1
|
Shen Y, Chen JQ, Li XP. Differences between lung adenocarcinoma and lung squamous cell carcinoma: Driver genes, therapeutic targets, and clinical efficacy. Genes Dis 2025; 12:101374. [PMID: 40083325 PMCID: PMC11904499 DOI: 10.1016/j.gendis.2024.101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 06/22/2024] [Indexed: 03/16/2025] Open
Abstract
With the rapid advancements in second-generation gene sequencing technologies, a growing number of driver genes and associated therapeutic targets have been unveiled for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). While they are clinically classified as non-small cell lung cancer (NSCLC), they display distinct genomic features and substantial variations in clinical efficacy, underscoring the need for particular attention. Hence, this review provides a comprehensive overview of the latest advancements in driver genes, epigenetic targets, chemotherapy, targeted therapy, and immunotherapy for LUAD and LUSC. Additionally, it delves into the distinctions in signaling pathways and pivotal facets of clinical management specific to these two categories of lung cancer. Moreover, we furnish pertinent details regarding clinical trials pertaining to driver genes and epigenetics, thus establishing a theoretical foundation for the realization of precision treatments for LUAD and LUSC.
Collapse
Affiliation(s)
- Yue Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie-Qi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
2
|
Torres-Mejia E, Weng S, Whittaker CA, Nguyen KB, Duong E, Yim L, Spranger S. Lung Cancer-Intrinsic SOX2 Expression Mediates Resistance to Checkpoint Blockade Therapy by Inducing Treg-Dependent CD8+ T-cell Exclusion. Cancer Immunol Res 2025; 13:496-516. [PMID: 39745382 PMCID: PMC11964848 DOI: 10.1158/2326-6066.cir-24-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025]
Abstract
Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration, creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion. In this study, we find that tumor cell-intrinsic SOX2 signaling in non-small cell lung cancer induces the exclusion of cytotoxic T cells from the tumor core and promotes resistance to checkpoint blockade therapy. Mechanistically, tumor cell-intrinsic SOX2 expression upregulates CCL2 in tumor cells, resulting in increased recruitment of regulatory T cells (Treg). CD8+ T-cell exclusion depended on Treg-mediated suppression of tumor vasculature. Depleting tumor-infiltrating Tregs via glucocorticoid-induced TNF receptor-related protein restored CD8+ T-cell infiltration and, when combined with checkpoint blockade therapy, reduced tumor growth. These results show that tumor cell-intrinsic SOX2 expression in lung cancer serves as a mechanism of immunotherapy resistance and provide evidence to support future studies investigating whether patients with non-small cell lung cancer with SOX2-dependent CD8+ T-cell exclusion would benefit from the depletion of glucocorticoid-induced TNFR-related protein-positive Tregs.
Collapse
Affiliation(s)
- Elen Torres-Mejia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Sally Weng
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Wellesley College, Wellesley, MA 02481, USA
| | | | - Kim B. Nguyen
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ellen Duong
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139, USA
- Genentech, South San Francisco, CA 94080, USA
| | - Leon Yim
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Izzo LT, Reyes T, Meesala S, Ireland AS, Yang S, Sunil HS, Cheng XC, Tserentsoodol N, Hawgood SB, Patz EF, Witt BL, Tyson DR, O’Donnell KA, Oliver TG. KLF4 promotes a KRT13+ hillock-like state in squamous lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.641898. [PMID: 40161723 PMCID: PMC11952405 DOI: 10.1101/2025.03.10.641898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Lung squamous cell carcinoma (LUSC) is basal-like subtype of lung cancer with limited treatment options. While prior studies have identified tumor-propagating cell states in squamous tumors, the broader landscape of intra-tumoral heterogeneity within LUSC remains poorly understood. Here, we employ Sox2-driven mouse models, organoid cultures, and single-cell transcriptomic analyses to uncover previously unrecognized levels of cell fate diversity within LUSC. Specifically, we identify a KRT13+ hillock-like population of slower-dividing tumor cells characterized by immunomodulatory gene expression signatures. The tumor hillock-like state is conserved across multiple animal models and is present in the majority of human LUSCs as well as head and neck and esophageal squamous tumors. Our findings shed light on the cellular origins of lung hillock-like states: normal club cells give rise to tumors with luminal hillock-like populations, while basal-like tumor-propagating cells transition into basal hillock-like states, resembling homeostatic cellular responses to lung injury. Mechanistically, we identify KLF4 as a key transcriptional regulator of the hillock-like state, both necessary and sufficient to induce KRT13 expression. Together, these results provide new molecular insights into cell fate plasticity that underlies intra-tumoral heterogeneity in LUSC, offering potential avenues for new therapeutic strategies.
Collapse
Affiliation(s)
- Luke T. Izzo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Tony Reyes
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Srijan Meesala
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Steven Yang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Hari Shankar Sunil
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao Chun Cheng
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Nomi Tserentsoodol
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Edward F. Patz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kathryn A. O’Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Lead contact: Trudy G. Oliver
| |
Collapse
|
4
|
Ireland AS, Hawgood SB, Xie DA, Barbier MW, Lucas-Randolph S, Tyson DR, Zuo LY, Witt BL, Govindan R, Dowlati A, Moser JC, Puri S, Rudin CM, Chan JM, Elliott A, Oliver TG. Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623500. [PMID: 39605338 PMCID: PMC11601426 DOI: 10.1101/2024.11.13.623500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively1,2. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes3-13. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown. Using multiple genetically-engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovers unexpected transcriptional states and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss, and ASCL1 suppression, cooperate to promote tuft-like tumours. Transcriptomics of 944 human SCLCs reveal a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate remarkable conservation between cancer states and normal basal cell injury response mechanisms14-18. Together, these data suggest that the basal cell is a plausible origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity-offering new insights for targeting lineage plasticity.
Collapse
Affiliation(s)
- Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Daniel A. Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Margaret W. Barbier
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | | | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lisa Y. Zuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Sonam Puri
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
5
|
Seifzadeh SS, Borghei YS, Roknabadi N, Mowla SJ. A novel approach of differentiation of adenoma and carcinoma in lung cancer based on biogenic in situ synthesis of gold nanostructures on various oligonucleotide motifs. Mikrochim Acta 2024; 191:690. [PMID: 39438316 DOI: 10.1007/s00604-024-06744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
A unique approach is introduced for constructing gold nanocrystals (AuNCs) with RNA motif-directed morphologies in a sequence-independent manner and its applications in the clinical area are described. By using this method, a label-free LSPR-based detection method for the SOX2OT transcript, long non-coding RNAs (lncRNAs), which is a prognostic indicator of poor survival in lung cancer patients is presented. For the first time, we examined how the structural changes of RNA after the heteroduplex formation with a specific DNA probe can change the morphology and LSPR band of AuNCs. Using this method, is was possible to differentiate lung squamous cell carcinoma from adenocarcinoma samples without a need for a prior amplification of the target lncRNA. The approach of using specific DNA probe enables the in situ synthesis of nanocrystals in a different way and expands this method for future translational medicine, particularly detection of specific RNA.
Collapse
Affiliation(s)
- Seyedeh Saina Seifzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yasaman-Sadat Borghei
- Center for Bioscience & Technology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran.
| | - Nastaran Roknabadi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Lv L, Wei Q, Zhang J, Dong Y, Shan Z, Chang N, Zhao Y, Bian P, Yi Q. IGF2BP3 prevent HMGB1 mRNA decay in bladder cancer and development. Cell Mol Biol Lett 2024; 29:39. [PMID: 38504159 PMCID: PMC10949762 DOI: 10.1186/s11658-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND IGF2BP3 functions as an RNA-binding protein (RBP) and plays a role in the posttranscriptional control of mRNA localization, stability, and translation. Its dysregulation is frequently associated with tumorigenesis across various cancer types. Nonetheless, our understanding of how the expression of the IGF2BP3 gene is regulated remains limited. The specific functions and underlying mechanisms of IGF2BP3, as well as the potential benefits of targeting it for therapeutic purposes in bladder cancer, are not yet well comprehended. METHODS The mRNA and protein expression were examined by RT-qPCR and western blotting, respectively. The methylation level of CpG sites was detected by Bisulfite sequencing PCR (BSP). The regulation of IGF2BP3 expression by miR-320a-3p was analyzed by luciferase reporter assay. The functional role of IGF2BP3 was determined through proliferation, colony formation, wound healing, invasion assays, and xenograft mouse model. The regulation of HMGB1 by IGF2BP3 was investigated by RNA immunoprecipitation (RIP) and mRNA stability assays. RESULTS We observed a significant elevation in IGF2BP3 levels within bladder cancer samples, correlating with more advanced stages and grades, as well as an unfavorable prognosis. Subsequent investigations revealed that the upregulation of IGF2BP3 expression is triggered by copy number gain/amplification and promoter hypomethylation in various tumor types, including bladder cancer. Furthermore, miR-320a-3p was identified as another negative regulator in bladder cancer. Functionally, the upregulation of IGF2BP3 expression exacerbated bladder cancer progression, including the proliferation, migration, and invasion of bladder cancer. Conversely, IGF2BP3 silencing produced the opposite effects. Moreover, IGF2BP3 expression positively correlated with inflammation and immune infiltration in bladder cancer. Mechanistically, IGF2BP3 enhanced mRNA stability and promoted the expression of HMGB1 by binding to its mRNA, which is a factor that promotes inflammation and orchestrates tumorigenesis in many cancers. Importantly, pharmacological inhibition of HMGB1 with glycyrrhizin, a specific HMGB1 inhibitor, effectively reversed the cancer-promoting effects of IGF2BP3 overexpression in bladder cancer. Furthermore, the relationship between HMGB1 mRNA and IGF2PB3 is also observed in mammalian embryonic development, with the expression of both genes gradually decreasing as embryonic development progresses. CONCLUSIONS Our present study sheds light on the genetic and epigenetic mechanisms governing IGF2BP3 expression, underscoring the critical involvement of the IGF2BP3-HMGB1 axis in driving bladder cancer progression. Additionally, it advocates for the investigation of inhibiting IGF2BP3-HMGB1 as a viable therapeutic approach for treating bladder cancer.
Collapse
Affiliation(s)
- Lei Lv
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Qinqin Wei
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jianxiao Zhang
- Medical Consulting Center, Hebei Children's Hospital, Shijiazhuang, 050030, Hebei, China
| | - Yitong Dong
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhenglei Shan
- The Second Clinical College, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na Chang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, People's Republic of China
| | - Ye Zhao
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Po Bian
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Qiyi Yi
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Yu X, Yuan H, Yang Y, Zheng W, Zheng X, Lu SH, Jiang W, Yu X. Mammalian esophageal stratified tissue homeostasis is maintained distinctively by the epithelial pluripotent p63 +Sox2 + and p63 -Sox2 + cell populations. Cell Mol Life Sci 2023; 80:305. [PMID: 37752383 PMCID: PMC11072776 DOI: 10.1007/s00018-023-04952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Self-renewing, damage-repair and differentiation of mammalian stratified squamous epithelia are subject to tissue homeostasis, but the regulation mechanisms remain elusive. Here, we investigate the esophageal squamous epithelial tissue homeostasis in vitro and in vivo. We establish a rat esophageal organoid (rEO) in vitro system and show that the landscapes of rEO formation, development and maturation trajectories can mimic those of rat esophageal epithelia in vivo. Single-cell RNA sequencing (scRNA-seq), snapshot immunostaining and functional analyses of stratified "matured" rEOs define that the epithelial pluripotent stem cell determinants, p63 and Sox2, play crucial but distinctive roles for regulating mammalian esophageal tissue homeostasis. We identify two cell populations, p63+Sox2+ and p63-Sox2+, of which the p63+Sox2+ population presented at the basal layer is the cells of origin required for esophageal epithelial stemness maintenance and proliferation, whereas the p63-Sox2+ population presented at the suprabasal layers is the cells of origin having a dual role for esophageal epithelial differentiation (differentiation-prone fate) and rapid tissue damage-repair responses (proliferation-prone fate). Given the fact that p63 and Sox2 are developmental lineage oncogenes and commonly overexpressed in ESCC tissues, p63-Sox2+ population could not be detected in organoids formed by esophageal squamous cell carcinoma (ESCC) cell lines. Taken together, these findings reveal that the tissue homeostasis is maintained distinctively by p63 and/or Sox2-dependent cell lineage populations required for the tissue renewing, damage-repair and protection of carcinogenesis in mammalian esophagi.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Yuan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanan Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuejing Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Ni C, Buszczak M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev Biol 2023; 136:13-26. [PMID: 35440410 PMCID: PMC9569395 DOI: 10.1016/j.semcdb.2022.03.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The continued integrity of biological systems depends on a balance between interdependent elements at the molecular, cellular, and organismal levels. This is particularly true for the generation of ribosomes, which influence almost every aspect of cell and organismal biology. Ribosome biogenesis (RiBi) is an energetically demanding process that involves all three RNA polymerases, numerous RNA processing factors, chaperones, and the coordinated expression of 79-80 ribosomal proteins (r-proteins). Work over the last several decades has revealed that the dynamic regulation of ribosome production represents a major mechanism by which cells maintain homeostasis in response to changing environmental conditions and acute stress. More recent studies suggest that cells and tissues within multicellular organisms exhibit dramatically different levels of ribosome production and protein synthesis, marked by the differential expression of RiBi factors. Thus, distinct bottlenecks in the RiBi process, downstream of rRNA transcription, may exist within different cell populations of multicellular organisms during development and in adulthood. This review will focus on our current understanding of the mechanisms that link the complex molecular process of ribosome biogenesis with cellular and organismal physiology. We will discuss diverse topics including how different steps in the RiBi process are coordinated with one another, how MYC and mTOR impact RiBi, and how RiBi levels change between stem cells and their differentiated progeny. In turn, we will also review how regulated changes in ribosome production itself can feedback to influence cell fate and function.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
9
|
Su W, Hong T, Feng B, Yang Z, Lei G. A unique regulated cell death-related classification regarding prognosis and immune landscapes in non-small cell lung cancer. Front Immunol 2023; 14:1075848. [PMID: 36817452 PMCID: PMC9936314 DOI: 10.3389/fimmu.2023.1075848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Regulated cell death (RCD) contributes to reshaping the tumor immune microenvironment and participating in the progression of non-small cell lung cancer (NSCLC); however, related mechanisms have not been fully disclosed. Here, we identified 5 subclusters of NSCLC based on consensus clustering of 3429 RCD-associated genes in the TCGA database and depicted the genomic features and immune landscape of these clusters. Importantly, the clusters provided insights into recognizing tumor microenvironment (TME) and tumor responses to immunotherapy and chemotherapy. Further, we established and validated an RCD-Risk model based on RCD-associated genes, which strongly predicted the prognosis, TME, and immunotherapy outcomes in NSCLC patients. Notably, tissue microarray staining confirmed that the expression of LDLRAD3, a core gene in RCD-Risk model, correlated with poor survival. In conclusion, we developed a novel RCD classification system and RCD-Risk model of NSCLC, serving as a robust and promising predictor for prognosis and immunotherapy benefit of individual NSCLC patients.
Collapse
Affiliation(s)
- Wei Su
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Gynecology Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Pudong Hospital, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Hong
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Gynecology Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Baijie Feng
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhou Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guang Lei
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Yin N, Liu Y, Weems C, Shreeder B, Lou Y, Knutson KL, Murray NR, Fields AP. Protein kinase Cι mediates immunosuppression in lung adenocarcinoma. Sci Transl Med 2022; 14:eabq5931. [PMID: 36383684 PMCID: PMC11457891 DOI: 10.1126/scitranslmed.abq5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent form of non-small cell lung cancer (NSCLC) and a leading cause of cancer death. Immune checkpoint inhibitors (ICIs) of programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) signaling induce tumor regressions in a subset of LUAD, but many LUAD tumors exhibit resistance to ICI therapy. Here, we identified Prkci as a major determinant of response to ICI in a syngeneic mouse model of oncogenic mutant Kras/Trp53 loss (KP)-driven LUAD. Protein kinase Cι (PKCι)-dependent KP tumors exhibited resistance to anti-PD-1 antibody therapy (α-PD-1), whereas KP tumors in which Prkci was genetically deleted (KPI tumors) were highly responsive. Prkci-dependent resistance to α-PD-1 was characterized by enhanced infiltration of myeloid-derived suppressor cells (MDSCs) and decreased infiltration of CD8+ T cells in response to α-PD-1. Mechanistically, Prkci regulated YAP1-dependent expression of Cxcl5, which served to attract MDSCs to KP tumors. The PKCι inhibitor auranofin inhibited KP tumor growth and sensitized these tumors to α-PD-1, whereas expression of either Prkci or its downstream effector Cxcl5 in KPI tumors induced intratumoral infiltration of MDSCs and resistance to α-PD-1. PRKCI expression in tumors of patients with LUAD correlated with genomic signatures indicative of high YAP1-mediated transcription, elevated MDSC infiltration and low CD8+ T cell infiltration, and with elevated CXCL5/6 expression. Last, PKCι-YAP1 signaling was a biomarker associated with poor response to ICI in patients with LUAD. Our data indicate that immunosuppressive PKCι-YAP1-CXCL5 signaling is a key determinant of response to ICI, and pharmacologic inhibition of PKCι may improve therapeutic response to ICI in patients with LUAD.
Collapse
Affiliation(s)
- Ning Yin
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Capella Weems
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Barath Shreeder
- Department of Immunology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Nicole R. Murray
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Alan P. Fields
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| |
Collapse
|
11
|
Liang Y, Wang N, Zhang Y, Jiang W, Fang C, Feng Y, Ma H, Jiang F, Dong G. Self-restricted circular RNA circSOX2 suppressed the malignant progression in SOX2-amplified LUSC. Cell Death Dis 2022; 13:873. [PMID: 36243874 PMCID: PMC9568965 DOI: 10.1038/s41419-022-05288-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is a histological subtype of non-small cell lung cancer with the worse progression. SRY-Box Transcription Factor 2 (SOX2) copy number amplification (CNA) is the oncogenic driver in ~60% of patients diagnosed with LUSC. Thus, SOX2 represents an effective therapeutic target in SOX2-amplified LUSC. However, SOX2 protein was considered undruggable. Here, we report the expression of a circular RNA, cicSOX2 in SOX2-amplified LUSC. Patients with SOX2-CAN LUSC expressing circSOX2 manifested increased survival outcomes. CircSOX2 suppressed the proliferation, metastasis, and sphere formation in SOX2-amplified LUSC in vitro and in vivo. CircSOX2 originates in the reverse strand of the SOX2 gene and its sequence was reverse complement to partial 3'UTR of SOX2-coding transcript (mSOX2). CircSOX2 bound to AUF1 and occupied in the 3'UTR of mSOX2, inducing the degradation of mSOX2. In general, circSOX2 is an endogenous self-restricted circRNA in SOX2-amplified LUSC. CircSOX2 might be an effective and stable nucleic acid drug candidate in SOX2-amplified LUSC with low immunogenicity.
Collapse
Affiliation(s)
- Yingkuan Liang
- grid.429222.d0000 0004 1798 0228Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, 215000 Suzhou, China
| | - Nan Wang
- grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, 215000 Suzhou, China
| | - Yijian Zhang
- grid.452509.f0000 0004 1764 4566Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, 210009 Nanjing, China
| | - Wei Jiang
- grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, 215000 Suzhou, China
| | - Chen Fang
- grid.429222.d0000 0004 1798 0228Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Yu Feng
- grid.429222.d0000 0004 1798 0228Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Haitao Ma
- grid.429222.d0000 0004 1798 0228Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, 215000 Suzhou, China
| | - Feng Jiang
- grid.452509.f0000 0004 1764 4566Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, 210009 Nanjing, China
| | - Gaochao Dong
- grid.452509.f0000 0004 1764 4566Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, 210009 Nanjing, China
| |
Collapse
|
12
|
Xie S, Wan X, Chen S, Hu Y, Liu X. p21-activated kinase 2 binds to transcription factor SOX2 and up-regulates DEK to promote the progression of lung squamous cell carcinoma. J Transl Med 2022; 102:1109-1120. [PMID: 35821094 DOI: 10.1038/s41374-022-00808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Lung squamous cell carcinoma (LSCC) is a prevalent and progressive subtype of lung cancer. This study aimed to substantiate the regulatory effect of the PAK2/SOX2/DEK axis on the LSCC development. LSCC tissues (n = 83) and adjacent normal tissues were collected and SOX2 expression was determined by qRT-PCR and Western blotting. Correlation between SOX2 expression and the prognosis of LSCC patients was then explored utilizing Kaplan-Meier analysis. Co-immunoprecipitation and glutathione-S-transferase pull-down assays were conducted to validate the binding of SOX2 to DEK. Gain- and loss- of function assays were then performed on LSCC cells, with CCK-8 and Transwell assays applied to detect the malignant behaviors of cells. A mouse xenograft model of LSCC was further established for in vivo validation. The expression levels of SOX2, PAK2 and DEK were up-regulated in LSCC tissues and cells. SOX2 overexpression was correlated with poor prognosis of LSCC patients. Knockdown of SOX2 weakened the viability and the migratory and invasive potential of LSCC cells. Further, PAK2 directly interacted with SOX2. PAK2 overexpression accelerated the malignant phenotypes of LSCC cells through interplay with SOX2. Moreover, SOX2 activated the expression of DEK, and silencing DEK attenuated the malignant behaviors of LSCC cells. In conclusion, PAK2 could bind to the transcription factor SOX2 and thus activate the expression of DEK, thereby driving the malignant phenotypes of LSCC cells both in vivo and in vitro.
Collapse
Affiliation(s)
- Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China
| | - Shuyun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China
| | - Yan Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China.
| | - Xiaoming Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, P.R. China.
| |
Collapse
|
13
|
Xu Y, Xin W, Yan C, Shi Y, Li Y, Hu Y, Ying K. Organoids in lung cancer: A teenager with infinite growth potential. Lung Cancer 2022; 172:100-107. [PMID: 36041323 DOI: 10.1016/j.lungcan.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Despite the rapid advancement in lung cancer research, morbidity and mortality remain high in recent years. Therefore, deeper learning of the underlying molecular mechanisms of pathogenesis and discovery of novel effective therapeutic strategies of treatment in lung cancer research are around the corner. Among these, applying an efficient and reliable preclinical model would be a critical step that exists throughout the whole process. Traditional 2D models used in lung cancer research, including lung cancer cell lines and cell-derived xenograft models, cannot recapitulate the situations of patients due to the lack of a tumor microenvironment or tumor heterogeneity. Organoids, newly developed 3D in vitro structures, more comprehensively imitate the architecture, interaction and genetics of human organs. Cancer organoids, especially those derived from individual patients, can better resemble primary tumor tissues and thus have a greater potential for making breakthroughs in future cancer studies. Here, we mainly review recent advances in the methodologies and applications of lung cancer organoids, which are just developing but have huge potential.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Wanghao Xin
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Chao Yan
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Yangfeng Shi
- Department of Respiratory and Critical Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Yeping Li
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Yanjie Hu
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Inman KS, Liu Y, Scotti Buzhardt ML, Leitges M, Krishna M, Crawford HC, Fields AP, Murray NR. Prkci Regulates Autophagy and Pancreatic Tumorigenesis in Mice. Cancers (Basel) 2022; 14:796. [PMID: 35159064 PMCID: PMC8834021 DOI: 10.3390/cancers14030796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Protein kinase C iota (PKCι) functions as a bonafide human oncogene in lung and ovarian cancer and is required for KrasG12D-mediated lung cancer initiation and progression. PKCι expression is required for pancreatic cancer cell growth and maintenance of the transformed phenotype; however, nothing is known about the role of PKCι in pancreas development or pancreatic tumorigenesis. In this study, we investigated the effect of pancreas-specific ablation of PKCι expression on pancreatic cellular homeostasis, susceptibility to pancreatitis, and KrasG12D-mediated pancreatic cancer development. Knockout of pancreatic Prkci significantly increased pancreatic immune cell infiltration, acinar cell DNA damage, and apoptosis, but reduced sensitivity to caerulein-induced pancreatitis. Prkci-ablated pancreatic acinar cells exhibited P62 aggregation and a loss of autophagic vesicles. Loss of pancreatic Prkci promoted KrasG12D-mediated pancreatic intraepithelial neoplasia formation but blocked progression to adenocarcinoma, consistent with disruption of autophagy. Our results reveal a novel promotive role for PKCι in pancreatic epithelial cell autophagy and pancreatic cancer progression.
Collapse
Affiliation(s)
- Kristin S. Inman
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
- Environmental Health Perspectives/National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
| | - Michele L. Scotti Buzhardt
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
- Neogenomics Laboratories, Clinical Division, Charlotte, NC 28104, USA
| | - Michael Leitges
- Department of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1M 2V7, Canada;
| | - Murli Krishna
- Department of Pathology/Lab Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Howard C. Crawford
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Detroit, MI 48202, USA
| | - Alan P. Fields
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
| | - Nicole R. Murray
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (K.S.I.); (Y.L.); (M.L.S.B.); (H.C.C.); (A.P.F.)
| |
Collapse
|
15
|
Abdelatty A, Sun Q, Hu J, Wu F, Wei G, Xu H, Zhou G, Wang X, Xia H, Lan L. Pan-Cancer Study on Protein Kinase C Family as a Potential Biomarker for the Tumors Immune Landscape and the Response to Immunotherapy. Front Cell Dev Biol 2022; 9:798319. [PMID: 35174160 PMCID: PMC8841516 DOI: 10.3389/fcell.2021.798319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
The protein kinase C (PKC) family has been described with its role in some cancers, either as a promoter or suppressor. PKC signaling also regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha (PPARalpha). However, the role of different PKC enzymes in tumor immunity remains poorly defined. This study aims to investigate the correlation between PKC genes and tumor immunity, in addition to studying the probability of their use as predictive biomarkers for tumor immunity and immunotherapeutic response. The ssGSEA and the ESTIMATE methods were used to assess 28 tumor-infiltrating lymphocytes (TILs) and the immune component of each cancer, then correlated with PKC levels. Prediction of PKC levels-dependent immunotherapeutic response was based on human leukocytic antigen (HLA) gene enrichment scores and programmed cell death 1 ligand (PD-L1) expression. Univariate and multivariate Cox analysis was performed to evaluate the prognostic role of PKC genes in cancers. Methylation level and CNAs could drive the expression levels of some PKC members, especially PRKCI, whose CNGs are predicted to elevate their level in many cancer types. The most crucial finding in this study was that PKC isoenzymes are robust biomarkers for the tumor immune status, PRKCB, PRKCH, and PRKCQ as stimulators, while PRKCI and PRKCZ as inhibitors in most cancers. Also, PKC family gene levels can be used as predictors for the response to immunotherapies, especially HLAs dependent and PD-L1 blockade-dependent ones. In addition to its prognostic function, all PKC family enzymes are promising tumor immunity biomarkers and can help select suitable immune therapy in different cancers.
Collapse
Affiliation(s)
- Alaa Abdelatty
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fubing Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Guanqun Wei
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Haojun Xu
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| |
Collapse
|
16
|
Kenchappa RS, Liu Y, Argenziano MG, Banu MA, Mladek AC, West R, Luu A, Quiñones-Hinojosa A, Hambardzumyan D, Justilien V, Leitges M, Sarkaria JN, Sims PA, Canoll P, Murray NR, Fields AP, Rosenfeld SS. Protein kinase C ι and SRC signaling define reciprocally related subgroups of glioblastoma with distinct therapeutic vulnerabilities. Cell Rep 2021; 37:110054. [PMID: 34818553 PMCID: PMC9845019 DOI: 10.1016/j.celrep.2021.110054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023] Open
Abstract
We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.
Collapse
Affiliation(s)
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Argenziano
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Rita West
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Amanda Luu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Nicole R Murray
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | |
Collapse
|
17
|
Mapping lung squamous cell carcinoma pathogenesis through in vitro and in vivo models. Commun Biol 2021; 4:937. [PMID: 34354223 PMCID: PMC8342622 DOI: 10.1038/s42003-021-02470-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the main cause of cancer death worldwide, with lung squamous cell carcinoma (LUSC) being the second most frequent subtype. Preclinical LUSC models recapitulating human disease pathogenesis are key for the development of early intervention approaches and improved therapies. Here, we review advances and challenges in the generation of LUSC models, from 2D and 3D cultures, to murine models. We discuss how molecular profiling of premalignant lesions and invasive LUSC has contributed to the refinement of in vitro and in vivo models, and in turn, how these systems have increased our understanding of LUSC biology and therapeutic vulnerabilities.
Collapse
|
18
|
Dehner C, Moon CI, Zhang X, Zhou Z, Miller C, Xu H, Wan X, Yang K, Mashl J, Gosline SJ, Wang Y, Zhang X, Godec A, Jones PA, Dahiya S, Bhatia H, Primeau T, Li S, Pollard K, Rodriguez FJ, Ding L, Pratilas CA, Shern JF, Hirbe AC. Chromosome 8 gain is associated with high-grade transformation in MPNST. JCI Insight 2021; 6:146351. [PMID: 33591953 PMCID: PMC8026192 DOI: 10.1172/jci.insight.146351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most common malignancies affecting adults with Neurofibromatosis type 1 (NF1) is the malignant peripheral nerve sheath tumor (MPNST), an aggressive and often fatal sarcoma that commonly arises from benign plexiform neurofibromas. Despite advances in our understanding of MPNST pathobiology, there are few effective therapeutic options, and no investigational agents have proven successful in clinical trials. To further understand the genomic heterogeneity of MPNST, and to generate a preclinical platform that encompasses this heterogeneity, we developed a collection of NF1-MPNST patient-derived xenografts (PDX). These PDX were compared with the primary tumors from which they were derived using copy number analysis, whole exome sequencing, and RNA sequencing. We identified chromosome 8 gain as a recurrent genomic event in MPNST and validated its occurrence by FISH in the PDX and parental tumors, in a validation cohort, and by single-cell sequencing in the PDX. Finally, we show that chromosome 8 gain is associated with inferior overall survival in soft-tissue sarcomas. These data suggest that chromosome 8 gain is a critical event in MPNST pathogenesis and may account for the aggressive nature and poor outcomes in this sarcoma subtype.
Collapse
Affiliation(s)
| | - Chang In Moon
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Zhaohe Zhou
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chris Miller
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hua Xu
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,The First Affiliated Hospital, Nanchang University, Nangchang, China
| | - Xiaodan Wan
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,The First Affiliated Hospital, Nanchang University, Nangchang, China
| | - Kuangying Yang
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jay Mashl
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sara Jc Gosline
- Pacific Northwest National Laboratory, Seattle, Washington, USA
| | - Yuxi Wang
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Xiaochun Zhang
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abigail Godec
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul A Jones
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology and.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| | - Himanshi Bhatia
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tina Primeau
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shunqiang Li
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| | - Kai Pollard
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, John Hopkins University, Baltimore, Maryland, USA
| | - Li Ding
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Angela C Hirbe
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Pan Y, Han H, Labbe KE, Zhang H, Wong KK. Recent advances in preclinical models for lung squamous cell carcinoma. Oncogene 2021; 40:2817-2829. [PMID: 33707749 DOI: 10.1038/s41388-021-01723-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022]
Abstract
Lung squamous cell carcinoma (LUSC) represents a major subtype of non-small cell lung cancer with limited treatment options. Previous studies have elucidated the complex genetic landscape of LUSC and revealed multiple altered genes and pathways. However, in stark contrast to lung adenocarcinoma, few targetable driver mutations have been established so far and targeted therapies for LUSC remain unsuccessful. Immunotherapy has revolutionized LUSC treatment and is currently approved as the new standard of care. To gain a better understanding of the LUSC biology, improved modeling systems are urgently needed. Preclinical models, particularly those mimicking human disease with an intact tumor immune microenvironment, are an invaluable tool to study cancer development and evaluate new therapeutic targets. Here, we discuss recent advances in LUSC preclinical models, with a focus on genetically engineered mouse models (GEMMs) and organoids, in the context of evolving precision medicine and immunotherapy.
Collapse
Affiliation(s)
- Yuanwang Pan
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Han Han
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Kristen E Labbe
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Hua Zhang
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Choe JH, Mazambani S, Kim TH, Kim JW. Oxidative Stress and the Intersection of Oncogenic Signaling and Metabolism in Squamous Cell Carcinomas. Cells 2021; 10:606. [PMID: 33803326 PMCID: PMC8000417 DOI: 10.3390/cells10030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinomas (SCCs) arise from both stratified squamous and non-squamous epithelium of diverse anatomical sites and collectively represent one of the most frequent solid tumors, accounting for more than one million cancer deaths annually. Despite this prevalence, SCC patients have not fully benefited from recent advances in molecularly targeted therapy or immunotherapy. Rather, decades old platinum-based or radiation regimens retaining limited specificity to the unique characteristics of SCC remain first-line treatment options. Historically, a lack of a consolidated perspective on genetic aberrations driving oncogenic transformation and other such factors essential for SCC pathogenesis and intrinsic confounding cellular heterogeneity in SCC have contributed to a critical dearth in effective and specific therapies. However, emerging evidence characterizing the distinct genomic, epigenetic, and metabolic landscapes of SCC may be elucidating unifying features in a seemingly heterogeneous disease. In this review, by describing distinct metabolic alterations and genetic drivers of SCC revealed by recent studies, we aim to establish a conceptual framework for a previously unappreciated network of oncogenic signaling, redox perturbation, and metabolic reprogramming that may reveal targetable vulnerabilities at their intersection.
Collapse
Affiliation(s)
- Joshua H. Choe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Jung-whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
- Research and Development, VeraVerse Inc., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
21
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, Hashemi F, Makvandi P, Goharrizi MASB, Najafi M, Khan H. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell Signal 2021; 78:109871. [PMID: 33279671 DOI: 10.1016/j.cellsig.2020.109871] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CP) is a well-known chemotherapeutic agent with excellent clinical effects. The anti-tumor activity of CP has been demonstrated in different cancers such as breast, cervical, reproductive, lung, brain, and prostate cancers. However, resistance of cancer cells to CP chemotherapy has led to its failure in eradication of cancer cells, and subsequent death of patients with cancer. Fortunately, much effort has been put to identify molecular pathways and mechanisms involved in CP resistance/sensitivity. It seems that microRNAs (miRs) are promising candidates in mediating CP resistance/sensitivity, since they participate in different biological aspects of cells such as proliferation, migration, angiogenesis, and differentiation. In this review, we focus on miRs and their regulation in CP chemotherapy of lung cancer, as the most malignant tumor worldwide. Oncogenic miRs trigger CP resistance in lung cancer cells via targeting various pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. In contrast, onco-suppressor miRs inhibit oncogene pathways such as STAT3 to suppress CP resistance. These topics are discussed to determine the role of miRs in CP resistance/sensitivity. We also describe the upstream modulators of miRs such as lncRNAs, circRNAs, NF-κB, SOX2 and TRIM65 and their association with CP resistance/sensitivity in lung cancer cells. Finally, the effect of anti-tumor plant-derived natural compounds on miR expression during CP sensitivity of lung cancer cells is discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Owrang
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
22
|
Porter L, McCaughan F. SOX2 and squamous cancers. Semin Cancer Biol 2020; 67:154-167. [PMID: 32905832 DOI: 10.1016/j.semcancer.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/10/2019] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
SOX2 is a pleiotropic nuclear transcription factor with major roles in stem cell biology and in development. Over the last 10 years SOX2 has also been implicated as a lineage-specific oncogene, notably in squamous carcinomas but also neurological tumours, particularly glioblastoma. Squamous carcinomas (SQCs) comprise a common group of malignancies for which there are no targeted therapeutic interventions. In this article we review the molecular epidemiological and laboratory evidence linking SOX2 with squamous carcinogenesis, explore in detail the multifaceted impact of SOX2 in SQC, describe areas of uncertainty and highlight areas for potential future research.
Collapse
Affiliation(s)
- Linsey Porter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom
| | - Frank McCaughan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
23
|
Liu Y, Justilien V, Fields AP, Murray NR. Recurrent copy number gains drive PKCι expression and PKCι-dependent oncogenic signaling in human cancers. Adv Biol Regul 2020; 78:100754. [PMID: 32992230 DOI: 10.1016/j.jbior.2020.100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
PRKCI is frequently overexpressed in multiple human cancers, and PKCι expression is often prognostic for poor patient survival, indicating that elevated PKCι broadly plays an oncogenic role in the cancer phenotype. PKCι drives multiple oncogenic signaling pathways involved in transformed growth, and transgenic mouse models have revealed that PKCι is a critical oncogenic driver in both lung and ovarian cancers. We now report that recurrent 3q26 copy number gain (CNG) is the predominant genetic driver of PRKCI mRNA expression in all major human cancer types exhibiting such CNGs. In addition to PRKCI, CNG at 3q26 leads to coordinate CNGs of ECT2 and SOX2, two additional 3q26 genes that collaborate with PRKCI to drive oncogenic signaling and tumor initiation in lung squamous cell carcinoma. Interestingly however, whereas 3q26 CNG is a strong driver of PRKCI mRNA expression across all tumor types examined, it has differential effects on ECT2 and SOX2 mRNA expression. In some tumors types, particularly those with squamous histology, all three 3q26 oncogenes are coordinately overexpressed as a consequence of 3q26 CNG, whereas in other cancers only PRKCI and ECT2 mRNA are coordinately overexpressed. This distinct pattern of expression of 3q26 genes corresponds to differences in genomic signatures reflective of activation of specific PKCι oncogenic signaling pathways. In addition to highly prevalent CNG, some tumor types exhibit monoallelic loss of PRKCI. Interestingly, many tumors harboring monoallelic loss of PRKCI express significantly lower PRKCI mRNA and exhibit evidence of WNT/β-catenin signaling pathway activation, which we previously characterized as a major oncogenic pathway in a newly described, PKCι-independent molecular subtype of lung adenocarcinoma. Finally, we show that CNG-driven activation of PKCι oncogenic signaling predicts poor patient survival in many major cancer types. We conclude that CNG and monoallelic loss are the major determinants of tumor PRKCI mRNA expression across virtually all tumor types, but that tumor-type specific mechanisms determine whether these copy number alterations also drive expression of the collaborating 3q26 oncogenes ECT2 and SOX2, and the oncogenic PKCι signaling pathways activated through the collaborative action of these genes. Our analysis may be useful in identifying tumor-specific predictive biomarkers and effective PKCι-targeted therapeutic strategies in the multitude of human cancers harboring genetic activation of PRKCI.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Verline Justilien
- Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Alan P Fields
- Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Nicole R Murray
- Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
24
|
Sun S, Guo W, Wang Z, Wang X, Zhang G, Zhang H, Li R, Gao Y, Qiu B, Tan F, Gao Y, Xue Q, Gao S, He J. Development and validation of an immune-related prognostic signature in lung adenocarcinoma. Cancer Med 2020; 9:5960-5975. [PMID: 32592319 PMCID: PMC7433810 DOI: 10.1002/cam4.3240] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lung adenocarcinomas (LUAD) is the most common histological subtype of lung cancers. Tumor immune microenvironment (TIME) is involved in tumorigeneses, progressions, and metastases. This study is aimed to develop a robust immune-related signature of LUAD. METHODS A total of 1774 LUAD cases sourced from public databases were included in this study. Immune scores were calculated through ESTIMATE algorithm and weighted gene co-expression network analysis (WGCNA) was applied to identify immune-related genes. Stability selections and Lasso COX regressions were implemented to construct prognostic signatures. Validations and comparisons with other immune-related signatures were conducted in independent Gene Expression Omnibus (GEO) cohorts. Abundant infiltrated immune cells and pathway enrichment analyses were carried out, respectively, through ImmuCellAI and gene set enrichment analysis (GSEA). RESULTS In Cancer Genome Atlas (TCGA) LUAD cohorts, immune scores of higher levels were significantly associated with better prognoses (P < .05). Yellow (n = 270) and Blue (n = 764) colored genes were selected as immune-related genes, and after univariate Cox regression analysis (P < .005), a total of 133 genes were screened out for subsequent model constructions. A four-gene signature (ARNTL2, ECT2, PPIA, and TUBA4A) named IPSLUAD was developed through stability selection and Lasso COX regression. It was suggested by multivariate and subgroup analyses that IPSLUAD was an independent prognostic factor. It was suggested by Kaplan-Meier survival analysis that eight out of nine patients in high-risk groups had significantly worse prognoses in validation data sets (P < .05). IPSLUAD outperformed other signatures in two independent cohorts. CONCLUSIONS A robust immune-related prognostic signature with great performances in multiple LUAD cohorts was developed in this study.
Collapse
Affiliation(s)
- Sijin Sun
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Wei Guo
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Zhen Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Xin Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Guochao Zhang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Hao Zhang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Renda Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Yibo Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Bin Qiu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Fengwei Tan
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Yushun Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Qi Xue
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Shugeng Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Jie He
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| |
Collapse
|
25
|
Justilien V, Lewis KC, Meneses KM, Jamieson L, Murray NR, Fields AP. Protein kinase Cι promotes UBF1-ECT2 binding on ribosomal DNA to drive rRNA synthesis and transformed growth of non-small-cell lung cancer cells. J Biol Chem 2020; 295:8214-8226. [PMID: 32350115 DOI: 10.1074/jbc.ra120.013175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Indexed: 01/31/2023] Open
Abstract
Epithelial cell-transforming sequence 2 (ECT2) is a guanine nucleotide exchange factor for Rho GTPases that is overexpressed in many cancers and involved in signal transduction pathways that promote cancer cell proliferation, invasion, and tumorigenesis. Recently, we demonstrated that a significant pool of ECT2 localizes to the nucleolus of non-small-cell lung cancer (NSCLC) cells, where it binds the transcription factor upstream binding factor 1 (UBF1) on the promoter regions of ribosomal DNA (rDNA) and activates rDNA transcription, transformed cell growth, and tumor formation. Here, we investigated the mechanism by which ECT2 engages UBF1 on rDNA promoters. Results from ECT2 mutagenesis indicated that the tandem BRCT domain of ECT2 mediates binding to UBF1. Biochemical and MS-based analyses revealed that protein kinase Cι (PKCι) directly phosphorylates UBF1 at Ser-412, thereby generating a phosphopeptide-binding epitope that binds the ECT2 BRCT domain. Lentiviral shRNA knockdown and reconstitution experiments revealed that both a functional ECT2 BRCT domain and the UBF1 Ser-412 phosphorylation site are required for UBF1-mediated ECT2 recruitment to rDNA, elevated rRNA synthesis, and transformed growth. Our findings provide critical molecular insight into ECT2-mediated regulation of rDNA transcription in cancer cells and offer a rationale for therapeutic targeting of UBF1- and ECT2-stimulated rDNA transcription for the management of NSCLC.
Collapse
Affiliation(s)
- Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Kayla C Lewis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Kayleah M Meneses
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Lee Jamieson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Nicole R Murray
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| |
Collapse
|