1
|
Zhang X, Xiong W, Ma S, Fan S, Sun M, Zhou Q, Yang J, Li J, Zhang X. A novel homozygous ISG15 missense variant leads to severe inflammatory skin lesions, interstitial pneumonia, and basal ganglia calcifications in a Chinese infant with ISG15 deficiency. Gene 2025; 960:149537. [PMID: 40318816 DOI: 10.1016/j.gene.2025.149537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Type I interferonopathies are a group of rare inherited autoinflammatory disorders characterized by dysregulation of type I interferon (IFN-I) signaling pathways. ISG15, a unique ubiquitin-like (Ubl) modifier in the interferon-stimulated genes (ISGs) family, plays a critical role in innate immune responses induced by IFN-I. When ISG15 function is impaired, it results in a disorder known as ISG15 deficiency, which is classified as an autosomal recessive systemic type I interferonopathy. Here, we report a 4-month-old Chinese patient presenting with inflammatory skin lesions, interstitial pneumonia, and basal ganglia calcifications. Whole-exome sequencing (WES) identified a novel homozygous missense variant (NM_005101.4: exon2: c.392 T > C, p.Leu131Pro) of ISG15. Functional analysis revealed that this variant impaired ISGylation and disrupted the stabilization of USP18, leading to defective negative regulation of IFN-I signaling and consequent excessive IFN-I production. Consistent with this, the patient exhibited elevated expression of ISGs in both peripheral blood and peripheral blood mononuclear cells (PBMCs). Treatment with the Janus kinase (JAK) inhibitor baricitinib rapidly resolved the patient's clinical symptoms. In conclusion, our findings expand the pathogenic spectrum of ISG15 deficiency and highlight the therapeutic efficacy of baricitinib in this disease. Notably, this case represents the first reported instance of a homozygous ISG15 missense variant in the Chinese population and the third such variant reported worldwide, further enriching our understanding of this rare autoinflammatory disease.
Collapse
Affiliation(s)
- Xinyue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wen Xiong
- Shenzhen Children's Affiliated Hospital, China Medical University, Shenzhen 518038, China
| | - Shuangyue Ma
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Miao Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Jianguo Li
- Department of Rheumatology and Immunology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Jeltema D, Knox K, Dobbs N, Tang Z, Xing C, Araskiewicz A, Yang K, Siordia IR, Matthews J, Cohen M, Yan N. PARP7 inhibits type I interferon signaling to prevent autoimmunity and lung disease. J Exp Med 2025; 222:e20241184. [PMID: 39969510 PMCID: PMC11837972 DOI: 10.1084/jem.20241184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Type I IFN (IFN-I) induce hundreds of antiviral genes as well as negative regulators that limit IFN-I signaling. Here, we investigate the family of 16 PARPs and find that 11 PARPs are ISGs, of which 8 PARPs inhibit IFN-I production. PARP7 is the most potent negative feedback regulator of IFN-I production. Using Parp7-/- and Parp7H532A/H532A mice, we show that PARP7 loss leads to systemic autoimmunity characterized by splenomegaly and increased autoantibodies and inflammatory cytokines. PARP7 loss also results in perivascular immune infiltration in the lung that forms tertiary lymphoid structures. Mechanistically, PARP7 inhibits multiple innate immune pathways in a cell-intrinsic and MARylation-dependent manner. PARP7 interacts with IRF3 through the catalytic domain and disrupts the IRF3:CBP/p300 transcriptional holocomplex required for IFN-I production. Irf3-/- or Irf3S1/S1 (transcription defective) or Sting-/- rescues Parp7H532A/H532A mouse autoimmunity and lung disease. Together, our study reveals physiological functions of PARP7 as a negative feedback regulator of IFN-I production that maintains immune homeostasis particularly in the lung.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Knox
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonina Araskiewicz
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Rodriguez Siordia
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Liu J, Guo Q, Liu G, Wang W, Jin X, Hao B, Lei B. Immune pathogenic response landscape of acute posterior multifocal placoid pigment epitheliopathy revealed by scRNA sequencing. Genes Immun 2025; 26:75-90. [PMID: 39774261 PMCID: PMC12006025 DOI: 10.1038/s41435-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) is an exceptionally rare inflammatory disorder affecting choroid and retinal pigment epithelial (RPE) cells. Although recent studies suggest an immune-driven nature, the underlying etiology of APMPPE remains elusive. In this study, we conducted a comprehensive investigation on the peripheral blood mononuclear cells (PBMCs) profile of an APMPPE patient using single-cell RNA sequencing. Our analysis revealed striking transcriptional alterations in monocytes within the PBMCs, identifying five distinct subpopulations: S100A12, CD16, pro-inflammatory, megakaryocyte-like, and NK-like monocyte subsets. Employing pseudotime inference, we observed a shift in APMPPE monocytes towards differentiation into inflammation-associated pro-inflammatory monocytes and a CD16 monocyte trajectory. Furthermore, we identified IFITM3 as a key player in the immune response driving the pathogenesis of APMPPE. Notably, two disease-relevant subgroups of monocytes, pro-inflammatory and CD16 monocytes, were implicated in APMPPE. CD16 monocytes, in particular, were involved in melanogenesis, suggesting that the abnormal expression of melanin in monocytes might result from autoimmune responses against pigment-enriched RPE cells. This study provided a comprehensive view of immune landscape in APMPPE, shedding light on the previously unrecognized contributions of pro-inflammatory and CD16 monocytes to this autoimmune condition.
Collapse
Affiliation(s)
- Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Qingge Guo
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Guangming Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| | - Bingtao Hao
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, Henan, China.
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Rivera-Cardona J, Mahajan T, Kakuturu NR, Teo QW, Lederer J, Thayer EA, Rowland EF, Heimburger K, Sun J, McDonald CA, Mickelson CK, Langlois RA, Wu NC, Milenkovic O, Maslov S, Brooke CB. Intrinsic OASL expression licenses interferon induction during influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643375. [PMID: 40166309 PMCID: PMC11956916 DOI: 10.1101/2025.03.14.643375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Effective control of viral infection requires rapid induction of the innate immune response, especially the type I and type III interferon (IFN) systems. Despite the critical role of IFN induction in host defense, numerous studies have established that most cells fail to produce IFNs in response to viral stimuli. The specific factors that govern cellular heterogeneity in IFN induction potential during infection are not understood. To identify specific host factors that license some cells but not others to mount an IFN response to viral infection, we developed an approach for analyzing temporal scRNA-seq data of influenza A virus (IAV)-infected cells. This approach identified the expression of several interferon stimulated genes (ISGs) within pre-infection cells as correlates of IFN induction potential of those cells, post-infection. Validation experiments confirmed that intrinsic expression of the ISG OASL is essential for robust IFNL induction during IAV infection. Altogether, our findings reveal an important role for IFN-independent, intrinsic expression of ISGs in promoting IFN induction and provide new insights into the mechanisms that regulate cell-to-cell heterogeneity in innate immune activation.
Collapse
Affiliation(s)
- Joel Rivera-Cardona
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tarun Mahajan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Neeharika R. Kakuturu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Qi Wen Teo
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
| | - Joseph Lederer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth A. Thayer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth F. Rowland
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kyle Heimburger
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayi Sun
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cera A. McDonald
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clayton K. Mickelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Olgica Milenkovic
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Vasou A, Nightingale K, Cetkovská V, Scheler J, Bamford CGG, Andrejeva J, Rowe JC, Swatek KN, Schwarz‐Linek U, Randall RE, McLauchlan J, Weekes MP, Bogunovic D, Hughes DJ. ISG15-Dependent Stabilisation of USP18 Is Necessary but Not Sufficient to Regulate Type I Interferon Signalling in Humans. Eur J Immunol 2025; 55:e202451651. [PMID: 39931755 PMCID: PMC11811815 DOI: 10.1002/eji.202451651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Type I interferon (IFN) signalling induces the expression of several hundred IFN-stimulated genes (ISGs) that provide an unfavourable environment for viral replication. To prevent an overexuberant response and autoinflammatory disease, IFN signalling requires tight control. One critical regulator is the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), evidenced by autoinflammatory disease in patients with inherited ISG15 deficiencies. Current models suggest that ISG15 stabilises ubiquitin-specific peptidase 18 (USP18), a well-established negative regulator of IFN signalling. USP18 also functions as an ISG15-specific peptidase that cleaves ISG15 from ISGylated proteins; however, USP18's catalytic activity is dispensable for controlling IFN signalling. Here, we show that the ISG15-dependent stabilisation of USP18 involves hydrophobic interactions reliant on tryptophan 123 (W123) in ISG15. Nonetheless, while USP18 stabilisation is necessary, it is not sufficient for the regulation of IFN signalling; ISG15 C-terminal mutants with significantly reduced affinity still stabilised USP18, yet the magnitude of signalling resembled ISG15-deficient cells. Hence, USP18 requires non-covalent interactions with the ISG15 C-terminal diGlycine motif to promote its regulatory function. It shows ISG15 is a repressor of type I IFN signalling beyond its role as a USP18 stabiliser.
Collapse
Affiliation(s)
- Andri Vasou
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Katie Nightingale
- Department of MedicineCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Vladimíra Cetkovská
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Jonathan Scheler
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Connor G. G. Bamford
- Medical Research Council‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Jelena Andrejeva
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Jessica C. Rowe
- Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kirby N. Swatek
- Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ulrich Schwarz‐Linek
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Richard E. Randall
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - John McLauchlan
- Medical Research Council‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Michael P. Weekes
- Department of MedicineCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Dusan Bogunovic
- Department of PediatricsColumbia University Medical CenterNew YorkNew YorkUSA
| | - David J. Hughes
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
6
|
Goldbach-Mansky R, Alehashemi S, de Jesus AA. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 2025; 21:22-45. [PMID: 39623155 DOI: 10.1038/s41584-024-01184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/22/2024]
Abstract
Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi-Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi-Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Duzanic FD, Penengo L. The interferon response at the intersection of genome integrity and innate immunity. DNA Repair (Amst) 2025; 145:103786. [PMID: 39577202 DOI: 10.1016/j.dnarep.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
In recent years, numerous reports indicated that, besides pathogen infections, DNA replication stress and defective DNA repair can trigger the innate immune response by introducing a state of viral mimicry, due to cytosolic accumulation of the self-nucleic acid species, which culminates in the activation of type I interferon (IFN) pathway. In turn, IFN upregulates a variety of factors mutually implicated in immune- and genome-related mechanisms, shedding light on the unprecedented causality between genome stability and innate immunity. Intriguingly, in addition to being induced by replication stress, IFN-regulated factors can also promote it, pinpointing IFN signaling as both a consequence and a cause of replication stress. Here, we provide an overview of the factors and molecular mechanisms implicated in the evolutionary conserved crosstalk between genome maintenance and innate immunity, highlighting the role of the IFN-stimulated gene 15 (ISG15), which appears to be at the hub of this intersection. Moreover, we discuss the potential significance and clinical implications of the immune-mediated modulation of DNA replication and repair upon pathogen infection and in human diseases such as cancer and autoinflammatory syndromes. Finally, we discuss the relevant open questions and future directions.
Collapse
Affiliation(s)
- Filip D Duzanic
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Lorenza Penengo
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland.
| |
Collapse
|
8
|
Murias Loza S, Courel Del Río V, Pardo Campo E, Calle-Miguel L, Anes González G, Rodríguez Suárez J. Successful treatment with tofacitinib in a child diagnosed with ISG15 deficiency. Clin Immunol 2024; 268:110377. [PMID: 39401644 DOI: 10.1016/j.clim.2024.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Sara Murias Loza
- Unit of Pediatric Rheumatology, Department of Pediatrics, University Hospital Central of Asturias, Oviedo, Spain.
| | - Virginia Courel Del Río
- Unit of Pediatric Rheumatology, Department of Pediatrics, University Hospital Central of Asturias, Oviedo, Spain
| | - Estefanía Pardo Campo
- Unit of Pediatric Rheumatology, Department of Rheumatology, University Hospital Central of Asturias, Oviedo, Spain
| | - Laura Calle-Miguel
- Unit of Pediatric Infectious Diseases, Department of Pediatrics, University Hospital Central of Asturias, Oviedo, Spain
| | - Gonzalo Anes González
- Unit of Pediatric Radiology, Department of Radiology, University Hospital Central of Asturias, Oviedo, Spain
| | - Julián Rodríguez Suárez
- Unit of Pediatric Rheumatology, Department of Pediatrics, University Hospital Central of Asturias, Oviedo, Spain.
| |
Collapse
|
9
|
Napoleao SMDS, Salgado RC, Ferreira JFS, de Barros Dorna M, de Moura TCL, França TT, Barreiros LA, Gomes LN, Condino-Neto A. First Brazilian Case Report of Unrelated Patients with Identical ISG15 Mutation. J Clin Immunol 2024; 45:21. [PMID: 39365299 DOI: 10.1007/s10875-024-01811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND ISG15 deficiency is a mixed syndrome of Mendelian susceptibility to mycobacterial infections (MSMD), a rare inherited condition characterized primarily by recurrent infections from low-virulence mycobacteria and monogenic type I interferonopathy. OBJECTIVE To characterize the laboratory and molecular features of two patients from different families affected by the same ISG15 variant. METHODS We began with clinical characterization and investigation, assessed IL-12/IFN-γ production, performed genetic characterization through WES and Sanger sequencing, conducted an in silico molecular analysis of the genetic ISG15 variant's protein impact, and utilized RNAseq for transcriptome analysis to understand pathway impacts on ISG15-deficient subjects from unrelated families. RESULTS A mutation in the ISG15 gene was identified, affecting two patients treated in different hospitals and cities in Brazil (Fortaleza and Sao Paulo), who are also members of unrelated families. Both patients showed low IFN-γ production when stimulated with BCG or BCG + IL-12. ISG15 deficiency presented with two distinct clinical phenotypes: infectious and neurological. It was identified that both patients are homozygous for the variant (c.83 T > A). Furthermore, it was observed that the mutant protein p.L28Q results in an unstable protein with increased flexibility (ΔΔG: -2.400 kcal/mol). Transcriptome analysis revealed 1321 differentially expressed genes, with significant upregulation in interferon pathways, showing higher expression in patients compared to controls. CONCLUSION This study describes the first reported cases in Brazil of two unrelated patients with the same ISG15 mutation c.83 T > A, exhibiting infectious features such as mycobacterial infections and systemic candidiasis, neurological findings, and skin lesions, without adverse reactions to the BCG vaccine. CLINICAL IMPLICATIONS Reporting ISG15 gene mutations in Brazilian patients enhances understanding of genetic susceptibilities, guiding effective diagnostics and treatment. Identifying high-risk individuals aids clinical practices, genetic counseling, and influences public health policies. We have identified the first case in Brazil of the same ISG15 variant c.83 T > A that was identified in two unrelated patients with distinct clinical phenotypes, infectious and neurological.
Collapse
Affiliation(s)
- Sarah Maria da Silva Napoleao
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Lineu Prestes Avenue, São Paulo, SP, 1730, Brazil.
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Lineu Prestes Avenue, São Paulo, SP, 1730, Brazil
| | | | - Mayra de Barros Dorna
- Faculty of Medicine, Instituto da Criança E Do Adolescente, Hospital das Clínicas, São Paulo, SP, Brazil
| | - Thais Costa Lima de Moura
- Faculty of Medicine, Instituto da Criança E Do Adolescente, Hospital das Clínicas, São Paulo, SP, Brazil
| | - Tábata Takahashi França
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Lineu Prestes Avenue, São Paulo, SP, 1730, Brazil
| | | | - Lillian Nunes Gomes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Lineu Prestes Avenue, São Paulo, SP, 1730, Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Lineu Prestes Avenue, São Paulo, SP, 1730, Brazil.
| |
Collapse
|
10
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024; 47:860-875. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Zhou Y, Song HM. Type I interferon pathway in pediatric systemic lupus erythematosus. World J Pediatr 2024; 20:653-668. [PMID: 38914753 PMCID: PMC11269505 DOI: 10.1007/s12519-024-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The role of type I interferon (IFN-I) signaling in systemic lupus erythematosus (SLE) has been well established. However, unanswered questions remain regarding the applicability of these findings to pediatric-onset SLE. The aim of this review is to provide an overview of the novel discoveries on IFN-I signaling in pediatric-onset SLE. DATA SOURCES A literature search was conducted in the PubMed database using the following keywords: "pediatric systemic lupus erythematosus" and "type I interferon". RESULTS IFN-I signaling is increased in pediatric SLE, largely due to the presence of plasmacytoid dendritic cells and pathways such as cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase 1 and Toll-like receptor (TLR)4/TLR9. Neutrophil extracellular traps and oxidative DNA damage further stimulate IFN-I production. Genetic variants in IFN-I-related genes, such as IFN-regulatory factor 5 and tyrosine kinase 2, are linked to SLE susceptibility in pediatric patients. In addition, type I interferonopathies, characterized by sustained IFN-I activation, can mimic SLE symptoms and are thus important to distinguish. Studies on interferonopathies also contribute to exploring the pathogenesis of SLE. Measuring IFN-I activation is crucial for SLE diagnosis and stratification. Both IFN-stimulated gene expression and serum IFN-α2 levels are common indicators. Flow cytometry markers such as CD169 and galectin-9 are promising alternatives. Anti-IFN therapies, such as sifalimumab and anifrolumab, show promise in adult patients with SLE, but their efficacy in pediatric patients requires further investigation. Janus kinase inhibitors are another treatment option for severe pediatric SLE patients. CONCLUSIONS This review presents an overview of the IFN-I pathway in pediatric SLE. Understanding the intricate relationship between IFN-I and pediatric SLE may help to identify potential diagnostic markers and targeted therapies, paving the way for improved patient care and outcomes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
12
|
Akalu YT, Patel RS, Taft J, Canas-Arranz R, Richardson A, Buta S, Martin-Fernandez M, Sazeides C, Pearl RL, Mainkar G, Kurland AP, Geltman R, Rosberger H, Kang DD, Kurian AA, Kaur K, Altman J, Dong Y, Johnson JR, Zhangi L, Lim JK, Albrecht RA, García-Sastre A, Rosenberg BR, Bogunovic D. Broad-spectrum RNA antiviral inspired by ISG15 -/- deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600468. [PMID: 38979204 PMCID: PMC11230275 DOI: 10.1101/2024.06.24.600468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Type I interferons (IFN-I) are cytokines with potent antiviral and inflammatory capacities. IFN-I signaling drives the expression of hundreds of IFN-I stimulated genes (ISGs), whose aggregate function results in the control of viral infection. A few of these ISGs are tasked with negatively regulating the IFN-I response to prevent overt inflammation. ISG15 is a negative regulator whose absence leads to persistent, low-grade elevation of ISG expression and concurrent, self-resolving mild autoinflammation. The limited breadth and low-grade persistence of ISGs expressed in ISG15 deficiency are sufficient to confer broad-spectrum antiviral resistance. Inspired by ISG15 deficiency, we have identified a nominal collection of 10 ISGs that recapitulate the broad antiviral potential of the IFN-I system. The expression of the 10 ISG collection in an IFN-I non-responsive cell line increased cellular resistance to Zika, Vesicular Stomatitis, Influenza A (IAV), and SARS-CoV-2 viruses. A deliverable prophylactic formulation of this syndicate of 10 ISGs significantly inhibited IAV PR8 replication in vivo in mice and protected hamsters against a lethal SARS-CoV-2 challenge, suggesting its potential as a broad-spectrum antiviral against many current and future emerging viral pathogens. One-Sentence Summary Human inborn error of immunity-guided discovery and development of a broad-spectrum RNA antiviral therapy.
Collapse
|
13
|
Chu L, Qian L, Chen Y, Duan S, Ding M, Sun W, Meng W, Zhu J, Wang Q, Hao H, Wang C, Cui S. HERC5-catalyzed ISGylation potentiates cGAS-mediated innate immunity. Cell Rep 2024; 43:113870. [PMID: 38421872 DOI: 10.1016/j.celrep.2024.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) is essential to elicit type I interferon cascade response; thus, the activity of cGAS must be strictly regulated to boost the antiviral innate immunity. Here, we report that cGAS is responsible for the DNA-induced ISG15 conjugation system. The E3 HERC5 catalyzes the ISGylation of cytoplasmic cGAS at lysine 21, 187, 219, and 458, whereas Ubl carboxy-terminal hydrolase 18 removes the ISGylation of cGAS. The interaction of cGAS and HERC5 depends on the cGAS C-terminal domain and the RRC1-4 and RRC1-5 domains of HERC5. Mechanically, HERC5-catalyzed ISGylation promotes DNA-induced cGAS oligomerization and enhances cGAS enzymatic activity. Deficiency of ISGylation attenuates the downstream inflammatory gene expression induced by the cGAS-STING axis and the antiviral ability in mouse and human cells. Mice deficient in Isg15 or Herc6 are more vulnerable to herpes simplex virus 1 infection. Collectively, our study shows a positive feedback regulation of the cGAS-mediated innate immune pathway by ISGylation.
Collapse
Affiliation(s)
- Lei Chu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Li Qian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Yu Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Shengnan Duan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Ming Ding
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Wu Sun
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.
| |
Collapse
|
14
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Lee EJ, Kim JY, Yeo JH, Park S, Bae YJ, Kwon IJ, Seong SH, Lee J, Oh SH. ISG15-USP18 Dysregulation by Oxidative Stress Promotes IFN-γ Secretion from CD8+ T Cells in Vitiligo. J Invest Dermatol 2024; 144:273-283.e11. [PMID: 37625543 DOI: 10.1016/j.jid.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
Excessive oxidative stress is thought to play pathologic roles in cellular senescence and autoimmune disorders by inducing inflammation and breaking down immune tolerance. In this study, we sought to identify the factors linking oxidative stress to autoimmunity and cellular senescence in vitiligo, where elevated oxidative stress plays an important role. RNA sequencing analysis of hydrogen peroxide-treated melanocytes revealed upregulation of ISG15. The upregulation of ISG15 was observed in vitiligo skin tissues as well as in the blood of patients with vitiligo, whereas USP18 downregulation was observed in vitiligo melanocytes and vitiligo skin tissues. Oxidative stress induced hypermethylation of the USP18 promoter region in keratinocytes and melanocytes, and USP18 promoter hypermethylation was also confirmed in vitiligo skin tissues. Our results indicate that USP18 promoter hypermethylation caused by oxidative stress increases ISG15 expression in keratinocytes and melanocytes along with senescence changes, leading CD8+ T cells to produce IFN-γ, the main pathogenic cytokine in vitiligo. Therefore, the ISG15-USP18 network may be important in oxidative stress-induced autoimmunity and cellular senescence in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Il Joo Kwon
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seol Hwa Seong
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Burleigh A, Moraitis E, Al Masroori E, Al-Abadi E, Hong Y, Omoyinmi E, Titheradge H, Stals K, Jones WD, Gait A, Jayarajan V, Di WL, Sebire N, Solman L, Ogboli M, Welch SB, Sudarsanam A, Wacogne I, Price-Kuehne F, Jensen B, Brogan PA, Eleftheriou D. Case Report: ISG15 deficiency caused by novel variants in two families and effective treatment with Janus kinase inhibition. Front Immunol 2023; 14:1287258. [PMID: 38115997 PMCID: PMC10728638 DOI: 10.3389/fimmu.2023.1287258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
ISG15 deficiency is a rare disease caused by autosomal recessive variants in the ISG15 gene, which encodes the ISG15 protein. The ISG15 protein plays a dual role in both the type I and II interferon (IFN) immune pathways. Extracellularly, the ISG15 protein is essential for IFN-γ-dependent anti-mycobacterial immunity, while intracellularly, ISG15 is necessary for USP18-mediated downregulation of IFN-α/β signalling. Due to this dual role, ISG15 deficiency can present with various clinical phenotypes, ranging from susceptibility to mycobacterial infection to autoinflammation characterised by necrotising skin lesions, intracerebral calcification, and pulmonary involvement. In this report, we describe novel variants found in two different families that result in complete ISG15 deficiency and severe skin ulceration. Whole exome sequencing identified a heterozygous missense p.Q16X ISG15 variant and a heterozygous multigene 1p36.33 deletion in the proband from the first family. In the second family, a homozygous total ISG15 gene deletion was detected in two siblings. We also conducted further analysis, including characterisation of cytokine dysregulation, interferon-stimulated gene expression, and p-STAT1 activation in lymphocytes and lesional tissue. Finally, we demonstrate the complete and rapid resolution of clinical symptoms associated with ISG15 deficiency in one sibling from the second family following treatment with the Janus kinase (JAK) inhibitor baricitinib.
Collapse
Affiliation(s)
- Alice Burleigh
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), London, United Kingdom
| | - Elena Moraitis
- Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Eman Al Masroori
- Department of Rheumatology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Eslam Al-Abadi
- Department of Rheumatology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Ying Hong
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ebun Omoyinmi
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hannah Titheradge
- Clinical Genetics, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
- Clinical Sciences Department, University of Birmingham, Birmingham, United Kingdom
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Wendy D. Jones
- Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Anthony Gait
- Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Vignesh Jayarajan
- Molecular and Cellular Immunology Unit, University College London (UCL), Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Wei-Li Di
- Molecular and Cellular Immunology Unit, University College London (UCL), Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Neil Sebire
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital, London, United Kingdom
| | - Lea Solman
- Department of Dermatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Malobi Ogboli
- Department of Dermatology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Steven B. Welch
- Department of Paediatrics, Heartlands Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
| | - Annapurna Sudarsanam
- Department of Paediatric Neurology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Ian Wacogne
- Department of General Paediatrics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Fiona Price-Kuehne
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Barbara Jensen
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Paul A. Brogan
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), London, United Kingdom
- Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Xu Q, Li W, Zhao Q, Zhao L, Lv G, Sun G, Gao Y, Ding Y, Zhang Z, Zhou L, Chen Y, Tang X, Zhu J, Zhao X, An Y. A novel homozygous Y140X mutation of ISG15 causes diverse type I interferonopathies in sibling patients with cutaneous lesions or recurrent parenchymal pneumonia. Clin Immunol 2023; 257:109844. [PMID: 37984483 DOI: 10.1016/j.clim.2023.109844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE Interferon-stimulated gene 15 (ISG15) deficiency, a rare human inborn error of immunity characterized by susceptibility to Bacillus Calmette-Guerin (BCG) diseases, neuropathic and dermatological manifestations. METHODS The clinical and immunological features of two siblings with ISG15 deficiency combined with asymptomatic myeloperoxidase (MPO) mutations were analyzed, and their pathogenesis, as well as target therapeutic candidates, were explored. RESULTS The manifestation in patient 2 was skin lesions, while those in patient 1 were intracranial calcification and recurrent pneumonia. Whole-exome identified novel, dual mutations in ISG15 and MPO. PBMCs and B cell lines derived from the patients showed hyper-activated JAK/STAT signaling. Normal neutrophil function excluded pathogenicity caused by the MPO mutation. RNA sequencing identified baricitinib as therapeutic candidate. CONCLUSIONS We report two sibling patients harboring the same novel ISG15 mutation showing diverse clinical features, and one harbored a rare phenotype of pneumonia. These findings expand the clinical spectrum of ISG15 deficiency and identify baricitinib as therapeutic candidate.
Collapse
Affiliation(s)
- Qiling Xu
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhao
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Zhao
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China
| | - Ge Lv
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Gan Sun
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yelei Gao
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400014, People's Republic of China
| | - Xuemei Tang
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Zhu
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Department of Pathology, College of Basic Medicine, Molecular 6. Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400014, People's Republic of China
| | - Xiaodong Zhao
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yunfei An
- Childrens Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Sarkar L, Liu G, Gack MU. ISG15: its roles in SARS-CoV-2 and other viral infections. Trends Microbiol 2023; 31:1262-1275. [PMID: 37573184 PMCID: PMC10840963 DOI: 10.1016/j.tim.2023.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like pleiotropic protein and one of the most abundant ISGs, has been studied extensively; however, its roles in SARS-CoV-2 and other viral infections have just begun to be elucidated. Emerging evidence suggests that ISG15 - either in its conjugated or unconjugated 'free' form - acts both intracellularly and extracellularly, and exerts anti- or pro-viral effects. To counteract ISG15's antiviral roles, viruses have evolved sophisticated tactics. Here, we discuss recent advances in ISG15's physiological functions as a post-translational modifier or 'cytokine-like' molecule during SARS-CoV-2 and other viral infections. Furthermore, we highlight the detailed mechanisms viruses use to block ISG15-dependent antiviral defenses. A comprehensive understanding of ISG15 biology in the context of virus infection may spur new therapeutic approaches for a range of viral infectious diseases.
Collapse
Affiliation(s)
- Lucky Sarkar
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, USA
| | - GuanQun Liu
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, USA
| | - Michaela U Gack
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, USA.
| |
Collapse
|
19
|
Alzahrani AYB, Alghamdi LSA, Alghamdi FA. Identification of a Novel Interferon-Stimulated (ISG15) Gene Variant Associated With Inflammatory Cutaneous Lesions and Zinc Deficiency in a Unique Family: A Case Series and Literature Review. Cureus 2023; 15:e50701. [PMID: 38234945 PMCID: PMC10792350 DOI: 10.7759/cureus.50701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is a pivotal protein involved in antiviral defense and immune regulation. This study presents a remarkable case series of a consanguineous family with a homozygous variant in the ISG15 gene, leading to a complex interplay of intriguing dermatological manifestations and concurrent zinc deficiency. The range of cutaneous phenotypes observed in the family members, from severe ulcerative lesions to atopic dermatitis, highlights the intricate relationship between the identified genetic variant and dermatological conditions. Furthermore, zinc deficiency adds another layer of complexity to the understanding of these conditions. Comprehensive assessments of zinc levels were conducted for three siblings, while the fourth sibling's evaluation was impeded. This extraordinary case series offers a unique opportunity for scientific exploration, shedding light on complex genetic disorders and potentially paving the way for novel diagnostic and therapeutic strategies in medical science. The convergence of familial genetics, the homozygous ISG15 variant, and the captivating spectrum of cutaneous manifestations hold promise for advancing our understanding of these conditions and their underlying mechanisms.
Collapse
|
20
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Toth KA, Schmitt EG, Cooper MA. Deficiencies and Dysregulation of STAT Pathways That Drive Inborn Errors of Immunity: Lessons from Patients and Mouse Models of Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1463-1472. [PMID: 37126806 PMCID: PMC10151837 DOI: 10.4049/jimmunol.2200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
23
|
Viengkhou B, Hofer MJ. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front Immunol 2023; 14:1110593. [PMID: 36817430 PMCID: PMC9936317 DOI: 10.3389/fimmu.2023.1110593] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Since their original discovery, type I interferons (IFN-Is) have been closely associated with antiviral immune responses. However, their biological functions go far beyond this role, with balanced IFN-I activity being critical to maintain cellular and tissue homeostasis. Recent findings have uncovered a darker side of IFN-Is whereby chronically elevated levels induce devastating neuroinflammatory and neurodegenerative pathologies. The underlying causes of these 'interferonopathies' are diverse and include monogenetic syndromes, autoimmune disorders, as well as chronic infections. The prominent involvement of the CNS in these disorders indicates a particular susceptibility of brain cells to IFN-I toxicity. Here we will discuss the current knowledge of how IFN-Is mediate neurotoxicity in the brain by analyzing the cell-type specific responses to IFN-Is in the CNS, and secondly, by exploring the spectrum of neurological disorders arising from increased IFN-Is. Understanding the nature of IFN-I neurotoxicity is a crucial and fundamental step towards development of new therapeutic strategies for interferonopathies.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
24
|
Errami A, El Baghdadi J, Ailal F, Benhsaien I, Ouazahrou K, Abel L, Casanova JL, Boisson-Dupuis S, Bustamante J, Bousfiha AA. Mendelian susceptibility to mycobacterial disease: an overview. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background
Mycobacteria include ubiquitous species of varying virulence. However, environmental and individual-specific factors, particularly host genetics, play a crucial role in the outcome of exposure to mycobacteria. The first molecular evidence of a monogenic predisposition to mycobacteria came from the study of Mendelian susceptibility to mycobacterial disease (MSMD), a rare inborn error of IFN-γ immunity conferring a selective susceptibility to infections even with low virulent mycobacteria, in patients, mostly children, without recognizable immune defects in routine tests. This article provides a global and updated description of the most important molecular, cellular, and clinical features of all known monogenic defects of MSMD.
Results
Over the last 20 years, 19 genes were found to be mutated in MSMD patients (IFNGR1, IFNGR2, IFNG, IL12RB1, IL12RB2, IL23R, IL12B, ISG15, USP18, ZNFX1, TBX21, STAT1, TYK2, IRF8, CYBB, JAK1, RORC, NEMO, and SPPL2A), and the allelic heterogeneity at these loci has led to the definition of 35 different genetic defects. Despite the clinical and genetic heterogeneity, almost all genetic etiologies of MSMD alter the interferon gamma (IFN-γ)-mediated immunity, by impairing or abolishing IFN-γ production or the response to this cytokine or both. It was proven that the human IFN-γ level is a quantitative trait that defines the outcome of mycobacterial infection.
Conclusion
The study of these monogenic defects contributes to understanding the molecular mechanism of mycobacterial infections in humans and to the development of new diagnostic and therapeutic approaches to improve care and prognosis. These discoveries also bridge the gap between the simple Mendelian inheritance and complex human genetics.
Collapse
|
25
|
Munnur D, Banducci-Karp A, Sanyal S. ISG15 driven cellular responses to virus infection. Biochem Soc Trans 2022; 50:1837-1846. [PMID: 36416643 DOI: 10.1042/bst20220839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
One of the hallmarks of antiviral responses to infection is the production of interferons and subsequently of interferon stimulated genes. Interferon stimulated gene 15 (ISG15) is among the earliest and most abundant proteins induced upon interferon signalling, encompassing versatile functions in host immunity. ISG15 is a ubiquitin like modifier that can be conjugated to substrates in a process analogous to ubiquitylation and referred to as ISGylation. The free unconjugated form can either exist intracellularly or be secreted to function as a cytokine. Interestingly, ISG15 has been reported to be both advantageous and detrimental to the development of immunopathology during infection. This review describes recent findings on the role of ISG15 in antiviral responses in human infection models, with a particular emphasis on autophagy, inflammatory responses and cellular metabolism combined with viral strategies of counteracting them. The field of ISGylation has steadily gained momentum; however much of the previous studies of virus infections conducted in mouse models are in sharp contrast with recent findings in human cells, underscoring the need to summarise our current understanding of its potential antiviral function in humans and identify knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
- Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Adrianna Banducci-Karp
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| |
Collapse
|
26
|
Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15). Semin Cell Dev Biol 2022; 132:16-26. [PMID: 35764457 PMCID: PMC9233553 DOI: 10.1016/j.semcdb.2022.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.
Collapse
|
27
|
Raftopoulou S, Rapti A, Karathanasis D, Evangelopoulos ME, Mavragani CP. The role of type I IFN in autoimmune and autoinflammatory diseases with CNS involvement. Front Neurol 2022; 13:1026449. [PMID: 36438941 PMCID: PMC9685560 DOI: 10.3389/fneur.2022.1026449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Type I interferons (IFNs) are major mediators of innate immunity, with well-known antiviral, antiproliferative, and immunomodulatory properties. A growing body of evidence suggests the involvement of type I IFNs in the pathogenesis of central nervous system (CNS) manifestations in the setting of chronic autoimmune and autoinflammatory disorders, while IFN-β has been for years, a well-established therapeutic modality for multiple sclerosis (MS). In the present review, we summarize the current evidence on the mechanisms of type I IFN production by CNS cellular populations as well as its local effects on the CNS. Additionally, the beneficial effects of IFN-β in the pathophysiology of MS are discussed, along with the contributory role of type I IFNs in the pathogenesis of neuropsychiatric lupus erythematosus and type I interferonopathies.
Collapse
Affiliation(s)
- Sylvia Raftopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Karathanasis
- First Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | | | - Clio P. Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
29
|
The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022; 185:3857-3876. [PMID: 36240739 PMCID: PMC9815833 DOI: 10.1016/j.cell.2022.09.023] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.
Collapse
|
30
|
Ogishi M, Arias AA, Yang R, Han JE, Zhang P, Rinchai D, Halpern J, Mulwa J, Keating N, Chrabieh M, Lainé C, Seeleuthner Y, Ramírez-Alejo N, Nekooie-Marnany N, Guennoun A, Muller-Fleckenstein I, Fleckenstein B, Kilic SS, Minegishi Y, Ehl S, Kaiser-Labusch P, Kendir-Demirkol Y, Rozenberg F, Errami A, Zhang SY, Zhang Q, Bohlen J, Philippot Q, Puel A, Jouanguy E, Pourmoghaddas Z, Bakhtiar S, Willasch AM, Horneff G, Llanora G, Shek LP, Chai LY, Tay SH, Rahimi HH, Mahdaviani SA, Nepesov S, Bousfiha AA, Erdeniz EH, Karbuz A, Marr N, Navarrete C, Adeli M, Hammarstrom L, Abolhassani H, Parvaneh N, Al Muhsen S, Alosaimi MF, Alsohime F, Nourizadeh M, Moin M, Arnaout R, Alshareef S, El-Baghdadi J, Genel F, Sherkat R, Kiykim A, Yücel E, Keles S, Bustamante J, Abel L, Casanova JL, Boisson-Dupuis S. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J Exp Med 2022; 219:e20220094. [PMID: 36094518 PMCID: PMC9472563 DOI: 10.1084/jem.20220094] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 12/21/2022] Open
Abstract
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/β (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.
Collapse
Affiliation(s)
- Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Primary Immunodeficiencies Group, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joshua Halpern
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jeanette Mulwa
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Noé Ramírez-Alejo
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sara S. Kilic
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Yasemin Kendir-Demirkol
- Department of Pediatric Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Zahra Pourmoghaddas
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andre M. Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Gerd Horneff
- Center for Pediatric Rheumatology, Department of Pediatrics, Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Genevieve Llanora
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
| | - Lynette P. Shek
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
- Department of Pediatrics, National University of Singapore, Singapore
| | - Louis Y.A. Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
- Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute; Synthetic Biology Translational Research Program, National University of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
| | - Hamid H. Rahimi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Serdar Nepesov
- Department of Pediatric Allergy and Immunology, Istanbul Medipol University, Istanbul, Turkey
| | - Aziz A. Bousfiha
- Clinical Immunology Unit, Department of Pediatrics, King Hassan II University, Ibn-Rochd Hospital, Casablanca, Morocco
| | - Emine Hafize Erdeniz
- Division of Pediatric Infectious Diseases, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Karbuz
- Division of Pediatric Infectious Diseases, Okmeydani Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Carmen Navarrete
- Department of Immunology, Hospital de Niños Roberto del Río, Santiago de Chile, Chile
| | - Mehdi Adeli
- Division of Allergy and Immunology, Sidra Medicine/Hamad Medical Corp., Doha, Qatar
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Beijing Genomics Institute, Shenzhen, China
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saleh Al Muhsen
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alosaimi
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Pediatric Intensive Care Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Rand Arnaout
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Al Faisal University, Riyadh, Saudi Arabia
| | - Saad Alshareef
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Ferah Genel
- University of Health Sciences, Dr Behçet Uz Children’s Hospital, Division of Pediatric Immunology, Izmir, Turkey
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ayça Kiykim
- Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Yücel
- Division of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
- Deparment of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
31
|
Jamshidi V, Nobakht M Gh BF, Parvin S, Bagheri H, Ghanei M, Shahriary A, Davoudi SM, Arabfard M. Proteomics analysis of chronic skin injuries caused by mustard gas. BMC Med Genomics 2022; 15:175. [PMID: 35933451 PMCID: PMC9357330 DOI: 10.1186/s12920-022-01328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Sulfur mustard (SM) is an alkylating and forming chemical that was widely used by Iraqi forces during the Iran–Iraq wars. One of the target organs of SM is the skin. Understanding the mechanisms involved in the pathogenesis of SM may help better identify complications and find appropriate treatments. The current study collected ten SM-exposed patients with long-term skin complications and ten healthy individuals. Proteomics experiments were performed using the high-efficiency TMT10X method to evaluate the skin protein profile, and statistical bioinformatics methods were used to identify the differentially expressed proteins. One hundred twenty-nine proteins had different expressions between the two groups. Of these 129 proteins, 94 proteins had increased expression in veterans' skins, while the remaining 35 had decreased expression. The hub genes included RPS15, ACTN1, FLNA, HP, SDHC, and RPL29, and three modules were extracted from the PPI network analysis. Skin SM exposure can lead to oxidative stress, inflammation, apoptosis, and cell proliferation.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Education Office, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Waqas SFUH, Sohail A, Nguyen AHH, Usman A, Ludwig T, Wegner A, Malik MNH, Schuchardt S, Geffers R, Winterhoff M, Merkert S, Martin U, Olmer R, Lachmann N, Pessler F. ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives. Clin Transl Med 2022; 12:e931. [PMID: 35842904 PMCID: PMC9288839 DOI: 10.1002/ctm2.931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Congenital ISG15 deficiency is a rare autoinflammatory disorder that is driven by chronically elevated systemic interferon levels and predominantly affects central nervous system and skin. Methods and results We have developed induced pluripotent stem cell‐derived macrophages and endothelial cells as a model to study the cellular phenotype of ISG15 deficiency and identify novel treatments. ISG15–/– macrophages exhibited the expected hyperinflammatory responses, but normal phagocytic function. In addition, they displayed a multifaceted pathological phenotype featuring increased apoptosis/pyroptosis, oxidative stress, glycolysis, and acylcarnitine levels, but decreased glutamine uptake, BCAT1 expression, branched chain amino acid catabolism, oxidative phosphorylation, β‐oxidation, and NAD(P)H‐dependent oxidoreductase activity. Furthermore, expression of genes involved in mitochondrial biogenesis and respiratory chain complexes II–V was diminished in ISG15–/– cells. Defective mitochondrial respiration was restored by transduction with wild‐type ISG15, but only partially by a conjugation‐deficient variant, suggesting that some ISG15 functions in mitochondrial respiration require ISGylation to cellular targets. Treatment with itaconate, dimethyl‐itaconate, 4‐octyl‐itaconate, and the JAK1/2 inhibitor ruxolitinib ameliorated increased inflammation, propensity for cell death, and oxidative stress. Furthermore, the treatments greatly improved mitochondria‐related gene expression, BCAT1 levels, redox balance, and intracellular and extracellular ATP levels. However, efficacy differed among the compounds according to read‐out and cell type, suggesting that their effects on cellular targets are not identical. Indeed, only itaconates increased expression of anti‐oxidant genes NFE2L2, HMOX1, and GPX7, and dimethyl‐itaconate improved redox balance the most. Even though itaconate treatments normalized the elevated expression of interferon‐stimulated genes, ISG15–/– macrophages maintained their reduced susceptibility to influenza virus infection. Conclusions These findings expand the cellular phenotype of human ISG15 deficiency and reveal the importance of ISG15 for regulating oxidative stress, branched chain amino acid metabolism, and mitochondrial function in humans. The results validate ruxolitinib as treatment for ISG15 deficiency and suggest itaconate‐based medications as additional therapeutics for this rare disorder.
Collapse
Affiliation(s)
- Syed Fakhar-Ul-Hassnain Waqas
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaqib Sohail
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Current affiliation: Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ariane Hai Ha Nguyen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Abdulai Usman
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Ludwig
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Wegner
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Muhammad Nasir Hayat Malik
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven Schuchardt
- Department of Bio and Environmental Analytics, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Moritz Winterhoff
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Centre for Individualised Infection Medicine, Hannover, Germany.,Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
33
|
Martin-Fernandez M, Buta S, Le Voyer T, Li Z, Dynesen LT, Vuillier F, Franklin L, Ailal F, Muglia Amancio A, Malle L, Gruber C, Benhsaien I, Altman J, Taft J, Deswarte C, Roynard M, Nieto-Patlan A, Moriya K, Rosain J, Boddaert N, Bousfiha A, Crow YJ, Jankovic D, Sher A, Casanova JL, Pellegrini S, Bustamante J, Bogunovic D. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J Exp Med 2022; 219:213053. [PMID: 35258551 PMCID: PMC8908790 DOI: 10.1084/jem.20211273] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 11/05/2022] Open
Abstract
Human USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease.
Collapse
Affiliation(s)
- Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom Le Voyer
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Lasse Toftdal Dynesen
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Françoise Vuillier
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Lina Franklin
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Fatima Ailal
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Alice Muglia Amancio
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Hospital do Cancer de Muriae, Fundacao Cristiano Varella, Muriae, Minas Gerais, Brazil
| | - Louise Malle
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Conor Gruber
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ibtihal Benhsaien
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Jennie Altman
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline Deswarte
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Manon Roynard
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Alejandro Nieto-Patlan
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Kunihiko Moriya
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Jérémie Rosain
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Nathalie Boddaert
- University of Paris, Imagine Institute, Paris, France.,Department of Radiology, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Aziz Bousfiha
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Yanick J Crow
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY.,Center for the Study of Primary Immunodeficiencies, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Jacinta Bustamante
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Center for the Study of Primary Immunodeficiencies, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
34
|
Jurczyszak D, Manganaro L, Buta S, Gruber C, Martin-Fernandez M, Taft J, Patel RS, Cipolla M, Alshammary H, Mulder LCF, Sachidanandam R, Bogunovic D, Simon V. ISG15 deficiency restricts HIV-1 infection. PLoS Pathog 2022; 18:e1010405. [PMID: 35333911 PMCID: PMC8986114 DOI: 10.1371/journal.ppat.1010405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/06/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effectors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is interferon stimulated gene 15 (ISG15). Humans with complete ISG15 deficiency express persistently elevated levels of ISGs, and consequently, exhibit broad spectrum resistance to viral infection. Here, we demonstrate that IFN-I primed fibroblasts derived from ISG15-deficient individuals are more resistant to infection with single-cycle HIV-1 compared to healthy control fibroblasts. Complementation with both wild-type (WT) ISG15 and ISG15ΔGG (incapable of ISGylation while retaining negative regulation activity) was sufficient to reverse this phenotype, restoring susceptibility to infection to levels comparable to WT cells. Furthermore, CRISPR-edited ISG15ko primary CD4+ T cells were less susceptible to HIV-1 infection compared to cells treated with non-targeting controls. Transcriptome analysis of these CRISPR-edited ISG15ko primary CD4+ T cells recapitulated the ISG signatures of ISG15 deficient patients. Taken together, we document that the increased broad-spectrum viral resistance in ISG15-deficiency also extends to HIV-1 and is driven by a combination of T-cell-specific ISGs, with both known and unknown functions, predicted to target HIV-1 replication at multiple steps. Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral agents. They induce IFN stimulated genes (ISGs), which perform downstream functions to resolve viral infection, mediate the inflammatory response, as well as negatively regulate the IFN-I signaling cascade to prevent hyperinflammation. One such negative regulator is interferon stimulated gene 15 (ISG15). Humans that lack ISG15 have chronic, low levels of antiviral ISGs, and ensuing broad-spectrum resistance to viral infection. We demonstrate that IFN-I priming of ISG15-deficient cells leads to superior resistance to human immunodeficiency virus 1 (HIV-1) infection compared to IFN-I primed healthy control cells. This is true for fibroblast cell lines, as well as primary CD4+ T cells, the main target of HIV-1. Analysis of the gene expression profiles show that ISG15-knockout CD4+ T cells express similar inflammatory markers as ISG15-deficient patients. Overall, we show that the broad-spectrum viral resistance in ISG15-deficiency extends to HIV-1.
Collapse
Affiliation(s)
- Denise Jurczyszak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Lara Manganaro
- INGM-Istituto Nazionale di Genetica Molecolare, Virology, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of MIlan, Milan, Italy
| | - Sofija Buta
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Marta Martin-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Justin Taft
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Melissa Cipolla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail: (DB); (VS)
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail: (DB); (VS)
| |
Collapse
|
35
|
David C, Frémond ML. [When to consider type I interferonopathy in adulthood?]. Rev Med Interne 2022; 43:347-355. [PMID: 35177256 DOI: 10.1016/j.revmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Type I interferonopathies (IP1) are a heterogeneous group of Mendelian diseases characterized by overactivation of the type I interferon (IFN) pathway. They are caused by monogenic (rarely digenic) mutations of proteins involved in this key pathway of innate immunity. IP1 transmission can be dominant, recessive or X-linked and penetrance differs from one IP1 to another. The clinical spectrum is broad and mainly includes central nervous system involvement with calcifications of the basal ganglia, skin disorders such as cutaneous vasculitis that can be mutilating. Joint disorders including non-destructive deforming arthropathy, pulmonary involvement such as intra-alveolar haemorrhage or interstitial lung disease, and haematological symptoms with cytopenia and/or immune deficiency are also seen. The clinical manifestations vary from one IP1 to another and their spectrum is constantly expanding along with the description of new IP1s and patients. The inflammatory syndrome is generally mild and autoimmune stigmata are frequently found. Almost all patients display overexpression of the type I IFN pathway detected, for instance, by the evaluation of IFN-stimulated genes expression, referred as "interferon signature". The related morbidity and mortality are high. However, the beneficial effect on certain symptoms of targeted therapies inhibiting type I IFN, such as JAK inhibitors, has led to a promising improvement in the management of these patients.
Collapse
Affiliation(s)
- C David
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France
| | - M-L Frémond
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France; Unité d'immuno-hématologie et rhumatologie pédiatriques, centre de référence des maladies rhumatologiques et auto-immunes systémiques rares en pédiatrie (RAISE), hôpital Necker-Enfants-Malades, Centre - Université de Paris, AP-HP, 75015 Paris, France.
| |
Collapse
|
36
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
37
|
Malik MNH, Waqas SFH, Zeitvogel J, Cheng J, Geffers R, Gouda ZAE, Elsaman AM, Radwan AR, Schefzyk M, Braubach P, Auber B, Olmer R, Müsken M, Roesner LM, Gerold G, Schuchardt S, Merkert S, Martin U, Meissner F, Werfel T, Pessler F. Congenital deficiency reveals critical role of ISG15 in skin homeostasis. J Clin Invest 2021; 132:141573. [PMID: 34847081 PMCID: PMC8803340 DOI: 10.1172/jci141573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Ulcerating skin lesions are manifestations of human ISG15 deficiency, a type I interferonopathy. However, chronic inflammation may not be their exclusive cause. We describe two siblings with recurrent skin ulcers that healed with scar formation upon corticosteroid treatment. Both had a homozygous nonsense mutation in the ISG15 gene, leading to unstable ISG15 protein lacking the functional domain. We characterized ISG15–/– dermal fibroblasts, HaCaT keratinocytes, and human induced pluripotent stem cell–derived vascular endothelial cells. ISG15-deficient cells exhibited the expected hyperinflammatory phenotype, but also dysregulated expression of molecules critical for connective tissue and epidermis integrity, including reduced collagens and adhesion molecules, but increased matrix metalloproteinases. ISG15–/– fibroblasts exhibited elevated ROS levels and reduced ROS scavenger expression. As opposed to hyperinflammation, defective collagen and integrin synthesis was not rescued by conjugation-deficient ISG15. Cell migration was retarded in ISG15–/– fibroblasts and HaCaT keratinocytes, but normalized under ruxolitinib treatment. Desmosome density was reduced in an ISG15–/– 3D epidermis model. Additionally, there were loose architecture and reduced collagen and desmoglein expression, which could be reversed by treatment with ruxolitinib/doxycycline/TGF-β1. These results reveal critical roles of ISG15 in maintaining cell migration and epidermis and connective tissue homeostasis, whereby the latter likely requires its conjugation to yet unidentified targets.
Collapse
Affiliation(s)
- Muhammad Nasir Hayat Malik
- Biomarkers for Infectious Diseases, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Syed F Hassnain Waqas
- Biomarkers for Infectious Diseases, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Jana Zeitvogel
- Institute for Dermatology, Allergology and Venerology, Hannover Medical School (MHH), Hannover, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | | | - Ahmed R Radwan
- Department of Rheumatology and Rehabilitation, Sohag University, Sohag, Egypt
| | - Matthias Schefzyk
- Institute for Dermatology, Allergology and Venerology, Hannover Medical School (MHH), Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School (MHH), Hannover, Germany
| | - Bernd Auber
- Institute for Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Ruth Olmer
- LEBAO, Hannover Medical School (MHH), Hannover, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lennart M Roesner
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sven Schuchardt
- Department of Bio and Environmental Analytics, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | - Ulrich Martin
- LEBAO, Hannover Medical School (MHH), Hannover, Germany
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Werfel
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Frank Pessler
- Biomarkers for Infectious Diseases, Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| |
Collapse
|
38
|
Delafontaine S, Meyts I. Infection and autoinflammation in inborn errors of immunity: brothers in arms. Curr Opin Immunol 2021; 72:331-339. [PMID: 34543865 DOI: 10.1016/j.coi.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
The binary view of inborn errors of immunity classified as either autoinflammatory conditions or primary immunodeficiency in the strict sense, that is, increased susceptibility to infection is challenged by the description of recent inborn errors of immunity (IEI) triggers leading to activation and disruption of cell death pathways, play a major part in the pathophysiology of infection and autoinflammation. In addition, molecules with a double role in the extracellular versus intracellular milieu add to the complexity. In all, in-depth study of human inborn errors of immunity will continue to instruct us on fundamental immunology and lead to novel therapeutic targets and approaches that can be used in other monogenic and polygenic/complex immune disorders.
Collapse
Affiliation(s)
- Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
39
|
Börold J, Eletto D, Busnadiego I, Mair NK, Moritz E, Schiefer S, Schmidt N, Petric PP, Wong WWL, Schwemmle M, Hale BG. BRD9 is a druggable component of interferon-stimulated gene expression and antiviral activity. EMBO Rep 2021; 22:e52823. [PMID: 34397140 PMCID: PMC8490982 DOI: 10.15252/embr.202152823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) induction of IFN-stimulated genes (ISGs) creates a formidable protective antiviral state. However, loss of appropriate control mechanisms can result in constitutive pathogenic ISG upregulation. Here, we used genome-scale loss-of-function screening to establish genes critical for IFN-induced transcription, identifying all expected members of the JAK-STAT signaling pathway and a previously unappreciated epigenetic reader, bromodomain-containing protein 9 (BRD9), the defining subunit of non-canonical BAF (ncBAF) chromatin-remodeling complexes. Genetic knockout or small-molecule-mediated degradation of BRD9 limits IFN-induced expression of a subset of ISGs in multiple cell types and prevents IFN from exerting full antiviral activity against several RNA and DNA viruses, including influenza virus, human immunodeficiency virus (HIV1), and herpes simplex virus (HSV1). Mechanistically, BRD9 acts at the level of transcription, and its IFN-triggered proximal association with the ISG transcriptional activator, STAT2, suggests a functional localization at selected ISG promoters. Furthermore, BRD9 relies on its intact acetyl-binding bromodomain and unique ncBAF scaffolding interaction with GLTSCR1/1L to promote IFN action. Given its druggability, BRD9 is an attractive target for dampening ISG expression under certain autoinflammatory conditions.
Collapse
Affiliation(s)
- Jacob Börold
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Davide Eletto
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nina K Mair
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Eva Moritz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Samira Schiefer
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Nora Schmidt
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philipp P Petric
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Martin Schwemmle
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Das J, Banday A, Shandilya J, Sharma M, Vignesh P, Rawat A. An updated review on Mendelian susceptibility to mycobacterial diseases - a silver jubilee celebration of its first genetic diagnosis. Expert Rev Clin Immunol 2021; 17:1103-1120. [PMID: 34259572 DOI: 10.1080/1744666x.2021.1956314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mendelian susceptibility to mycobacterial diseases (MSMD), a group of at least 18 different genetic disorders, encompasses a specific class of inborn errors of immunity that result in predilection to infection with mycobacteria including the weakly virulent strains. Primarily, these consist of defects in the IFN-γ-IL-12/23 circuit that is crucial for immunity against intracellular microorganisms. Although the first genetic etiology of MSMD was discovered in 1996, molecular diagnosis of MSMD in resource-constrained settings may remain far-fetched. Recently, original studies have emerged from developing countries, including India, wherein the genetic diagnosis was confirmed within the country itself. A lag of about 25 years, hence, seems to exist. AREAS COVERED Herein, we review the clinical, laboratory, and mutational profile of the genetic defects responsible for causing MSMD. We intend to enhance the recognition of these disorders in settings endemic for tuberculosis and bridge the gap between the developed and developing countries in the field of MSMD research and therapeutics. EXPERT OPINION Research in the field of MSMD in developing countries, including India, can uncover novel genetic etiologies, as the population exceeds 1.3 billion, a huge burden of tuberculosis (across all clinical spectrums) exists, and BCG vaccination is given universally at birth.
Collapse
Affiliation(s)
- Jhumki Das
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aaqib Banday
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jitendra Shandilya
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
41
|
Mathieu NA, Paparisto E, Barr SD, Spratt DE. HERC5 and the ISGylation Pathway: Critical Modulators of the Antiviral Immune Response. Viruses 2021; 13:1102. [PMID: 34207696 PMCID: PMC8228270 DOI: 10.3390/v13061102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Mammalian cells have developed an elaborate network of immunoproteins that serve to identify and combat viral pathogens. Interferon-stimulated gene 15 (ISG15) is a 15.2 kDa tandem ubiquitin-like protein (UBL) that is used by specific E1-E2-E3 ubiquitin cascade enzymes to interfere with the activity of viral proteins. Recent biochemical studies have demonstrated how the E3 ligase HECT and RCC1-containing protein 5 (HERC5) regulates ISG15 signaling in response to hepatitis C (HCV), influenza-A (IAV), human immunodeficiency virus (HIV), SARS-CoV-2 and other viral infections. Taken together, the potent antiviral activity displayed by HERC5 and ISG15 make them promising drug targets for the development of novel antiviral therapeutics that can augment the host antiviral response. In this review, we examine the emerging role of ISG15 in antiviral immunity with a particular focus on how HERC5 orchestrates the specific and timely ISGylation of viral proteins in response to infection.
Collapse
Affiliation(s)
- Nicholas A. Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| | - Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
42
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
43
|
d'Angelo DM, Di Filippo P, Breda L, Chiarelli F. Type I Interferonopathies in Children: An Overview. Front Pediatr 2021; 9:631329. [PMID: 33869112 PMCID: PMC8044321 DOI: 10.3389/fped.2021.631329] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Notable advances in gene sequencing methods in recent years have permitted enormous progress in the phenotypic and genotypic characterization of autoinflammatory syndromes. Interferonopathies are a recent group of inherited autoinflammatory diseases, characterized by a dysregulation of the interferon pathway, leading to constitutive upregulation of its activation mechanisms or downregulation of negative regulatory systems. They are clinically heterogeneous, but some peculiar clinical features may lead to suspicion: a familial "idiopathic" juvenile arthritis resistant to conventional treatments, an early necrotizing vasculitis, a non-infectious interstitial lung disease, and a panniculitis associated or not with a lipodystrophy may represent the "interferon alarm bells." The awareness of this group of diseases represents a challenge for pediatricians because, despite being rare, a differential diagnosis with the most common childhood rheumatological and immunological disorders is mandatory. Furthermore, the characterization of interferonopathy molecular pathogenetic mechanisms is allowing important steps forward in other immune dysregulation diseases, such as systemic lupus erythematosus and inflammatory myositis, implementing the opportunity of a more effective target therapy.
Collapse
Affiliation(s)
| | | | - Luciana Breda
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Excellence on Aging, University of Chieti, Chieti, Italy
| |
Collapse
|
44
|
Al-Mayouf SM, Akbar L, AlEnazi A, Al-Mousa H. Autosomal Recessive ISG15 Deficiency Underlies Type I Interferonopathy with Systemic Lupus Erythematosus and Inflammatory Myositis. J Clin Immunol 2021; 41:1361-1364. [PMID: 33742321 DOI: 10.1007/s10875-021-01019-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Sulaiman M Al-Mayouf
- Pediatric Rheumatology, Department of Pediatrics, King Faisal Specialist Hospital & Research, Alfaisal University, Po Box 3354, Riyadh, 11211, Saudi Arabia. .,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Lujayn Akbar
- Pediatric Rheumatology, Department of Pediatrics, King Faisal Specialist Hospital & Research, Alfaisal University, Po Box 3354, Riyadh, 11211, Saudi Arabia
| | - Abdullatif AlEnazi
- Pediatric Rheumatology, Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Allergy & Immunology, Department of Pediatrics, King Faisal Specialist Hospital & Research, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Al-Mayouf SM, Alreefi HA, Alsinan TA, AlSalmi G, AlRowais A, Al-Herz W, Alazami AM, Alsonbul A, Al-Mousa H. Lupus manifestations in children with primary immunodeficiency diseases: Comprehensive phenotypic and genetic features and outcome. Mod Rheumatol 2021; 31:1171-1178. [PMID: 33563058 DOI: 10.1080/14397595.2021.1886627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To report the phenotypic, genetic findings and outcome of children with lupus manifestations associated with primary immunodeficiency diseases (PIDs). METHODS Data are retrospectively collected on patients with lupus manifestations and PIDs seen between 1998 and 2019. Data comprised the clinical findings and genetic testing, the response to treatment and the accrual damage related to SLE. RESULTS A total of 39 patients (22 female) were reviewed. Thirty-four patients had lupus manifestations and six patients with SLE-like manifestations. Genetic analysis was performed in 25 patients. Complement deficiency was the most frequent PIDs; 26 patients were C1q deficient, three patients had C3 deficiency, two patients had C4 deficiency and one patient with heterozygous C8b variant. The other seven patients had different PIDs genetic defects that include SCID caused by PNP deficiency, CGD, CVID (PIK3CD), IL-2RB mutation, DNase II deficiency, STAT1 mutation, ISG15 mutation and Griscelli syndrome type 3. Mucocutaneous lesions, arthritis and lung involvement were the main clinical features. 84.1% experienced recurrent infections. The mean accrual damage was 2.7 ± 2.2. There were five deaths because of infection. CONCLUSION This study suggests that patients with lupus manifestations and early onset disease, family history of SLE or recurrent infections should undergo immunological work-up and genetic testing to rule out PIDs.
Collapse
Affiliation(s)
- Sulaiman M Al-Mayouf
- Department of Pediatrics, Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hajar A Alreefi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Tuqa A Alsinan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ghada AlSalmi
- Department of Pediatrics, Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdulaziz AlRowais
- Department of Pediatrics, Pediatric Rheumatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Pediatric Department, Allergy & Clinical Immunology Unit, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdullah Alsonbul
- Department of Pediatrics, Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy & Immunology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Rubino E, Cruciani M, Tchitchek N, Le Tortorec A, Rolland AD, Veli Ö, Vallet L, Gaggi G, Michel F, Dejucq-Rainsford N, Pellegrini S. Human Ubiquitin-Specific Peptidase 18 Is Regulated by microRNAs via the 3'Untranslated Region, A Sequence Duplicated in Long Intergenic Non-coding RNA Genes Residing in chr22q11.21. Front Genet 2021; 11:627007. [PMID: 33633774 PMCID: PMC7901961 DOI: 10.3389/fgene.2020.627007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Ubiquitin-specific peptidase 18 (USP18) acts as gatekeeper of type I interferon (IFN) responses by binding to the IFN receptor subunit IFNAR2 and preventing activation of the downstream JAK/STAT pathway. In any given cell type, the level of USP18 is a key determinant of the output of IFN-stimulated transcripts. How the baseline level of USP18 is finely tuned in different cell types remains ill defined. Here, we identified microRNAs (miRNAs) that efficiently target USP18 through binding to the 3’untranslated region (3’UTR). Among these, three miRNAs are particularly enriched in circulating monocytes which exhibit low baseline USP18. Intriguingly, the USP18 3’UTR sequence is duplicated in human and chimpanzee genomes. In humans, four USP18 3’UTR copies were previously found to be embedded in long intergenic non-coding (linc) RNA genes residing in chr22q11.21 and known as FAM247A-D. Here, we further characterized their sequence and measured their expression profile in human tissues. Importantly, we describe an additional lincRNA bearing USP18 3’UTR (here linc-UR-B1) that is expressed only in testis. RNA-seq data analyses from testicular cell subsets revealed a positive correlation between linc-UR-B1 and USP18 expression in spermatocytes and spermatids. Overall, our findings uncover a set of miRNAs and lincRNAs, which may be part of a network evolved to fine-tune baseline USP18, particularly in cell types where IFN responsiveness needs to be tightly controlled.
Collapse
Affiliation(s)
- Erminia Rubino
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France.,École Doctorale Physiologie, Physiopathologie et Thérapeutique, ED394, Sorbonne Université, Paris, France
| | - Melania Cruciani
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Nicolas Tchitchek
- École Doctorale Physiologie, Physiopathologie et Thérapeutique, ED394, Sorbonne Université, Paris, France.,i3 research unit, Hôpital Pitié-Salpêtrière-Sorbonne Université, Paris, France
| | - Anna Le Tortorec
- UMR_S1085, Institut de recherche en santé, environnement et travail (Irset), EHESP, Inserm, Univ Rennes, Rennes, France
| | - Antoine D Rolland
- UMR_S1085, Institut de recherche en santé, environnement et travail (Irset), EHESP, Inserm, Univ Rennes, Rennes, France
| | - Önay Veli
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Leslie Vallet
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Giulia Gaggi
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Nathalie Dejucq-Rainsford
- UMR_S1085, Institut de recherche en santé, environnement et travail (Irset), EHESP, Inserm, Univ Rennes, Rennes, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| |
Collapse
|
47
|
Pacella I, Spinelli FR, Severa M, Timperi E, Tucci G, Zagaglioni M, Ceccarelli F, Rizzo F, Coccia EM, Patel RS, Martin-Fernandez M, Bogunovic D, Conti F, Barnaba V, Piconese S. ISG15 protects human Tregs from interferon alpha-induced contraction in a cell-intrinsic fashion. Clin Transl Immunology 2020; 9:e1221. [PMID: 33376595 PMCID: PMC7758615 DOI: 10.1002/cti2.1221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
Objectives Type I interferons (IFNs) inhibit regulatory T-cell (Treg) expansion and activation, making them beneficial in antiviral responses, but detrimental in autoimmune diseases. Herein, we investigate the role of ISG15 in human Tregs in the context of refractoriness to type I IFN stimulation. Methods ISG15 expression and Treg dynamics were analysed in vitro and ex vivo from patients with chronic hepatitis C, with lupus and ISG15 deficiency. Results ISG15 is expressed at high levels in human Tregs, renders them refractory to the IFN-STAT1 signal, and protects them from IFN-driven contraction. In vitro, Tregs from healthy controls upregulate ISG15 upon activation to higher levels than conventional CD4 T cells, and ISG15-silenced Tregs are more susceptible to IFNα-induced contraction. In human ISG15 deficiency, patient Tregs display an elevated IFN signature relative to Tregs from healthy control. In vivo, in patients with chronic hepatitis C, 2 days after starting pegIFN/ribavirin therapy, a stronger ISG15 inducibility correlates with a milder Treg depletion. Ex vivo, in systemic lupus erythematosus patients, higher levels of ISG15 are associated to reduced STAT1 phosphorylation in response to IFNα, and also to increased frequencies of Tregs, characterising active disease. Conclusion Our results reveal a Treg-intrinsic role of ISG15 in dictating their refractoriness to the IFN signal, thus preserving the Treg population under inflammatory conditions.
Collapse
Affiliation(s)
- Ilenia Pacella
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy
| | - Francesca Romana Spinelli
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy
| | - Martina Severa
- Department of Infectious Diseases Istituto Superiore di Sanità Rome Italy
| | - Eleonora Timperi
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy.,Present address: Eleonora Timperi Institut Curie Paris France
| | - Gloria Tucci
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy
| | - Marta Zagaglioni
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti Rome Italy
| | - Fulvia Ceccarelli
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases Istituto Superiore di Sanità Rome Italy
| | - Eliana M Coccia
- Department of Infectious Diseases Istituto Superiore di Sanità Rome Italy
| | - Roosheel S Patel
- Center for Inborn Errors of Immunity Icahn School of Medicine at Mount Sinai New York NY USA.,Precision Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA.,Mindich Child Health and Development Institute Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Pediatrics Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY USA
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity Icahn School of Medicine at Mount Sinai New York NY USA.,Precision Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA.,Mindich Child Health and Development Institute Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Pediatrics Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity Icahn School of Medicine at Mount Sinai New York NY USA.,Precision Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA.,Mindich Child Health and Development Institute Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Pediatrics Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY USA
| | - Fabrizio Conti
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy
| | - Vincenzo Barnaba
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti Rome Italy
| | - Silvia Piconese
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari Sapienza Università di Roma Rome Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti Rome Italy
| |
Collapse
|
48
|
Merkert S, Jaboreck MC, Engels L, Malik MNH, Göhring G, Pessler F, Martin U, Olmer R. Generation of two human ISG15 knockout iPSC clones using CRISPR/Cas9 editing. Stem Cell Res 2020; 50:102135. [PMID: 33383405 DOI: 10.1016/j.scr.2020.102135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Interferon stimulated gene 15 (ISG15) is one of the most highly upregulated proteins in response to viral infection and is involved in numerous pathways with multiple mechanisms of actions. ISG15 deficiency has been reported to induce type I interferonopathy owing to defective negative regulation of IFN-I signalling as well as enhanced antiviral protection. Here, we have generated ISG15 knockout clones from human iPSCs, which provide useful cell resources to study mechanisms of ISG15 deficiency and gain more insight into the biological function of ISG15.
Collapse
Affiliation(s)
- S Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany.
| | - M-C Jaboreck
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - L Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - M N H Malik
- TWINCORE Centre for Experimental and Clinical Infection Research, Centre for Individualized Infection Medicine, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany
| | - G Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - F Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research, Centre for Individualized Infection Medicine, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany
| | - U Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - R Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
49
|
Buda G, Valdez RM, Biagioli G, Olivieri FA, Affranchino N, Bouso C, Lotersztein V, Bogunovic D, Bustamante J, Martí MA. Inflammatory cutaneous lesions and pulmonary manifestations in a new patient with autosomal recessive ISG15 deficiency case report. Allergy Asthma Clin Immunol 2020; 16:77. [PMID: 32944031 PMCID: PMC7491304 DOI: 10.1186/s13223-020-00473-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/06/2020] [Indexed: 11/27/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) was the first ubiquitin-like modifier protein identified that acts by protein conjugation (ISGylation) and is thought to modulate IFN-induced inflammation. Here, we report a new patient from a non-consanguineous Argentinian family, who was followed for recurrent ulcerative skin lesions, cerebral calcifications and lung disease. Whole Exome Sequencing (WES) revealed two novel compound heterozygous variants (c.285del and c.299_312del, NM_005101.4 GRCh37(hg19), both classified as pathogenic according to ACMG criteria) in the ISG15 gene, resulting in a complete deficiency due to disruption of the second ubiquitin domain of the corresponding protein. The clinical phenotype of this patient is unique given the presence of recurrent pulmonary manifestations and the absence of mycobacterial infections, thus resulting in a phenotype distinct from that previously described in patients with biallelic loss-of-function (LOF) ISG15 variants. This case highlights the role of ISG15 as an immunomodulating factor whose LOF variants result in heterogeneous clinical presentations.
Collapse
Affiliation(s)
- Guadalupe Buda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina.,Bitgenia, Buenos Aires, Argentina
| | - Rita María Valdez
- Hospital Militar Central, Servicio de Genética, Buenos Aires, Argentina
| | - German Biagioli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina.,Bitgenia, Buenos Aires, Argentina
| | - Federico A Olivieri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina
| | | | - Carolina Bouso
- Hospital Juan P. Garrahan, Servicio de Inmunología y Reumatología, Buenos Aires, Argentina
| | | | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, University of Paris, Imagine Institute, Paris, EU France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris, EU France
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|