1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins identified in human sarcoma drive YAP/TAZ-independent tumorigenesis by engaging EP300. eLife 2025; 13:RP98386. [PMID: 40338073 PMCID: PMC12061476 DOI: 10.7554/elife.98386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEADs. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in human spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1 the fusion proteins are potent activators of TEAD-dependent transcription, and the function of these fusion proteins does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase EP300 to control TEAD-mediated transcriptional and epigenetic landscapes. We show that small-molecule EP300 inhibition can suppress fusion protein-induced oncogenic transformation both in vitro and in vivo in mouse models. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ritesh P Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
3
|
Nutsch K, Trujillo MN, Song L, Erb MA, Chen JJ, Galligan JJ, Bollong MJ. Augmented Acyl-CoA Biosynthesis Promotes Resistance to TEAD Palmitoylation Site Inhibition. ACS Chem Biol 2025; 20:967-975. [PMID: 40179049 DOI: 10.1021/acschembio.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Activation of the YAP-TEAD transcriptional complex drives the growth of several cancer types and is a key resistance mechanism to targeted therapies. Accordingly, a host of pharmacological inhibitors to TEAD family paralogs have been developed, yet little is known as to the resistance mechanisms that might arise against this emerging therapeutic class. Here, we report that genetic augmentation of de novo coenzyme A biosynthesis desensitizes YAP-dependent cancer cells to treatment with TEAD inhibitors, an effect driven by increased levels of palmitoyl-CoA that outcompete drug for engagement of the lipid-binding pocket. This work uncovers a potential therapeutic resistance mechanism to TEAD palmitoylation site inhibition with implications for future combinatorial treatments in the clinic.
Collapse
Affiliation(s)
- Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Lirui Song
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Jian Jeffery Chen
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| |
Collapse
|
4
|
Ahi EP, Verta JP, Kurko J, Ruokolainen A, Debes PV, Primmer CR. Hippo-vgll3 signaling may contribute to sex differences in Atlantic salmon maturation age via contrasting adipose dynamics. Biol Sex Differ 2025; 16:23. [PMID: 40176157 PMCID: PMC11966934 DOI: 10.1186/s13293-025-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Sexual maturation in Atlantic salmon entails a transition in energy utilization, regulated by genes and environmental stimuli in sex-specific manner. Males require less energy, in the form of adiposity, to mature and typically mature younger than females. Maturation age is also influenced in a sex-dependent fashion by the vgll3 genotype (vestigial-like 3), a co-factor in the Hippo pathway. The underlying molecular processes of sex-dependent maturation age, and their interplay with adiposity and vgll3 genotypes, remain unclear. METHODS To elucidate the mechanisms underlying sex- and genotype-specific maturation differences, we investigated the association of early (E) and late (L) maturation vgll3 alleles with the transcription of > 330 genes involved in the regulation of the Hippo pathway and sexual maturation, and related molecular signals in brain, adipose, and gonads. RESULTS The strongest effect of vgll3 genotype was observed in adipose for females and in brain for males, highlighting sex-specific expression differences in association with vgll3 genotype. Genes related to ovarian development showed increased expression in vgll3*EE compared to vgll3*LL females. Moreover, vgll3*EE females compared to vgll3*EE males exhibited reduced markers of pre-adipocyte differentiation and lipolysis yet enhanced expression of genes related to adipocyte maturation and lipid storage. Brain gene expression further showed sex-specific expression signals for genes related to hormones and lipids, as well as tight junction assembly. CONCLUSIONS Overall, these sex-specific patterns point towards a greater lipid storage and slower energy utilization in females compared to males. These results suggest Hippo-dependent mechanisms may be important mediators of sex differences in maturation age in salmon.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| | - Jukka-Pekka Verta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Johanna Kurko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Paul Vincent Debes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Zhu Z, Feng S, Zeng A, Song L. Advances in Palmitoylation: A key Regulator of liver cancer development and therapeutic targets. Biochem Pharmacol 2025; 234:116810. [PMID: 39978688 DOI: 10.1016/j.bcp.2025.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Liver cancer ranks as the second leading cause of cancer-related deaths globally, which remains a significant public health concern. The development of liver cancer is associated with several signaling pathways, particularly metabolic reprogramming. Protein S-palmitoylation, a type of lipid post-translational modification (PTM), involves the reversible attachment of palmitic acid to a cysteine residue through a thioester bond. This modification is found in a wide range of proteins, including enzymes, cancer promoters, tumor suppressors, and transcription factors. The palmitoylation process is catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family, while the reverse process, depalmitoylation, is facilitated by palmitoyl-protein thioesterases (PPTs). Dysregulation of palmitoylation has been linked to various cancer hallmark functions, cancer metabolism, and tumor microenvironment regulation. Currently, membrane palmitoylated protein (MPP) and PPT1 have been identified as prognostic markers and potential therapeutic targets in liver cancer. In this review, we summarize recent advances in understanding the effects of palmitoylation on liver cancer development, metastasis, and prognosis prediction, and explore potential therapeutic strategies for managing liver cancer.
Collapse
Affiliation(s)
- Zilong Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Shenghui Feng
- Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
6
|
Lu Y, Yan Z, Sun J, Wang C, Xu L, Lyu X, Wang X, Lou J, Huang H, Meng L, Zhao Y. Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo. J Med Chem 2025; 68:5616-5640. [PMID: 39804031 DOI: 10.1021/acs.jmedchem.4c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders. Both series yielded potent TEAD degraders, including 19 and 40 (H122), which induced TEAD1 degradation with DC50 < 10 nM. Mechanistic studies demonstrated that the degradation of TEAD1 induced by 40 relied on CRBN binding, TEAD1 binding, E3 ligase activity, and a functional proteasome. RNA-seq analyses indicated that 40 significantly downregulated the expression of Myc target genes, as highlighted by GSEA analysis. More importantly, 40 exhibited robust antitumor efficacy in the MSTO-211H mouse xenograft model. Collectively, our results suggest that TEAD PROTACs have therapeutic potential for the treatment of cancers associated with TEAD overactivation.
Collapse
Affiliation(s)
- Yuhang Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
| | - Jiaqi Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chenxu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lan Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
| | - Xiancheng Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Linghua Meng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yujun Zhao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins drive YAP/TAZ-independent tumorigenesis by engaging p300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.01.592016. [PMID: 38746415 PMCID: PMC11092657 DOI: 10.1101/2024.05.01.592016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1, the fusion proteins are strong activators of TEAD-dependent transcription, and their function does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase p300 to control TEAD-mediated transcriptional and epigenetic landscapes. We showed that small molecule p300 inhibition can suppress fusion proteins-induced oncogenic transformation both in vitro and in vivo. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jennifer L. Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Ritesh P. Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
8
|
Paul S, Hagenbeek TJ, Tremblay J, Kameswaran V, Ong C, Liu C, Guarnaccia AD, Mondo JA, Hsu PL, Kljavin NM, Czech B, Smola J, Nguyen DAH, Lacap JA, Pham TH, Liang Y, Blake RA, Gerosa L, Grimmer M, Xie S, Daniel B, Yao X, Dey A. Cooperation between the Hippo and MAPK pathway activation drives acquired resistance to TEAD inhibition. Nat Commun 2025; 16:1743. [PMID: 39966375 PMCID: PMC11836325 DOI: 10.1038/s41467-025-56634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
TEAD (transcriptional enhanced associate domain) transcription factors (TEAD1-4) serve as the primary effectors of the Hippo signaling pathway in various cancers. Targeted therapy leads to the emergence of resistance and the underlying mechanism of resistance to TEAD inhibition in cancers is less characterized. We uncover that upregulation of the AP-1 (activator protein-1) transcription factors, along with restored YAP (yes-associated protein) and TEAD activity, drives resistance to GNE-7883, a pan-TEAD inhibitor. Acute GNE-7883 treatment abrogates YAP-TEAD binding and attenuates FOSL1 (FOS like 1) activity. TEAD inhibitor resistant cells restore YAP and TEAD chromatin occupancy, acquire additional FOSL1 binding and exhibit increased MAPK (mitogen-activated protein kinase) pathway activity. FOSL1 is required for the chromatin binding of YAP and TEAD. This study describes a clinically relevant interplay between the Hippo and MAPK pathway and highlights the key role of MAPK pathway inhibitors in mitigating resistance to TEAD inhibition in Hippo pathway dependent cancers.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Thijs J Hagenbeek
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Julien Tremblay
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Vasumathi Kameswaran
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Christy Ong
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Chad Liu
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Alissa D Guarnaccia
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - James A Mondo
- Roche Informatics, Hoffman-La Roche Canada, Mississauga, ON, Canada
| | - Peter L Hsu
- Department of Structural Biology, Genentech Inc, South San Francisco, CA, USA
| | - Noelyn M Kljavin
- Department of Research Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bartosz Czech
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Janina Smola
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Dieu An H Nguyen
- Department of Early Discovery Biochemistry, Genentech Inc, South San Francisco, CA, USA
| | - Jennifer A Lacap
- Department of Translational Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Trang H Pham
- Department of Translational Medicine, Genentech Inc, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Robert A Blake
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
| | - Luca Gerosa
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Matthew Grimmer
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Shiqi Xie
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bence Daniel
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Xiaosai Yao
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
| |
Collapse
|
9
|
Toulotte F, Coevoet M, Liberelle M, Bailly F, Zagiel B, Gelin M, Allemand F, Fourquet P, Melnyk P, Guichou JF, Cotelle P. Towards the design of ligands of the internal pocket TEADs C-terminal domain. Eur J Med Chem 2025; 282:117026. [PMID: 39571457 DOI: 10.1016/j.ejmech.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 12/10/2024]
Abstract
The Hippo pathway controls in organ size and tissue homeostasis through regulating cell growth, proliferation and apoptosis. Phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) regulates their nuclear import and therefore their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several solid cancers making YAP/TAZ-TEAD interaction a new anti-cancer target. We identified by screening a small in-house library, 5-benzyloxindole which binds to hTEAD2 at its internal/palmitate pocket. Its optimization led to covalent inhibitors bearing different warhead. Soaking with hTEAD2 gave seven new crystal structures where the ligands occupied palmitate pocket. 5-Benzyloxyindoles armed with vinylsulfamide moiety inhibit YAP/TAZ-TEAD target genes expression and breast cancer cell proliferation at micromolar concentration.
Collapse
Affiliation(s)
- Florine Toulotte
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Mathilde Coevoet
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Maxime Liberelle
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Fabrice Bailly
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Benjamin Zagiel
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France
| | - Patrick Fourquet
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille, France
| | - Patricia Melnyk
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France.
| | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France.
| | - Philippe Cotelle
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France; ENSCL-Centrale Lille, CS 90108, F-59652, Villeneuve d'Ascq, France
| |
Collapse
|
10
|
Tóth M, Wan S, Schmitt J, Birner P, Wei T, von Bubnoff F, de la Torre C, Thomann S, Pinna F, Schirmacher P, Weiler SME, Breuhahn K. The Cell Polarity Protein MPP5/PALS1 Controls the Subcellular Localization of the Oncogenes YAP and TAZ in Liver Cancer. Int J Mol Sci 2025; 26:660. [PMID: 39859373 PMCID: PMC11766031 DOI: 10.3390/ijms26020660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The oncogenes yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause YAP/TAZ activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ. Co-immunoprecipitation (Co-IP) experiments confirmed that membrane protein palmitoylated 5 (MPP5; synonym: PALS1) physically interacts with YAP and TAZ. After removing different MPP5 protein domains, Co-IP analyses revealed that the PDZ domain plays a crucial role in YAP binding. The interaction between YAP and MPP5 in the cytoplasm of cancer cells was demonstrated by proximity ligation assays (PLAs). In human hepatocellular carcinoma (HCC) tissues, a reduction in apical MPP5 expression was observed, correlating with the nuclear accumulation of YAP and TAZ. Expression data analysis illustrated that MPP5 is inversely associated with YAP/TAZ target gene signatures in human HCCs. Low MPP5 levels define an HCC patient group with a poor clinical outcome. In summary, MPP5 facilitates the nuclear exclusion of YAP and TAZ in liver cancer. This qualifies MPP5 as a potential tumor-suppressor gene and explains how changes in cell polarity can foster tumorigenesis.
Collapse
Affiliation(s)
- Marcell Tóth
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Shan Wan
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Department of Pathology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jennifer Schmitt
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrizia Birner
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Teng Wei
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Cytotherapy Laboratory, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Fabian von Bubnoff
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Thomann
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Federico Pinna
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Kai Breuhahn
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Paul S, Sims J, Pham T, Dey A. Targeting the Hippo pathway in cancer: kidney toxicity as a class effect of TEAD inhibitors? Trends Cancer 2025; 11:25-36. [PMID: 39521692 DOI: 10.1016/j.trecan.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
The Hippo pathway has emerged as a critical player in both cancers and targeted therapy resistance. Recent drug discovery efforts have led to the development of TEAD inhibitors, several of which have already progressed to the clinic. To truly leverage their potential as anticancer therapeutics, safety considerations, particularly in regard to the kidney, warrant additional investigation. This review explores the Hippo pathway's role in cancers, its therapeutic potential, role in kidney development, and the need to evaluate the best strategies to translate its clinical application for long-term patient benefit.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Jessica Sims
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Trang Pham
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080.
| |
Collapse
|
12
|
Choi YS, Kim YJ, Jeon Y, Kang JS, Lee J, Hong E, Park YH, Kim W, Cha B, Jeon R. Exploring structural and biological insights of TEAD through rational design and synthesis of niflumic acid derivatives. J Enzyme Inhib Med Chem 2024; 39:2419925. [PMID: 39494490 PMCID: PMC11536644 DOI: 10.1080/14756366.2024.2419925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/03/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket. We anticipate that precise targeting of the polar side pocket could facilitate the discovery of inhibitors with enhanced potencies and properties. Herein, we selected niflumic acid as the core scaffold suitable for targeting the three characteristic components of TEAD palmitate pocket. Reversible and irreversible compounds with substituents capable of directing each part of the palmitate pocket were designed. The newly synthesised compounds inhibited the palmitoylation and transcriptional activity of TEAD and elicited growth-inhibitory effects against several carcinomas, including mesothelioma.
Collapse
Affiliation(s)
- Yong-Sung Choi
- College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Yoon-Jung Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Yeram Jeon
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Jong Soon Kang
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Juhee Lee
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Eunmi Hong
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | | | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Boksik Cha
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| |
Collapse
|
13
|
Kim J, Kim H, Kim J, Cho SY, Moon S, Yoo Y, Kim H, Kim JK, Jeon H, Namkung W, Han G, No KT. Pan-Transcriptional Enhanced Associated Domain Palmitoylation Pocket Covalent Inhibitor. J Med Chem 2024; 67:18957-18968. [PMID: 39487823 DOI: 10.1021/acs.jmedchem.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In the Hippo signaling pathway, the palmitoylated transcriptional enhanced associated domain (TEAD) protein interacts with the coactivator Yes-associated protein/PDZ-binding motif, leading to transcriptional upregulation of oncogenes such as Ctgf and Cyr61. Consequently, targeting the palmitoylation sites of TEAD has emerged as a promising strategy for treating TEAD-dependent cancers. Compound 1 was identified using a structure-based drug design approach, leveraging the molecular insights gained from the known TEAD palmitoylation site inhibitor, K-975. Optimization of the initial hit compound resulted in the development of compound 3, a covalent pan-TEAD inhibitor characterized by high potency and oral bioavailability.
Collapse
Affiliation(s)
- Jinhyuk Kim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hadong Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Jongwan Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Seon Yeon Cho
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Sungho Moon
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Youngki Yoo
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hanseong Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Jin Kwan Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hyejin Jeon
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Wan Namkung
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Postech Biotech Center, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Kyoung Tai No
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
- Institute of Convergence Science and Technology, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
14
|
Zhu R, Liu X, Zhang X, Zhong Z, Qi S, Jin R, Gu Y, Wang Y, Ling C, Chen K, Ye D, Yu FX. Gene therapy for diffuse pleural mesotheliomas in preclinical models by concurrent expression of NF2 and SuperHippo. Cell Rep Med 2024; 5:101763. [PMID: 39368484 PMCID: PMC11513813 DOI: 10.1016/j.xcrm.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Diffuse pleural mesothelioma (DPM) is a lethal cancer with a poor prognosis and limited treatment options. The Hippo signaling pathway genes, such as NF2 and LATS1/2, are frequently mutated in DPM, indicating a tumor suppressor role in the development of DPM. Here, we show that in DPM cell lines lacking NF2 and in mice with a conditional Nf2 knockout, downregulation of WWC proteins, another family of Hippo pathway regulators, accelerates DPM progression. Conversely, the expression of SuperHippo, a WWC-derived minigene, effectively enhances Hippo signaling and suppresses DPM development. Moreover, the adeno-associated virus serotype 6 (AAV6) has been engineered to deliver both NF2 and SuperHippo genes into mesothelial cells, which substantially impedes tumor growth in xenograft and genetic DPM models and prolongs the median survival of mice. These findings serve as a proof of concept for the potential use of gene therapy targeting the Hippo pathway to treat DPM.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xincheng Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xu Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Li N, Liu YH, Wu J, Liu QG, Niu JB, Zhang Y, Fu XJ, Song J, Zhang SY. Strategies that regulate Hippo signaling pathway for novel anticancer therapeutics. Eur J Med Chem 2024; 276:116694. [PMID: 39047607 DOI: 10.1016/j.ejmech.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Chen H, Gridnev A, Schlamowitz N, Hu W, Dey K, Zheng G, Misra JR. Targeted degradation of specific TEAD paralogs by small molecule degraders. Heliyon 2024; 10:e37829. [PMID: 39328531 PMCID: PMC11425103 DOI: 10.1016/j.heliyon.2024.e37829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The transcription factors, TEAD1-4 together with their co-activator YAP/TAZ function as key downstream effectors of the Hippo pathway. Hyperactivation of TEAD-YAP/TAZ activity is observed in many human cancers. TEAD1-4 possess distinct physiological and pathological functions, with conserved sequences and structures. Targeting specific isoforms within TEAD1-4 can serve as valuable chemical probes for investigating TEAD-related functions in both development and diseases. We report the TEAD-targeting proteolysis targeting chimera (PROTAC), HC278, which achieves effective and specific targeting of TEAD1 and TEAD3 at low nanomolar doses while weakly degrading TEAD2 and TEAD4 at higher doses. Proteomic analysis of >6000 proteins confirmed their highly selective TEAD1 and TEAD3 degradation. Consistently, HC278 can suppress the proliferation of YAP-dependent NCI-H226 mesothelioma cells. Mechanistic exploration revealed that both CRBN and proteasome systems are involved in the TEAD degradation induced by HC278. Moreover, RNA-seq and Gene Set Enrichment Analysis (GSEA) revealed that the YAP signature genes such as CTGF, CYR61, and ANKRD1 are significantly downregulated by HC278 treatment. Overall, HC278 serves as a valuable chemical tool for unraveling the intricate biological roles of TEAD1 and TEAD3 and holds the potential as a lead compound for developing targeted therapy for TEAD1/3-driven pathologies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Artem Gridnev
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, Oregon Health & Sciences University, Portland, OR, USA
| | - Netanya Schlamowitz
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Kuntala Dey
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti R. Misra
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
| |
Collapse
|
17
|
Pei S, Piao HL. Exploring Protein S-Palmitoylation: Mechanisms, Detection, and Strategies for Inhibitor Discovery. ACS Chem Biol 2024; 19:1868-1882. [PMID: 39160165 DOI: 10.1021/acschembio.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Collapse
Affiliation(s)
- Shaojun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122 Shenyang, China
| |
Collapse
|
18
|
Kulkarni A, Mohan V, Tang TT, Post L, Chan YC, Manning M, Thio N, Parker BL, Dawson MA, Rosenbluh J, Vissers JH, Harvey KF. Identification of resistance mechanisms to small-molecule inhibition of TEAD-regulated transcription. EMBO Rep 2024; 25:3944-3969. [PMID: 39103676 PMCID: PMC11387499 DOI: 10.1038/s44319-024-00217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.
Collapse
Affiliation(s)
- Aishwarya Kulkarni
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Varshini Mohan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Murray Manning
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Joseph Ha Vissers
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
19
|
Chapeau EA, Sansregret L, Galli GG, Chène P, Wartmann M, Mourikis TP, Jaaks P, Baltschukat S, Barbosa IAM, Bauer D, Brachmann SM, Delaunay C, Estadieu C, Faris JE, Furet P, Harlfinger S, Hueber A, Jiménez Núñez E, Kodack DP, Mandon E, Martin T, Mesrouze Y, Romanet V, Scheufler C, Sellner H, Stamm C, Sterker D, Tordella L, Hofmann F, Soldermann N, Schmelzle T. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. NATURE CANCER 2024; 5:1102-1120. [PMID: 38565920 PMCID: PMC11286534 DOI: 10.1038/s43018-024-00754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The YAP-TEAD protein-protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP-TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP-TEAD protein-protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel Bauer
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | - Pascal Furet
- Novartis BioMedical Research, Basel, Switzerland
| | - Stefanie Harlfinger
- Novartis BioMedical Research, Basel, Switzerland
- AstraZeneca, Oncology R&D, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Francesco Hofmann
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Group, R&D Medical Care, Toulouse, France
| | | | | |
Collapse
|
20
|
Xu CY, Jiang J, An Y, Ye PF, Zhang CC, Sun NN, Miao SN, Chai MQ, Liu WM, Yang M, Zhu WH, Yu JJ, Yu MM, Sun WY, Qiu H, Zhang SH, Wei W. Angiotensin II type-2 receptor signaling facilitates liver injury repair and regeneration via inactivation of Hippo pathway. Acta Pharmacol Sin 2024; 45:1201-1213. [PMID: 38491160 PMCID: PMC11130245 DOI: 10.1038/s41401-024-01249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Collapse
Affiliation(s)
- Chang-Yong Xu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yue An
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Peng-Fei Ye
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Cun-Cun Zhang
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Ning-Ning Sun
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Sai-Nan Miao
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Meng-Qi Chai
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Wen-Min Liu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei-Hua Zhu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing-Jing Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Man-Man Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, 230032, China.
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
21
|
Li H, Ge Z, Lin K, He W, Chu Q, Zheng M, Zhang S, Xu T. Design, Synthesis, and Bioevaluation of Transcriptional Enhanced Assocciated Domain (TEAD) PROTAC Degraders. ACS Med Chem Lett 2024; 15:631-639. [PMID: 38746898 PMCID: PMC11089546 DOI: 10.1021/acsmedchemlett.4c00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/11/2025] Open
Abstract
Dysregulation of the Hippo pathway has been observed in various cancers. The transcription factor TEAD, together with its coactivators YAP/TAZ, plays a crucial role in regulating the transcriptional output of the Hippo pathway. Recently, extensive research has focused on small molecule inhibitors targeting TEAD, but studies on TEAD degraders are comparatively rare. In this study, we designed and synthesized a series of TEAD PROTACs by connecting a pan-TEAD inhibitor with the CRBN ligand thalidomide. A representative compound, 27, exhibited potent antiproliferative activity against NF2-deficient NCI-H226 cells. It dose-dependently induced TEAD degradation dependent on CRBN and proteasome system and decreased key YAP target genes CYR61 and CTGF expressions in NCI-H226 cells. Further degradation selectivity studies revealed that 27 exhibited more potent activity against TEAD2 compared to those of the other three family members in Flag-TEADs transfected 293T cells. Therefore, 27 may serve as a valuable tool for advancing biological studies related to TEAD2.
Collapse
Affiliation(s)
- Huajie Li
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiming Ge
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kexin Lin
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing, 210023, China
| | - Wei He
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- Nanchang
University, Nanchang, 330031, China
| | - Qinyu Chu
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Mingyue Zheng
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing, 210023, China
- Nanchang
University, Nanchang, 330031, China
| | - Sulin Zhang
- University
of Chinese Academy of Sciences, Beijing, 100049, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Tianfeng Xu
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, 310024, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University
of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Haderk F, Chou YT, Cech L, Fernández-Méndez C, Yu J, Olivas V, Meraz IM, Barbosa Rabago D, Kerr DL, Gomez C, Allegakoen DV, Guan J, Shah KN, Herrington KA, Gbenedio OM, Nanjo S, Majidi M, Tamaki W, Pourmoghadam YK, Rotow JK, McCoach CE, Riess JW, Gutkind JS, Tang TT, Post L, Huang B, Santisteban P, Goodarzi H, Bandyopadhyay S, Kuo CJ, Roose JP, Wu W, Blakely CM, Roth JA, Bivona TG. Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer. Nat Commun 2024; 15:3741. [PMID: 38702301 PMCID: PMC11068778 DOI: 10.1038/s41467-024-47423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/18/2024] [Indexed: 05/06/2024] Open
Abstract
Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.
Collapse
Affiliation(s)
- Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yu-Ting Chou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Cech
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científícas (CSIC) y Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Johnny Yu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dora Barbosa Rabago
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Gomez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - David V Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Khyati N Shah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kari A Herrington
- Center for Advanced Light Microscopy, University of California, San Francisco, San Francisco, CA, USA
| | | | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yashar K Pourmoghadam
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julia K Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline E McCoach
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan W Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Tracy T Tang
- Vivace Therapeutics, Inc., 1500 Fashion Island Blvd., Suite 102, San Mateo, CA, USA
| | - Leonard Post
- Vivace Therapeutics, Inc., 1500 Fashion Island Blvd., Suite 102, San Mateo, CA, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científícas (CSIC) y Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Sourav Bandyopadhyay
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Liang H, Xu Y, Zhao J, Chen M, Wang M. Hippo pathway in non-small cell lung cancer: mechanisms, potential targets, and biomarkers. Cancer Gene Ther 2024; 31:652-666. [PMID: 38499647 PMCID: PMC11101353 DOI: 10.1038/s41417-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the primary contributor to cancer-related deaths globally, and non-small cell lung cancer (NSCLC) constitutes around 85% of all lung cancer cases. Recently, the emergence of targeted therapy and immunotherapy revolutionized the treatment of NSCLC and greatly improved patients' survival. However, drug resistance is inevitable, and extensive research has demonstrated that the Hippo pathway plays a crucial role in the development of drug resistance in NSCLC. The Hippo pathway is a highly conserved signaling pathway that is essential for various biological processes, including organ development, maintenance of epithelial balance, tissue regeneration, wound healing, and immune regulation. This pathway exerts its effects through two key transcription factors, namely Yes-associated protein (YAP) and transcriptional co-activator PDZ-binding motif (TAZ). They regulate gene expression by interacting with the transcriptional-enhanced associate domain (TEAD) family. In recent years, this pathway has been extensively studied in NSCLC. The review summarizes a comprehensive overview of the involvement of this pathway in NSCLC, and discusses the mechanisms of drug resistance, potential targets, and biomarkers associated with this pathway in NSCLC.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Mills KR, Misra J, Torabifard H. Allosteric Modulation of the YAP/TAZ-TEAD Interaction by Palmitoylation and Small-Molecule Inhibitors. J Phys Chem B 2024; 128:3795-3806. [PMID: 38606592 DOI: 10.1021/acs.jpcb.3c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.
Collapse
Affiliation(s)
- Kira R Mills
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jyoti Misra
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hedieh Torabifard
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
25
|
Tate EW, Soday L, de la Lastra AL, Wang M, Lin H. Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets. Nat Rev Cancer 2024; 24:240-260. [PMID: 38424304 DOI: 10.1038/s41568-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
- Francis Crick Institute, London, UK.
| | - Lior Soday
- Department of Chemistry, Imperial College London, London, UK
| | | | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hening Lin
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Kumar R, Hong W. Hippo Signaling at the Hallmarks of Cancer and Drug Resistance. Cells 2024; 13:564. [PMID: 38607003 PMCID: PMC11011035 DOI: 10.3390/cells13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance.
Collapse
Affiliation(s)
- Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore;
| | | |
Collapse
|
27
|
Liu K, Wehling L, Wan S, Weiler SME, Tóth M, Ibberson D, Marhenke S, Ali A, Lam M, Guo T, Pinna F, Pedrini F, Damle-Vartak A, Dropmann A, Rose F, Colucci S, Cheng W, Bissinger M, Schmitt J, Birner P, Poth T, Angel P, Dooley S, Muckenthaler MU, Longerich T, Vogel A, Heikenwälder M, Schirmacher P, Breuhahn K. Dynamic YAP expression in the non-parenchymal liver cell compartment controls heterologous cell communication. Cell Mol Life Sci 2024; 81:115. [PMID: 38436764 PMCID: PMC10912141 DOI: 10.1007/s00018-024-05126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
INTRODUCTION The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.
Collapse
Affiliation(s)
- Kaijing Liu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangdong, China
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Lilija Wehling
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Department of Modeling of Biological Processes, COS Heidelberg/BioQuant, Heidelberg University, Heidelberg, Germany
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Macrina Lam
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Te Guo
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Pinna
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Fabiola Pedrini
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Amruta Damle-Vartak
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Anne Dropmann
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wenxiang Cheng
- Translational Medicine R&D Center, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jennifer Schmitt
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Patrizia Birner
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Fnaiche A, Chan HC, Paquin A, González Suárez N, Vu V, Li F, Allali-Hassani A, Cao MA, Szewczyk MM, Bolotokova A, Allemand F, Gelin M, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Guichou JF, Annabi B, Gagnon A. Development of HC-258, a Covalent Acrylamide TEAD Inhibitor That Reduces Gene Expression and Cell Migration. ACS Med Chem Lett 2023; 14:1746-1753. [PMID: 38116405 PMCID: PMC10726447 DOI: 10.1021/acsmedchemlett.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed. Here we report the development of HC-258, which derives from FA and possesses an oxopentyl chain that mimics a molecule of PA as well as an acrylamide that reacts covalently with TEAD's cysteine. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD's PA pocket, where it forms a covalent bond with its cysteine.
Collapse
Affiliation(s)
- Ahmed Fnaiche
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Hwai-Chien Chan
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexis Paquin
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Narjara González Suárez
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Victoria Vu
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Fengling Li
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Michelle Ada Cao
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Magdalena M. Szewczyk
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Albina Bolotokova
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Frédéric Allemand
- Centre
de Biologie Structurale, CNRS, INSERM, Univ.
Montpellier, 34090 Montpellier, France
| | - Muriel Gelin
- Centre
de Biologie Structurale, CNRS, INSERM, Univ.
Montpellier, 34090 Montpellier, France
| | - Dalia Barsyte-Lovejoy
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Jean-François Guichou
- Centre
de Biologie Structurale, CNRS, INSERM, Univ.
Montpellier, 34090 Montpellier, France
| | - Borhane Annabi
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexandre Gagnon
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
29
|
Evsen L, Morris PJ, Thomas CJ, Ceribelli M. Comparative Assessment and High-Throughput Drug-Combination Profiling of TEAD-Palmitoylation Inhibitors in Hippo Pathway Deficient Mesothelioma. Pharmaceuticals (Basel) 2023; 16:1635. [PMID: 38139762 PMCID: PMC10747288 DOI: 10.3390/ph16121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/24/2023] Open
Abstract
The hippo signaling pathway is a central tumor suppressor cascade frequently inactivated in selected human cancers, leading to the aberrant activation of TEAD transcription factors. Whereas several TEAD auto-palmitoylation inhibitors are currently in development, a comprehensive assessment of this novel drug-modality is missing. Here, we report a comparative analysis among six TEADi(s) using cell-based and biochemical assays in Hippo pathway deficient mesothelioma. Our analysis revealed varying potency and selectivity across TEADi, also highlighting their limited efficacy. To overcome this limitation, we performed an unbiased, quantitative high-throughput drug screening by combining the TEADi VT-103 with a library of approximately 3000 oncology-focused drugs. By exploiting this library's mechanistic redundancy, we identified several drug-classes robustly synergized with TEADi. These included glucocorticoid-receptor (GR) agonists, Mek1/2 inhibitors, mTOR inhibitors, and PI3K inhibitors, among others. Altogether, we report a coherent single-agent dataset informing on potency and selectivity of TEAD-palmitoylation inhibitors as single-agents. We also describe a rational pipeline enabling the systematic identification of TEAD druggable co-dependencies. This data should support the pre-clinical development of drug combination strategies for the treatment of Hippo-deficient mesothelioma, and more broadly, for other cancers dependent on the oncogenic activity of YAP/TEAD.
Collapse
Affiliation(s)
| | | | | | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| |
Collapse
|
30
|
Fnaiche A, Mélin L, Suárez NG, Paquin A, Vu V, Li F, Allali-Hassani A, Bolotokova A, Allemand F, Gelin M, Cotelle P, Woo S, LaPlante SR, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Guichou JF, Annabi B, Gagnon A. Development of LM-41 and AF-2112, two flufenamic acid-derived TEAD inhibitors obtained through the replacement of the trifluoromethyl group by aryl rings. Bioorg Med Chem Lett 2023; 95:129488. [PMID: 37770003 DOI: 10.1016/j.bmcl.2023.129488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Narjara González Suárez
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexis Paquin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Victoria Vu
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Albina Bolotokova
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Frédéric Allemand
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Muriel Gelin
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Philippe Cotelle
- Université de Lille, CHU Lille, INSERM-UMR-S-1172-JPArc-Centre de Recherche Jean-Pierre Aubert, Neurosciences et Cancer, F-59000 Lille, France
| | - Simon Woo
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Steven R LaPlante
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France.
| | - Borhane Annabi
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
31
|
Gehringer M, Pape F, Méndez M, Barbie P, Unzue Lopez A, Lefranc J, Klingler FM, Hessler G, Langer T, Diamanti E, Schiedel M. Back in Person: Frontiers in Medicinal Chemistry 2023. ChemMedChem 2023; 18:e202300344. [PMID: 37485831 DOI: 10.1002/cmdc.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). Fortunately, after being cancelled in 2020 and two years (2021-2022) of entirely virtual meetings, due to the COVID-19 pandemic, the FiMC could be held in a face-to-face format again. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh), the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (DPhG), together with the Division of Medicinal Chemistry of the Austrian Chemical Society (GÖCH), the Austrian Pharmaceutical Society (ÖPhG), and a local organization committee from the University of Vienna headed by Thierry Langer, the meeting brought together 260 participants from 21 countries. The program included 38 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 102 posters were presented in two highly interactive poster sessions.
Collapse
Affiliation(s)
- Matthias Gehringer
- Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Felix Pape
- NUVISAN Innovation Campus Berlin, NUVISAN ICB GmbH, Muellerstraße 178, 13353, Berlin, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Philipp Barbie
- Bayer AG, R&D, Pharmaceuticals, Laboratory IV, Bldg. S106, 231, 13342, Berlin, Germany
| | - Andrea Unzue Lopez
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Julien Lefranc
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | | | - Gerhard Hessler
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G877, 65926, Frankfurt am Main, Germany
| | - Thierry Langer
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
32
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
33
|
Bum-Erdene K, Ghozayel MK, Zhang MJ, Gonzalez-Gutierrez G, Meroueh SO. Chloroacetamide fragment library screening identifies new scaffolds for covalent inhibition of the TEAD·YAP1 interaction. RSC Med Chem 2023; 14:1803-1816. [PMID: 37731696 PMCID: PMC10507800 DOI: 10.1039/d3md00264k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Transcriptional enhanced associate domain (TEAD) binding to co-activator yes-associated protein (YAP1) leads to a transcription factor of the Hippo pathway. TEADs are regulated by S-palmitoylation of a conserved cysteine located in a deep well-defined hydrophobic pocket outside the TEAD·YAP1 interaction interface. Previously, we reported the discovery of a small molecule based on the structure of flufenamic acid that binds to the palmitate pocket, forms a covalent bond with the conserved cysteine, and inhibits TEAD4 binding to YAP1. Here, we screen a fragment library of chloroacetamide electrophiles to identify new scaffolds that bind to the palmitate pocket of TEADs and disrupt their interaction with YAP1. Time- and concentration-dependent studies with wild-type and mutant TEAD1-4 provided insight into their reaction rates and binding constants and established the compounds as covalent inhibitors of TEAD binding to YAP1. Binding pose hypotheses were generated by covalent docking revealing that the fragments and compounds engage lower, middle, and upper sub-sites of the palmitate pocket. Our fragments and compounds provide new scaffolds and starting points for the design of derivatives with improved inhibition potency of TEAD palmitoylation and binding to YAP1.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine 635 Barnhill Drive, MS4021 Indianapolis Indiana 46202 USA +1 (317) 278 9217 +1 (317) 274 8315
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine 635 Barnhill Drive, MS4021 Indianapolis Indiana 46202 USA +1 (317) 278 9217 +1 (317) 274 8315
| | - Mark J Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine 635 Barnhill Drive, MS4021 Indianapolis Indiana 46202 USA +1 (317) 278 9217 +1 (317) 274 8315
| | - Giovanni Gonzalez-Gutierrez
- Department of Molecular and Cellular Biochemistry, Indiana University 212 S Hawthorne Drive Bloomington IN 47405 USA
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine 635 Barnhill Drive, MS4021 Indianapolis Indiana 46202 USA +1 (317) 278 9217 +1 (317) 274 8315
| |
Collapse
|
34
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
35
|
Oliva-Vilarnau N, Vorrink SU, Büttner FA, Heinrich T, Sensbach J, Koscielski I, Wienke D, Petersson C, Perrin D, Lauschke VM. Comparative analysis of YAP/TEAD inhibitors in 2D and 3D cultures of primary human hepatocytes reveals a novel non-canonical mechanism of CYP induction. Biochem Pharmacol 2023; 215:115755. [PMID: 37607620 DOI: 10.1016/j.bcp.2023.115755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Induction of cytochrome P450 (CYP) genes constitutes an important cause of drug-drug interactions and preclinical evaluation of induction liability is mandatory for novel drug candidates. YAP/TEAD signaling has emerged as an attractive target for various oncological indications and multiple chemically distinct YAP/TEAD inhibitors are rapidly progressing towards clinical stages. Here, we tested the liability for CYP induction of a diverse set of YAP/TEAD inhibitors with different modes of action and TEAD isoform selectivity profiles in monolayers and 3D spheroids of primary human hepatocytes (PHH). We found that YAP/TEAD inhibition resulted in broad induction of CYPs in 2D monolayers, whereas, if at all, only marginal induction was seen in spheroid culture. Comprehensive RNA-Seq indicated that YAP/TEAD signaling was increased in 2D culture compared to spheroids, which was paralleled by elevated activities of the interacting transcription factors LXR and ESRRA, likely at least in part due to altered mechanosensing. Inhibition of this YAP/TEAD hyperactivation resulted in an overall reduction of hepatocyte dedifferentiation marked by increased hepatic functionality, including CYPs. These results thus demonstrate that the observed induction is due to on-target effects of the compounds rather than direct activation of xenobiotic sensing nuclear receptors. Combined, the presented data link hepatocyte dedifferentiation to YAP/TEAD dysregulation, reveal a novel non-canonical pathway of CYP induction and highlight the advantage of organotypic 3D cultures to predict clinically relevant pharmacokinetic properties, particularly for atypical induction mechanisms.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Florian A Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Timo Heinrich
- Department of Medicinal Chemistry and Drug Design, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Janike Sensbach
- Department of Chemical and Pre-Clinical Safety, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Isabel Koscielski
- Department of Chemical and Pre-Clinical Safety, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Dirk Wienke
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Dominique Perrin
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; HepaPredict AB, Stockholm, Sweden; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
36
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
37
|
Tang Y, Thiess L, Weiler SME, Tóth M, Rose F, Merker S, Ruppert T, Schirmacher P, Breuhahn K. α-catenin interaction with YAP/FoxM1/TEAD-induced CEP55 supports liver cancer cell migration. Cell Commun Signal 2023; 21:162. [PMID: 37381005 DOI: 10.1186/s12964-023-01169-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/20/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Adherens junctions (AJs) facilitate cell-cell contact and contribute to cellular communication as well as signaling under physiological and pathological conditions. Aberrant expression of AJ proteins is frequently observed in human cancers; however, how these factors contribute to tumorigenesis is poorly understood. In addition, for some factors such as α-catenin contradicting data has been described. In this study we aim to decipher how the AJ constituent α-catenin contributes to liver cancer formation. METHODS TCGA data was used to detect transcript changes in 23 human tumor types. For the detection of proteins, liver cancer tissue microarrays were analyzed by immunohistochemistry. Liver cancer cell lines (HLF, Hep3B, HepG2) were used for viability, proliferation, and migration analyses after RNAinterference-mediated gene silencing. To investigate the tumor initiating potential, vectors coding for α-catenin and myristoylated AKT were injected in mice by hydrodynamic gene delivery. A BioID assay combined with mass spectrometry was performed to identify α-catenin binding partners. Results were confirmed by proximity ligation and co-immunoprecipitation assays. Binding of transcriptional regulators at gene promoters was investigated using chromatin-immunoprecipitation. RESULTS α-catenin mRNA was significantly reduced in many human malignancies (e.g., colon adenocarcinoma). In contrast, elevated α-catenin expression in other cancer entities was associated with poor clinical outcome (e.g., for hepatocellular carcinoma; HCC). In HCC cells, α-catenin was detectable at the membrane as well as cytoplasm where it supported tumor cell proliferation and migration. In vivo, α-catenin facilitated moderate oncogenic properties in conjunction with AKT overexpression. Cytokinesis regulator centrosomal protein 55 (CEP55) was identified as a novel α-catenin-binding protein in the cytoplasm of HCC cells. The physical interaction between α-catenin and CEP55 was associated with CEP55 stabilization. CEP55 was highly expressed in human HCC tissues and its overexpression correlated with poor overall survival and cancer recurrence. Next to the α-catenin-dependent protein stabilization, CEP55 was transcriptionally induced by a complex consisting of TEA domain transcription factors (TEADs), forkhead box M1 (FoxM1), and yes-associated protein (YAP). Surprisingly, CEP55 did not affect HCC cell proliferation but significantly supported migration in conjunction with α-catenin. CONCLUSION Migration-supporting CEP55 is induced by two independent mechanisms in HCC cells: stabilization through interaction with the AJ protein α-catenin and transcriptional activation via the FoxM1/TEAD/YAP complex.
Collapse
Affiliation(s)
- Yingyue Tang
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Thiess
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Merker
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
38
|
Franklin JM, Wu Z, Guan KL. Insights into recent findings and clinical application of YAP and TAZ in cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00579-1. [PMID: 37308716 DOI: 10.1038/s41568-023-00579-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/14/2023]
Abstract
Decades of research have mapped out the basic mechanics of the Hippo pathway. The paralogues Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), as the central transcription control module of the Hippo pathway, have long been implicated in the progression of various human cancers. The current literature regarding oncogenic YAP and TAZ activities consists mostly of context-specific mechanisms and treatments of human cancers. Furthermore, a growing number of studies demonstrate tumour-suppressor functions of YAP and TAZ. In this Review we aim to synthesize an integrated perspective of the many disparate findings regarding YAP and TAZ in cancer. We then conclude with the various strategies for targeting and treating YAP- and TAZ-dependent cancers.
Collapse
Affiliation(s)
- J Matthew Franklin
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Hagenbeek TJ, Zbieg JR, Hafner M, Mroue R, Lacap JA, Sodir NM, Noland CL, Afghani S, Kishore A, Bhat KP, Yao X, Schmidt S, Clausen S, Steffek M, Lee W, Beroza P, Martin S, Lin E, Fong R, Di Lello P, Kubala MH, Yang MNY, Lau JT, Chan E, Arrazate A, An L, Levy E, Lorenzo MN, Lee HJ, Pham TH, Modrusan Z, Zang R, Chen YC, Kabza M, Ahmed M, Li J, Chang MT, Maddalo D, Evangelista M, Ye X, Crawford JJ, Dey A. An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance. NATURE CANCER 2023; 4:812-828. [PMID: 37277530 PMCID: PMC10293011 DOI: 10.1038/s43018-023-00577-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
The Hippo pathway is a key growth control pathway that is conserved across species. The downstream effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), are frequently activated in cancers to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs (transcriptional enhanced associate domain) are central to their transcriptional activities, we discovered a potent small-molecule inhibitor (SMI), GNE-7883, that allosterically blocks the interactions between YAP/TAZ and all human TEAD paralogs through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models and achieves strong antitumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes both intrinsic and acquired resistance to KRAS (Kirsten rat sarcoma viral oncogene homolog) G12C inhibitors in diverse preclinical models through the inhibition of YAP/TAZ activation. Taken together, this work demonstrates the activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.
Collapse
Affiliation(s)
| | - Jason R Zbieg
- Department of Discovery Chemistry, Genentech, California, CA, USA
| | - Marc Hafner
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Rana Mroue
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Jennifer A Lacap
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Nicole M Sodir
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Cameron L Noland
- Department of Structural Biology, Genentech, California, CA, USA
| | - Shervin Afghani
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Ayush Kishore
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Kamakoti P Bhat
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Xiaosai Yao
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Stephen Schmidt
- Department of Biochemical and Cellular Pharmacology, Genentech, California, CA, USA
| | - Saundra Clausen
- Department of Biochemical and Cellular Pharmacology, Genentech, California, CA, USA
| | - Micah Steffek
- Department of Biochemical and Cellular Pharmacology, Genentech, California, CA, USA
| | - Wendy Lee
- Department of Discovery Chemistry, Genentech, California, CA, USA
| | - Paul Beroza
- Department of Discovery Chemistry, Genentech, California, CA, USA
| | - Scott Martin
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Eva Lin
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Rina Fong
- Department of Structural Biology, Genentech, California, CA, USA
| | - Paola Di Lello
- Department of Structural Biology, Genentech, California, CA, USA
| | - Marta H Kubala
- Department of Structural Biology, Genentech, California, CA, USA
| | - Michelle N-Y Yang
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Jeffrey T Lau
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Emily Chan
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Alfonso Arrazate
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Le An
- Department of Small Molecule Pharmaceutical Sciences, Genentech, California, CA, USA
| | - Elizabeth Levy
- Department of Small Molecule Pharmaceutical Sciences, Genentech, California, CA, USA
| | - Maria N Lorenzo
- Department of Protein Chemistry, Genentech, California, CA, USA
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Trang H Pham
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, California, CA, USA
| | - Richard Zang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, California, CA, USA
| | - Yi-Chen Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, California, CA, USA
| | | | | | - Jason Li
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Matthew T Chang
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, California, CA, USA
| | | | - Xin Ye
- Department of Discovery Oncology, Genentech, California, CA, USA.
| | - James J Crawford
- Department of Discovery Chemistry, Genentech, California, CA, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, California, CA, USA.
| |
Collapse
|
40
|
Ibrahim MT, Verkhivker GM, Misra J, Tao P. Novel Allosteric Effectors Targeting Human Transcription Factor TEAD. Int J Mol Sci 2023; 24:9009. [PMID: 37240355 PMCID: PMC10219411 DOI: 10.3390/ijms24109009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Hippo pathway is an evolutionary conserved signaling network involved in several cellular regulatory processes. Dephosphorylation and overexpression of Yes-associated proteins (YAPs) in the Hippo-off state are common in several types of solid tumors. YAP overexpression results in its nuclear translocation and interaction with transcriptional enhanced associate domain 1-4 (TEAD1-4) transcription factors. Covalent and non-covalent inhibitors have been developed to target several interaction sites between TEAD and YAP. The most targeted and effective site for these developed inhibitors is the palmitate-binding pocket in the TEAD1-4 proteins. Screening of a DNA-encoded library against the TEAD central pocket was performed experimentally to identify six new allosteric inhibitors. Inspired by the structure of the TED-347 inhibitor, chemical modification was performed on the original inhibitors by replacing secondary methyl amide with a chloromethyl ketone moiety. Various computational tools, including molecular dynamics, free energy perturbation, and Markov state model analysis, were employed to study the effect of ligand binding on the protein conformational space. Four of the six modified ligands were associated with enhanced allosteric communication between the TEAD4 and YAP1 domains indicated by the relative free energy perturbation to original molecules. Phe229, Thr332, Ile374, and Ile395 residues were revealed to be essential for the effective binding of the inhibitors.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75205, USA; (M.T.I.); (P.T.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Jyoti Misra
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75205, USA; (M.T.I.); (P.T.)
| |
Collapse
|
41
|
Laraba L, Hillson L, de Guibert JG, Hewitt A, Jaques MR, Tang TT, Post L, Ercolano E, Rai G, Yang SM, Jagger DJ, Woznica W, Edwards P, Shivane AG, Hanemann CO, Parkinson DB. Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma. Brain 2023; 146:1697-1713. [PMID: 36148553 PMCID: PMC10115179 DOI: 10.1093/brain/awac342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.
Collapse
Affiliation(s)
- Liyam Laraba
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Lily Hillson
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Julio Grimm de Guibert
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Amy Hewitt
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Maisie R Jaques
- Department of Life Sciences, University of Bath, Bath, Somerset BA2 7AY, UK
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA 94403, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA 94403, USA
| | - Emanuela Ercolano
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Daniel J Jagger
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Waldemar Woznica
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Philip Edwards
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, Devon PL6 8DH, UK
| | - Aditya G Shivane
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, Devon PL6 8DH, UK
| | - C Oliver Hanemann
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - David B Parkinson
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| |
Collapse
|
42
|
Lu W, Fan M, Ji W, Tse J, You I, Ficarro SB, Tavares I, Che J, Kim AY, Zhu X, Boghossian A, Rees MG, Ronan MM, Roth JA, Hinshaw SM, Nabet B, Corsello SM, Kwiatkowski N, Marto JA, Zhang T, Gray NS. Structure-Based Design of Y-Shaped Covalent TEAD Inhibitors. J Med Chem 2023; 66:4617-4632. [PMID: 36946421 PMCID: PMC10270725 DOI: 10.1021/acs.jmedchem.2c01548] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Transcriptional enhanced associate domain (TEAD) proteins together with their transcriptional coactivator yes-associated protein (YAP) and transcriptional coactivator with the PDZ-binding motif (TAZ) are important transcription factors and cofactors that regulate gene expression in the Hippo pathway. In mammals, the TEAD families have four homologues: TEAD1 (TEF-1), TEAD2 (TEF-4), TEAD3 (TEF-5), and TEAD4 (TEF-3). Aberrant expression and hyperactivation of TEAD/YAP signaling have been implicated in a variety of malignancies. Recently, TEADs were recognized as being palmitoylated in cells, and the lipophilic palmitate pocket has been successfully targeted by both covalent and noncovalent ligands. In this report, we present the medicinal chemistry effort to develop MYF-03-176 (compound 22) as a selective, cysteine-covalent TEAD inhibitor. MYF-03-176 (compound 22) significantly inhibits TEAD-regulated gene expression and proliferation of the cell lines with TEAD dependence including those derived from mesothelioma and liposarcoma.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Jason Tse
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Inchul You
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Scott B Ficarro
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Isidoro Tavares
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Audrey Y Kim
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Xijun Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Andrew Boghossian
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Steven M Corsello
- Department of Medicine and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nicholas Kwiatkowski
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jarrod A Marto
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
43
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
44
|
Cao Z, An L, Han Y, Jiao S, Zhou Z. The Hippo signaling pathway in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36924251 DOI: 10.3724/abbs.2023038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) is an aggressive malignant disease which still lacks effective early diagnosis markers and targeted therapies, representing the fourth-leading cause of cancer-associated death worldwide. The Hippo signaling pathway plays crucial roles in organ size control and tissue homeostasis under physiological conditions, yet its aberrations have been closely associated with several hallmarks of cancer. The last decade witnessed a burst of investigations dissecting how Hippo dysregulation contributes to tumorigenesis, highlighting the therapeutic potential of targeting this pathway for tumor intervention. In this review, we systemically document studies on the Hippo pathway in the contexts of gastric tumor initiation, progression, metastasis, acquired drug resistance, and the emerging development of Hippo-targeting strategies. By summarizing major open questions in this field, we aim to inspire further in-depth understanding of Hippo signaling in GC development, as well as the translational implications of targeting Hippo for GC treatment.
Collapse
Affiliation(s)
- Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China.,CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
45
|
Papavassiliou KA, Marinos G, Papavassiliou AG. Targeting YAP/TAZ in Combination with PD-L1 Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer (NSCLC). Cells 2023; 12:871. [PMID: 36980211 PMCID: PMC10047112 DOI: 10.3390/cells12060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The survival of non-small cell lung cancer (NSCLC) patients has improved in the last decade as a result of introducing new therapeutics, such as immune checkpoint inhibitors, in the clinic. Still, some NSCLC patients do not benefit from these therapies due to intrinsic resistance or the development of acquired resistance and their malignant disease progresses. Further research on the molecular underpinnings of NSCLC pathobiology is required in order to discover clinically relevant molecular targets that regulate tumor immunity and to develop reasonable therapeutic combinations that will promote the efficacy of immune checkpoint inhibitors. Yes-associated Protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as key players in NSCLC development and progression. Herein, we overview studies that have investigated the oncogenic role of YAP/TAZ in NSCLC, focusing on immune evasion, and highlight the therapeutic potential of combining YAP/TAZ inhibitory agents with immune checkpoint inhibitors for the management of NSCLC patients.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, “Sotiria” Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
46
|
Cunningham R, Jia S, Purohit K, Salem O, Hui NS, Lin Y, Carragher NO, Hansen CG. YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations. Clin Transl Med 2023; 13:e1190. [PMID: 36740402 PMCID: PMC9899629 DOI: 10.1002/ctm2.1190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
The Hippo signalling pathway is dysregulated across a wide range of cancer types and, although driver mutations that directly affect the core Hippo components are rare, a handful is found within pleural mesothelioma (PM). PM is a deadly disease of the lining of the lung caused by asbestos exposure. By pooling the largest-scale clinical datasets publicly available, we here interrogate associations between the most prevalent driver mutations within PM and Hippo pathway disruption in patients, while assessing correlations with a variety of clinical markers. This analysis reveals a consistent worse outcome in patients exhibiting transcriptional markers of YAP/TAZ activation, pointing to the potential of leveraging Hippo pathway transcriptional activation status as a metric by which patients may be meaningfully stratified. Preclinical models recapitulating disease are transformative in order to develop new therapeutic strategies. We here establish an isogenic cell-line model of PM, which represents the most frequently mutated genes and which faithfully recapitulates the molecular features of clinical PM. This preclinical model is developed to probe the molecular basis by which the Hippo pathway and key driver mutations affect cancer initiation and progression. Implementing this approach, we reveal the role of NF2 as a mechanosensory component of the Hippo pathway in mesothelial cells. Cellular NF2 loss upon physiological stiffnesses analogous to the tumour niche drive YAP/TAZ-dependent anchorage-independent growth. Consequently, the development and characterisation of this cellular model provide a unique resource to obtain molecular insights into the disease and progress new drug discovery programs together with future stratification of PM patients.
Collapse
Affiliation(s)
- Richard Cunningham
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Siyang Jia
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Krishna Purohit
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Omar Salem
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Ning Sze Hui
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Yue Lin
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil O. Carragher
- Cancer Research UK Scotland CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Carsten Gram Hansen
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| |
Collapse
|
47
|
Bum-Erdene K, Yeh IJ, Gonzalez-Gutierrez G, Ghozayel MK, Pollok K, Meroueh SO. Small-Molecule Cyanamide Pan-TEAD·YAP1 Covalent Antagonists. J Med Chem 2023; 66:266-284. [PMID: 36562717 DOI: 10.1021/acs.jmedchem.2c01189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional enhanced associate domains (TEADs) are transcription factors that bind to cotranscriptional activators like the yes-associated protein (YAP) or its paralog transcriptional coactivator with a PDZ-binding motif (TAZ). TEAD·YAP/TAZ target genes are involved in tissue and immune homeostasis, organ size control, tumor growth, and metastasis. Here, we report isoindoline and octahydroisoindole small molecules with a cyanamide electrophile that forms a covalent bond with a conserved cysteine in the TEAD palmitate-binding cavity. Time- and concentration-dependent studies against TEAD1-4 yielded second-order rate constants kinact/KI greater than 100 M-1 s-1. Compounds inhibited YAP1 binding to TEADs with submicromolar IC50 values. Cocrystal structures with TEAD2 enabled structure-activity relationship studies. In mammalian cells, compounds suppressed CTGF mRNA levels and inhibited TEAD1-4 transcriptional activity with submicromolar IC50 values. Inhibition of TEAD binding to YAP1 in mammalian cells was also observed. Several compounds inhibited the cell viability of sarcoma, hepatocellular carcinoma, glioblastoma, and breast cancer cells with single-digit micromolar IC50 values.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - I-Ju Yeh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Giovanni Gonzalez-Gutierrez
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Karen Pollok
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
48
|
Genetic Alterations and Deregulation of Hippo Pathway as a Pathogenetic Mechanism in Bone and Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:cancers14246211. [PMID: 36551696 PMCID: PMC9776600 DOI: 10.3390/cancers14246211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved modulator of developmental biology with a key role in tissue and organ size regulation under homeostatic conditions. Like other signaling pathways with a significant role in embryonic development, the deregulation of Hippo signaling contributes to oncogenesis. Central to the Hippo pathway is a conserved cascade of adaptor proteins and inhibitory kinases that converge and regulate the activity of the oncoproteins YAP and TAZ, the final transducers of the pathway. Elevated levels and aberrant activation of YAP and TAZ have been described in many cancers. Though most of the studies describe their pervasive activation in epithelial neoplasms, there is increasing evidence pointing out its relevance in mesenchymal malignancies as well. Interestingly, somatic or germline mutations in genes of the Hippo pathway are scarce compared to other signaling pathways that are frequently disrupted in cancer. However, in the case of sarcomas, several examples of genetic alteration of Hippo members, including gene fusions, have been described during the last few years. Here, we review the current knowledge of Hippo pathway implication in sarcoma, describing mechanistic hints recently reported in specific histological entities and how these alterations represent an opportunity for targeted therapy in this heterogeneous group of neoplasm.
Collapse
|
49
|
Li F, Negi V, Yang P, Lee J, Ma K, Moulik M, Yechoor V. TEAD1 regulates cell proliferation through a pocket-independent transcription repression mechanism. Nucleic Acids Res 2022; 50:12723-12738. [PMID: 36484096 PMCID: PMC9825168 DOI: 10.1093/nar/gkac1063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The Hippo-TEAD pathway regulates cellular proliferation and function. The existing paradigm is that TEAD co-activators, YAP and TAZ, and co-repressor, VGLL4, bind to the pocket region of TEAD1 to enable transcriptional activation or repressive function. Here we demonstrate a pocket-independent transcription repression mechanism whereby TEAD1 controls cell proliferation in both non-malignant mature differentiated cells and in malignant cell models. TEAD1 overexpression can repress tumor cell proliferation in distinct cancer cell lines. In pancreatic β cells, conditional knockout of TEAD1 led to a cell-autonomous increase in proliferation. Genome-wide analysis of TEAD1 functional targets via transcriptomic profiling and cistromic analysis revealed distinct modes of target genes, with one class of targets directly repressed by TEAD1. We further demonstrate that TEAD1 controls target gene transcription in a motif-dependent and orientation-independent manner. Mechanistically, we show that TEAD1 has a pocket region-independent, direct repressive function via interfering with RNA polymerase II (POLII) binding to target promoters. Our study reveals that TEAD1 target genes constitute a mutually restricted regulatory loop to control cell proliferation and uncovers a novel direct repression mechanism involved in its transcriptional control that could be leveraged in future studies to modulate cell proliferation in tumors and potentially enhance the proliferation of normal mature cells.
Collapse
Affiliation(s)
- Feng Li
- Correspondence may also be addressed to Feng Li.
| | - Vinny Negi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ping Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeongkyung Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Mousumi Moulik
- Division of Pediatric Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vijay K Yechoor
- To whom correspondence should be addressed. Tel: +1 412 383 4251; Fax: +1 412 648 3290;
| |
Collapse
|
50
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|