1
|
Digman A, Pajarillo E, Kim S, Ajayi I, Son DS, Aschner M, Lee E. Tamoxifen induces protection against manganese toxicity by REST upregulation via the ER-α/Wnt/β-catenin pathway in neuronal cells. J Biol Chem 2025:108529. [PMID: 40280417 DOI: 10.1016/j.jbc.2025.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, with symptoms resembling Parkinson's disease (PD). The repressor element-1 silencing transcription factor (REST) has been shown to be neuroprotective in several neurological disorders, including PD, suggesting that identifying REST upregulation mechanisms is an important avenue for the development of novel therapeutics. 17β-estradiol (E2) activates the Wnt/β-catenin signaling, which is known to increase REST transcription. E2 and tamoxifen (TX), a selective estrogen receptor modulator, exerted protection against Mn toxicity. In this study, we tested if TX upregulates REST potentially via Wnt/β-catenin signaling in Cath.a-differentiated (CAD) neuronal cells using luciferase assay, qPCR, western blot analysis, immunocytochemistry, mutagenesis, chromatin immunoprecipitation, and electrophoretic mobility shift assay. TX (1 μM) increased REST promoter activities and mRNA/protein levels and attenuated Mn-decreased REST transcription in parallel with TX's protective effects against Mn (250 μM)-induced toxicity, potentially via Wnt. TX activated Wnt/β-catenin signaling by preventing β-catenin degradation via inactivation of glycogen synthase kinase-3 beta, leading to increased β-catenin levels and its nuclear translocation and binding to T-cell factor/lymphoid enhancer binding factor sites on Wnt- responsive elements (WRE) of the REST promoter. Mutation of WRE abolished TX-induced REST promoter activity. TX-induced Wnt signaling activation was primarily via the estrogen receptor (ER)-α, although ER-β and G protein-coupled estrogen receptor 1 also mediated TX's action on REST transcription. These findings underscore the critical role of Wnt/β-catenin signaling in TX-induced REST transcription, affording protection mechanisms against Mn toxicity and neurological disorders associated with REST dysfunction.
Collapse
Affiliation(s)
- Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Cong P, Huang X, Zhang Q, He M, Wan H, Wu Q, Wu H, Zhang Y, Cheng C, Tian L, Xiong L. DNMT3a Deficiency Contributes to Anesthesia/Surgery-Induced Synaptic Dysfunction and Cognitive Impairment in Aged Mice. Aging Cell 2025; 24:e14458. [PMID: 39722450 PMCID: PMC11984699 DOI: 10.1111/acel.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Perioperative neurocognitive disorder (PND) is a severe postoperative complication in older patients. Epigenetic changes are hallmarks of senescence and are closely associated with cognitive impairment. However, the effects of anesthesia and surgery on the aging brain's epigenetic regulatory mechanisms and its impact on cognitive impairment remain unclear. Using a laparotomy PND model, we report significant reduction in DNA methyltransferase 3a (DNMT3a) in hippocampal neurons of aged mice, which causes global DNA methylation decrease. Knockdown of DNMT3a leads to synaptic disorder and memory impairment in aged mice. Mechanistically, bisulfite sequencing revealed that DNMT3a deficiency reduces methylation in the LRG1 promoter region and promotes its transcription. We also show that activation of TGF-β signaling by the increase in LRG1 level, ultimately impacts the synaptic function. In contrast, both overexpressing DNMT3a or knockdown LRG1 in hippocampus can attenuate the synaptic disorders and rescue postoperative cognitive deficits in aged mice. Our results reveal that DNMT3a is a previously undefined mediator in the pathogenesis of PND, which couples epigenetic regulations with anesthesia/surgery-induced synaptic dysfunction and represents a therapeutic target to tackle PND.
Collapse
Affiliation(s)
- Peilin Cong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Mengfan He
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Hanxi Wan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qianqian Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Huanghui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yuxin Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chun Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Li Tian
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
3
|
Bou Najm D, Alame S, Takash Chamoun W. Unraveling the Role of Wnt Signaling Pathway in the Pathogenesis of Autism Spectrum Disorder (ASD): A Systematic Review. Mol Neurobiol 2025; 62:4971-4992. [PMID: 39489840 DOI: 10.1007/s12035-024-04558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Autism spectrum disorder (ASD), or simply autism, is a neurodevelopmental disorder characterized by social communication deficit, restricted interests, and repetitive behavior. Several studies suggested a link between autism and the dysregulation of the Wnt signaling pathway which is mainly involved in cell fate determination, cell migration, cell polarity, neural patterning, and organogenesis. Despite the absence of effective therapy, significant progress has been made in understanding the pathogenesis of ASD. Neuropharmacological studies showed that drugs acting on the Wnt pathway like Canagliflozin can alleviate autistic-like behavior in animal models. Hence, this pathway could potentially be a futuristic therapeutic target to mitigate autism's symptoms. This systematic review aims to collect and analyze evidence that elucidates how alterations in the Wnt pathway may contribute to the pathogenesis of autism in animal models at the molecular, cellular, and physiological levels. Comprehensive searches were conducted across multiple databases, including PubMed, Web of Science, Embase, and Scopus to identify relevant studies up to March 2024. The inclusion criteria encompassed experimental studies that focused on the link between autism and this pathway, and the quality assessment was ensured by SYRCLE's risk of bias tools. Collectively, the included articles highlighted the possible implication of this pathway in the abnormalities found in autism, which impacted processes such as energy metabolism, oxidative stress, and neurogenesis. These alterations could underlie autistic behavior by affecting synaptic transmission and mitochondrial function.
Collapse
Affiliation(s)
- Daniel Bou Najm
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon.
| | - Saada Alame
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon.
| | - Wafaa Takash Chamoun
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
4
|
Mossa A, Dierdorff L, Lukin J, Park Y, Fiorenzani C, Akpinar Z, Garcia-Forn M, De Rubeis S. Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624865. [PMID: 39605424 PMCID: PMC11601590 DOI: 10.1101/2024.11.22.624865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
DDX3X is an X-linked RNA helicases that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females. Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA translation. Female neurons display higher levels of ribosomal proteins and larger nucleoli, and these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic outgrowth in a sex- and dose-dependent manner in both female and male neurons, and dendritic spine development only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Collapse
|
5
|
Co M, O'Brien GK, Wright KM, O'Roak BJ. Detailed phenotyping of Tbr1-2A-CreER knock-in mice demonstrates significant impacts on TBR1 protein levels and axon development. Autism Res 2024. [PMID: 39548698 DOI: 10.1002/aur.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Cre recombinase knock-in mouse lines have served as invaluable genetic tools for understanding key developmental processes altered in autism. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame before the stop codon of the transcription factor gene Tbr1. Heterozygous TBR1 mutations in humans and mice are known to cause autism or autism-like behavioral phenotypes accompanied by structural brain malformations, most frequently a reduction of the anterior commissure (AC). Thus, it is critical for modified versions of Tbr1 to exhibit true wild-type-like activity. We evaluated the Tbr1-2A-CreER allele for its potential impact on Tbr1 function and complementation to Tbr1 loss-of-function alleles. In mice with one copy of the Tbr1-2A-CreER allele, we identified reduction of TBR1 protein in early postnatal cortex along with thinning of the AC, suggesting hypersensitivity of this structure to TBR1 dosage. Comparing Tbr1-2A-CreER and Tbr1-null mice to Tbr1-null complementation crosses showed reductions of TBR1 dosage ranging from 20% to 100%. Using six combinatorial genotypes, we found that moderate to severe TBR1 reductions (≥44%) were associated with cortical layer 5 expansion, while only the complete absence of TBR1 was associated with reeler-like "inverted" cortical layering. In total, these results strongly support the conclusion that Tbr1-2A-CreER is a hypomorphic allele. We advise caution when interpreting experiments using this allele, considering the sensitivity of various corticogenic processes to TBR1 dosage and the association of heterozygous TBR1 mutations with complex neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Grace K O'Brien
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Gong M, Li J, Qin Z, Machado Bressan Wilke MV, Liu Y, Li Q, Liu H, Liang C, Morales-Rosado JA, Cohen ASA, Hughes SS, Sullivan BR, Waddell V, van den Boogaard MJH, van Jaarsveld RH, van Binsbergen E, van Gassen KL, Wang T, Hiatt SM, Amaral MD, Kelley WV, Zhao J, Feng W, Ren C, Yu Y, Boczek NJ, Ferber MJ, Lahner C, Elliott S, Ruan Y, Mignot C, Keren B, Xie H, Wang X, Popp B, Zweier C, Piard J, Coubes C, Mau-Them FT, Safraou H, Innes AM, Gauthier J, Michaud JL, Koboldt DC, Sylvie O, Willems M, Tan WH, Cogne B, Rieubland C, Braun D, McLean SD, Platzer K, Zacher P, Oppermann H, Evenepoel L, Blanc P, El Khattabi L, Haque N, Dsouza NR, Zimmermann MT, Urrutia R, Klee EW, Shen Y, Du H, Rappaport L, Liu CM, Chen X. MARK2 variants cause autism spectrum disorder via the downregulation of WNT/β-catenin signaling pathway. Am J Hum Genet 2024; 111:2392-2410. [PMID: 39419027 PMCID: PMC11568763 DOI: 10.1016/j.ajhg.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Microtubule affinity-regulating kinase 2 (MARK2) contributes to establishing neuronal polarity and developing dendritic spines. Although large-scale sequencing studies have associated MARK2 variants with autism spectrum disorder (ASD), the clinical features and variant spectrum in affected individuals with MARK2 variants, early developmental phenotypes in mutant human neurons, and the pathogenic mechanism underlying effects on neuronal development have remained unclear. Here, we report 31 individuals with MARK2 variants and presenting with ASD, other neurodevelopmental disorders, and distinctive facial features. Loss-of-function (LoF) variants predominate (81%) in affected individuals, while computational analysis and in vitro expression assay of missense variants supported the effect of MARK2 loss. Using proband-derived and CRISPR-engineered isogenic induced pluripotent stem cells (iPSCs), we show that MARK2 loss leads to early neuronal developmental and functional deficits, including anomalous polarity and dis-organization in neural rosettes, as well as imbalanced proliferation and differentiation in neural progenitor cells (NPCs). Mark2+/- mice showed abnormal cortical formation and partition and ASD-like behavior. Through the use of RNA sequencing (RNA-seq) and lithium treatment, we link MARK2 loss to downregulation of the WNT/β-catenin signaling pathway and identify lithium as a potential drug for treating MARK2-associated ASD.
Collapse
Affiliation(s)
- Maolei Gong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jiayi Li
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Yijun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Haoran Liu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Chen Liang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Joel A Morales-Rosado
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana S A Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children's Mercy-Kansas City, Kansas City, MO, USA; The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Susan S Hughes
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Bonnie R Sullivan
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Valerie Waddell
- Department of Neurology, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Richard H van Jaarsveld
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Koen L van Gassen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Autism Research Center, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Jianbo Zhao
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weixing Feng
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital affiliated with Capital University of Medical Sciences, Beijing, China
| | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Ferber
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Carrie Lahner
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Sherr Elliott
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Yiyan Ruan
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière et Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière et Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyan Wang
- Department of Children's Nutrition Research Center, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany; Berlin Institute of Health at Charité-Universitäts medizin Berlin, Center of Functional Genomics, Hessische Straße 4A, Berlin, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France; UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée Hôpital Arnaud de Villeneuve, 34295 Montpellier Cedex, Dijon, France
| | - Frederic Tran Mau-Them
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, Dijon, France; Inserm UMR1231 GAD, 21000 Dijon, France
| | - Hana Safraou
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, Dijon, France; Inserm UMR1231 GAD, 21000 Dijon, France
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julie Gauthier
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Jacques L Michaud
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Daniel C Koboldt
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Odent Sylvie
- Service de Génétique clinique, CHU Rennes, ERN ITHACA, Rennes, France; University Rennes, CNRS, INSERM, IGDR (Institut de Génétique et développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Inserm U1298, INM, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Scott Douglas McLean
- Division of Clinical Genetics, The Children's Hospital of San Antonio, San Antonio, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Dresden-Radeberg, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Lucie Evenepoel
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Avenue Hippocrate 10-1200, Brussels, Belgium
| | - Pierre Blanc
- Sorbonne Université, Department of Medical Genetics, APHP, Pitié-Salpêtrière hospital, Paris Brain Institute-ICM, Laboratoire SeqOIA-PFMG2025, Paris, France
| | - Laïla El Khattabi
- Department of Medical Genetics, APHP, Armand Trousseau and Pitié-Salpêtrière hospitals, Brain Development team, Paris Brain Institute-ICM, Sorbonne Université, Paris, France; Laboratoire SeqOIA-PFMG2025, Paris, France
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikita R Dsouza
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric W Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Yiping Shen
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; SynerGene Education, Hejun College, Huichang Jiangxi, China
| | - Hongzhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Leonard Rappaport
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Fazel Darbandi S, An JY, Lim K, Page NF, Liang L, Young DM, Ypsilanti AR, State MW, Nord AS, Sanders SJ, Rubenstein JLR. Five autism-associated transcriptional regulators target shared loci proximal to brain-expressed genes. Cell Rep 2024; 43:114329. [PMID: 38850535 PMCID: PMC11235582 DOI: 10.1016/j.celrep.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Many autism spectrum disorder (ASD)-associated genes act as transcriptional regulators (TRs). Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify the regulatory targets of ARID1B, BCL11A, FOXP1, TBR1, and TCF7L2, ASD-associated TRs in the developing human and mouse cortex. These TRs shared substantial overlap in the binding sites, especially within open chromatin. The overlap within a promoter region, 1-2,000 bp upstream of the transcription start site, was highly predictive of brain-expressed genes. This signature was observed in 96 out of 102 ASD-associated genes. In vitro CRISPRi against ARID1B and TBR1 delineated downstream convergent biology in mouse cortical cultures. After 8 days, NeuN+ and CALB+ cells were decreased, GFAP+ cells were increased, and transcriptomic signatures correlated with the postmortem brain samples from individuals with ASD. We suggest that functional convergence across five ASD-associated TRs leads to shared neurodevelopmental outcomes of haploinsufficient disruption.
Collapse
Affiliation(s)
- Siavash Fazel Darbandi
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joon-Yong An
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
| | - Kenneth Lim
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas F Page
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lindsay Liang
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David M Young
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Athena R Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew W State
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Stephan J Sanders
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Developmental and Regenerative Medicine, Old Road Campus, Roosevelt Dr., Headington, Oxford OX3 7TY, UK.
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Yu Z, Li J, Deng Y, Li C, Ye M, Zhang Y, Huang Y, Wang X, Zhao X, Liu J, Liu Z, Yin X, Mei L, Hou Y, Hu Q, Huang Y, Wang R, Fu H, Qiu R, Xu J, Gong Z, Zhang D, Zhang X. Lung tumor discrimination by deep neural network model CanDo via DNA methylation in bronchial lavage. iScience 2024; 27:110079. [PMID: 38883836 PMCID: PMC11176796 DOI: 10.1016/j.isci.2024.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Bronchoscopic-assisted discrimination of lung tumors presents challenges, especially in cases with contraindications or inaccessible lesions. Through meta-analysis and validation using the HumanMethylation450 database, this study identified methylation markers for molecular discrimination in lung tumors and designed a sequencing panel. DNA samples from 118 bronchial washing fluid (BWF) specimens underwent enrichment via multiplex PCR before targeted methylation sequencing. The Recursive Feature Elimination Cross-Validation and deep neural network algorithm established the CanDo classification model, which incorporated 11 methylation features (including 8 specific to the TBR1 gene), demonstrating a sensitivity of 98.6% and specificity of 97.8%. In contrast, bronchoscopic rapid on-site evaluation (bronchoscopic-ROSE) had lower sensitivity (87.7%) and specificity (80%). Further validation in 33 individuals confirmed CanDo's discriminatory potential, particularly in challenging cases for bronchoscopic-ROSE due to pathological complexity. CanDo serves as a valuable complement to bronchoscopy for the discriminatory diagnosis and stratified management of lung tumors utilizing BWF specimens.
Collapse
Affiliation(s)
- Zezhong Yu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jieyi Li
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing 314033, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Yi Deng
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chun Li
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Maosong Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuqing Huang
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Xintao Wang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing 314033, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Xiaokai Zhao
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing 314033, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Jie Liu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zilong Liu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xia Yin
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijiang Mei
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingyong Hou
- Department of Pathology Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qin Hu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yao Huang
- Department of Pulmonary, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210046, China
| | - Rongping Wang
- Department of Pulmonary, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210046, China
| | - Huiyu Fu
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Rumeng Qiu
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Jiahuan Xu
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Ziying Gong
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing 314033, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
- Department of R&D, Shanghai Yunying Biopharmaceutical Technology Co., Ltd., Shanghai 201612, China
| | - Daoyun Zhang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing 314033, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
- Department of R&D, Shanghai Yunying Biopharmaceutical Technology Co., Ltd., Shanghai 201612, China
| | - Xin Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Pulmonary, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210046, China
| |
Collapse
|
9
|
Co M, O'Brien GK, Wright KM, O'Roak BJ. Detailed phenotyping of Tbr1-2A-CreER knock-in mice demonstrates significant impacts on TBR1 protein levels and axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588147. [PMID: 38617321 PMCID: PMC11014564 DOI: 10.1101/2024.04.04.588147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Spatiotemporal control of Cre-mediated recombination has been an invaluable tool for understanding key developmental processes. For example, knock-in of Cre into cell type marker gene loci drives Cre expression under endogenous promoter and enhancer sequences, greatly facilitating the study of diverse neuronal subtypes in the cerebral cortex. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame just before the stop codon of the transcription factor gene Tbr1 . Heterozygous TBR1 mutations in humans and mice are known to cause autism or autism-like behavioral phenotypes accompanied by structural brain malformations, most frequently a reduction of the anterior commissure. Thus, it is critical for modified versions of Tbr1 to exhibit true wild-type-like activity. We evaluated the Tbr1-2A-CreER allele for its potential impact on Tbr1 function and complementation to Tbr1 loss-of-function alleles. In mice with one copy of the Tbr1-2A-CreER allele, we identified reduction of TBR1 protein in early postnatal cortex along with thinning of the anterior commissure, suggesting hypersensitivity of this structure to TBR1 dosage. Comparing Tbr1-2A-CreER and Tbr1 -null heterozygous and homozygous mice to Tbr1 -null complementation crosses showed reductions of TBR1 dosage ranging from 28.4% to 95.9%. Using these combinatorial genotypes, we found that low levels of TBR1 protein (∼16%) are sufficient to establish cortical layer positioning, while greater levels (>50%) are required for normal suppression of layer 5 identity. In total, these results strongly support the conclusion that Tbr1-2A-CreER is a hypomorphic allele. We advise caution when interpreting experiments using this allele, such as transcriptomic studies, considering the sensitivity of various corticogenic processes to TBR1 dosage and the association of heterozygous TBR1 mutations with complex neurodevelopmental disorders.
Collapse
|
10
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
11
|
Qin D, Wang C, Li D, Guo S. Exosomal miR-23a-3p derived from human umbilical cord mesenchymal stem cells promotes remyelination in central nervous system demyelinating diseases by targeting Tbr1/Wnt pathway. J Biol Chem 2024; 300:105487. [PMID: 37995941 PMCID: PMC10716775 DOI: 10.1016/j.jbc.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Oligodendrocyte precursor cells are present in the adult central nervous system, and their impaired ability to differentiate into myelinating oligodendrocytes can lead to demyelination in patients with multiple sclerosis, accompanied by neurological deficits and cognitive impairment. Exosomes, small vesicles released by cells, are known to facilitate intercellular communication by carrying bioactive molecules. In this study, we utilized exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs-Exos). We performed sequencing and bioinformatics analysis of exosome-treated cells to demonstrate that HUMSCs-Exos can stimulate myelin gene expression in oigodendrocyte precursor cells. Functional investigations revealed that HUMSCs-Exos activate the Pi3k/Akt pathway and regulate the Tbr1/Wnt signaling molecules through the transfer of miR-23a-3p, promoting oligodendrocytes differentiation and enhancing the expression of myelin-related proteins. In an experimental autoimmune encephalomyelitis model, treatment with HUMSCs-Exos significantly improved neurological function and facilitated remyelination. This study provides cellular and molecular insights into the use of cell-free exosome therapy for central nervous system demyelination associated with multiple sclerosis, demonstrating its great potential for treating demyelinating and neurodegenerative diseases.
Collapse
Affiliation(s)
- Danqing Qin
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Dong Li
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China.
| |
Collapse
|
12
|
Szewczyk LM, Lipiec MA, Liszewska E, Meyza K, Urban-Ciecko J, Kondrakiewicz L, Goncerzewicz A, Rafalko K, Krawczyk TG, Bogaj K, Vainchtein ID, Nakao-Inoue H, Puscian A, Knapska E, Sanders SJ, Jan Nowakowski T, Molofsky AV, Wisniewska MB. Astrocytic β-catenin signaling via TCF7L2 regulates synapse development and social behavior. Mol Psychiatry 2024; 29:57-73. [PMID: 37798419 PMCID: PMC11078762 DOI: 10.1038/s41380-023-02281-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
The Wnt/β-catenin pathway contains multiple high-confidence risk genes that are linked to neurodevelopmental disorders, including autism spectrum disorder. However, its ubiquitous roles across brain cell types and developmental stages have made it challenging to define its impact on neural circuit development and behavior. Here, we show that TCF7L2, which is a key transcriptional effector of the Wnt/β-catenin pathway, plays a cell-autonomous role in postnatal astrocyte maturation and impacts adult social behavior. TCF7L2 was the dominant Wnt effector that was expressed in both mouse and human astrocytes, with a peak during astrocyte maturation. The conditional knockout of Tcf7l2 in postnatal astrocytes led to an enlargement of astrocytes with defective tiling and gap junction coupling. These mice also exhibited an increase in the number of cortical excitatory and inhibitory synapses and a marked increase in social interaction by adulthood. These data reveal an astrocytic role for developmental Wnt/β-catenin signaling in restricting excitatory synapse numbers and regulating adult social behavior.
Collapse
Affiliation(s)
- Lukasz Mateusz Szewczyk
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Marcin Andrzej Lipiec
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ludwika Kondrakiewicz
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Goncerzewicz
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ilia Davidovich Vainchtein
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Johnson & Johnson, Neuroscience Therapeutic Area, San Diego, CA, USA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Alicja Puscian
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- New York Genome Center, New York, NY, USA
| | - Tomasz Jan Nowakowski
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Anna Victoria Molofsky
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| | - Marta Barbara Wisniewska
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
13
|
Beard DC, Zhang X, Wu DY, Martin JR, Erickson A, Boua JV, Hamagami N, Swift RG, McCullough KB, Ge X, Bell-Hensley A, Zheng H, Palmer CW, Fuhler NA, Lawrence AB, Hill CA, Papouin T, Noguchi KK, McAlinden A, Garbow JR, Dougherty JD, Maloney SE, Gabel HW. Distinct disease mutations in DNMT3A result in a spectrum of behavioral, epigenetic, and transcriptional deficits. Cell Rep 2023; 42:113411. [PMID: 37952155 PMCID: PMC10843706 DOI: 10.1016/j.celrep.2023.113411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.
Collapse
Affiliation(s)
- Diana C Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiyun Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jenna R Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alyssa Erickson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jane Valeriane Boua
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G Swift
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongjun Zheng
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cory W Palmer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin B Lawrence
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Cheryl A Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Audrey McAlinden
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Quesnel KM, Martin-Kenny N, Bérubé NG. A mouse model of ATRX deficiency with cognitive deficits and autistic traits. J Neurodev Disord 2023; 15:39. [PMID: 37957569 PMCID: PMC10644498 DOI: 10.1186/s11689-023-09508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND ATRX is an ATP-dependent chromatin remodeling protein with essential roles in safeguarding genome integrity and modulating gene expression. Deficiencies in this protein cause ATR-X syndrome, a condition characterized by intellectual disability and an array of developmental abnormalities, including features of autism. Previous studies demonstrated that deleting ATRX in mouse forebrain excitatory neurons postnatally resulted in male-specific memory deficits, but no apparent autistic-like behaviours. METHODS We generated mice with an earlier embryonic deletion of ATRX in forebrain excitatory neurons and characterized their behaviour using a series of memory and autistic-related paradigms. RESULTS We found that mutant mice displayed a broader spectrum of impairments, including fear memory, decreased anxiety-like behaviour, hyperactivity, as well as self-injurious and repetitive grooming. Sex-specific alterations were also observed, including male-specific aggression, sensory gating impairments, and decreased social memory. CONCLUSIONS Collectively, the findings indicate that early developmental abnormalities arising from ATRX deficiency in forebrain excitatory neurons contribute to the presentation of fear memory deficits as well as autistic-like behaviours.
Collapse
Affiliation(s)
- Katherine M Quesnel
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nicole Martin-Kenny
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nathalie G Bérubé
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Paediatrics, Western University, London, Canada.
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada.
- Department of Oncology, Western University, London, Canada.
| |
Collapse
|
15
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
16
|
Bian J, Ding Y, Wang S, Jiang Y, Wang M, Wei K, Si L, Zhao X, Shao Y. Celastrol confers ferroptosis resistance via AKT/GSK3β signaling in high-fat diet-induced cardiac injury. Free Radic Biol Med 2023; 200:36-46. [PMID: 36906189 DOI: 10.1016/j.freeradbiomed.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Obesity-induced cardiac dysfunction is a severe global disease associated with high dietary fat intake, and its pathogenesis includes inflammation, oxidative stress, and ferroptosis. Celastrol (Cel) is a bioactive compound isolated from the herb Tripterygium wilfordii, which has a protective influence on cardiovascular diseases. In this study, the role of Cel in obesity-induced ferroptosis and cardiac injury was investigated. We found that Cel alleviated ferroptosis induced by Palmitic acid (PA), exhibiting a decrease in the LDH, CK-MB, Ptgs2, and Lipid Peroxidation levels. After cardiomyocytes were treated with additional LY294002 and LiCl, Cel exerted its protective effect through increased AKT/GSK3β phosphorylation and decreased level of lipid peroxidation and Mitochondrial ROS. The systolic left ventricle (LV) dysfunction of obese mice was alleviated via ferroptosis inhibition by elevated p-GSK3β and decreased Mitochondrial ROS under Cel treatment. Moreover, mitochondrial anomalies included swelling and distortion in the myocardium which was relieved with Cel. In conclusion, our results demonstrate that ferroptosis resistance with Cel under HFD conditions targets AKT/GSK3β signaling, which provides novel therapeutic strategies in obesity-induced cardiac injury.
Collapse
Affiliation(s)
- Jinhui Bian
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yi Ding
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Song Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yefan Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Mingyan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Ke Wei
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xin Zhao
- Department of Health Management Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
17
|
McHale-Matthews AC, DeCampo DM, Love T, Cameron JL, Fudge JL. Immature neurons in the primate amygdala: changes with early development and disrupted early environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528076. [PMID: 36798176 PMCID: PMC9934690 DOI: 10.1101/2023.02.10.528076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In human and nonhuman primates, the amygdala paralaminar nucleus (PL) contains immature neurons. To explore the PL’s potential for cellular growth during development, we compared PL cells in 1) infant and adolescent macaques (control, maternally-reared), and in 2) infant macaques that experienced separation from their mother in the first month of life. In maternally-reared animals, the adolescent PL had fewer immature neurons, more mature neurons, and larger immature soma volumes compared to infant PL. There were also fewer total neurons (immature plus mature) in adolescent versus infant PL, suggesting that some neurons move out of the PL by adolescence. Maternal separation did not change mean immature or mature neuron counts in infant PL. However, across all infant animals, immature neuron soma volume was strongly correlated with mature neuron counts. tbr-1 mRNA, a transcript required for glutamatergic neuron maturation, is significantly reduced in the maternally-separated infant PL (DeCampo et al, 2017), and was also positively correlated with mature neuron counts in infant PL. We conclude that immature neurons gradually mature by adolescence, and that the stress of maternal separation may shift this trajectory, as revealed by correlations between tbr1mRNA and mature neuron numbers across animals.
Collapse
Affiliation(s)
| | | | - Tanzy Love
- University of Rochester, School of Medicine and Dentistry, Department of Biostatistics, Rochester, NY 14642
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Julie L Fudge
- University of Rochester, School of Medicine and Dentistry Department of Neuroscience Rochester, NY 14642
- University of Rochester, School of Medicine and Dentistry, Department of Psychiatry Rochester, NY 14642
| |
Collapse
|
18
|
Jones ME, Büchler J, Dufor T, Palomer E, Teo S, Martin-Flores N, Boroviak K, Metzakopian E, Gibb A, Salinas PC. A genetic variant of the Wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eabo7421. [PMID: 36638182 PMCID: PMC10624429 DOI: 10.1126/sciadv.abo7421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Synapse loss strongly correlates with cognitive decline in Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Deficient Wnt signaling contributes to synapse dysfunction and loss in AD. Consistently, a variant of the LRP6 receptor, (LRP6-Val), with reduced Wnt signaling, is linked to late-onset AD. However, the impact of LRP6-Val on the healthy and AD brain has not been examined. Knock-in mice, generated by gene editing, carrying this Lrp6 variant develop normally. However, neurons from Lrp6-val mice do not respond to Wnt7a, a ligand that promotes synaptic assembly through the Frizzled-5 receptor. Wnt7a stimulates the formation of the low-density lipoprotein receptor-related protein 6 (LRP6)-Frizzled-5 complex but not if LRP6-Val is present. Lrp6-val mice exhibit structural and functional synaptic defects that become pronounced with age. Lrp6-val mice present exacerbated synapse loss around plaques when crossed to the NL-G-F AD model. Our findings uncover a previously unidentified role for Lrp6-val in synapse vulnerability during aging and AD.
Collapse
Affiliation(s)
- Megan E. Jones
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Johanna Büchler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Samuel Teo
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Martin-Flores
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Katharina Boroviak
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0AH, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Cai L, Tao Q, Li W, Zhu X, Cui C. The anti-anxiety/depression effect of a combined complex of casein hydrolysate and γ-aminobutyric acid on C57BL/6 mice. Front Nutr 2022; 9:971853. [PMID: 36245498 PMCID: PMC9554304 DOI: 10.3389/fnut.2022.971853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
In view of a series of adverse side effects of drugs for anxiety/depression on the market at present, it is imminent to extract and develop novel anti-anxiety and depression drugs from plants and proteins (like casein hydrolysate) as adjuncts or substitutes for existing anti-anxiety and depression drugs. Consequently, this study investigated the improvement of the anxiety/depression function by the compound of casein hydrolysate and γ-aminobutyric acid (GABA) (casein hydrolysate: GABA = 4:1; CCHAA) on mice induced by chronic restraint stress-corticosterone injection. Animal experiments revealed that oral gavage administration of CCHAA significantly reversed the anxiety/depression-like behaviors. Compared to the model control group, body weights were increased after treatment with CCHAA groups [1.5, 0.75 mg/(g⋅d)]. As a diagnostic index of anxiety and depression, we assessed GABA and 5-HT levels in response to CCHAA ingestion. The GABA and 5-HT levels were increasingly enhanced by the CCHAA diet. In addition, histopathological changes in the hippocampus CA3 region of the anxious/depressed mice were also alleviated after the treatment with the CCHAA. Thus, the casein hydrolysate and GABA formula diets may induce beneficial effects on the mice with anxiety/depression.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qian Tao
- Infinitus (China) Co., Ltd., Guangzhou, China
| | - Wenzhi Li
- Infinitus (China) Co., Ltd., Guangzhou, China
| | - Xiping Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
- *Correspondence: Xiping Zhu,
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Weiwei Biotechnology Co., Ltd., Guangzhou, China
- Chun Cui,
| |
Collapse
|
20
|
Co M, Barnard RA, Jahncke JN, Grindstaff S, Fedorov LM, Adey AC, Wright KM, O'Roak BJ. Shared and Distinct Functional Effects of Patient-Specific Tbr1 Mutations on Cortical Development. J Neurosci 2022; 42:7166-7181. [PMID: 35944998 PMCID: PMC9480892 DOI: 10.1523/jneurosci.0409-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/06/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
T-Box Brain Transcription Factor 1 (TBR1) plays essential roles in brain development, mediating neuronal migration, fate specification, and axon tract formation. While heterozygous loss-of-function and missense TBR1 mutations are associated with neurodevelopmental conditions, the effects of these heterogeneous mutations on brain development have yet to be fully explored. We characterized multiple mouse lines carrying Tbr1 mutations differing by type and exonic location, including the previously generated Tbr1 exon 2-3 knock-out (KO) line, and we analyzed male and female mice at neonatal and adult stages. The frameshift patient mutation A136PfsX80 (A136fs) caused reduced TBR1 protein in cortex similar to Tbr1 KO, while the missense patient mutation K228E caused significant TBR1 upregulation. Analysis of cortical layer formation found similar defects between KO and A136fs homozygotes in their CUX1+ and CTIP2+ layer positions, while K228E homozygosity produced layering defects distinct from these mutants. Meanwhile, the examination of cortical apoptosis found extensive cell death in KO homozygotes but limited cell death in A136fs or K228E homozygotes. Despite their discordant cortical phenotypes, these Tbr1 mutations produced several congruent phenotypes, including anterior commissure reduction in heterozygotes, which was previously observed in humans with TBR1 mutations. These results indicate that patient-specific Tbr1 mutant mice will be valuable translational models for pinpointing shared and distinct etiologies among patients with TBR1-related developmental conditions.SIGNIFICANCE STATEMENT Mutations of the TBR1 gene increase the likelihood of neurodevelopmental conditions such as intellectual disability and autism. Therefore, the study of TBR1 can offer insights into the biological mechanisms underlying these conditions, which affect millions worldwide. To improve the modeling of TBR1-related conditions over current Tbr1 knock-out mice, we created mouse lines carrying Tbr1 mutations identical to those found in human patients. Mice with one mutant Tbr1 copy show reduced amygdalar connections regardless of mutation type, suggesting a core biomarker for TBR1-related disorders. In mice with two mutant Tbr1 copies, brain phenotypes diverge by mutation type, suggesting differences in Tbr1 gene functionality in different patients. These mouse models will serve as valuable tools for understanding genotype-phenotype relationships among patients with neurodevelopmental conditions.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Rebecca A Barnard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Jennifer N Jahncke
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Sally Grindstaff
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Lev M Fedorov
- Transgenic Mouse Models Core, Oregon Health & Science University, Portland, Oregon 97239
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
21
|
Crespo I, Pignatelli J, Kinare V, Méndez-Gómez HR, Esgleas M, Román MJ, Canals JM, Tole S, Vicario C. Tbr1 Misexpression Alters Neuronal Development in the Cerebral Cortex. Mol Neurobiol 2022; 59:5750-5765. [PMID: 35781633 PMCID: PMC9395452 DOI: 10.1007/s12035-022-02936-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when they mainly generate neuronal layers II-IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of Sox5+ cells in layers V-VI increased, while that of Cux1+ cells in layers II-IV decreased. On postnatal day 7, fewer defects in migration were evident, although a higher proportion of Sox5+ cells were seen in the upper and deep layers. The abnormal neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpression, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could provoke cortical brain malformations.
Collapse
Affiliation(s)
- Inmaculada Crespo
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CES Cardenal Cisneros, Madrid, Spain
| | - Jaime Pignatelli
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Veena Kinare
- Department of Life Sciences, Sophia College for Women, Mumbai, 400026, India
| | - Héctor R Méndez-Gómez
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miriam Esgleas
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - María José Román
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josep M Canals
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Carlos Vicario
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.
- CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
22
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
23
|
Vinsland E, Linnarsson S. Single-cell RNA-sequencing of mammalian brain development: insights and future directions. Development 2022; 149:275457. [DOI: 10.1242/dev.200180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Understanding human brain development is of fundamental interest but is also very challenging. Single-cell RNA-sequencing studies in mammals have revealed that brain development is a highly dynamic process with tremendous, previously concealed, cellular heterogeneity. This Spotlight discusses key insights from these studies and their implications for experimental models. We survey published single-cell RNA-sequencing studies of mouse and human brain development, organized by anatomical regions and developmental time points. We highlight remaining gaps in the field, predominantly concerning human brain development. We propose future directions to fill the remaining gaps, and necessary complementary techniques to create an atlas integrated in space and time of human brain development.
Collapse
Affiliation(s)
- Elin Vinsland
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
24
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
25
|
Fazel Darbandi S, Nelson AD, Pai ELL, Bender KJ, Rubenstein JLR. LiCl treatment leads to long-term restoration of spine maturation and synaptogenesis in adult Tbr1 mutants. J Neurodev Disord 2022; 14:11. [PMID: 35123407 PMCID: PMC8903688 DOI: 10.1186/s11689-022-09421-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tbr1 encodes a T-box transcription factor and is considered a high confidence autism spectrum disorder (ASD) gene. Tbr1 is expressed in the postmitotic excitatory neurons of the deep neocortical layers 5 and 6. Postnatally and neonatally, Tbr1 conditional mutants (CKOs) have immature dendritic spines and reduced synaptic density. However, an understanding of Tbr1’s function in the adult mouse brain remains elusive.
Methods
We used conditional mutagenesis to interrogate Tbr1’s function in cortical layers 5 and 6 of the adult mouse cortex.
Results
Adult Tbr1 CKO mutants have dendritic spine and synaptic deficits as well as reduced frequency of mEPSCs and mIPSCs. LiCl, a WNT signaling agonist, robustly rescues the dendritic spine maturation, synaptic defects, and excitatory and inhibitory synaptic transmission deficits.
Conclusions
LiCl treatment could be used as a therapeutic approach for some cases of ASD with deficits in synaptic transmission.
Collapse
|
26
|
Nagu P, Sharma V, Behl T, Pathan AKA, Mehta V. Molecular Insights to the Wnt Signaling During Alzheimer's Disorder: a Potential Target for Therapeutic Interventions. J Mol Neurosci 2022; 72:679-690. [PMID: 34997460 DOI: 10.1007/s12031-021-01940-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
In the adult brain, Wnt signaling is crucial for neurogenesis, and it also regulates neuronal development, neuronal maturation, neuronal differential, and proliferation. Impaired Wnt signaling pathways are associated with enhanced levels of amyloid-β, reduced β-catenin levels, and increased expression of GSK-3β enzyme, suggesting its direct association with the pathogenesis of Alzheimer's disorder (AD). These findings are consolidated by reports where activation of Wnt signaling by genetic factors and pharmacological intervention has improved the cognitive functions in animals and restored neurogenesis in the adult brain. Various natural and synthetic molecules have been identified that modulate Wnt signaling in the adult brain and promote neurogenesis and alleviate behavioral dysfunction. These molecules include lithium, valproic acid, ethosuximide, selenomethionine, curcumin, andrographolide, xanthoceraside, huperzine A, pyridostigmine, ginkgolide-B, ricinine, cannabidiol, and resveratrol. These molecules are associated with the DKK1 and GSK-3β inhibition and β-catenin stabilization along with their effects on neurogenesis, neuronal proliferation, and differentiation in the hippocampus through modulation of Wnt signaling and thereby could prove beneficial in the management of AD pathogenesis. Although modulation of the Wnt signaling seems to suggest to be promising in the management of AD, unfortunately, most of the literature available for the association of Wnt signaling and AD pathogenesis is either from preclinical studies or post-mortem brain. Therefore, it will be interesting to understand the role of Wnt signaling in AD patients, and a rigorous investigation could provide us with a better understanding of AD pathogenesis and the identification of novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India.,Department of Pharmaceutics, Government College of Pharmacy, Rohru, Himachal Pradesh, India
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amjad Khan A Pathan
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India.
| |
Collapse
|
27
|
Profile of John L. R. Rubenstein. Proc Natl Acad Sci U S A 2021; 118:2120493118. [PMID: 34934007 DOI: 10.1073/pnas.2120493118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Liang L, Zeng T, Zhao Y, Lu R, Guo B, Xie R, Tang W, Zhang L, Mao Z, Yang X, Wu S, Wang Y, Zhang H. Melatonin pretreatment alleviates the long-term synaptic toxicity and dysmyelination induced by neonatal Sevoflurane exposure via MT1 receptor-mediated Wnt signaling modulation. J Pineal Res 2021; 71:e12771. [PMID: 34585785 PMCID: PMC9285571 DOI: 10.1111/jpi.12771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
Sevoflurane (Sev) is one of the most widely used pediatric anesthetics. The major concern of neonatal repeated application of Sev is its potential long-term impairment of cognition and learning/memory, for which there still lacks effective treatment. At the cellular level, Sev exerts toxic effects in multiple aspects, making it difficult for effective interference. Melatonin is a pineal hormone regulated by and feedbacks to biological rhythm at physiological condition. Recent studies have revealed significant neuroprotective effects of exogenous melatonin or its agonists under various pathological conditions. Whether melatonin could prevent the long-term toxicity of Sev remains elusive. Here, we report that neonatal repeated Sev exposure up-regulated MT1 receptor in hippocampal neurons and oligodendrocytes. Pretreatment with melatonin significantly alleviated Sev-induced synaptic deficiency, dysmyelination, and long-term learning impairment. Both MT1-shRNA and MT1 knockout effectively blocked the protective effects of melatonin on synaptic development, myelination, and behavior performance. Interestingly, long-lasting suppression of Wnt signaling, instead of cAMP/PKA signaling, was observed in hippocampal neurons and oligodendrocytes after neonatal Sev exposure. Pharmacologically activating Wnt signaling rescued both the long-term synaptic deficits and dysmyelination induced by Sev. Further analysis showed that MT1 receptor co-expressed well with β-catenin and Axin2 and bound to β-catenin by its C-terminal. Melatonin pretreatment effectively rescued Sev-induced Wnt suppression. Wnt signaling inhibitor XAV939 significantly compromised the protective effects of melatonin. Taken together, our data demonstrated a beneficial effect of melatonin pretreatment on the long-term synaptic impairment and dysmyelination induced by neonatal Sev exposure, and a novel MT1 receptor-mediated interaction between melatonin and canonical Wnt signaling, indicating that melatonin may be clinically applied for improving the safety of pediatric Sev anesthesia.
Collapse
Affiliation(s)
- Lirong Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Tian Zeng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Rui Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Baolin Guo
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Rougang Xie
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Wenjing Tang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Li Zhang
- Department of AnatomyInstitute of Basic Medical ScienceXi’an Medical UniversityXi’anChina
| | - Zirui Mao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Xinyu Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Shengxi Wu
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Yazhou Wang
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Hui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| |
Collapse
|
29
|
Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, De Ferrari GV. Wnt/β-Catenin-Dependent Transcription in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:764756. [PMID: 34858139 PMCID: PMC8632544 DOI: 10.3389/fnmol.2021.764756] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by synaptic dysfunction and defects in dendritic spine morphology. In the past decade, an extensive list of genes associated with ASD has been identified by genome-wide sequencing initiatives. Several of these genes functionally converge in the regulation of the Wnt/β-catenin signaling pathway, a conserved cascade essential for stem cell pluripotency and cell fate decisions during development. Here, we review current information regarding the transcriptional program of Wnt/β-catenin signaling in ASD. First, we discuss that Wnt/β-catenin gain and loss of function studies recapitulate brain developmental abnormalities associated with ASD. Second, transcriptomic approaches using patient-derived induced pluripotent stem cells (iPSC) cells, featuring mutations in high confidence ASD genes, reveal a significant dysregulation in the expression of Wnt signaling components. Finally, we focus on the activity of chromatin-remodeling proteins and transcription factors considered high confidence ASD genes, including CHD8, ARID1B, ADNP, and TBR1, that regulate Wnt/β-catenin-dependent transcriptional activity in multiple cell types, including pyramidal neurons, interneurons and oligodendrocytes, cells which are becoming increasingly relevant in the study of ASD. We conclude that the level of Wnt/β-catenin signaling activation could explain the high phenotypical heterogeneity of ASD and be instrumental in the development of new diagnostics tools and therapies.
Collapse
Affiliation(s)
- Mario O. Caracci
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Miguel E. Avila
- Faculty of Veterinary Medicine and Agronomy, Nucleus of Applied Research in Veterinary and Agronomic Sciences (NIAVA), Institute of Natural Sciences, Universidad de Las Américas, Santiago, Chile
| | - Francisca A. Espinoza-Cavieres
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Héctor R. López
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giorgia D. Ugarte
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giancarlo V. De Ferrari
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021; 22:e52803. [PMID: 34260143 PMCID: PMC8339667 DOI: 10.15252/embr.202152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- International Max Planck Research School for Language SciencesMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Karthikeyan Devaraju
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
31
|
Salem NA, Mahnke AH, Konganti K, Hillhouse AE, Miranda RC. Cell-type and fetal-sex-specific targets of prenatal alcohol exposure in developing mouse cerebral cortex. iScience 2021; 24:102439. [PMID: 33997709 PMCID: PMC8105653 DOI: 10.1016/j.isci.2021.102439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure (PAE) results in cerebral cortical dysgenesis. Single-cell RNA sequencing was performed on murine fetal cerebral cortical cells from six timed pregnancies, to decipher persistent cell- and sex-specific effects of an episode of PAE during early neurogenesis. We found, in an analysis of 38 distinct neural subpopulations across 8 lineage subtypes, that PAE altered neural maturation and cell cycle and disrupted gene co-expression networks. Whereas most differentially regulated genes were inhibited, particularly in females, PAE also induced sex-independent neural expression of fetal hemoglobin, a presumptive epigenetic stress adaptation. PAE inhibited Bcl11a, Htt, Ctnnb1, and other upstream regulators of differentially expressed genes and inhibited several autism-linked genes, suggesting that neurodevelopmental disorders share underlying mechanisms. PAE females exhibited neural loss of X-inactivation, with correlated activation of autosomal genes and evidence for spliceosome dysfunction. Thus, episodic PAE persistently alters the developing neural transcriptome, contributing to sex- and cell-type-specific teratology. The neurogenic murine fetal cortex contains about 33 distinct cell subtypes Prenatal Alcohol Exposure (PAE) resulted in sex-specific alterations in developmental trajectory and cell cycle PAE females exhibited neural loss of X-inactivation and spliceosomal dysfunction PAE induced sex-independent neural expression of fetal hemoglobin gene transcripts
Collapse
Affiliation(s)
- Nihal A. Salem
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
- Corresponding author
| |
Collapse
|
32
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
33
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|