1
|
Kruglikov IL, Scherer PE. Regulation of the terminal complement cascade in adipose tissue for control of its volume, cellularity, and fibrosis. Obesity (Silver Spring) 2025; 33:839-850. [PMID: 40134146 PMCID: PMC12015659 DOI: 10.1002/oby.24270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 01/26/2025] [Indexed: 03/27/2025]
Abstract
White adipose tissue (WAT) is a reservoir for various pathogens and their products, such as lipopolysaccharides. Therefore, it must be equipped with a defense mechanism connected with the activation of innate immunity. This explains the phenomenon that adipocytes express components of the classical and alternative complement pathways, which can be activated even in the absence of opportunistic pathogens. Terminal stages of the complement pathway are related to the production of membrane attack complexes and, thus, can cause lysis of pathogens, as well as autolysis of host adipocytes, contributing to the regulation of the cellularity in WAT. Complement-induced autolysis of adipocytes is counteracted by a number of cellular defense mechanisms. This versatility of activation and suppression processes enables a broad range of adaptability to physiological contexts, ranging from the development of hypertrophic WAT to lipodystrophy. Pathogen-induced activation of the complement pathway in WAT also induces a profibrotic phenotype. These processes may also be involved in the regulation of insulin resistance in adipocytes. This explains the dual immune/metabolic role of the complement pathway in WAT: the pathway is an integral part of the immune response but also potently involved in the control of volume and cellularity of WAT under both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
2
|
Luo F, Chen T, Chen S, Bai D, Li X. Regulation of osteoclast-mediated bone resorption by lipids. Bone 2025; 193:117423. [PMID: 39933643 DOI: 10.1016/j.bone.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Hyperactivation of osteoclasts has been identified as a significant etiological factor in several bone resorption-related disorders, including osteoporosis, periodontitis, arthritis, and bone metastasis of tumors. It has been demonstrated that the severity of these diseases is influenced by lipids that regulate osteoclast differentiation and activity through specific signaling pathways and cytokine levels. The regulatory mechanisms of different types of lipids on osteoclastogenesis vary across diverse disease contexts in bone resorption regulated by osteoclasts. This review presents an overview of the mechanisms underlying osteoclast formation and summarizes the pathways through which various lipids regulate osteoclastogenesis in different pathological contexts. We also discuss effective therapeutic strategies for osteolytic diseases based on modulation of lipid metabolism.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Faust HJ, Cheng TY, Korsunsky I, Watts GFM, Gal-Oz ST, Trim WV, Kongthong S, Jonsson AH, Simmons DP, Zhang F, Padera R, Chubinskaya S, Wei K, Raychaudhuri S, Lynch L, Moody DB, Brenner MB. Adipocyte associated glucocorticoid signaling regulates normal fibroblast function which is lost in inflammatory arthritis. Nat Commun 2024; 15:9859. [PMID: 39543086 PMCID: PMC11564742 DOI: 10.1038/s41467-024-52586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024] Open
Abstract
Fibroblasts play critical roles in tissue homeostasis, but in pathologic states they can drive fibrosis, inflammation, and tissue destruction. Little is known about what regulates the homeostatic functions of fibroblasts. Here, we perform RNA sequencing and identify a gene expression program in healthy synovial fibroblasts characterized by enhanced fatty acid metabolism and lipid transport. We identify cortisol as the key driver of the healthy fibroblast phenotype and that depletion of adipocytes, which express high levels of Hsd11b1, results in loss of the healthy fibroblast phenotype in mouse synovium. Additionally, fibroblast-specific glucocorticoid receptor Nr3c1 deletion in vivo leads to worsened arthritis. Cortisol signaling in fibroblasts mitigates matrix remodeling induced by TNF and TGF-β1 in vitro, while stimulation with these cytokines represses cortisol signaling and adipogenesis. Together, these findings demonstrate the importance of adipocytes and cortisol signaling in driving the healthy synovial fibroblast state that is lost in disease.
Collapse
Affiliation(s)
- Heather J Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilya Korsunsky
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shani T Gal-Oz
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - William V Trim
- Department of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suppawat Kongthong
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daimon P Simmons
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Kulkarni DH, Starick M, Aponte Alburquerque R, Kulkarni HS. Local complement activation and modulation in mucosal immunity. Mucosal Immunol 2024; 17:739-751. [PMID: 38838816 PMCID: PMC11929374 DOI: 10.1016/j.mucimm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Aponte Alburquerque
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Braga GDC, Simões JLB, Teixeira Dos Santos YJ, Filho JCM, Bagatini MD. The impacts of obesity in rheumatoid arthritis and insights into therapeutic purinergic modulation. Int Immunopharmacol 2024; 136:112357. [PMID: 38810303 DOI: 10.1016/j.intimp.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune condition responsible for the impairment of synovia and joints, endangering the functionality of individuals and contributing to mortality. Currently, obesity is increasing worldwide, and recent studies have suggested an association between such condition and RA. In this sense, obese individuals present a lower capacity for achieving remission and present more intense symptoms of the disease, demonstrating a link between both disorders. Different studies aim to understand the possible connection between the conditions; however, few is known in this sense. Therefore, knowing that obesity can alter the activity of multiple body systems, this work's objective is to evaluate the main modifications caused by obesity, which can be linked to the pathophysiology of RA, highlighting as relevant topics obesity's negative impact triggering systemic inflammation, intestinal dysbiosis, endocrine disbalances. Furthermore, the relationship between oxidative stress and obesity also deserves to be highlighted, considering the influence of reactive oxygen species (ROS) accumulation in RA exacerbation. Additionally, many of those characteristics influenced by obesity, along with the classic peculiarities of RA pathophysiology, can also be associated with purinergic signaling. Hence, this work suggests possible connections between the purinergic system and RA, proposing potential therapeutic targets against RA to be studied.
Collapse
|
6
|
Perdiguero P, Jiménez-Barrios P, Morel E, Abós B, Tafalla C. Single-cell atlas of rainbow trout peripheral blood leukocytes and profiling of their early response to infectious pancreatic necrosis virus. Front Immunol 2024; 15:1404209. [PMID: 39035000 PMCID: PMC11258392 DOI: 10.3389/fimmu.2024.1404209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
The recent development of single cell sequencing technologies has revolutionized the state-of-art of cell biology, allowing the simultaneous measurement of thousands of genes in single cells. This technology has been applied to study the transcriptome of single cells in homeostasis and also in response to pathogenic exposure, greatly increasing our knowledge of the immune response to infectious agents. Yet the number of these studies performed in aquacultured fish species is still very limited. Thus, in the current study, we have used the 10x Genomics single cell RNA sequencing technology to study the response of rainbow trout (Oncorhynchus mykiss) peripheral blood leukocytes (PBLs) to infectious pancreatic necrosis virus (IPNV), an important trout pathogen. The study allowed us to obtain a transcriptomic profile of 12 transcriptionally distinct leukocyte cell subpopulations that included four different subsets of B cells, T cells, monocytes, two populations of dendritic-like cells (DCs), hematopoietic progenitor cells, non-specific cytotoxic cells (NCC), neutrophils and thrombocytes. The transcriptional pattern of these leukocyte subpopulations was compared in PBL cultures that had been exposed in vitro to IPNV for 24 h and mock-infected cultures. Our results revealed that monocytes and neutrophils showed the highest number of upregulated protein-coding genes in response to IPNV. Interestingly, IgM+IgD+ and IgT+ B cells also upregulated an important number of genes to the virus, but a much fainter response was observed in ccl4 + or plasma-like cells (irf4 + cells). A substantial number of protein-coding genes and genes coding for ribosomal proteins were also transcriptionally upregulated in response to IPNV in T cells and thrombocytes. Interestingly, although genes coding for ribosomal proteins were regulated in all affected PBL subpopulations, the number of such genes transcriptionally regulated was higher in IgM+IgD+ and IgT+ B cells. A further analysis dissected which of the regulated genes were common and which were specific to the different cell clusters, identifying eight genes that were transcriptionally upregulated in all the affected groups. The data provided constitutes a comprehensive transcriptional perspective of how the different leukocyte populations present in blood respond to an early viral encounter in fish.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Pablo Jiménez-Barrios
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Beatriz Abós
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
7
|
Dare A, Chen SY. Adipsin in the pathogenesis of cardiovascular diseases. Vascul Pharmacol 2024; 154:107270. [PMID: 38114042 PMCID: PMC10939892 DOI: 10.1016/j.vph.2023.107270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Adipsin is an adipokine predominantly synthesized in adipose tissues and released into circulation. It is also known as complement factor-D (CFD), acting as the rate-limiting factor in the alternative complement pathway and exerting essential functions on the activation of complement system. The deficiency of CFD in humans is a very rare condition. However, complement overactivation has been implicated in the etiology of numerous disorders, including cardiovascular disease (CVD). Increased circulating level of adipsin has been reported to promote vascular derangements, systemic inflammation, and endothelial dysfunction. Prospective and case-control studies showed that this adipokine is directly associated with all-cause death and rehospitalization in patients with coronary artery disease. Adipsin has also been implicated in pulmonary arterial hypertension, abdominal aortic aneurysm, pre-eclampsia, and type-2 diabetes which is a major risk factor for CVD. Importantly, serum adipsin has been recognized as a unique prognostic marker for assessing cardiovascular diseases. At present, there is paucity of experimental evidence about the precise role of adipsin in the etiology of CVD. However, this mini review provides some insight on the contribution of adipsin in the pathogenesis of CVD and highlights its role on endothelial, smooth muscle and immune cells that mediate cardiovascular functions.
Collapse
Affiliation(s)
- Ayobami Dare
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
8
|
Zhang X, Gao L, Meng H, Zhang A, Liang Y, Lu J. Obesity alters immunopathology in cancers and inflammatory diseases. Obes Rev 2023; 24:e13638. [PMID: 37724622 DOI: 10.1111/obr.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Obesity is characterized by chronic low-grade inflammation and is strongly associated with multiple immunological diseases, including cancer and inflammatory diseases. Recent animal studies revealed that obesity-induced immunological changes worsen immune-driven diseases and cause resistance to immunotherapy. Here, we discuss the role of obesity in the immunopathology and treatment responses of cancers, respiratory and allergic diseases, and IL-17-mediated inflammatory diseases. We summarize the unique features of the inflammatory state of these diseases, which are orchestrated by obesity. In particular, obesity alters the immune landscape in cancers with a reprogrammed metabolic profile of tumor-infiltrating immune cells. Obesity exacerbates airway inflammation by dysregulating multiple immune-cell subsets. Obesity also dysregulates Th17, IL-17-producing mucosal-associated invariant T (MAIT), and γδ T cells, which contribute to IL-17-mediated inflammatory response in multiple sclerosis, inflammatory bowel disease, psoriasis, atopic dermatitis, and rheumatoid arthritis. By identifying the effects of obesity on immunological diseases, new strategies could be devised to target immune dysregulation caused by obesity.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Gao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
10
|
Niemczyk A, Waśkiel-Burnat A, Zaremba M, Czuwara J, Rudnicka L. The profile of adipokines associated with fibrosis and impaired microcirculation in systemic sclerosis. Adv Med Sci 2023; 68:298-305. [PMID: 37696138 DOI: 10.1016/j.advms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Adipokines belong to a group of molecules mostly produced by adipose tissue. Abnormalities in the secretion of several adipokines have already implicated to play a pathogenic role in systemic sclerosis (SSc). However, the possible role of numerous molecules still needs to be clarified. The aim of the study was to determine whether the altered level of selected circulating adipokines might correlate with the intensity of fibrosis and vasculopathy in the course of SSc. MATERIALS AND METHODS Serum concentrations of chemerin, adipsin, retinol-binding protein 4, apelin, visfatin, omentin-1, and vaspin were determined with ELISA in the sera of patients with SSc (n = 55) and healthy controls (n = 25). RESULTS The serum concentration of adipsin (p = 0.03) and visfatin (p = 0.04) was significantly increased and the level of retinol-binding protein 4 (p = 0.03) was decreased in diffuse compared to limited cutaneous SSc. Moreover, serum adipsin level correlated positively with the intensity of skin fibrosis measured with the modified Rodnan skin score (r = 0.31, p = 0.02) and was significantly higher in patients with pulmonary arterial hypertension than in those without the condition (p = 0.03). The concentrations of adipsin (p = 0.01) and visfatin (p = 0.04) were significantly increased and the level of apelin (p = 0.02) was decreased in patients with active digital ulcerations compared to individuals without this complication. CONCLUSION Adipsin may be considered a pivotal protein in the development of both fibrosis and impaired microcirculation. Its abnormal concentration reflects the intensity of skin thickening and the presence of pulmonary arterial hypertension. Adipsin, visfatin, and apelin are adipose tissue-derived molecules associated with digital vasculopathy.
Collapse
Affiliation(s)
- Anna Niemczyk
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
| | | | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Byeon HJ, Chae MK, Ko J, Lee EJ, Kikkawa DO, Jang SY, Yoon JS. The Role of Adipsin, Complement Factor D, in the Pathogenesis of Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37555734 PMCID: PMC10424154 DOI: 10.1167/iovs.64.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Purpose Graves' orbitopathy (GO) is an orbital manifestation of autoimmune Graves' disease, and orbital fibroblast is considered a target cell, producing pro-inflammatory cytokines and/or differentiating into adipocytes. Adipose tissue has been focused on as an endocrine and inflammatory organ secreting adipokines. We investigated the pathogenic role of a specific adipokine, adipsin, known as complement factor D in Graves' orbital fibroblasts. Methods The messenger RNA (mRNA) expression of multiple adipokines was investigated in adipose tissues harvested from GO and healthy subjects. Adipsin protein production was analyzed in primary cultured orbital fibroblasts under insulin growth factor (IGF)-1, CD40 ligand (CD40L) stimulation, and adipogenesis. The effect of blocking adipsin with small interfering RNA (siRNA) on pro-inflammatory cytokine production and adipogenesis was evaluated using quantitative real-time PCR, Western blot, and ELISA. Adipogenic differentiation was identified using Oil Red O staining. Results Adipsin gene expression was significantly elevated in GO tissue and increased after the stimulation of IGF-1 and CD40L, as well as adipocyte differentiation in GO cells. Silencing of adipsin suppressed IGF-1-induced IL-6, IL-8, COX2, ICAM-1, CCL2 gene expression, and IL-6 protein secretion. Adipsin suppression also attenuated adipocyte differentiation. Exogenous treatment of recombinant adipsin resulted in the activation of the Akt, ERK, p-38, and JNK signaling pathways. Conclusions Adipsin, secreted by orbital fibroblasts, may play a distinct role in the pathogenesis of GO. Inhibition of adipsin ameliorated the production of pro-inflammatory cytokines and adipogenesis in orbital fibroblasts. Our study provides an in vitro basis suggesting adipsin as a potential therapeutic target for GO treatment.
Collapse
Affiliation(s)
- Hyeong Ju Byeon
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
High Levels of Leptin and Adipsin Are Associated with Clinical Activity in Early Rheumatoid Arthritis Patients with Overweight and Periodontal Infection. Diagnostics (Basel) 2023; 13:diagnostics13061126. [PMID: 36980434 PMCID: PMC10047025 DOI: 10.3390/diagnostics13061126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 03/18/2023] Open
Abstract
Adipokines are associated with the pathogenesis of rheumatoid arthritis (RA) and are potential biomarkers of disease activity, periodontitis, and obesity. The aim of this was to establish the association between adipokine profile, RA disease activity, body mass index, and periodontal infection. This study evaluated 51 patients with early-RA and 51 controls including serum rheumatological markers, adipokine levels, detection of Porphyromonas gingivalis and serum anti-Porphyromonas gingivalis antibodies, clinical and periodontal measurements. Statistical analyses were run with SPSS® V26, with a logistic regression model to confirm associations. The results show high levels of leptin were more frequent in patients (p = 0.001) who simultaneously showed a higher frequency of Porphyromonas gingivalis (p = 0.004). Patients with concomitant presence of Porphyromonas gingivalis, high clinical activity score, and overweight were correlated with high levels of leptin (OR, 7.20; 95% CI, 2.68–19.33; p = 0.0001) and adipsin (OR, 2.69; 95% CI, 1.00–7.28; p = 0.005). The conclusion is that high levels of leptin and adipsin are associated with greater clinical activity in early-RA patients with overweight and periodontal infection, whereby overweight and Porphyromonas gingivalis may enhance RA activity. This may represent a pathological mechanism between these conditions, where adipokines seem to have a key role.
Collapse
|
13
|
Lee SG, Chae J, Woo SM, Seo SU, Kim HJ, Kim SY, Schlaepfer DD, Kim IS, Park HS, Kwon TK, Nam JO. TGFBI remodels adipose metabolism by regulating the Notch-1 signaling pathway. Exp Mol Med 2023; 55:520-531. [PMID: 36854775 PMCID: PMC10073093 DOI: 10.1038/s12276-023-00947-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/17/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Extracellular matrix proteins are associated with metabolically healthy adipose tissue and regulate inflammation, fibrosis, angiogenesis, and subsequent metabolic deterioration. In this study, we demonstrated that transforming growth factor-beta (TGFBI), an extracellular matrix (ECM) component, plays an important role in adipose metabolism and browning during high-fat diet-induced obesity. TGFBI KO mice were resistant to adipose tissue hypertrophy, liver steatosis, and insulin resistance. Furthermore, adipose tissue from TGFBI KO mice contained a large population of CD11b+ and CD206+ M2 macrophages, which possibly control adipokine secretion through paracrine mechanisms. Mechanistically, we showed that inhibiting TGFBI-stimulated release of adipsin by Notch-1-dependent signaling resulted in adipocyte browning. TGFBI was physiologically bound to Notch-1 and stimulated its activation in adipocytes. Our findings revealed a novel protective effect of TGFBI deficiency in obesity that is realized via the activation of the Notch-1 signaling pathway.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jongbeom Chae
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - David D Schlaepfer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
14
|
Wu X, You C. The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics. PeerJ 2023; 11:e14554. [PMID: 36632144 PMCID: PMC9828291 DOI: 10.7717/peerj.14554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Hyperuricemia and gout are a group of disorders of purine metabolism. In recent years, the incidence of hyperuricemia and gout has been increasing, which is a severe threat to people's health. Several studies on hyperuricemia and gout in proteomics and metabolomics have been conducted recently. Some literature has identified biomarkers that distinguish asymptomatic hyperuricemia from acute gout or remission of gout. We summarize the physiological processes in which these biomarkers may be involved and their role in disease progression. Methodology We used professional databases including PubMed, Web of Science to conduct the literature review. This review addresses the current landscape of hyperuricemia and gout biomarkers with a focus on proteomics and metabolomics. Results Proteomic methods are used to identify differentially expressed proteins to find specific biomarkers. These findings may be suggestive for the diagnosis and treatment of hyperuricemia and gout to explore the disease pathogenesis. The identified biomarkers may be mediators of the link between hyperuricemia, gout and kidney disease, metabolic syndrome, diabetes and hypertriglyceridemia. Metabolomics reveals the main influential pathways through small molecule metabolites, such as amino acid metabolism, lipid metabolism, or other characteristic metabolic pathways. These studies have contributed to the discovery of Chinese medicine. Some traditional Chinese medicine compounds can improve the metabolic disorders of the disease. Conclusions We suggest some possible relationships of potential biomarkers with inflammatory episodes, complement activation, and metabolic pathways. These biomarkers are able to distinguish between different stages of disease development. However, there are relatively few proteomic as well as metabolomic studies on hyperuricemia and gout, and some experiments are only primary screening tests, which need further in-depth study.
Collapse
Affiliation(s)
- Xinghong Wu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Ella K, Sűdy ÁR, Búr Z, Koós B, Kisiczki ÁS, Mócsai A, Káldi K. Time restricted feeding modifies leukocyte responsiveness and improves inflammation outcome. Front Immunol 2022; 13:924541. [PMID: 36405720 PMCID: PMC9666763 DOI: 10.3389/fimmu.2022.924541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Time restricted eating, the dietary approach limiting food intake to a maximal 10-hour period of daytime is considered beneficial in metabolic dysfunctions, such as obesity and diabetes. Rhythm of food intake and parallel changes in serum nutrient levels are also important entrainment signals for the circadian clock, particularly in tissues involved in metabolic regulation. As both the metabolic state and the circadian clock have large impact on immune functions, we investigated in mice whether time restricted feeding (TRF) affects systemic inflammatory potential. TRF slackened the symptoms in K/BxN serum-transfer arthritis, an experimental model of human autoimmune joint inflammation. Compared to ad libitum conditions TRF reduced the expression of inflammatory mediators in visceral adipose tissue, an integrator and coordinator of metabolic and inflammatory processes. Furthermore, TRF strengthened the oscillation of peripheral leukocyte counts and alongside decreased the pool of both marginated and tissue leukocytes. Our data suggest that the altered leukocyte distribution in TRF mice is related to the attenuated expression of adhesion molecules on the surface of neutrophils and monocytes. We propose that TRF modifies both rhythm and inflammatory potential of leukocytes which contribute to the milder reactivity of the immune system and therefore time-restricted eating could serve as an effective complementary tool in the therapy of autoinflammatory processes.
Collapse
|
16
|
Salukhov VV, Lopatin YR, Minakov AA. Adipsin – summing up large-scale results: A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adipsin is one of the first discovered adipokines hormones produced by adipose tissue. Adipsin performs the function of a regulator of carbohydrate and lipid metabolism and participates in the adaptation of metabolism to the real needs of the body, being a powerful stimulant of anabolic processes. A characteristic feature of adipsin is that it is also a complement factor D, which is necessary for the normal functioning of an alternative pathway of activation of the complement system. Due to this, adipsin is represented in the body as a link between the energy block of the endocrine system and the humoral block of the immune system. Adipsin is known as a regulator of the function of pancreatic beta cells, a stimulator of lipogenesis, a modulator of inflammation processes. Recently, there have been works indicating the effect of adipsin on the microbiota, as well as its role in non-alcoholic fatty liver disease. To date, there are a large number of publications describing the biochemical structure, functions of adipsin, mechanisms of regulation of its synthesis, as well as changes in the level of adipsin in various pathological conditions. Attempts are also described to pharmacologically influence adipsin in order to modulate its functions or use it as a biomarker for the diagnosis of diseases. However, there is currently no structured review that summarizes and systematizes all available information about this adipokine. This is exactly the task we set ourselves in this study. The paper contains the results of all available studies on adipsin. In some cases, they are contradictory in nature, which indicates the need for further research in detecting connections between the body's systems.
Collapse
|
17
|
Kononoff A, Vuolteenaho K, Hämäläinen M, Kautiainen H, Elfving P, Savolainen E, Arstila L, Niinisalo H, Rutanen J, Marjoniemi O, Moilanen E, Kaipiainen-Seppänen O. Metabolic Syndrome, Disease Activity, and Adipokines in Patients With Newly Diagnosed Inflammatory Joint Diseases. J Clin Rheumatol 2021; 27:e349-e356. [PMID: 32453216 DOI: 10.1097/rhu.0000000000001412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate metabolic syndrome (MetS), disease activity, and adipokine levels among patients with rheumatoid arthritis (RA), spondyloarthritis (SpA), and undifferentiated arthritis (UA) at the time of diagnosis and after 1 year of follow-up. METHODS Patients with inflammatory joint diseases participating in the Northern Savo 2010 population-based longitudinal epidemiological study were evaluated for components of MetS (by National Cholesterol Education Program's Adult Treatment Panel III) and clinical parameters of disease activity. The adipokines adiponectin, adipsin, resistin, and leptin were measured at baseline and after 1 year of treatment with disease-modifying antirheumatic drugs. RESULTS Among 176 patients, MetS was detected in 42% of RA, 36% of SpA, and 51% of UA patients. Metabolic syndrome was associated with higher disease activity as measured by patient global assessment in RA and UA patients and increased pain in RA patients. Leptin levels were increased in patients with MetS, showing a linearly increasing trend with the number of components of MetS in SpA and UA, but not in RA. In RA patients, decrease in disease activity correlated with decrease in leptin levels. Resistin did not associate with MetS, but a decrease in resistin correlated with decrease in disease activity in RA and UA. In SpA, increased adiponectin level correlated with relief in disease activity, but not with MetS. CONCLUSIONS Metabolic syndrome was common in patients with newly diagnosed arthritides and associated with higher disease activity and increased leptin levels. Resistin responded to treatment of arthritis in RA and UA, leptin in RA, and adiponectin in SpA.
Collapse
Affiliation(s)
- Aulikki Kononoff
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere
| | | | - Pia Elfving
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Elina Savolainen
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | | | | | - Jarno Rutanen
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Olga Marjoniemi
- From the Department of Medicine, Kuopio University Hospital, Kuopio
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere
| | | |
Collapse
|
18
|
Barratt J, Weitz I. Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway. Front Immunol 2021; 12:712572. [PMID: 34566967 PMCID: PMC8458797 DOI: 10.3389/fimmu.2021.712572] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Ilene Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
19
|
Mizuno M, Khaledian B, Maeda M, Hayashi T, Mizuno S, Munetsuna E, Watanabe T, Kono S, Okada S, Suzuki M, Takao S, Minami H, Asai N, Sugiyama F, Takahashi S, Shimono Y. Adipsin-Dependent Secretion of Hepatocyte Growth Factor Regulates the Adipocyte-Cancer Stem Cell Interaction. Cancers (Basel) 2021; 13:4238. [PMID: 34439392 PMCID: PMC8393397 DOI: 10.3390/cancers13164238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
Adipose tissue is a component of the tumor microenvironment and is involved in tumor progression. We have previously shown that adipokine adipsin (CFD) functions as an enhancer of tumor proliferation and cancer stem cell (CSC) properties in breast cancers. We established the Cfd-knockout (KO) mice and the mammary adipose tissue-derived stem cells (mADSCs) from them. Cfd-KO in mADSCs significantly reduced their ability to enhance tumorsphere formation of breast cancer patient-derived xenograft (PDX) cells, which was restored by the addition of Cfd in the culture medium. Hepatocyte growth factor (HGF) was expressed and secreted from mADSCs in a Cfd-dependent manner. HGF rescued the reduced ability of Cfd-KO mADSCs to promote tumorsphere formation in vitro and tumor formation in vivo by breast cancer PDX cells. These results suggest that HGF is a downstream effector of Cfd in mADSCs that enhances the CSC properties in breast cancers.
Collapse
Affiliation(s)
- Masahiro Mizuno
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Behnoush Khaledian
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Masao Maeda
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
- Department of Pathology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Takashi Watanabe
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Seishi Kono
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (S.K.); (S.T.)
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan;
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Shintaro Takao
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (S.K.); (S.T.)
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 6500017, Japan;
| | - Naoya Asai
- Department of Pathology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| |
Collapse
|
20
|
Trim WV, Walhin JP, Koumanov F, Bouloumié A, Lindsay MA, Chen YC, Travers RL, Turner JE, Thompson D. Divergent immunometabolic changes in adipose tissue and skeletal muscle with ageing in healthy humans. J Physiol 2021; 600:921-947. [PMID: 33895996 DOI: 10.1113/jp280977] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ageing is associated with increased systemic inflammation and metabolic dysfunction that contributes to the development of age-associated diseases. The role of adipose tissue in immunometabolic alterations that take place with ageing is unknown in humans. We show, in healthy, active and lean older adults, that adipose tissue, but not skeletal muscle, displays considerable pro-inflammatory transcriptomic, cellular and secretory changes, as well as a reduction in insulin signalling proteins compared to younger adults. These findings indicate that adipose tissue undergoes substantial immunometabolic alterations with ageing, and that these changes are tissue-specific and more profound than those observed in skeletal muscle or in the circulation. These results identify adipose tissue as an important tissue in the biological ageing process in humans, which may exhibit signs of immunometabolic dysfunction prior to systemic manifestation. ABSTRACT Ageing and obesity are both characterized by inflammation and a deterioration in metabolic health. It is now clear that adipose tissue plays a major role in inflammation and metabolic control in obesity, although little is known about the role of adipose tissue in human ageing. To understand how ageing impacts adipose tissue, we characterized subcutaneous adipose tissue and skeletal muscle samples from twelve younger (27 ± 4 years [Young]) and twelve older (66 ± 5 years [Old]) active/non-obese males. We performed a wide-range of whole-body and tissue measures, including RNA-sequencing and multicolour flow cytometry. We also measured a range of inflammatory and metabolic proteins in the circulation and their release by adipose tissue, ex vivo. Both adipose tissue and muscle had ∼2-fold more immune cells per gram of tissue with ageing. In adipose tissue, this immune cell infiltration was driven by increased memory/effector T-cells, whereas, in muscle, the accumulation was driven by memory/effector T-cells and macrophages. Transcriptomic analysis revealed that, with ageing, adipose tissue, but not muscle, was enriched for inflammatory transcripts/pathways related to acquired and innate immunity. Ageing also increased the adipose tissue pro-inflammatory secretory profile. Insulin signalling protein content was reduced in adipose tissue, but not muscle. Our findings indicate that adipose tissue undergoes substantial immunometabolic changes with ageing in humans, and that these changes are tissue-specific and more profound than those observed in the circulation and skeletal muscle.
Collapse
Affiliation(s)
- William V Trim
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Jean-Philippe Walhin
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Françoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Anne Bouloumié
- INSERM UMR1048, Université Paul Sabatier, I2MC, Toulouse, France
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, Somerset, UK
| | - Yung-Chih Chen
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Rebecca L Travers
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - James E Turner
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| | - Dylan Thompson
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset, UK
| |
Collapse
|
21
|
Sun R, Qiao Y, Yan G, Wang D, Zuo W, Ji Z, Zhang X, Yao Y, Ma G, Tang C. Association between serum adipsin and plaque vulnerability determined by optical coherence tomography in patients with coronary artery disease. J Thorac Dis 2021; 13:2414-2425. [PMID: 34012589 PMCID: PMC8107545 DOI: 10.21037/jtd-21-259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Early identification of vulnerable plaques is important for patients with coronary artery disease (CAD) to reduce acute coronary events and improve their prognosis. We sought to examine the relationship between adipsin, an adipokine secreted from adipocytes, and plaque vulnerability in CAD patients. Methods A total of 103 plaques from 99 consecutive patients who underwent coronary angiography were assessed by optical coherence tomography. The serum level of adipsin was measured using enzyme-linked immunosorbent assay (ELISA). The accuracy of adipsin for detecting thin-cap fibroatheroma (TCFA) was determined by the area under the receiver operating characteristic curve (AUC). Results Of the 99 patients, 49 were classified into the low adipsin group and 50 into the high adipsin group according to the median level of serum adipsin (2.43 µg/mL). The plaques from the high adipsin group exhibited a greater lipid index (2,700.0 vs. 1,975.9° × mm, P=0.015) and an increased proportion of TCFAs (41.2% vs. 21.2%, P=0.028) compared with the low adipsin group. Serum adipsin was found to be negatively correlated with fibrous cap thickness (ρ=−0.322, P=0.002), while it was positively correlated with average lipid arc (ρ=0.253, P=0.015), maximum lipid arc (ρ=0.211, P=0.044), lipid core length (ρ=0.241, P=0.021), lipid index (ρ=0.335, P=0.001), and vulnerability score (ρ=0.254, P=0.014). Furthermore, adipsin had a significant association with TCFAs (OR: 1.290, 95% CI: 1.048–1.589, P=0.016) in the multivariate analysis, while having a moderate diagnostic accuracy for TCFAs (AUC: 0.710, 95% CI: 0.602–0.817, P<0.001). Conclusions Our findings suggest that serum adipsin is significantly and positively correlated with the incidence of TCFAs. The application of adipsin as a biomarker may offer improvement in the diagnosis of vulnerable plaques and clinical benefits for CAD patients.
Collapse
Affiliation(s)
- Renhua Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Department of Cardiology, Yancheng No.1 People's Hospital, Yancheng, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
22
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
23
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
24
|
Collins KH, Lenz KL, Pollitt EN, Ferguson D, Hutson I, Springer LE, Oestreich AK, Tang R, Choi YR, Meyer GA, Teitelbaum SL, Pham CTN, Harris CA, Guilak F. Adipose tissue is a critical regulator of osteoarthritis. Proc Natl Acad Sci U S A 2021; 118:e2021096118. [PMID: 33443201 PMCID: PMC7817130 DOI: 10.1073/pnas.2021096118] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Eleanor N Pollitt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Daniel Ferguson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Irina Hutson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Luke E Springer
- Division of Rheumatology, Washington University, St. Louis, MO 63110
| | - Arin K Oestreich
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Yun-Rak Choi
- Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Gretchen A Meyer
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Program in Physical Therapy, Washington University, St. Louis, MO 63110
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110
| | | | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| |
Collapse
|
25
|
Zou W, Rohatgi N, Brestoff JR, Li Y, Barve RA, Tycksen E, Kim Y, Silva MJ, Teitelbaum SL. Ablation of Fat Cells in Adult Mice Induces Massive Bone Gain. Cell Metab 2020; 32:801-813.e6. [PMID: 33027637 PMCID: PMC7642038 DOI: 10.1016/j.cmet.2020.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Adipocytes control bone mass, but the mechanism is unclear. To explore the effect of postnatal adipocyte elimination on bone cells, we mated mice expressing an inducible primate diphtheria toxin receptor (DTR) to those bearing adiponectin (ADQ)-Cre. DTR activation eliminates peripheral and marrow adipocytes in these DTRADQ mice. Within 4 days of DTR activation, the systemic bone mass of DTRADQ mice began to increase due to stimulated osteogenesis, with a 1,000% expansion by 10-14 days post-DTR treatment. This adipocyte ablation-mediated enhancement of skeletal mass reflected bone morphogenetic protein (BMP) receptor activation following the elimination of its inhibitors, associated with simultaneous epidermal growth factor (EGF) receptor signaling. DTRADQ-induced osteosclerosis is not due to ablation of peripheral adipocytes but likely reflects the elimination of marrow ADQ-expressing cells. Thus, anabolic drugs targeting BMP receptor inhibitors with short-term EGF receptor activation may be a means of profoundly increasing skeletal mass to prevent or reverse pathological bone loss.
Collapse
Affiliation(s)
- Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yung Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Silva
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Yang L, Qiu Y, Ling W, Liu Z, Yang L, Wang C, Peng X, Wang L, Chen J. Anthocyanins regulate serum adipsin and visfatin in patients with prediabetes or newly diagnosed diabetes: a randomized controlled trial. Eur J Nutr 2020; 60:1935-1944. [PMID: 32930848 DOI: 10.1007/s00394-020-02379-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Epidemiological studies have suggested that adipsin and visfatin are associated with the development of type 2 diabetes. This is the first study to investigate the effects of supplementation with purified anthocyanins on serum adipsin and visfatin in patients with prediabetes or newly diagnosed diabetes. METHODS A total of 160 participants with prediabetes or newly diagnosed diabetes (40-75 years old) were given 320 mg anthocyanins or placebo daily for 12 weeks in a randomized trial. Serum adipsin, serum visfatin, lipids and glycated hemoglobin A1c (HbA1c) were measured. The areas under the curve (AUCs) for glucose, insulin and C-peptide were determined before-and after-treatment by a standard 3-h 75 g oral glucose tolerance test (OGTT). RESULTS Relatively significant increases in serum adipsin (net change 0.15 µg/mL [0.03, 0.27], p = 0.018) and decreases in visfatin (-3.5 ng/mL [-6.69, -0.31], p = 0.032) were observed between the anthocyanins and placebo groups. We also observed significant improvements in HbA1c (-0.11% [-0.22, -0.11], p = 0.033), apolipoprotein A-1 (apo A-1) (0.12 g/L [0.03, 0.21], p = 0.012) and apolipoprotein B (apo B) (-0.07 g/L [-0.14, -0.01], p = 0.033) in response to the anthocyanins intervention. CONCLUSION Purified anthocyanins supplementation for 12 weeks increased serum adipsin and decreased serum visfatin in patients with prediabetes or newly diagnosed diabetes. Trial registration ClinicalTrials.gov, identifier: NCT02689765.
Collapse
Affiliation(s)
- Liping Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74th ZhongShan Road II, GuangZhou, 510080, PR China. .,Center for Chronic Disease Control, Nanshan, ShenZhen, PR China.
| | - Yun Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74th ZhongShan Road II, GuangZhou, 510080, PR China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74th ZhongShan Road II, GuangZhou, 510080, PR China
| | - Zhaomin Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74th ZhongShan Road II, GuangZhou, 510080, PR China
| | - Lili Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74th ZhongShan Road II, GuangZhou, 510080, PR China
| | - Changyi Wang
- Center for Chronic Disease Control, Nanshan, ShenZhen, PR China
| | - Xiaolin Peng
- Center for Chronic Disease Control, Nanshan, ShenZhen, PR China
| | - Li Wang
- Center for Chronic Disease Control, Nanshan, ShenZhen, PR China
| | - Jianying Chen
- GuangDong Province, BaiYun Hospital, YueXiu District, GuangZhou, PR China
| |
Collapse
|
27
|
Bogie KM, Schwartz K, Li Y, Wang S, Dai W, Sun J. Exploring adipogenic and myogenic circulatory biomarkers of recurrent pressure injury risk for persons with spinal cord injury. J Circ Biomark 2020; 9:1-7. [PMID: 33599626 PMCID: PMC7883629 DOI: 10.33393/jcb.2020.2121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose: To investigate linkages between circulatory adipogenic and myogenic biomarkers, gluteal intramuscular adipose tissue (IMAT), and pressure injury (PrI) history following spinal cord injury (SCI). Methods: This is an observational repeated-measures study of 30 individuals with SCI. Whole blood was collected regularly over 2-3 years. Circulatory adipogenic and myogenic gene expression was determined. IMAT was defined as above/below 15% (IMATd) or percentage (IMAT%). PrI history was defined as recurrent PrI (RPrI) or PrI number (n PrI). Model development used R packages (version 3.5.1). Univariate analysis screened for discriminating genes for downstream multivariate and combined models of averaged and longitudinal data for binary (RPrI/IMATd) and finer scales (n PrI/IMAT%). Results: For adipogenesis, Krüppel-like factor 4 was the top RPrI predictor together with resistin and cyclin D1, and sirtuin 2 was the top IMAT predictor. For myogenesis, the top RPrI predictor was dysferlin 2B, and pyruvate dehydrogenase kinase-4 was the top IMAT predictor together with dystrophin. Conclusion: Circulatory adipogenic and myogenic biomarkers have statistically significant relationships with PrI history and IMAT for persons with SCI. Biomarkers of interest may act synergistically or additively. Variable importance rankings can reveal nonlinear correlations among the predictors. Biomarkers of interest may act synergistically or additively, thus multiple genes may need to be included for prediction with finer distinction.
Collapse
Affiliation(s)
- Kath M. Bogie
- Case Western Reserve University, Departments of Orthopaedics and Biomedical Engineering, Cleveland, Ohio - USA
- Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC), Research Service, Cleveland, Ohio - USA
| | - Katelyn Schwartz
- Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC), Research Service, Cleveland, Ohio - USA
| | - Youjin Li
- Case Western Reserve University, Department of Population & Quantitative Health Sciences, Cleveland, Ohio - USA
| | - Shengxuan Wang
- Case Western Reserve University, Department of Population & Quantitative Health Sciences, Cleveland, Ohio - USA
| | - Wei Dai
- Case Western Reserve University, Department of Population & Quantitative Health Sciences, Cleveland, Ohio - USA
| | - Jiayang Sun
- Department of Statistics, George Mason University, Fairfax, Virginia - USA
| |
Collapse
|
28
|
Zhong W, Zhang Y, Tan W, Zhang J, Liu J, Wang G, Liao J, Liu B, Chen K, Yu B, Deng Y, Zou Y, Pu Y, Liu H. Adipose specific aptamer adipo-8 recognizes and interacts with APMAP to ameliorates fat deposition in vitro and in vivo. Life Sci 2020; 251:117609. [PMID: 32272180 DOI: 10.1016/j.lfs.2020.117609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
AIMS To identify the target of an adipose specific aptamer adipo-8, predict the potential interaction between adipo-8 and its target, and investigate lipid-lowering effect of adipo-8 in vitro and in vivo. MAIN METHODS Distinct membranous protein of 3T3-L1 adipocyte pulled-down by adipo-8 was mass-spectrometry analyzed as target candidate(s), and affinity of adipo-8 to target protein-silent adipocyte was detected to validate it. Interaction between adipo-8 and target was predicted by bioinformatic analysis, further confirmed by aptamer truncation and competitive binding assay. To investigate lipid-lowering effect of adipo-8 and mechanism behind, 250 nmol/L adipo-8 or library was incubated with 3T3-L1 adipocyte or target-protein-silent adipocyte for 24 h, and 0.01 μg/g/day adipo-8 or library was administrated to high-fat-fed male mice for 21 days. KEY FINDINGS APMAP (Adipocyte Plasma Membrane Associated Protein) was identified as adipo-8 target, and adipo-8 affinity to adipocytes was in proportional to APMAP expression. Docking model between the stem-loop structure of adipo-8 and APMAP were predicted that adipo-8 was likely to interact with APMAP at its amino-acid 275-411 sequence. Moreover, adipo-8 could ameliorate fat deposition through interaction with APMAP in vitro, and administration of adipo-8 in high-fat-diet fed mice resulted in body weight loss and blood triglyceride decrease without liver or renal dysfunction. SIGNIFICANCE Adipo-8 could recognize APMAP specifically and interact with its targets to ameliorate fat deposition in vitro and in vivo. Aptamer adipo-8 has potential to act as an effective and safe targeted drug for obesity and obesity related diseases.
Collapse
Affiliation(s)
- Wen Zhong
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yin Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Jiani Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Jie Liao
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bo Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Chen
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bo Yu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanyuan Deng
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yanbo Zou
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Pu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Huixia Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
29
|
Holers VM, Borodovsky A, Scheinman RI, Ho N, Ramirez JR, Dobó J, Gál P, Lindenberger J, Hansen AG, Desai D, Pihl R, Thiel S, Banda NK. Key Components of the Complement Lectin Pathway Are Not Only Required for the Development of Inflammatory Arthritis but Also Regulate the Transcription of Factor D. Front Immunol 2020; 11:201. [PMID: 32153567 PMCID: PMC7046807 DOI: 10.3389/fimmu.2020.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Besides driving lectin pathway (LP) activation, the mannan-binding lectin (MBL)-associated serine proteases (MASPs) also play a key role in regulating the alternative pathway (AP). We evaluated the effects of N-acetylgalactosamine (GalNAc)-conjugated MASP-1 and MASP-2 duplexes in vitro and in mice with and without arthritis to examine whether knockdown of MASP-1 and MASP-2 expression affects the development of arthritis. GalNAc-siRNAs for MASP-1 and MASP-2 demonstrated robust silencing of MASP-1 or MASP-2 at pM concentrations in vitro. To evaluate the impact of silencing in arthritic mice, we used the collagen antibody-induced arthritis (CAIA) mouse model of RA. Mice were injected a 10 mg/kg dose of GalNAc-siRNAs 3x s.q. prior to the induction of CAIA. Liver gene expression was examined using qRT-PCR, and protein levels were confirmed in the circulation by sandwich immunoassays and Western blot. At day 10, CAIA mice separately treated with MASP-1 and MASP-2 duplexes had a specific reduction in expression of liver MASP-1 (70–95%, p < 0.05) and MASP-2 (90%, p < 0.05) mRNA, respectively. MASP-1-siRNA treatment resulted in a 95% reduction in levels of MASP-1 protein in circulation with no effect on MASP-2 levels and clinical disease activity (CDA). In mice injected with MASP-2 duplex, there was a significant (p < 0.05) 90% decrease in ex vivo C4b deposition on mannan, with nearly complete elimination of MASP-2 in the circulation. MASP-2 silencing initially significantly decreased CDA by 60% but subsequently changed to a 40% decrease vs. control. Unexpectedly, GalNAc-siRNA-mediated knockdown of MASP-1 and MASP-2 revealed a marked effect of these proteins on the transcription of FD under normal physiological conditions, whereas LPS-induced inflammatory conditions reversed this effect on FD levels. LPS is recognized by Toll-like receptor 4 (TLR4), we found MBL not only binds to TLR4 an interaction with a Kd of 907 nM but also upregulated FD expression in differentiated adipocytes. We show that MASP-2 knockdown impairs the development of RA and that the interrelationship between proteins of the LP and the AP may extend to the transcriptional modulation of the FD gene.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nhu Ho
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joseline Ramos Ramirez
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - József Dobó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Péter Gál
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Jared Lindenberger
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Annette G Hansen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Dhruv Desai
- Alnylam Pharmaceutical Inc., Boston, MA, United States
| | - Rasmus Pihl
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
30
|
Paré F, Tardif G, Fahmi H, Ouhaddi Y, Pelletier JP, Martel-Pelletier J. In vivo protective effect of adipsin-deficiency on spontaneous knee osteoarthritis in aging mice. Aging (Albany NY) 2020; 12:2880-2896. [PMID: 32012117 PMCID: PMC7041762 DOI: 10.18632/aging.102784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
The adipokine adipsin is an emerging mediator of human osteoarthritis (OA) progression. Here, we investigated its in vivo role in the development of spontaneous OA in aging mice. We compared articular knee joint morphology, histology in knee cartilage, synovial membrane, subchondral bone, meniscus, and anterior cruciate ligament (ACL); and chondrogenesis in the ACL from adipsin-deficient (Df-/-) and wild-type (Df+/+) 20-week- and 20-month-old mice. Serum levels of a panel of adipokines, inflammatory factors, and metalloproteases known to be implicated in OA were investigated. Data first revealed that the early manifestation of OA appeared in the ACL of 20-week-old mice, progressing to severe alterations in the 20 month-old wild-type mice. Further results demonstrated that adipsin-deficiency protected the articular tissues from spontaneous OA progression and triggered significantly higher serum levels of the adipokines adiponectin and FGF-21 while lowering levels of the inflammatory factor interleukin 6 (IL-6) in both young and old mice. This work further underlines the clinical relevance of adipsin as a novel therapeutic approach of human OA. Moreover, this study shows the potential beneficial effect of the adipokine FGF-21 against OA, and provides support for this factor to be a new biomarker and/or target of primary OA therapeutic avenues.
Collapse
Affiliation(s)
- Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Yassine Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|