1
|
Oliveira M, Barbosa J, Teixeira P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol Res 2025; 297:128187. [PMID: 40279724 DOI: 10.1016/j.micres.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Following ingestion via contaminated food, Listeria monocytogenes faces multiple hurdles through the human digestive system, thereby influencing its capacity to cause infection. This review provides a comprehensive overview of the multifaceted mechanisms employed by L. monocytogenes to overcome gastrointestinal hurdles and interact with the host's microbiota, facing chemical and physical barriers such as saliva, stomach acidity, bile salts and mechanical clearance. Proposed evasion strategies will be highlighted, exploring the bacteriocins produced by L. monocytogenes, such as the well-described bacteriocin Listeriolysin S (LLS), a bacteriocin that inhibits inflammogenic species - Lmo2776, and a phage tail-like bacteriocin, monocin. The competitive dynamic interactions within the gut microbiota, as well as the modulation of microbiota composition and immune responses, will also be explored. Finally, the adhesion and invasion of the intestinal epithelium by L. monocytogenes is described, exploring the mechanism of pathogenesis, biofilm and aggregation capacities and other virulence factors. Unlike previous reviews that may focus on individual aspects of L. monocytogenes pathogenicity, this review offers a holistic perspective on the bacterium's ability to persist and cause infection, integrating information about survival strategies, including bacteriocin production, immune modulation, and virulence factors. By connecting recent findings on microbial interactions and infection dynamics, this review incorporates recent developments in the field and connects various lines of research that explore both host and microbial factors influencing infection outcomes.
Collapse
Affiliation(s)
- M Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - J Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
2
|
Liu Y, Ma X, Cazzaniga M, Gahan CGM, den Besten HMW, Abee T. Nano in Micro: Novel Concepts in Foodborne Pathogen Transmission and Pathogenesis. Annu Rev Food Sci Technol 2025; 16:245-268. [PMID: 39621535 DOI: 10.1146/annurev-food-111523-121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In this article, we highlight novel components of foodborne pathogens that influence their response, physiology, adaptation, and survival in the face of diverse stresses, and consequently have implications for their transmission in the food chain and their pathogenesis. Recent insights into the role of bacteriophages/prophages, bacterial extracellular vesicles, and bacterial microcompartments, which make up the emerging field we coined as "nano in micro," are presented, together with the role of understudied food-relevant substrates in pathogen fitness and virulence. These new insights also lead to reflections on generally adopted laboratory conditions in the long-standing research field of adaptive stress response in foodborne pathogens. In addition, selected examples of the impact of diet and microbiota on intestinal colonization and host invasion are discussed. A final section on risk assessment presents an overview of tools for (kinetic) data modeling and perspectives for the implementation of information derived from whole-genome sequencing, combined with advancements in dose-response models and exposure assessments.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| |
Collapse
|
3
|
Sargen MR, Helaine S. A prophage competition element protects Salmonella from lysis. Cell Host Microbe 2024; 32:2063-2079.e8. [PMID: 39515326 PMCID: PMC11840918 DOI: 10.1016/j.chom.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Most bacteria are polylysogens that carry multiple prophages integrated into the chromosome. These prophages confer advantages to their bacterial host, yet also pose a lethal threat as they can reactivate and enter a lytic cycle. DNA damage of the bacterial host is a common trigger of prophage lytic cycles. Because DNA damage is frequently experienced by bacterial pathogens exposed to host immune defenses, prophage activation may be common during infection. Investigating the consequences of prophage induction in Salmonella, we discover a prophage competition element in the Gifsy-1 prophage that we name ribonuclease effector module with ATPase, inhibitor, and nuclease (RemAIN) because it blocks the lytic cycles and release of viral particles of co-resident prophages. Intramacrophage Salmonella persisters, a subpopulation that incurs DNA damage, experience prophage reactivation and subsequent RemAIN activation, which influences Salmonella persisters and macrophage response to infection. Our findings reveal a multi-layered host-pathogen arms race in which prophage-prophage competition influences bacterial persistence and the mammalian immune response.
Collapse
Affiliation(s)
- Molly R Sargen
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Li L, Cai F, Guo C, Liu Z, Qin J, Huang J. Gut microbiome and NAFLD: impact and therapeutic potential. Front Microbiol 2024; 15:1500453. [PMID: 39664063 PMCID: PMC11632136 DOI: 10.3389/fmicb.2024.1500453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) affects approximately 32.4% of the global population and poses a significant health concern. Emerging evidence underscores the pivotal role of the gut microbiota-including bacteria, viruses, fungi, and parasites-in the development and progression of NAFLD. Dysbiosis among gut bacteria alters key biological pathways that contribute to liver fat accumulation and inflammation. The gut virome, comprising bacteriophages and eukaryotic viruses, significantly shapes microbial community dynamics and impacts host metabolism through complex interactions. Similarly, gut fungi maintain a symbiotic relationship with bacteria; the relationship between gut fungi and bacteria is crucial for overall host health, with certain fungal species such as Candida in NAFLD patients showing detrimental associations with metabolic markers and liver function. Additionally, the "hygiene hypothesis" suggests that reduced exposure to gut parasites may affect immune regulation and metabolic processes, potentially influencing conditions like obesity and insulin resistance. This review synthesizes current knowledge on the intricate interactions within the gut microbiota and their associations with NAFLD. We highlight the therapeutic potential of targeting these microbial communities through interventions such as probiotics, prebiotics, and fecal microbiota transplantation. Addressing the complexities of NAFLD requires comprehensive strategies that consider the multifaceted roles of gut microorganisms in disease pathology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Sigal N, Lichtenstein-Wolfheim R, Schlussel S, Azulay G, Borovok I, Holdengraber V, Elad N, Wolf SG, Zalk R, Zarivach R, Frank GA, Herskovits AA. Specialized Listeria monocytogenes produce tailocins to provide a population-level competitive growth advantage. Nat Microbiol 2024; 9:2727-2737. [PMID: 39300324 DOI: 10.1038/s41564-024-01793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
Tailocins are phage tail-like bacteriocins produced by various bacterial species to kill kin competitors. Given that tailocin release is dependent upon cell lysis, regulation of tailocin production at the single-cell and population level remains unclear. Here we used flow cytometry, competition assays and structural characterization of tailocin production in a human bacterial pathogen, Listeria monocytogenes. We revealed that a specialized subpopulation, constituting less than 1% of the total bacterial population, differentiates to produce, assemble and store thousands of tailocin particles. Tailocins are packed in a highly ordered manner, clustered in a liquid crystalline phase that occupies a substantial volume of the cell. Tailocin production confers a competitive growth advantage for the rest of the population. This study provides molecular insights into tailocin production as a form of altruism, showing how cell specialization within bacterial populations can confer competitive advantages at the population level.
Collapse
Affiliation(s)
- Nadejda Sigal
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Lichtenstein-Wolfheim
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Schlussel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Azulay
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilya Borovok
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gabriel A Frank
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat A Herskovits
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Li S, Wei B, Xu L, Cong C, Murtaza B, Wang L, Li X, Li J, Xu M, Yin J, Xu Y. A novel Saclayvirus Acinetobacter baumannii phage genomic analysis and effectiveness in preventing pneumonia. Appl Microbiol Biotechnol 2024; 108:428. [PMID: 39066795 PMCID: PMC11283397 DOI: 10.1007/s00253-024-13208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Acinetobacter baumannii, which is resistant to multiple drugs, is an opportunistic pathogen responsible for severe nosocomial infections. With no antibiotics available, phages have obtained clinical attention. However, since immunocompromised patients are often susceptible to infection, the appropriate timing of administration is particularly important. During this research, we obtained a lytic phage vB_AbaM_P1 that specifically targets A. baumannii. We then assessed its potential as a prophylactic treatment for lung infections caused by clinical strains. The virus experiences a period of inactivity lasting 30 min and produces approximately 788 particles during an outbreak. Transmission electron microscopy shows that vB_AbaM_P1 was similar to the Saclayvirus. Based on the analysis of high-throughput sequencing and bioinformatics, vB_AbaM_P1 consists of 107537 bases with a G + C content of 37.68%. It contains a total of 177 open reading frames and 14 tRNAs. No antibiotic genes were detected. In vivo experiments, using a cyclophosphamide-induced neutrophil deficiency model, tested the protective effect of phage on neutrophil-deficient rats by prophylactic application of phage. The use of phages resulted in a decrease in rat mortality caused by A. baumannii and a reduction in the bacterial burden in the lungs. Histologic examination of lung tissue revealed a decrease in the presence of immune cells. The presence of phage vB_AbaM_P1 had a notable impact on preventing A. baumannii infection, as evidenced by the decrease in oxidative stress in lung tissue and cytokine levels in serum. Our research offers more robust evidence for the early utilization of bacteriophages to mitigate A. baumannii infection. KEY POINTS: •A novel Saclayvirus phage infecting A. baumannii was isolated from sewage. •The whole genome was determined, analyzed, and compared to other phages. •Assaying the effect of phage in preventing infection in neutrophil-deficient models.
Collapse
Affiliation(s)
- Shibin Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Bingdong Wei
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Le Xu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jibin Li
- Liaoning Innovation Center for Phage Application Professional Technology, Dalian, 116620, Liaoning, China
| | - Mu Xu
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116620, China
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116300, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116300, China.
| |
Collapse
|
7
|
Das R, Arora R, Nadar K, Saroj S, Singh AK, Patil SA, Raman SK, Misra A, Bajpai U. Insights into the genomic features and lifestyle of B1 subcluster mycobacteriophages. J Basic Microbiol 2024; 64:e2400027. [PMID: 38548701 DOI: 10.1002/jobm.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 06/06/2024]
Abstract
Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Saroj Saroj
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Amit K Singh
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Shripad A Patil
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sunil K Raman
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetic Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
8
|
Cossart P, Hacker J, Holden DH, Normark S, Vogel J. Meeting report 'Microbiology 2023: from single cell to microbiome and host', an international interacademy conference in Würzburg. MICROLIFE 2024; 5:uqae008. [PMID: 38665235 PMCID: PMC11044969 DOI: 10.1093/femsml/uqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
On September 20-22 September 2023, the international conference 'Microbiology 2023: from single cell to microbiome and host' convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.
Collapse
Affiliation(s)
| | - Jörg Hacker
- German National Academy of Science Leopoldina, Jägerberg 1, D-06108 Halle, Germany
| | - David H Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Flowers Building, South Kensington Campus, Exhibition Road, Imperial College London, London SW7 2AZ, United Kingdom
| | - Staffan Normark
- Karolinska Institute, Tumor-och-cellbiologi, C1 Microbial Pathogenesis, 17177 Stockholm, Sweden
| | - Jörg Vogel
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str2/Gebaude D15; É. D-97080 Würzburg, Germany
| |
Collapse
|
9
|
Putzeys L, Wicke L, Brandão A, Boon M, Pires DP, Azeredo J, Vogel J, Lavigne R, Gerovac M. Exploring the transcriptional landscape of phage-host interactions using novel high-throughput approaches. Curr Opin Microbiol 2024; 77:102419. [PMID: 38271748 PMCID: PMC10884466 DOI: 10.1016/j.mib.2023.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
In the last decade, powerful high-throughput sequencing approaches have emerged to analyse microbial transcriptomes at a global scale. However, to date, applications of these approaches to microbial viruses such as phages remain scarce. Tailoring these techniques to virus-infected bacteria promises to obtain a detailed picture of the underexplored RNA biology and molecular processes during infection. In addition, transcriptome study of stress and perturbations induced by phages in their infected bacterial hosts is likely to reveal new fundamental mechanisms of bacterial metabolism and gene regulation. Here, we provide references and blueprints to implement emerging transcriptomic approaches towards addressing transcriptome architecture, RNA-RNA and RNA-protein interactions, RNA modifications, structures and heterogeneity of transcription profiles in infected cells that will provide guides for future directions in phage-centric therapeutic applications and microbial synthetic biology.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Laura Wicke
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium; Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Ana Brandão
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Diana P Pires
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
10
|
Ładziak M, Prochwicz E, Gut K, Gomza P, Jaworska K, Ścibek K, Młyńska-Witek M, Kadej-Zajączkowska K, Lillebaek EMS, Kallipolitis BH, Krawczyk-Balska A. Inactivation of lmo0946 ( sif) induces the SOS response and MGEs mobilization and silences the general stress response and virulence program in Listeria monocytogenes. Front Microbiol 2024; 14:1324062. [PMID: 38239729 PMCID: PMC10794523 DOI: 10.3389/fmicb.2023.1324062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteria have evolved numerous regulatory pathways to survive in changing environments. The SOS response is an inducible DNA damage repair system that plays an indispensable role in bacterial adaptation and pathogenesis. Here we report a discovery of the previously uncharacterized protein Lmo0946 as an SOS response interfering factor (Sif) in the human pathogen Listeria monocytogenes. Functional genetic studies demonstrated that sif is indispensable for normal growth of L. monocytogenes in stress-free as well as multi-stress conditions, and sif contributes to susceptibility to β-lactam antibiotics, biofilm formation and virulence. Absence of Sif promoted the SOS response and elevated expression of mobilome genes accompanied by mobilization of the A118 prophage and ICELm-1 mobile genetic elements (MGEs). These changes were found to be associated with decreased expression of general stress response genes from the σB regulon as well as virulence genes, including the PrfA regulon. Together, this study uncovers an unexpected role of a previously uncharacterized factor, Sif, as an inhibitor of the SOS response in L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Emilia Prochwicz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karina Gut
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Jaworska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Młyńska-Witek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kadej-Zajączkowska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Eva M. S. Lillebaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Moran J, Feltham L, Bagnall J, Goldrick M, Lord E, Nettleton C, Spiller DG, Roberts I, Paszek P. Live-cell imaging reveals single-cell and population-level infection strategies of Listeria monocytogenes in macrophages. Front Immunol 2023; 14:1235675. [PMID: 37675103 PMCID: PMC10478088 DOI: 10.3389/fimmu.2023.1235675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Pathogens have developed intricate strategies to overcome the host's innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from the host cell and non-cooperative, being independent from co-infecting bacteria. A higher multiplicity of infection resulted in a reduced probability of replication of the overall bacterial population. By use of internalisation assays and conditional probabilities to mathematically describe the two-stage invasion process, we demonstrate that the higher MOI compromises the ability of macrophages to phagocytose bacteria. We found that the rate of phagocytosis is mediated via the secreted Listeriolysin toxin (LLO), while the probability of replication of intracellular bacteria remained constant. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell, PrfA-mediated activity to regulate outcomes of host pathogen interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
12
|
Lamy-Besnier Q, Bignaud A, Garneau JR, Titecat M, Conti DE, Von Strempel A, Monot M, Stecher B, Koszul R, Debarbieux L, Marbouty M. Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. MICROBIOME 2023; 11:111. [PMID: 37208714 PMCID: PMC10197239 DOI: 10.1186/s40168-023-01541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. RESULTS To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. CONCLUSIONS The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease). Video Abstract.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, 59000, France
| | - Devon E Conti
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Von Strempel
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site LMU Munich, Munich, Germany
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
13
|
Viruses Regulate Microbial Community Assembly Together with Environmental Factors in Acid Mine Drainage. Appl Environ Microbiol 2023; 89:e0197322. [PMID: 36656039 PMCID: PMC9973029 DOI: 10.1128/aem.01973-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Viruses are widespread in various ecosystems, and they play important roles in regulating the microbial community via host-virus interactions. Recently, metagenomic studies showed that there are extremely diverse viruses in different environments from the ocean to the human gut, but the influences of viral communities on microbial communities are poorly understood, especially in extreme environments. Here, we used metagenomics to characterize microbial communities and viral communities in acid mine drainage (AMD) and evaluated how viruses shape microbial community constrained by the harsh environments. Our results showed that AMD viral communities are significantly associated with the microbial communities, and viral diversity has positive correlations with microbial diversity. Viral community explained more variations of microbial community composition than environmental factors in AMD of a polymetallic mine. Moreover, we found that viruses harboring adaptive genes regulate a relative abundance of hosts under the modulation of environmental factors, such as pH. We also observed that viral diversity has significant correlations with the global properties of microbial cooccurrence networks, such as modularity. In addition, the results of null modeling analyses revealed that viruses significantly affect microbial community phylogeny and play important roles in regulating ecological processes of community assembly, such as dispersal limitation and homogenous dispersal. Together, these results revealed that AMD viruses are critical forces driving microbial network and community assembly via host-virus interactions. IMPORTANCE Viruses as mobile genetic elements play critical roles in the adaptive evolution of their hosts in extreme environments. However, how viruses further influence microbial community structure and assembly is still unclear. A recent metagenomic study observed diverse viruses unexplored in acid mine drainage, revealing the associations between the viral community and environmental factors. Here, we showed that viruses together with environmental factors can constrain the relative abundance of host and microbial community assembly in AMD of copper mines and polymetallic mines. Our results highlight the importance of viruses in shaping the microbial community from the individual host level to the community level.
Collapse
|
14
|
Gummalla VS, Zhang Y, Liao YT, Wu VCH. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms 2023; 11:541. [PMID: 36985115 PMCID: PMC10052878 DOI: 10.3390/microorganisms11030541] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
15
|
Floccari VA, Dragoš A. Host control by SPβ phage regulatory switch as potential manipulation strategy. Curr Opin Microbiol 2023; 71:102260. [PMID: 36580707 DOI: 10.1016/j.mib.2022.102260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
The interaction between temperate phages and their bacterial hosts has always been one of the most controversial in nature. As genetic parasites, phages need their hosts to propagate, while the host may take advantage of the genetic arsenal carried in the phage genome. This intriguing host-parasite interplay with an evident mutualistic implication could be challenged by recent discoveries of alternative phage lifestyles and regulatory systems that seem to support a manipulative strategy pursued by the phage. Through two fascinating novel mechanisms concerning the active lysogeny and a phage-encoded quorum sensing system, referred as 'Arbitrium', employed by SPβ-like phages of Bacilli, we propose the parasite manipulation as ecological relationship between certain temperate phages and bacteria.
Collapse
Affiliation(s)
- Valentina A Floccari
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Curr Opin Microbiol 2022; 70:102230. [PMID: 36335712 DOI: 10.1016/j.mib.2022.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Studies of viral adaptation have focused on the selective pressures imposed by hosts. However, there is increasing evidence that interactions between viruses, cells, and other mobile genetic elements are determinant to the success of infections. These interactions are often associated with antagonism and competition, but sometimes involve cooperation or parasitism. We describe two key types of interactions - defense systems and genetic regulation - that allow the partners of the interaction to destroy or control the others. These interactions evolve rapidly by genetic exchanges, including among competing partners. They are sometimes followed by functional diversification. Gene exchanges also facilitate the emergence of cross-talk between elements in the same bacterium. In the end, these processes produce multilayered networks of interactions that shape the outcome of viral infections.
Collapse
|
17
|
Rohmer C, Dobritz R, Tuncbilek-Dere D, Lehmann E, Gerlach D, George SE, Bae T, Nieselt K, Wolz C. Influence of Staphylococcus aureus Strain Background on Sa3int Phage Life Cycle Switches. Viruses 2022; 14:2471. [PMID: 36366569 PMCID: PMC9694928 DOI: 10.3390/v14112471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation.
Collapse
Affiliation(s)
- Carina Rohmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Ronja Dobritz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Dilek Tuncbilek-Dere
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, 72074 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - David Gerlach
- Department of Microbiology, University of Würzburg, 97074 Würzburg, Germany
| | - Shilpa Elizabeth George
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | - Kay Nieselt
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, 72074 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
18
|
Azulay G, Pasechnek A, Stadnyuk O, Ran-Sapir S, Fleisacher AM, Borovok I, Sigal N, Herskovits AA. A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response. Cell Rep 2022; 39:110723. [PMID: 35443160 PMCID: PMC9043618 DOI: 10.1016/j.celrep.2022.110723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome. Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome The lytic response of the phage elements is synchronized under SOS conditions AriS, a dual-function phage regulator, fine-tunes the elements’ response under SOS Aris regulates both its encoding phage and the bacterial SOS response
Collapse
Affiliation(s)
- Gil Azulay
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anna Pasechnek
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Olga Stadnyuk
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Shai Ran-Sapir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ana Mejia Fleisacher
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ilya Borovok
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Nadejda Sigal
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anat A Herskovits
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
19
|
Liu S, He X, Zhang T, Zhao K, Xiao C, Tong Z, Jin L, He N, Deng Y, Li S, Guo Y, Chen Z. Highly sensitive smartphone-based detection of Listeria monocytogenes using SYTO9. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Petit TJ, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol 2022; 30:736-748. [DOI: 10.1016/j.tim.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
|
22
|
Cheng C, Liu F, Jin H, Xu X, Xu J, Deng S, Xia J, Han Y, Lei L, Zhang X, Song H. The DegU Orphan Response Regulator Contributes to Heat Stress Resistance in Listeria monocytogenes. Front Cell Infect Microbiol 2021; 11:761335. [PMID: 34966695 PMCID: PMC8711649 DOI: 10.3389/fcimb.2021.761335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is more heat-resistant than most other non-spore-forming foodborne pathogens, posing a severe threat to food safety and human health, particularly during chilled food processing. The DegU orphan response regulator is known to control heat resistance in L. monocytogenes; however, the underlying regulatory mechanism is poorly understood. Here, we show that DegU contributes to L. monocytogenes exponential growth under mild heat-shock stress. We further demonstrate that DegU directly senses heat stress through autoregulation and upregulates the hrcA-grpE-dnaK-dnaJ operon, leading to increased production of heat-shock proteins. We also show that DegU can directly regulate the expression of the hrcA-grpE-dnaK-dnaJ operon. In conclusion, our results shed light on the regulatory mechanisms underlying how DegU directly activates the hrcA-grpE-dnaK-dnaJ operon, thereby regulating heat resistance in L. monocytogenes.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Feng Liu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Haobo Jin
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiangfei Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jiali Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Simin Deng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jing Xia
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Yue Han
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Lei Lei
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xian Zhang
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
23
|
Guidi F, Chiaverini A, Repetto A, Lorenzetti C, Centorotola G, Bazzucchi V, Palombo B, Gattuso A, Pomilio F, Blasi G. Hyper-Virulent Listeria monocytogenes Strains Associated With Respiratory Infections in Central Italy. Front Cell Infect Microbiol 2021; 11:765540. [PMID: 34746033 PMCID: PMC8564288 DOI: 10.3389/fcimb.2021.765540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen causing listeriosis. Invasive forms of the disease mainly manifest as septicaemia, meningitis and maternal-neonatal infections. Lm-associated respiratory infections are very rare and little known. We reported two Lm respiratory infection cases occurred in Central Italy during the summer of 2020, in the midst of the SARS-CoV2 pandemic. In addition to collect the epidemiological and clinical characteristics of the patients, we used Whole Genome Sequencing to study the genomes of the Lm isolates investigating their virulence and antimicrobial profiles and the presence of genetic mobile elements. Both the strains belonged to hypervirulent MLST clonal complexes (CC). In addition to the Listeria Pathogenicity Island 1 (LIPI-1), the CC1 strain also carried LIPI-3 and the CC4 both LIPI-3 and LIPI-4. Genetic determinants for antimicrobial and disinfectants resistance were found. The CC1 genome presented prophage sequences but they did not interrupt the comK gene, involved in the phagosomal escape of Lm. None of the strains carried plasmids. Lm is an important, although rare, opportunistic pathogen for respiratory tract and lung infections. To avoid dangerous diagnostic delays of these severe clinical forms, it is important to sensitize hospital laboratories to this rare manifestation of listeriosis considering Lm in the differential diagnosis of respiratory infections.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Alexandra Chiaverini
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Antonella Repetto
- Struttura complessa di Microbiologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Cinzia Lorenzetti
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Gabriella Centorotola
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Viviana Bazzucchi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Barbara Palombo
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Antonietta Gattuso
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| |
Collapse
|
24
|
Castro H, Douillard FP, Korkeala H, Lindström M. Mobile Elements Harboring Heavy Metal and Bacitracin Resistance Genes Are Common among Listeria monocytogenes Strains Persisting on Dairy Farms. mSphere 2021; 6:e0038321. [PMID: 34232074 PMCID: PMC8386393 DOI: 10.1128/msphere.00383-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen and a resilient environmental saprophyte. Dairy farms are a reservoir of L. monocytogenes, and strains can persist on farms for years. Here, we sequenced the genomes of 250 L. monocytogenes isolates to investigate the persistence and mobile genetic elements (MGEs) of Listeria strains inhabiting dairy farms. We performed a single-nucleotide polymorphism (SNP)-based phylogenomic analysis to identify 14 monophyletic clades of L. monocytogenes persistent on the farms for ≥6 months. We found that prophages and other mobile genetic elements were, on average, more numerous among isolates in persistent than nonpersistent clades, and we demonstrated that resistance genes against bacitracin, arsenic, and cadmium were significantly more prevalent among isolates in persistent than nonpersistent clades. We identified a diversity of mobile elements among the 250 farm isolates, including three novel plasmids, three novel transposons, and a novel prophage harboring cadmium resistance genes. Several of the mobile elements we identified in Listeria were identical to the mobile elements of enterococci, which is indicative of recent transfer between these genera. Through a genome-wide association study, we discovered that three putative defense systems against invading prophages and plasmids were negatively associated with persistence on farms. Our findings suggest that mobile elements support the persistence of L. monocytogenes on dairy farms and that L. monocytogenes inhabiting the agroecosystem is a potential reservoir of mobile elements that may spread to the food industry. IMPORTANCE Animal-derived raw materials are an important source of L. monocytogenes in the food industry. Knowledge of the factors contributing to the pathogen's transmission and persistence on farms is essential for designing effective strategies against the spread of the pathogen from farm to fork. An increasing body of evidence suggests that mobile genetic elements support the adaptation and persistence of L. monocytogenes in the food industry, as these elements contribute to the dissemination of genes encoding favorable phenotypes, such as resilience against biocides. Understanding of the role of farms as a potential reservoir of these elements is needed for managing the transmission of mobile elements across the food chain. Because L. monocytogenes coinhabits the farm ecosystem with a diversity of other bacterial species, it is important to assess the degree to which genetic elements are exchanged between Listeria and other species, as such exchanges may contribute to the rise of novel resistance phenotypes.
Collapse
Affiliation(s)
- Hanna Castro
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - François P. Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination. J Bacteriol 2021; 203:e0070320. [PMID: 34060907 DOI: 10.1128/jb.00703-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the att-bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative (attP × attB) and excisive (attL × attR) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. IMPORTANCE The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.
Collapse
|
26
|
Marshall CW, Gloag ES, Lim C, Wozniak DJ, Cooper VS. Rampant prophage movement among transient competitors drives rapid adaptation during infection. SCIENCE ADVANCES 2021; 7:7/29/eabh1489. [PMID: 34272240 PMCID: PMC8284892 DOI: 10.1126/sciadv.abh1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 05/11/2023]
Abstract
Interactions between bacteria, their close competitors, and viral parasites are common in infections, but understanding of these eco-evolutionary dynamics is limited. Most examples of adaptations caused by phage lysogeny are through the acquisition of new genes. However, integrated prophages can also insert into functional genes and impart a fitness benefit by disrupting their expression, a process called active lysogeny. Here, we show that active lysogeny can fuel rapid, parallel adaptations in establishing a chronic infection. These recombination events repeatedly disrupted genes encoding global regulators, leading to increased cyclic di-GMP levels and elevated biofilm production. The implications of prophage-mediated adaptation are broad, as even transient members of microbial communities can alter the course of evolution and generate persistent phenotypes associated with poor clinical outcomes.
Collapse
Affiliation(s)
| | - Erin S Gloag
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Christina Lim
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Boichis E, Sigal N, Borovok I, Herskovits AA. A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms 2021; 9:1323. [PMID: 34207021 PMCID: PMC8235301 DOI: 10.3390/microorganisms9061323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm's lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
| | | | | | - Anat A. Herskovits
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (E.B.); (N.S.); (I.B.)
| |
Collapse
|
28
|
Cieślik M, Bagińska N, Jończyk-Matysiak E, Węgrzyn A, Węgrzyn G, Górski A. Temperate Bacteriophages-The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses 2021; 13:v13061013. [PMID: 34071422 PMCID: PMC8228536 DOI: 10.3390/v13061013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages are natural biological entities that limit the growth and amplification of bacteria. They are important stimulators of evolutionary variability in bacteria, and currently are considered a weapon against antibiotic resistance of bacteria. Nevertheless, apart from their antibacterial activity, phages may act as modulators of mammalian immune responses. In this paper, we focus on temperate phages able to execute the lysogenic development, which may shape animal or human immune response by influencing various processes, including phagocytosis of bacterial invaders and immune modulation of mammalian host cells.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| |
Collapse
|
29
|
Abstract
Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Medeea Popescu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,Immunology Program, School of Medicine, Stanford University, Stanford, California 94305, USA.,These authors contributed equally to this article
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,These authors contributed equally to this article
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
30
|
Shmidov E, Zander I, Lebenthal-Loinger I, Karako-Lampert S, Shoshani S, Banin E. An Efficient, Counter-Selection-Based Method for Prophage Curing in Pseudomonas aeruginosa Strains. Viruses 2021; 13:v13020336. [PMID: 33670076 PMCID: PMC7926659 DOI: 10.3390/v13020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 01/28/2023] Open
Abstract
Prophages are bacteriophages in the lysogenic state, where the viral genome is inserted within the bacterial chromosome. They contribute to strain genetic variability and can influence bacterial phenotypes. Prophages are highly abundant among the strains of the opportunistic pathogen Pseudomonas aeruginosa and were shown to confer specific traits that can promote strain pathogenicity. The main difficulty of studying those regions is the lack of a simple prophage-curing method for P. aeruginosa strains. In this study, we developed a novel, targeted-curing approach for prophages in P. aeruginosa. In the first step, we tagged the prophage for curing with an ampicillin resistance cassette (ampR) and further used this strain for the sacB counter-selection marker’s temporal insertion into the prophage region. The sucrose counter-selection resulted in different variants when the prophage-cured mutant is the sole variant that lost the ampR cassette. Next, we validated the targeted-curing with local PCR amplification and Whole Genome Sequencing. The application of the strategy resulted in high efficiency both for curing the Pf4 prophage of the laboratory wild-type (WT) strain PAO1 and for PR2 prophage from the clinical, hard to genetically manipulate, 39016 strain. We believe this method can support the research and growing interest in prophage biology in P. aeruginosa as well as additional Gram-negative bacteria.
Collapse
Affiliation(s)
- Esther Shmidov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Itzhak Zander
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Lebenthal-Loinger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
| | - Sarit Karako-Lampert
- Scientific Equipment Center, The Mina & Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.S.); (I.Z.); (I.L.-L.); (S.S.)
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- Correspondence:
| |
Collapse
|
31
|
Kumar P, Meghvansi MK, Kamboj DV. Phenotypic Characterization and Whole-Genome Analysis of a Novel Bacteriophage HCF1 Infecting Citrobacter amalonaticus and C. freundii. Front Microbiol 2021; 12:644013. [PMID: 33569047 PMCID: PMC7868345 DOI: 10.3389/fmicb.2021.644013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Citrobacter species often occur in sewage, food, soil, wastewater, and in the intestinal tract of animals and humans. Citrobacter spp. cause urinary tract infections (UTIs) and infantile meningitis in humans. Due to the presence of plasmid-encoded resistance genes, Citrobacter spp. are often resistant to many antibiotics. In this study, Citrobacter virus HCF1, a novel virulent bacteriophage capable of killing Citrobacter amalonaticus and Citrobacter freundii, was isolated from the sewage water. The isolated bacteriophage was characterized with respect to transmission electron microscopy, one-step growth curve, host range, in vitro efficacy, storage stability, and environmental stress tolerance. The one-step growth curve analysis revealed that the latent period of HCF1 was 30 min and the estimated burst size was 121 plaque-forming units (PFU) per bacterial cell. Host range testing indicated that the HCF1 was specific to the Citrobacter genus. In vitro efficacy assay in the effluent of an anaerobic biodigester showed that the HCF1 completely eliminated the host within 4 and 5 h at MOI:100 and MOI:10, respectively, thereby indicating its potential for combating C. amalonaticus infections. The isolated bacteriophage is considerably stable and tolerant to environmental stress. Furthermore, the complete genome of HCF1 was sequenced using Oxford Nanopore sequencing and the data were subjected to detailed bioinformatic analyses. NCBI-BLASTn analysis revealed that the HCF1 genome had a query coverage of 15-21% and a maximum similarity of 77.27-78.49% with 11 bacteriophages of the Drexlerviridae family. Detailed bioinformatic analysis of the genome profile suggests that HCF1 is a novel T1svirus belonging to the Tempevirinae subfamily of the Drexlerviridae family.
Collapse
Affiliation(s)
| | | | - Dev V. Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
32
|
Bodner K, Melkonian AL, Covert MW. The Enemy of My Enemy: New Insights Regarding Bacteriophage-Mammalian Cell Interactions. Trends Microbiol 2020; 29:528-541. [PMID: 33243546 DOI: 10.1016/j.tim.2020.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Bacteriophages (phages) are the most abundant biological entity in the human body, but until recently the role that phages play in human health was not well characterized. Although phages do not cause infections in human cells, phages can alter the severity of bacterial infections by the dissemination of virulence factors amongst bacterial hosts. Recent studies, made possible with advances in genome engineering and microscopy, have uncovered a novel role for phages in the human body - the ability to modulate the physiology of the mammalian cells that can harbor intracellular bacteria. In this review, we synthesize key results on how phages traverse through mammalian cells - including uptake, distribution, and interaction with intracellular receptors - highlighting how these steps in turn influence host cell killing of bacteria. We discuss the implications of the growing field of phage-mammalian cell interactions for phage therapy.
Collapse
Affiliation(s)
- Katie Bodner
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Allen Discovery Center for Systems Modeling of Infection, Stanford University, Stanford, CA, 94305, USA
| | - Arin L Melkonian
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Allen Discovery Center for Systems Modeling of Infection, Stanford University, Stanford, CA, 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Allen Discovery Center for Systems Modeling of Infection, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|