytic CD4+ T cells and loss of Treg cells. B6 congenic mice with the FVB allele at a 25Mb locus on chromosome 17 recapitulated FVB pathogenesis upon infection. A locus containing a limited number of variants in immune-related genes greatly impacts survival during infection.
Collapse
Affiliation(s)
- Taylor N. Tibbs
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Lauren J. Donoghue
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ashlyn A. Buzzelli
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Maggie DeMonia
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Samir N.P. Kelada
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason K. Whitmire
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Zhu Z, Li X, Wang X, Zuo X, Ma Y, Gao X, Liang Z, Zhang Z, Song Z, Ding T, Ju C, Li P, Li K, Zhang J, Quan H, Wang Z, Hu X. Photobiomodulation augments the effects of mitochondrial transplantation in the treatment of spinal cord injury in rats by facilitating mitochondrial transfer to neurons via Connexin 36. Bioeng Transl Med 2023; 8:e10473. [PMID: 37206245 PMCID: PMC10189468 DOI: 10.1002/btm2.10473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial transplantation is a promising treatment for spinal cord injury (SCI), but it has the disadvantage of low efficiency of mitochondrial transfer to targeted cells. Here, we demonstrated that Photobiomodulation (PBM) could promote the transfer process, thus augmenting the therapeutic effect of mitochondrial transplantation. In vivo experiments, motor function recovery, tissue repair, and neuronal apoptosis were evaluated in different treatment groups. Under the premise of mitochondrial transplantation, the expression of Connex36 (Cx36), the trend of mitochondria transferred to neurons, and its downstream effects, such as ATP production and antioxidant capacity, were evaluated after PBM intervention. In in vitro experiments, dorsal root ganglia (DRG) were cotreated with PBM and 18β-GA (a Cx36 inhibitor). In vivo experiments showed that PBM combined with mitochondrial transplantation could increase ATP production and reduce oxidative stress and neuronal apoptosis levels, thereby promoting tissue repair and motor function recovery. In vitro experiments further verified that Cx36 mediated the transfer of mitochondria into neurons. PBM could facilitate this progress via Cx36 both in vivo and in vitro. The present study reports a potential method of using PBM to facilitate the transfer of mitochondria to neurons for the treatment of SCI.
Collapse
Affiliation(s)
- Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xue Gao
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| |
Collapse
|
5
|
Hao X, Li S, Chen L, Dong M, Wang J, Hu J, Gu M, Wang X, Hu S, Peng D, Liu X, Shang S. Establishing a Multicolor Flow Cytometry to Characterize Cellular Immune Response in Chickens Following H7N9 Avian Influenza Virus Infection. Viruses 2020; 12:v12121396. [PMID: 33291218 PMCID: PMC7762099 DOI: 10.3390/v12121396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Avian influenza virus (AIV) emerged and has continued to re-emerge, continuously posing great threats to animal and human health. The detection of hemagglutination inhibition (HI) or virus neutralization antibodies (NA) is essential for assessing immune protection against AIV. However, the HI/NA-independent immune protection is constantly observed in vaccines’ development against H7N9 subtype AIV and other subtypes in chickens and mammals, necessitating the analysis of the cellular immune response. Here, we established a multi-parameter flow cytometry to examine the innate and adaptive cellular immune responses in chickens after intranasal infection with low pathogenicity H7N9 AIV. This assay allowed us to comprehensively define chicken macrophages, dendritic cells, and their MHC-II expression, NK cells, γδ T cells, B cells, and distinct T cell subsets in steady state and during infection. We found that NK cells and KUL01+ cells significantly increased after H7N9 infection, especially in the lung, and the KUL01+ cells upregulated MHC-II and CD11c expression. Additionally, the percentages and numbers of γδ T cells and CD8 T cells significantly increased and exhibited an activated phenotype with significant upregulation of CD25 expression in the lung but not in the spleen and blood. Furthermore, B cells showed increased in the lung but decreased in the blood and spleen in terms of the percentages or/and numbers, suggesting these cells may be recruited from the periphery after H7N9 infection. Our study firstly disclosed that H7N9 infection induced local and systemic cellular immune responses in chickens, the natural host of AIV, and that the flow cytometric assay developed in this study is useful for analyzing the cellular immune responses to AIVs and other avian infectious diseases and defining the correlates of immune protection.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Lina Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Maoli Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiongjiong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| |
Collapse
|
6
|
Abstract
Integrated immunometabolic responses link dietary intake, energy utilization, and storage to immune regulation of tissue function and is therefore essential for the maintenance and restoration of homeostasis. Adipose-resident leukocytes have non-traditional immunological functions that regulate organismal metabolism by controlling insulin action, lipolysis, and mitochondrial respiration to control the usage of substrates for production of heat versus ATP. Energetically expensive vital functions such as immunological responses might have thus evolved to respond accordingly to dietary surplus and deficit of macronutrient intake. Here, we review the interaction of dietary intake of macronutrients and their metabolism with the immune system. We discuss immunometabolic checkpoints that promote healthspan and highlight how dietary fate and regulation of glucose, fat, and protein metabolism might affect immunity.
Collapse
Affiliation(s)
- Aileen H Lee
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Jung SR, Ashhurst TM, West PK, Viengkhou B, King NJC, Campbell IL, Hofer MJ. Contribution of STAT1 to innate and adaptive immunity during type I interferon-mediated lethal virus infection. PLoS Pathog 2020; 16:e1008525. [PMID: 32310998 PMCID: PMC7192509 DOI: 10.1371/journal.ppat.1008525] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/30/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Signal transducers and activators of transcription (STAT) 1 is critical for cellular responses to type I interferons (IFN-Is), with the capacity to determine the outcome of viral infection. We previously showed that while wildtype (WT) mice develop mild disease and survive infection with lymphocytic choriomeningitis virus (LCMV), LCMV infection of STAT1-deficient mice results in a lethal wasting disease that is dependent on IFN-I and CD4+ cells. IFN-Is are considered to act as a bridge between innate and adaptive immunity. Here, we determined the relative contribution of STAT1 on innate and adaptive immunity during LCMV infection. We show that STAT1 deficiency results in a biphasic disease following LCMV infection. The initial, innate immunity-driven phase of disease was characterized by rapid weight loss, thrombocytopenia, systemic cytokine and chemokine responses and leukocyte infiltration of infected organs. In the absence of an adaptive immune response, this first phase of disease largely resolved resulting in survival of the infected host. However, in the presence of adaptive immunity, the disease progressed into a second phase with continued cytokine and chemokine production, persistent leukocyte extravasation into infected tissues and ultimately, host death. Overall, our findings demonstrate the key contribution of STAT1 in modulating innate and adaptive immunity during type I interferon-mediated lethal virus infection. The mammalian immune system is divided into innate and adaptive immunity. In response to harmful agents, innate immunity acts first, followed by late-acting, specialized, adaptive immunity. Type I interferons (IFN-Is) are important means of communication between innate and adaptive immunity. IFN-Is mediate their effects via a number of signaling molecules, principally including signal transducers and activators of transcription 1 (STAT1). The importance of STAT1 to the immune response is evident from our previous finding that mice deficient in STAT1 develop a lethal, host immunity-mediated disease following infection with the otherwise harmless lymphocytic choriomeningitis virus (LCMV). In the present study, we characterized the role of STAT1 in protecting against harmful host immune responses against LCMV. We report that STAT1 plays a significant role in lessening both the early, inflammatory responses of innate immunity and the sustained, destructive actions of adaptive immunity. These findings exemplify the extent of STAT1’s role as a key immune response modulating factor.
Collapse
Affiliation(s)
- So Ri Jung
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Thomas M. Ashhurst
- Sydney Cytometry Core Facility, The University of Sydney and Centenary Institute, Sydney, Australia
- Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Phillip K. West
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Nicholas J. C. King
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
- Sydney Cytometry Core Facility, The University of Sydney and Centenary Institute, Sydney, Australia
- Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Iain L. Campbell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|