1
|
Asayama S, Igarashi T, Abe Y, Iwasaki A, Kubo M, Ikeda A, Akiyama K, Okamoto T, Yagi M, Niki Y, Ando H, Ichihashi M, Mizutani KI. Rosae multiflorae fructus extracts regulate the differentiation and vascular endothelial cell-mediated proliferation of keratinocytes. Biosci Biotechnol Biochem 2025; 89:750-760. [PMID: 39848919 DOI: 10.1093/bbb/zbaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture. In addition, RMFE promoted human umbilical vein endothelial cell (HUVEC) proliferation and angiogenesis, whereas the conditioned medium from RMFE-treated HUVECs further promoted NHEK proliferation and increased wound healing ability. Analysis of constituent bioactivities identified a quercetin derivative as a potential mediator of NHEK and HUVEC responses to RMFE. Taken together, these results suggest that RMFE enhances epidermal functions through both direct effects on keratinocytes and indirect effects mediated by endothelial cells.
Collapse
Affiliation(s)
- Sae Asayama
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Tami Igarashi
- Research & Development Headquarters, Rosette Co., Ltd., Tokyo, Japan
| | - Yosihimi Abe
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Ayaka Iwasaki
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Mizuki Kubo
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Ayaka Ikeda
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Kouki Akiyama
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Tadashi Okamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Masayuki Yagi
- Research & Development Headquarters, Rosette Co., Ltd., Tokyo, Japan
| | - Yoko Niki
- Cosmetic Science Laboratory, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Hideya Ando
- Department of Bioscience, Okayama University of Science, Okayama, Japan
| | | | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
2
|
Dause TJ, Osap R, Kuwahara AA, Denninger JK, Kirby ED. Intracrine VEGF Signaling Is Required for Adult Hippocampal Neural Stem Cell Maintenance and Vascular Proximity. Mol Neurobiol 2025:10.1007/s12035-025-04861-1. [PMID: 40131696 DOI: 10.1007/s12035-025-04861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Adult neural stem cells (NSCs) in the mammalian dentate gyrus (DG) of the hippocampus rely on multiple signals for their preservation throughout the lifespan. While several studies have suggested that vascular endothelial growth factor (VEGF), in particular VEGF synthesized by NSCs themselves, is critical for NSC maintenance and adult neurogenesis, conflicting studies have left it uncertain how VEGF signals to NSCs. Here, we identified a VEGF-VEGFR2 intracrine signaling mechanism within adult DG NSCs that prevents NSC exhaustion and supports their proximity to local blood vessels. Using cell culture assays, we show that while intracellular VEGF stimulated receptor signaling cascades, extracellular VEGF did not. We found that this primary reliance on intracellular VEGF receptor signaling was most likely due to sheddase-mediated cleavage of extracellular VEGFR2 ligand binding domains, as phospho-signaling in response to extracellular VEGF could be restored using sheddase inhibitors. Using cultured adult DG NSCs and intact mice, we further show that NSC-VEGF loss caused cell-autonomous exhaustion of adult DG NSCs, along with impaired migration in cultured NSCs and reduced proximity of NSCs to local blood vessels in mouse DG. Our findings support an exclusively intracellular mechanism for VEGF signaling in adult DG NSCs, thereby providing resolution to previously conflicting studies and suggesting that cellular source can dictate the functional impact of soluble ligands in DG NSCs.
Collapse
Affiliation(s)
- Tyler J Dause
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Robert Osap
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Akela A Kuwahara
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jiyeon K Denninger
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Liu K, Kang Z, Yang M, Chen F, Xia M, Dai W, Zheng S, Chen H, Lu QR, Zhou W, Lin Y. The role of oligodendrocyte progenitor cells in the spatiotemporal vascularization of the human and mouse neocortex. Glia 2025; 73:140-158. [PMID: 39392208 DOI: 10.1002/glia.24625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Brain vasculature formation begins with vessel invasion from the perineural vascular plexus, which expands through vessel sprouting and growth. Recent studies have indicated the existence of oligodendrocyte-vascular crosstalk during development. However, the relationship between oligodendrocyte progenitor cells (OPCs) and the ordered spatiotemporal vascularization of the neocortex has not been elucidated. Our findings suggest that OPCs play a complex role in the vessel density of the embryonic and postnatal neocortex. Analyses of normal human and mouse embryonic cerebral cortex show that vascularization and OPC distribution are tightly controlled in a spatially and temporally restricted manner, exhibiting a positive correlation. Loss of OPCs at both embryonic and postnatal stages led to a reduction in vascular density, suggesting that OPC populations play a role in vascular density. Nonetheless, dynamic observation on cultured brain slices and staining of tissue sections indicate that OPC migration is unassociated with the proximity to blood vessels, primarily occurring along radial glial cell processes. Additionally, in vitro experiments demonstrate that OPC secretions promote vascular endothelial cell (VEC) growth. Together, these observations suggest that vessel density is influenced by OPC secretions.
Collapse
Affiliation(s)
- Kaiyi Liu
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiruo Kang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Min Yang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fangbing Chen
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Mingyang Xia
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjuan Dai
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Shiyi Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yifeng Lin
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Sobierajski E, Czubay K, Beemelmans C, Beemelmans C, Meschkat M, Uhlenkamp D, Meyer G, Wahle P. Vascular Development of Fetal and Postnatal Neocortex of the Pig, the European Wild Boar Sus scrofa. J Comp Neurol 2024; 532:e70011. [PMID: 39660539 PMCID: PMC11632654 DOI: 10.1002/cne.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024]
Abstract
The development of the brain's vascular system is a predominantly prenatal process in mammalian species and is required for neurogenesis and further brain development. Our recent work on fetal pig has revealed that many neurodevelopmental processes start well before birth and proceed rapidly reaching near-mature status already around birth. Here, we analyzed the development of neocortical vasculature from embryonic day (E) 45 onward (gestation in pig lasts 114 days) using qualitative and quantitative image analyses and protein blots. In all cortical layers, vessel volume from total brain volume at E100 resembled that of a postnatal day (P) 30 piglet. Endothelial cells expressed the tight junction protein claudin-5 from E45 onward. GFAP+ and AQP4+ astrocytes, PDGFRβ+ pericytes, and α-SMA+ smooth muscle cells are detectable near vessels at E60 suggesting an early assembly of blood-brain barrier components. The vascular system in the visual cortex is advanced before birth with an almost mature pattern at E100. Findings were confirmed by blots that showed a steady increase of expression of tight junction and angiogenesis-related proteins (claudin-5, occludin, VE-cadherin, PECAM-1/CD31) from E65 onward until P90. The expression profile was similar in visual and somatosensory cortex. Together, we report a rapid maturation of the vascular system in pig cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | - Katrin Czubay
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | | | | | | | | | - Gundela Meyer
- Department of Basic Medical Science, Faculty of MedicineUniversity of La LagunaSanta Cruz de TenerifeTenerifeSpain
| | - Petra Wahle
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
5
|
Xing L, Huttner WB, Namba T. Role of cell metabolism in the pathophysiology of brain size-associated neurodevelopmental disorders. Neurobiol Dis 2024; 199:106607. [PMID: 39029564 DOI: 10.1016/j.nbd.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Cell metabolism is a key regulator of human neocortex development and evolution. Several lines of evidence indicate that alterations in neural stem/progenitor cell (NPC) metabolism lead to abnormal brain development, particularly brain size-associated neurodevelopmental disorders, such as microcephaly. Abnormal NPC metabolism causes impaired cell proliferation and thus insufficient expansion of NPCs for neurogenesis. Therefore, the production of neurons, which is a major determinant of brain size, is decreased and the size of the brain, especially the size of the neocortex, is significantly reduced. This review discusses recent progress understanding NPC metabolism, focusing in particular on glucose metabolism, fatty acid metabolism and amino acid metabolism (e.g., glutaminolysis and serine metabolism). We provide an overview of the contributions of these metabolic pathways to brain development and evolution, as well as to the etiology of neurodevelopmental disorders. Furthermore, we discuss the advantages and disadvantages of various experimental models to study cell metabolism in the developing brain.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Developmental Biology, Fujita Health University School of Medicine, Toyoake, Japan; International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan.
| |
Collapse
|
6
|
Zhang H, Zhang Y, Xu K, Wang L, Zhou X, Yang M, Xie J, Li H. Inhibition of FLT1 Attenuates Neurodevelopmental Abnormalities and Cognitive Impairment in Offspring Caused by Maternal Prenatal Stress. Appl Biochem Biotechnol 2024; 196:4900-4913. [PMID: 37979086 DOI: 10.1007/s12010-023-04774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Fms-like tyrosine kinase 1 (FLT1) has been shown to regulate processes such as angiogenesis, neurogenesis, and cognitive impairment. However, the role of FLT1 in prenatal stress (PS) is unclear. The purpose of this study was to investigate the role of FLT1 in PS mothers and their offspring. Wire mesh restrainers were used to construct PS rat model. The levels of FLT1, IL-1β, IL-6, and ROS in clinical samples and rat samples were detected by qRT-PCR, ELisa kit, and DCFH-DA fluorescence kit. Morris water maze assay and forced swimming assay were used to test the cognitive function of offspring young rats. The apoptosis level of hippocampal neurons and the expression of NMDARs were detected by MTT assay, TUNEL assay, and Western blot. The results showed that FLT1 was upregulated in PS mothers and positively correlated with PS degree. The level of FLT1 was elevated in PS model rats. Knockdown of FLT1 reduced maternal ROS and MDA levels and increased SOD levels in PS rats. Knockdown of FLT1 also reduced the secretion of IL-1β, IL-6, and cortisol in PS rats. Inhibition of FTL1 alleviated cognitive impairment in PS offspring pups. Inhibition of FTL1 reduced hippocampal neuronal apoptosis and increased the expression of NMDARs in PS progeny. In conclusions, we demonstrated that knockdown of FLT1 inhibits maternal oxidative stress, inflammation, and cortisol secretion in PS rats. In addition, knockdown of FLT1 also alleviated cognitive dysfunction and neurodevelopmental abnormalities in PS offspring pups.
Collapse
Affiliation(s)
- Huifang Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Division of Neonatology, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Yudan Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Division of Neonatology, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Kaixuan Xu
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lawen Wang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xin Zhou
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Mingge Yang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jiangli Xie
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Hui Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Division of Neonatology, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
- Division of Neonatology, The Affiliated Children Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China.
| |
Collapse
|
7
|
Murayama F, Asai H, Patra AK, Wake H, Miyata T, Hattori Y. A novel preparation for histological analyses of intraventricular macrophages in the embryonic brain. Dev Growth Differ 2024; 66:329-337. [PMID: 38894655 PMCID: PMC11457502 DOI: 10.1111/dgd.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Microglia colonize the brain starting on embryonic day (E) 9.5 in mice, and their population increases with development. We have previously demonstrated that some microglia are derived from intraventricular macrophages, which frequently infiltrate the pallium at E12.5. To address how the infiltration of intraventricular macrophages is spatiotemporally regulated, histological analyses detecting how these cells associate with the surrounding cells at the site of infiltration into the pallial surface are essential. Using two-photon microscopy-based in vivo imaging, we demonstrated that most intraventricular macrophages adhere to the ventricular surface. This is a useful tool for imaging intraventricular macrophages maintaining their original position, but this method cannot be used for observing deeper brain regions. Meanwhile, we found that conventional cryosection-based and naked pallial slice-based observation resulted in unexpected detachment from the ventricular surface of intraventricular macrophages and their mislocation, suggesting that previous histological analyses might have failed to determine their physiological number and location in the ventricular space. To address this, we sought to establish a methodological preparation that enables us to delineate the structure and cellular interactions when intraventricular macrophages infiltrate the pallium. Here, we report that brain slices pretreated with agarose-embedding maintained adequate density and proper positioning of intraventricular macrophages on the ventricular surface. This method also enabled us to perform the immunostaining. We believe that this is helpful for conducting histological analyses to elucidate the mechanisms underlying intraventricular macrophage infiltration into the pallium and their cellular properties, leading to further understanding of the process of microglial colonization into the developing brain.
Collapse
Affiliation(s)
- Futoshi Murayama
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hisa Asai
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Arya Kirone Patra
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroaki Wake
- Department of Anatomy and Molecular BiologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of Physiological Sciences, Graduate School for Advanced StudiesSOKENDAIHayamaJapan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological SciencesNational Institute of Natural SciencesOkazakiJapan
| | - Takaki Miyata
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuki Hattori
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
8
|
Buth JE, Dyevich CE, Rubin A, Wang C, Gao L, Marks T, Harrison MR, Kong JH, Ross ME, Novitch BG, Pearson CA. Foxp1 suppresses cortical angiogenesis and attenuates HIF-1alpha signaling to promote neural progenitor cell maintenance. EMBO Rep 2024; 25:2202-2219. [PMID: 38600346 PMCID: PMC11094073 DOI: 10.1038/s44319-024-00131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Neural progenitor cells within the cerebral cortex undergo a characteristic switch between symmetric self-renewing cell divisions early in development and asymmetric neurogenic divisions later. Yet, the mechanisms controlling this transition remain unclear. Previous work has shown that early but not late neural progenitor cells (NPCs) endogenously express the autism-linked transcription factor Foxp1, and both loss and gain of Foxp1 function can alter NPC activity and fate choices. Here, we show that premature loss of Foxp1 upregulates transcriptional programs regulating angiogenesis, glycolysis, and cellular responses to hypoxia. These changes coincide with a premature destabilization of HIF-1α, an elevation in HIF-1α target genes, including Vegfa in NPCs, and precocious vascular network development. In vitro experiments demonstrate that stabilization of HIF-1α in Foxp1-deficient NPCs rescues the premature differentiation phenotype and restores NPC maintenance. Our data indicate that the endogenous decline in Foxp1 expression activates the HIF-1α transcriptional program leading to changes in the tissue environment adjacent to NPCs, which, in turn, might alter their self-renewal and neurogenic capacities.
Collapse
Affiliation(s)
- Jessie E Buth
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Catherine E Dyevich
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Alexandra Rubin
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chengbing Wang
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lei Gao
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Tessa Marks
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael Rm Harrison
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jennifer H Kong
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Bennett G Novitch
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Caroline Alayne Pearson
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
9
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
10
|
Wilsch-Bräuninger M, Peters J, Huttner WB. High-resolution 3D ultrastructural analysis of developing mouse neocortex reveals long slender processes of endothelial cells that enter neural cells. Front Cell Dev Biol 2024; 12:1344734. [PMID: 38500687 PMCID: PMC10945550 DOI: 10.3389/fcell.2024.1344734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
The development of the neocortex involves an interplay between neural cells and the vasculature. However, little is known about this interplay at the ultrastructural level. To gain a 3D insight into the ultrastructure of the developing neocortex, we have analyzed the embryonic mouse neocortex by serial block-face scanning electron microscopy (SBF-SEM). In this study, we report a first set of findings that focus on the interaction of blood vessels, notably endothelial tip cells (ETCs), and the neural cells in this tissue. A key observation was that the processes of ETCs, located either in the ventricular zone (VZ) or subventricular zone (SVZ)/intermediate zone (IZ), can enter, traverse the cytoplasm, and even exit via deep plasma membrane invaginations of the host cells, including apical progenitors (APs), basal progenitors (BPs), and newborn neurons. More than half of the ETC processes were found to enter the neural cells. Striking examples of this ETC process "invasion" were (i) protrusions of apical progenitors or newborn basal progenitors into the ventricular lumen that contained an ETC process inside and (ii) ETC process-containing protrusions of neurons that penetrated other neurons. Our observations reveal a - so far unknown - complexity of the ETC-neural cell interaction.
Collapse
Affiliation(s)
| | | | - Wieland B. Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
11
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Morimoto K, Tabata H, Takahashi R, Nakajima K. Interactions between neural cells and blood vessels in central nervous system development. Bioessays 2024; 46:e2300091. [PMID: 38135890 DOI: 10.1002/bies.202300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
The sophisticated function of the central nervous system (CNS) is largely supported by proper interactions between neural cells and blood vessels. Accumulating evidence has demonstrated that neurons and glial cells support the formation of blood vessels, which in turn, act as migratory scaffolds for these cell types. Neural progenitors are also involved in the regulation of blood vessel formation. This mutual interaction between neural cells and blood vessels is elegantly controlled by several chemokines, growth factors, extracellular matrix, and adhesion molecules such as integrins. Recent research has revealed that newly migrating cell types along blood vessels repel other preexisting migrating cell types, causing them to detach from the blood vessels. In this review, we discuss vascular formation and cell migration, particularly during development. Moreover, we discuss how the crosstalk between blood vessels and neurons and glial cells could be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keiko Morimoto
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tabata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Rikuo Takahashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Andrews MG, Pearson CA. Toward an understanding of glucose metabolism in radial glial biology and brain development. Life Sci Alliance 2024; 7:e202302193. [PMID: 37798120 PMCID: PMC10556723 DOI: 10.26508/lsa.202302193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Decades of research have sought to determine the intrinsic and extrinsic mechanisms underpinning the regulation of neural progenitor maintenance and differentiation. A series of precise temporal transitions within progenitor cell populations generates all the appropriate neural cell types while maintaining a pool of self-renewing progenitors throughout embryogenesis. Recent technological advances have enabled us to gain new insights at the single-cell level, revealing an interplay between metabolic state and developmental progression that impacts the timing of proliferation and neurogenesis. This can have long-term consequences for the developing brain's neuronal specification, maturation state, and organization. Furthermore, these studies have highlighted the need to reassess the instructive role of glucose metabolism in determining progenitor cell division, differentiation, and fate. This review focuses on glucose metabolism (glycolysis) in cortical progenitor cells and the emerging focus on glycolysis during neurogenic transitions. Furthermore, we discuss how the field can learn from other biological systems to improve our understanding of the spatial and temporal changes in glycolysis in progenitors and evaluate functional neurological outcomes.
Collapse
Affiliation(s)
- Madeline G Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Caroline A Pearson
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Eşiyok N, Heide M. The SVZ stem cell niche-components, functions, and in vitro modelling. Front Cell Dev Biol 2023; 11:1332901. [PMID: 38188021 PMCID: PMC10766702 DOI: 10.3389/fcell.2023.1332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Neocortical development depends on the intrinsic ability of neural stem and progenitor cells to proliferate and differentiate to generate the different kinds of neurons in the adult brain. These progenitor cells can be distinguished into apical progenitors, which occupy a stem cell niche in the ventricular zone and basal progenitors, which occupy a stem cell niche in the subventricular zone (SVZ). During development, the stem cell niche provided in the subventricular zone enables the increased proliferation and self-renewal of basal progenitors, which likely underlie the expansion of the human neocortex. However, the components forming the SVZ stem cell niche in the developing neocortex have not yet been fully understood. In this review, we will discuss potential components of the SVZ stem cell niche, i.e., extracellular matrix composition and brain vasculature, and their possible key role in establishing and maintaining this niche during fetal neocortical development. We will also emphasize the potential role of basal progenitor morphology in maintaining their proliferative capacity within the stem cell niche of the SVZ. Finally, we will focus on the use of brain organoids to i) understand the unique features of basal progenitors, notably basal radial glia; ii) study components of the SVZ stem cell niche; and iii) provide future directions on how to improve brain organoids, notably the organoid SVZ, and make them more reliable models of human neocortical development and evolution studies.
Collapse
Affiliation(s)
| | - Michael Heide
- Research Group Brain Development and Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
15
|
Mizukoshi T, Yamada S, Sakakibara SI. Spatiotemporal Regulation of De Novo and Salvage Purine Synthesis during Brain Development. eNeuro 2023; 10:ENEURO.0159-23.2023. [PMID: 37770184 PMCID: PMC10566546 DOI: 10.1523/eneuro.0159-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
The levels of purines, essential molecules to sustain eukaryotic cell homeostasis, are regulated by the coordination of the de novo and salvage synthesis pathways. In the embryonic central nervous system (CNS), the de novo pathway is considered crucial to meet the requirements for the active proliferation of neural stem/progenitor cells (NSPCs). However, how these two pathways are balanced or separately used during CNS development remains poorly understood. In this study, we showed a dynamic shift in pathway utilization, with greater reliance on the de novo pathway during embryonic stages and on the salvage pathway in postnatal-adult mouse brain. The pharmacological effects of various purine synthesis inhibitors in vitro and the expression profile of purine synthesis enzymes indicated that NSPCs in the embryonic cerebrum mainly use the de novo pathway. Simultaneously, NSPCs in the cerebellum require both the de novo and the salvage pathways. In vivo administration of de novo inhibitors resulted in severe hypoplasia of the forebrain cortical region, indicating a gradient of purine demand along the anteroposterior axis of the embryonic brain, with cortical areas of the dorsal forebrain having higher purine requirements than ventral or posterior areas such as the striatum and thalamus. This histologic defect of the neocortex was accompanied by strong downregulation of the mechanistic target of rapamycin complex 1 (mTORC1)/ribosomal protein S6 kinase (S6K)/S6 signaling cascade, a crucial pathway for cell metabolism, growth, and survival. These findings indicate the importance of the spatiotemporal regulation of both purine pathways for mTORC1 signaling and proper brain development.
Collapse
Affiliation(s)
- Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| |
Collapse
|
16
|
Paolino A, Haines EH, Bailey EJ, Black DA, Moey C, García-Moreno F, Richards LJ, Suárez R, Fenlon LR. Non-uniform temporal scaling of developmental processes in the mammalian cortex. Nat Commun 2023; 14:5950. [PMID: 37741828 PMCID: PMC10517946 DOI: 10.1038/s41467-023-41652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
The time that it takes the brain to develop is highly variable across animals. Although staging systems equate major developmental milestones between mammalian species, it remains unclear how distinct processes of cortical development scale within these timeframes. Here, we compare the timing of cortical development in two mammals of similar size but different developmental pace: eutherian mice and marsupial fat-tailed dunnarts. Our results reveal that the temporal relationship between cell birth and laminar specification aligns to equivalent stages between these species, but that migration and axon extension do not scale uniformly according to the developmental stages, and are relatively more advanced in dunnarts. We identify a lack of basal intermediate progenitor cells in dunnarts that likely contributes in part to this timing difference. These findings demonstrate temporal limitations and differential plasticity of cortical developmental processes between similarly sized Therians and provide insight into subtle temporal changes that may have contributed to the early diversification of the mammalian brain.
Collapse
Affiliation(s)
- Annalisa Paolino
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Elizabeth H Haines
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Evan J Bailey
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Dylan A Black
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Ching Moey
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- IKERBASQUE Foundation, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - Linda J Richards
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
- Washington University in St Louis School of Medicine, Department of Neuroscience, St Louis, MO, 63108, USA
| | - Rodrigo Suárez
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia.
| | - Laura R Fenlon
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Crouch EE, Joseph T, Marsan E, Huang EJ. Disentangling brain vasculature in neurogenesis and neurodegeneration using single-cell transcriptomics. Trends Neurosci 2023; 46:551-565. [PMID: 37210315 PMCID: PMC10560453 DOI: 10.1016/j.tins.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
The vasculature is increasingly recognized to impact brain function in health and disease across the life span. During embryonic brain development, angiogenesis and neurogenesis are tightly coupled, coordinating the proliferation, differentiation, and migration of neural and glial progenitors. In the adult brain, neurovascular interactions continue to play essential roles in maintaining brain function and homeostasis. This review focuses on recent advances that leverage single-cell transcriptomics of vascular cells to uncover their subtypes, their organization and zonation in the embryonic and adult brain, and how dysfunction in neurovascular and gliovascular interactions contributes to the pathogenesis of neurodegenerative diseases. Finally, we highlight key challenges for future research in neurovascular biology.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Elise Marsan
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Pathology Service (113B), San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA.
| |
Collapse
|
18
|
Gkini V, Namba T. Glutaminolysis and the Control of Neural Progenitors in Neocortical Development and Evolution. Neuroscientist 2023; 29:177-189. [PMID: 35057642 PMCID: PMC10018057 DOI: 10.1177/10738584211069060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple types of neural progenitor cells (NPCs) contribute to the development of the neocortex, a brain region responsible for our higher cognitive abilities. Proliferative capacity of NPCs varies among NPC types, developmental stages, and species. The higher proliferative capacity of NPCs in the developing human neocortex is thought to be a major contributing factor why humans have the most expanded neocortex within primates. Recent studies have shed light on the importance of cell metabolism in the neocortical NPC proliferative capacity. Specifically, glutaminolysis, a metabolic pathway that converts glutamine to glutamate and then to α-ketoglutarate, has been shown to play a critical role in human NPCs, both in apical and basal progenitors. In this review, we summarize our current knowledge of NPC metabolism, focusing especially on glutaminolysis, and discuss the role of NPC metabolism in neocortical development, evolution, and neurodevelopmental disorders, providing a broader perspective on a newly emerging research field.
Collapse
Affiliation(s)
- Vasiliki Gkini
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
- Takashi Namba, Neuroscience Center, HiLIFE
— Helsinki Institute of Life Science, University of Helsinki, PO 63,
Haartmaninkatu 8, Helsinki 00014, Finland.
| |
Collapse
|
19
|
Sahoglu SG, Kazci YE, Karadogan B, Aydin MS, Nebol A, Turhan MU, Ozturk G, Cagavi E. High-resolution mapping of sensory fibers at the healthy and post-myocardial infarct whole transgenic hearts. J Neurosci Res 2023; 101:338-353. [PMID: 36517461 DOI: 10.1002/jnr.25150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.
Collapse
Affiliation(s)
- Sevilay Goktas Sahoglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yusuf Enes Kazci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Behnaz Karadogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aylin Nebol
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Ugurcan Turhan
- Department of Cardiovascular Surgery, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - Esra Cagavi
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
20
|
Organization of self-advantageous niche by neural stem/progenitor cells during development via autocrine VEGF-A under hypoxia. Inflamm Regen 2023; 43:8. [PMID: 36726165 PMCID: PMC9893632 DOI: 10.1186/s41232-022-00254-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tissue stem cells are confined within a special microenvironment called niche. Stem cells in such a niche are supplied with nutrients and contacted by other cells to maintain their characters and also to keep or expand their population size. Besides, oxygen concentration is a key factor for stem cell niche. Adult neural stem/progenitor cells (NSPCs) are known to reside in a hypoxic niche. Oxygen concentration levels are lower in fetal organs including brain than maternal organs. However, how fetal NSPCs adapt to the hypoxic environment during brain development, particularly before pial and periventricular vessels start to invade the telencephalon, has not fully been elucidated. METHODS NSPCs were prepared from cerebral cortices of embryonic day (E) 11.5 or E14.5 mouse embryos and were enriched by 4-day incubation with FGF2. To evaluate NSPC numbers, neurosphere formation assay was performed. Sparsely plated NSPCs were cultured to form neurospheres under the hypoxic (1% O2) or normoxic condition. VEGF-A secreted from NSPCs in the culture medium was measured by ELISA. VEGF-A expression and Hif-1a in the developing brain was investigated by in situ hybridization and immunohistochemistry. RESULTS Here we show that neurosphere formation of embryonic NSPCs is dramatically increased under hypoxia compared to normoxia. Vegf-A gene expression and its protein secretion were both up-regulated in the NSPCs under hypoxia. Either recombinant VEGF-A or conditioned medium of the hypoxic NSPC culture enhanced the neurosphere forming ability of normoxic NSPCs, which was attenuated by a VEGF-A signaling inhibitor. Furthermore, in the developing brain, VEGF-A was strongly expressed in the VZ where NSPCs are confined. CONCLUSIONS We show that NSPCs secret VEGF-A in an autocrine fashion to efficiently maintain themselves under hypoxic developmental environment. Our results suggest that NSPCs have adaptive potential to respond to hypoxia to organize self-advantageous niche involving VEGF-A when the vascular system is immature.
Collapse
|
21
|
Hattori Y. The microglia-blood vessel interactions in the developing brain. Neurosci Res 2023; 187:58-66. [PMID: 36167249 DOI: 10.1016/j.neures.2022.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Microglia are the immune cells in the central nervous system (CNS). Once microglial progenitors are generated in the yolk sac, these cells enter the CNS and colonize its structures by migrating and proliferating during development. Although the microglial population in the CNS is still low in this stage compared to adults, these cells can associate with many surrounding cells, such as neural lineage cells and vascular-structure-composing cells, by extending their filopodia and with their broad migration capacity. Previous studies revealed multifaceted microglial actions on neural lineage cells, such as regulating the differentiation of neural progenitors and modulating neuronal positioning. Notably, microglia not only act on neural lineage cells but also interact with blood vessels, for example, by supporting vascular formation and integrity. On the other hand, blood vessels contribute to microglial colonization into the CNS and their migration at local tissues. Importantly, pericytes, the cells that encompass vascular endothelial cells, have been suggested to play a profound role in microglial function. This review summarizes recent advances in the understanding of the interaction of microglia and blood vessels, especially focusing on the significance of this interaction in CNS development, and discusses how microglial and blood vessel dysfunction leads to developmental disorders.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
22
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
23
|
Computational Model Exploring Characteristic Pattern Regulation in Periventricular Vessels. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122069. [PMID: 36556434 PMCID: PMC9788473 DOI: 10.3390/life12122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The developing neocortical vasculature exhibits a distinctive pattern in each layer. In murine embryos, vessels in the cortical plate (CP) are vertically oriented, whereas those in the intermediate zone (IZ) and the subventricular zone (SVZ) form a honeycomb structure. The formation of tissue-specific vessels suggests that the behavior of endothelial cells is under a specific regulatory regime in each layer, although the mechanisms involved remain unknown. In the present study, we aimed to explore the conditions required to form these vessel patterns by conducting simulations using a computational model. We developed a novel model framework describing the collective migration of endothelial cells to represent the angiogenic process and performed a simulation using two-dimensional approximation. The attractive and repulsive guidance of tip cells was incorporated into the model based on the function and distribution of guidance molecules such as VEGF and Unc ligands. It is shown that an appropriate combination of guidance effects reproduces both the parallel straight pattern in the CP and meshwork patterns in the IZ/SVZ. Our model demonstrated how the guidance of the tip cell causes a variety of vessel patterns and predicted how tissue-specific vascular formation was regulated in the early development of neocortical vessels.
Collapse
|
24
|
Tabata H, Sasaki M, Agetsuma M, Sano H, Hirota Y, Miyajima M, Hayashi K, Honda T, Nishikawa M, Inaguma Y, Ito H, Takebayashi H, Ema M, Ikenaka K, Nabekura J, Nagata KI, Nakajima K. Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex. Nat Commun 2022; 13:6571. [PMID: 36323680 PMCID: PMC9630450 DOI: 10.1038/s41467-022-34184-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Astrocytes are one of the most abundant cell types in the mammalian brain. They play essential roles in synapse formation, maturation, and elimination. However, how astrocytes migrate into the gray matter to accomplish these processes is poorly understood. Here, we show that, by combinational analyses of in vitro and in vivo time-lapse observations and lineage traces, astrocyte progenitors move rapidly and irregularly within the developing cortex, which we call erratic migration. Astrocyte progenitors also adopt blood vessel-guided migration. These highly motile progenitors are generated in the restricted prenatal stages and differentiate into protoplasmic astrocytes in the gray matter, whereas postnatally generated progenitors do not move extensively and differentiate into fibrous astrocytes in the white matter. We found Cxcr4/7, and integrin β1 regulate the blood vessel-guided migration, and their functional blocking disrupts their positioning. This study provides insight into astrocyte development and may contribute to understanding the pathogenesis caused by their defects.
Collapse
Affiliation(s)
- Hidenori Tabata
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan ,grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Megumi Sasaki
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masakazu Agetsuma
- grid.467811.d0000 0001 2272 1771Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585 Japan
| | - Hitomi Sano
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yuki Hirota
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Michio Miyajima
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Kanehiro Hayashi
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takao Honda
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masashi Nishikawa
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Yutaka Inaguma
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Hidenori Ito
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Hirohide Takebayashi
- grid.260975.f0000 0001 0671 5144Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510 Japan
| | - Masatsugu Ema
- grid.410827.80000 0000 9747 6806Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Kazuhiro Ikenaka
- grid.467811.d0000 0001 2272 1771Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787 Japan
| | - Junichi Nabekura
- grid.467811.d0000 0001 2272 1771Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585 Japan
| | - Koh-ichi Nagata
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Kazunori Nakajima
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
25
|
Watanabe C, Shibuya H, Ichiyama Y, Okamura E, Tsukiyama-Fujii S, Tsukiyama T, Matsumoto S, Matsushita J, Azami T, Kubota Y, Ohji M, Sugiyama F, Takahashi S, Mizuno S, Tamura M, Mizutani KI, Ema M. Essential Roles of Exocyst Complex Component 3-like 2 on Cardiovascular Development in Mice. Life (Basel) 2022; 12:life12111730. [PMID: 36362885 PMCID: PMC9694714 DOI: 10.3390/life12111730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
Angiogenesis is a process to generate new blood vessels from pre-existing vessels and to maintain vessels, and plays critical roles in normal development and disease. However, the molecular mechanisms underlying angiogenesis are not fully understood. This study examined the roles of exocyst complex component (Exoc) 3-like 2 (Exoc3l2) during development in mice. We found that Exoc3l1, Exoc3l2, Exoc3l3 and Exoc3l4 are expressed abundantly in endothelial cells at embryonic day 8.5. The generation of Exoc3l2 knock-out (KO) mice showed that disruption of Exoc3l2 resulted in lethal in utero. Substantial numbers of Exoc3l2 KO embryos exhibited hemorrhaging. Deletion of Exoc3l2 using Tie2-Cre transgenic mice demonstrated that Exoc3l2 in hematopoietic and endothelial lineages was responsible for the phenotype. Taken together, these findings reveal that Exoc3l2 is essential for cardiovascular and brain development in mice.
Collapse
Affiliation(s)
- Chisato Watanabe
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Hirotoshi Shibuya
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | - Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Eiichi Okamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Setsuko Tsukiyama-Fujii
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Jun Matsushita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| |
Collapse
|
26
|
Crouch EE, Bhaduri A, Andrews MG, Cebrian-Silla A, Diafos LN, Birrueta JO, Wedderburn-Pugh K, Valenzuela EJ, Bennett NK, Eze UC, Sandoval-Espinosa C, Chen J, Mora C, Ross JM, Howard CE, Gonzalez-Granero S, Lozano JF, Vento M, Haeussler M, Paredes MF, Nakamura K, Garcia-Verdugo JM, Alvarez-Buylla A, Kriegstein AR, Huang EJ. Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain. Cell 2022; 185:3753-3769.e18. [PMID: 36179668 PMCID: PMC9550196 DOI: 10.1016/j.cell.2022.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Madeline G Andrews
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arantxa Cebrian-Silla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Loukas N Diafos
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kaylee Wedderburn-Pugh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward J Valenzuela
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Neal K Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ugomma C Eze
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carmen Sandoval-Espinosa
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiapei Chen
- Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cristina Mora
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayden M Ross
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare E Howard
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susana Gonzalez-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y 21 Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red 22 sobre Enfermedades Neurodegenerativas, Valencia, Spain
| | - Jaime Ferrer Lozano
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Maximilian Haeussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ken Nakamura
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y 21 Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red 22 sobre Enfermedades Neurodegenerativas, Valencia, Spain
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric J Huang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA; Pathology Service 113B, San Francisco Veterans Affairs Healthcare System, San Francisco, CA 94121, USA.
| |
Collapse
|
27
|
The neural stem cell secretome across neurodevelopment. Exp Neurol 2022; 355:114142. [PMID: 35709983 DOI: 10.1016/j.expneurol.2022.114142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Neural stem cell (NSC) based therapies are at the forefront of regenerative medicine strategies to combat illness and injury of the central nervous system (CNS). In addition to their ability to produce new cells, NSCs secrete a variety of products, known collectively as the NSC secretome, that have been shown to ameliorate CNS disease pathology and promote recovery. As pre-clinical and clinical research to harness the NSC secretome for therapeutic purposes advances, a more thorough understanding of the endogenous NSC secretome can provide useful insight into the functional capabilities of NSCs. In this review, we focus on research investigating the autocrine and paracrine functions of the endogenous NSC secretome across life. Throughout development and adulthood, we find evidence that the NSC secretome is a critical component of how endogenous NSCs regulate themselves and their niche. We also find gaps in current literature, most notably in the clinically-relevant domain of endogenous NSC paracrine function in the injured CNS. Future investigations to further define the endogenous NSC secretome and its role in CNS tissue regulation are necessary to bolster our understanding of NSC-niche interactions and to aid in the generation of safe and effective NSC-based therapies.
Collapse
|
28
|
Hou PS, Kuo HC. Central nervous system organoids for modeling neurodegenerative diseases. IUBMB Life 2022; 74:812-825. [PMID: 35102668 DOI: 10.1002/iub.2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/07/2022]
Abstract
Recent advances in induced pluripotent stem cell (iPSC) technology have allowed researchers to generate neurodegenerative disease-specific iPSCs and use the cells to derive a variety of relevant cell populations for laboratory modeling and drug testing. Nevertheless, these efforts have faced challenges related to immaturity and lack of complex developmental niches in the derived cell populations, limiting the utility of these in vitro models of neurodegenerative disease. Such limitations may be overcome by using human iPSC technology to generate three-dimensional (3D) brain organoids, which better recapitulate in vivo tissue architecture than traditional neuronal cultures to provide more complex and representative disease models and drug testing systems. In this review, we focus on the application of pluripotent stem cell-derived central nervous system (CNS) organoids to model neurodegenerative diseases. We first summarize recent progress in generating and characterizing various CNS organoids from pluripotent stem cells. We then review the application of CNS organoids for modeling several different human neurodegenerative diseases. We also describe several novel pathological mechanisms and drugs that were studied using patient iPSC-derived CNS organoids. Finally, we discuss remaining challenges and emerging opportunities for the use of 3D brain organoids for in vitro modeling of CNS development and neurodegeneration.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Ngo MT, Barnhouse VR, Gilchrist AE, Mahadik BP, Hunter CJ, Hensold JN, Petrikas N, Harley BAC. Hydrogels Containing Gradients in Vascular Density Reveal Dose-Dependent Role of Angiocrine Cues on Stem Cell Behavior. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101541. [PMID: 35558090 PMCID: PMC9090181 DOI: 10.1002/adfm.202101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria R Barnhouse
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan E Gilchrist
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christine J Hunter
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joy N Hensold
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathan Petrikas
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Saio S, Konishi K, Hohjoh H, Tamura Y, Masutani T, Iddamalgoda A, Ichihashi M, Hasegawa H, Mizutani KI. Extracellular Environment-Controlled Angiogenesis, and Potential Application for Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms222011169. [PMID: 34681829 PMCID: PMC8541280 DOI: 10.3390/ijms222011169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells acquire different phenotypes to establish functional vascular networks. Vascular endothelial growth factor (VEGF) signaling induces endothelial proliferation, migration, and survival to regulate vascular development, which leads to the construction of a vascular plexuses with a regular morphology. The spatiotemporal localization of angiogenic factors and the extracellular matrix play fundamental roles in ensuring the proper regulation of angiogenesis. This review article highlights how and what kinds of extracellular environmental molecules regulate angiogenesis. Close interactions between the vascular and neural systems involve shared molecular mechanisms to coordinate developmental and regenerative processes. This review article focuses on current knowledge about the roles of angiogenesis in peripheral nerve regeneration and the latest therapeutic strategies for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Shingo Saio
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Kanna Konishi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
| | - Yuki Tamura
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Teruaki Masutani
- Research & Development Dept., Ichimaru Pharcos Co., Ltd., 318-1 Asagi, Motosu 501-0475, Japan; (T.M.); (A.I.)
- Medical Education Development Center, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Arunasiri Iddamalgoda
- Research & Development Dept., Ichimaru Pharcos Co., Ltd., 318-1 Asagi, Motosu 501-0475, Japan; (T.M.); (A.I.)
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
- Correspondence: (H.H.); (K.-i.M.)
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
- Correspondence: (H.H.); (K.-i.M.)
| |
Collapse
|
31
|
Diez D, Morte B, Bernal J. Single-Cell Transcriptome Profiling of Thyroid Hormone Effectors in the Human Fetal Neocortex: Expression of SLCO1C1, DIO2, and THRB in Specific Cell Types. Thyroid 2021; 31:1577-1588. [PMID: 34114484 DOI: 10.1089/thy.2021.0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Thyroid hormones are crucial for brain development, acting through the thyroid hormone nuclear receptors (TR)α1 and β to control gene expression. Triiodothyronine (T3), the receptor-ligand, is transported into the brain from the blood by the monocarboxylate transporter 8 (MCT8). Another source of brain T3 is from the local deiodination of thyroxine (T4) by type 2 deiodinase (DIO2). While these mechanisms are very similar in mice and humans, important species-specific differences confound our understanding of disease using mouse models. To fill this knowledge gap on thyroid hormone action in the human fetal brain, we analyzed the expression of transporters, DIO2, and TRs, which we call thyroid hormone effectors, at single-cell resolution. Methods: We analyzed publicly available single-cell transcriptome data sets of isolated cerebral cortex neural cells from three different studies, with expression data from 393 to almost 40,000 cells. We generated Uniform Manifold Approximation and Projection scatterplots and cell clusters to identify differentially expressed genes between clusters, and correlated their gene signatures with the expression of thyroid effectors. Results: The radial glia, mainly the outer radial glia, and astrocytes coexpress SLCO1C1 and DIO2, indicating close cooperation between the T4 transporter OATP1C1 and DIO2 in local T3 formation. Strikingly, THRB was mainly present in two classes of interneurons: a majority expressing CALB2/calretinin, from the caudal ganglionic eminence, and in somatostatin-expressing interneurons from the medial ganglionic eminence. By contrast, many cell types express SLC16A2 and THRA. Conclusions:SLCO1C1 and DIO2 coexpression in the outer radial glia, the universal stem cell of the cerebral cortex, highlights the likely importance of brain-generated T3 in neurogenesis. The unique expression of THRB in discrete subsets of interneurons is a novel finding whose pathophysiological meaning deserves further investigation.
Collapse
Affiliation(s)
- Diego Diez
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Beatriz Morte
- Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Bernal
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Iwai R, Ishii T, Fukushima Y, Okamoto T, Ichihashi M, Sasaki Y, Mizuatni KI. Matcha and Its Components Control Angiogenic Potential. J Nutr Sci Vitaminol (Tokyo) 2021; 67:118-125. [PMID: 33952732 DOI: 10.3177/jnsv.67.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The brain needs the appropriate capillary networks to maintain normal brain function. Since previous studies showed age-related decrease in the cortical capillaries, it is suggested that protection against capillary aging is critical for maintaining brain function. Epidemiological studies have indicated that brain functions were protected from age-related decline by the long-term consumption of matcha. However, whether matcha has protective effects on capillary aging has not been studied yet. In this study, we utilized Flt1-DsR mice that expressed a red fluorescent protein in vascular endothelial cells to visualize cortical capillaries clearly. We found that cortical capillary density decreased in aging Flt1-DsR mice. Our results of the aortic ring assay and tube formation assay revealed that matcha and its components vitamin K1 and lutein, which are abundant in matcha powder, enhanced the angiogenic potential. Moreover, we evaluated the effect of long-term ingestion of matcha on mouse cortical capillary aging by using imaging experiments. The capillary density of the Flt1-DsR mice, which were fed matcha-containing food, indicated the protective effects of matcha ingestion on capillary aging in a limited cortical layer. These results suggest that biological regulation of matcha and its components affect the angiogenic potential, which is related to the prevention of capillary aging.
Collapse
Affiliation(s)
- Ryota Iwai
- Graduate School of Food and Medicinal Sciences, Kobe Gakuin University.,Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Takeshi Ishii
- Graduate School of Food and Medicinal Sciences, Kobe Gakuin University
| | - Yoichi Fukushima
- Department of Health Food Sciences, University of Human Arts and Sciences
| | | | | | - Yasuto Sasaki
- Graduate School of Food and Medicinal Sciences, Kobe Gakuin University
| | | |
Collapse
|
33
|
Mizutani KI. [Spatiotemporally Dependent Vascularization Regulates Neural Stem and Progenitor Cells]. YAKUGAKU ZASSHI 2021; 141:335-341. [PMID: 33642501 DOI: 10.1248/yakushi.20-00198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels including arteries, veins, and capillaries, are densely spread throughout the body. One round of systemic blood circulation through these blood vessels occurs approximately every minute, and blood sent by the heart transports oxygen, nutrients, and fluid to cells throughout the body. This nourishes cells, tissues, and organs and maintains homeostasis. The relatively simple structure of blood vessels consists of endothelial cells surrounded by a basal lamina and pericytes covering the outer layer. However, blood vessels patterning markedly varies among tissues. The diversity and plasticity of vascular networks are considered vital for this system to facilitate distinct functions for each tissue. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. This vascular niche establishes specialized microenvironments through both direct physical contact and secreted-soluble factors. Here, we review advances in our understanding of how the vascular niche is utilized by neural stem and progenitor cells during neocortical development, and describe future perspectives regarding new treatment strategies for neural diseases utilizing this vascular niche.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
34
|
Namba T, Nardelli J, Gressens P, Huttner WB. Metabolic Regulation of Neocortical Expansion in Development and Evolution. Neuron 2020; 109:408-419. [PMID: 33306962 DOI: 10.1016/j.neuron.2020.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
The neocortex, the seat of our higher cognitive abilities, has expanded in size during the evolution of certain mammals such as primates, including humans. This expansion occurs during development and is linked to the proliferative capacity of neural stem and progenitor cells (NPCs) in the neocortex. A number of cell-intrinsic and cell-extrinsic factors have been implicated in increasing NPC proliferative capacity. However, NPC metabolism has only recently emerged as major regulator of NPC proliferation. In this Perspective, we summarize recent insights into the role of NPC metabolism in neocortical development and neurodevelopmental disorders and its relevance for neocortex evolution. We discuss certain human-specific genes and microcephaly-implicated genes that operate in, or at, the mitochondria of NPCs and stimulate their proliferation by promoting glutaminolysis. We also discuss other metabolic pathways and develop a perspective on how metabolism mechanistically regulates NPC proliferation in neocortical development and how this contributed to neocortex evolution.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
35
|
Di Marco B, Crouch EE, Shah B, Duman C, Paredes MF, Ruiz de Almodovar C, Huang EJ, Alfonso J. Reciprocal Interaction between Vascular Filopodia and Neural Stem Cells Shapes Neurogenesis in the Ventral Telencephalon. Cell Rep 2020; 33:108256. [PMID: 33053356 DOI: 10.1016/j.celrep.2020.108256] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis and neurogenesis are tightly coupled during embryonic brain development. However, little is known about how these two processes interact. We show that nascent blood vessels actively contact dividing neural stem cells by endothelial filopodia in the ventricular zone (VZ) of the murine ventral telencephalon; this association is conserved in the human ventral VZ. Using mouse mutants with altered vascular filopodia density, we show that this interaction leads to prolonged cell cycle of apical neural progenitors (ANPs) and favors early neuronal differentiation. Interestingly, pharmacological experiments reveal that ANPs induce vascular filopodia formation by upregulating vascular endothelial growth factor (VEGF)-A in a cell-cycle-dependent manner. This mutual relationship between vascular filopodia and ANPs works as a self-regulatory system that senses ANP proliferation rates and rapidly adjusts neuronal production levels. Our findings indicate a function of vascular filopodia in fine-tuning neural stem cell behavior, which is the basis for proper brain development.
Collapse
Affiliation(s)
- Barbara Di Marco
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim and Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim and Heidelberg University, Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany
| | - Ceren Duman
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mercedes F Paredes
- Department of Neurology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim and Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim and Heidelberg University, Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Watanabe C, Imaizumi T, Kawai H, Suda K, Honma Y, Ichihashi M, Ema M, Mizutani KI. Aging of the Vascular System and Neural Diseases. Front Aging Neurosci 2020; 12:557384. [PMID: 33132896 PMCID: PMC7550630 DOI: 10.3389/fnagi.2020.557384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrates have acquired complex high-order functions facilitated by the dispersion of vascular and neural networks to every corner of the body. Blood vessels deliver oxygen and nutrients to all cells and provide essential transport systems for removing waste products. For these functions, tissue vascularization must be spatiotemporally appropriate. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. Each capillary network is critical for maintaining proper brain function because age-related and disease-related impairment of cognitive function is associated with the loss or diminishment of brain capillaries. This review article highlights how structural and functional alterations in the brain vessels may change with age and neurogenerative diseases. Capillaries are also responsible for filtering toxic byproducts, providing an appropriate vascular environment for neuronal function. Accumulation of amyloid β is a key event in Alzheimer’s disease pathogenesis. Recent studies have focused on associations reported between Alzheimer’s disease and vascular aging. Furthermore, the glymphatic system and meningeal lymphatic systems contribute to a functional unit for clearance of amyloid β from the brain from the central nervous system into the cervical lymph nodes. This review article will also focus on recent advances in stem cell therapies that aim at repopulation or regeneration of a degenerating vascular system for neural diseases.
Collapse
Affiliation(s)
- Chisato Watanabe
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.,Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tsutomu Imaizumi
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Hiromi Kawai
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kazuma Suda
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yoichi Honma
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
37
|
Mizutani KI. [Neuro-vascular Interactions during Neocortical Development-Systematic and Accurate Regulatory Mechanisms of VEGF Signaling]. YAKUGAKU ZASSHI 2020; 140:521-527. [PMID: 32238635 DOI: 10.1248/yakushi.19-00221-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels supply oxygen and nutrients to all the cells in a living body, and provide essential transport routes for collecting waste products. For these functions, blood vessel networks should be appropriately formed in each tissue. Therefore, blood vessels are one of the earliest organs formed during the developmental process. Development of the blood vessel system promotes tissue differentiation and organ morphogenesis, allowing each organ to maintain its unique functions under changing metabolic conditions. Blood vessels have a relatively simple structure, consisting of endothelial cells covering the inner layer, and pericytes or smooth muscle cells surrounding the outside. The structure of the vascular network is extremely diverse, with blood vessels uniquely organized depending on the tissues they serve, to create tissue-specific microenvironments. How are such tissue-specific vascular environments generated? Over the years, anatomical findings have accumulated to confirm this vascular diversity. However, the molecular basis for this diversity has remained unclear. In the present article, we review the mechanisms of coordinated developmental control of the vascular and neural systems in the cerebral cortex from the viewpoint of the accurate expression control of vascular endothelial growth factor (VEGF) signaling, and describe future perspectives.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
38
|
Stepien BK, Naumann R, Holtz A, Helppi J, Huttner WB, Vaid S. Lengthening Neurogenic Period during Neocortical Development Causes a Hallmark of Neocortex Expansion. Curr Biol 2020; 30:4227-4237.e5. [PMID: 32888487 DOI: 10.1016/j.cub.2020.08.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
A hallmark of the evolutionary expansion of the neocortex is a specific increase in the number of neurons generated for the upper neocortical layers during development. The cause underlying this increase is unknown. Here, we show that lengthening the neurogenic period during neocortical development is sufficient to specifically increase upper-layer neuron generation. Thus, embryos of mouse strains with longer gestation exhibited a longer neurogenic period and generated more upper-layer, but not more deep-layer, neurons than embryos with shorter gestation. Accordingly, long-gestation embryos showed a greater abundance of neurogenic progenitors in the subventricular zone than short-gestation embryos at late stages of cortical neurogenesis. Analysis of a mouse-rat chimeric embryo, developing inside a rat mother, pointed to factors in the rat environment that influenced the upper-layer neuron generation by the mouse progenitors. Exploring a potential maternal source of such factors, short-gestation strain mouse embryos transferred to long-gestation strain mothers exhibited an increase in the length of the neurogenic period and upper-layer neuron generation. The opposite was the case for long-gestation strain mouse embryos transferred to short-gestation strain mothers, indicating a dominant maternal influence on the length of the neurogenic period and hence upper-layer neuron generation. In summary, our study uncovers a hitherto unknown link between embryonic cortical neurogenesis and the maternal gestational environment and provides experimental evidence that lengthening the neurogenic period during neocortical development underlies a key aspect of neocortical expansion.
Collapse
Affiliation(s)
- Barbara K Stepien
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Anja Holtz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jussi Helppi
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| |
Collapse
|
39
|
Kawasoe R, Shinoda T, Hattori Y, Nakagawa M, Pham TQ, Tanaka Y, Sagou K, Saito K, Katsuki S, Kotani T, Sano A, Fujimori T, Miyata T. Two-photon microscopic observation of cell-production dynamics in the developing mammalian neocortex in utero. Dev Growth Differ 2020; 62:118-128. [PMID: 31943159 PMCID: PMC7027555 DOI: 10.1111/dgd.12648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Morphogenesis and organ development should be understood based on a thorough description of cellular dynamics. Recent studies have explored the dynamic behaviors of mammalian neural progenitor cells (NPCs) using slice cultures in which three‐dimensional systems conserve in vivo‐like environments to a considerable degree. However, live observation of NPCs existing truly in vivo, as has long been performed for zebrafish NPCs, has yet to be established in mammals. Here, we performed intravital two‐photon microscopic observation of NPCs in the developing cerebral cortex of H2B‐EGFP or Fucci transgenic mice in utero. Fetuses in the uterine sac were immobilized using several devices and were observed through a window made in the uterine wall and the amniotic membrane while monitoring blood circulation. Clear visibility was obtained to the level of 300 μm from the scalp surface of the fetus, which enabled us to quantitatively assess NPC behaviors, such as division and interkinetic nuclear migration, within a neuroepithelial structure called the ventricular zone at embryonic day (E) 13 and E14. In fetuses undergoing healthy monitoring in utero for 60 min, the frequency of mitoses observed at the apical surface was similar to those observed in slice cultures and in freshly fixed in vivo specimens. Although the rate and duration of successful in utero observations are still limited (33% for ≥10 min and 14% for 60 min), further improvements based on this study will facilitate future understanding of how organogenetic cellular behaviors occur or are pathologically influenced by the systemic maternal condition and/or maternal‐fetal relationships.
Collapse
Affiliation(s)
- Ryotaro Kawasoe
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Shinoda
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Hattori
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Trung Quang Pham
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshihiro Tanaka
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Ken Sagou
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Saito
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Katsuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Sano
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Ohtomo R, Arai K. Recent updates on mechanisms of cell-cell interaction in oligodendrocyte regeneration after white matter injury. Neurosci Lett 2019; 715:134650. [PMID: 31770564 DOI: 10.1016/j.neulet.2019.134650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
In most cases, neurological disorders that involve injuries of the cerebral white matter are accompanied by demyelination and oligodendrocyte damage. Promotion of remyelination process through the maturation of oligodendrocyte precursor cells (OPCs) is therefore proposed to contribute to the development of novel therapeutic approaches that could protect and restore the white matter from central nervous system diseases. However, efficient remyelination in the white matter could not be accomplished if various neighboring cell types are not involved to react with oligodendrocyte lineage cells in this process. Hence, profound understanding of cell-cell interaction between oligodendrocyte lineage cells and other cellular components is an essential step to achieve a breakthrough for the cure of white matter injury. In this mini-review, we provide recent updates on non-cell autonomous mechanisms of oligodendrocyte regeneration by introducing recent studies (e.g. published either in 2018 or 2019) that focus on crosstalk between oligodendrocyte lineage cells and the other constituents of the white matter.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA; Department of Neurology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|