1
|
Fraczek PM, Duran P, Yang BA, Ferre V, Alawieh L, Castor-Macias JA, Wong VT, Guzman SD, Piotto C, Itsani K, Larouche JA, Aguilar CA. Vitamin A retinoic acid contributes to muscle stem cell and mitochondrial function loss in old age. JCI Insight 2025; 10:e183706. [PMID: 40131371 DOI: 10.1172/jci.insight.183706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Adult stem cells decline in number and function in old age, and identifying factors that can delay or revert age-associated adult stem cell dysfunction are vital for maintaining a healthy lifespan. Here we show that vitamin A, a micronutrient that is derived from diet and metabolized into retinoic acid, acts as an antioxidant and transcriptional regulator in muscle stem cells. We first show that obstruction of dietary vitamin A in young animals drives mitochondrial and cell cycle dysfunction in muscle stem cells that mimics old age. Next, we pharmacologically targeted retinoic acid signaling in myoblasts and aged muscle stem cells ex vivo and in vivo and observed reductions in oxidative damage, enhanced mitochondrial function, and improved maintenance of quiescence through fatty acid oxidation. We next detected that the receptor for vitamin A-derived retinol, stimulated by retinoic acid 6 or Stra6, was diminished with muscle stem cell activation and in old age. To understand the relevance of Stra6 loss, we knocked down Stra6 and observed an accumulation of mitochondrial reactive oxygen species, as well as changes in mitochondrial morphology and respiration. These results demonstrate that vitamin A regulates mitochondria and metabolism in muscle stem cells and highlight a unique mechanism connecting stem cell function with vitamin intake.
Collapse
Affiliation(s)
- Paula M Fraczek
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | - Pamela Duran
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | - Benjamin A Yang
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | - Valeria Ferre
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | - Leanne Alawieh
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | | | - Vivian T Wong
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | - Steve D Guzman
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | - Celeste Piotto
- Department of Biomedical Engineering
- Biointerfaces Institute, and
| | | | | | - Carlos A Aguilar
- Department of Biomedical Engineering
- Biointerfaces Institute, and
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Runyan CE, Luo L, Welch LC, Lu Z, Chen F, Schleck MJ, Nafikova RA, Grant RA, Aillon RP, Senkow KJ, Bunyan EG, Plodzeen WT, Abdala-Valencia H, Weiss C, Dada LA, Thorp EB, Sznajder JI, Chandel NS, Misharin AV, Budinger GRS. Tissue-resident skeletal muscle macrophages promote recovery from viral pneumonia-induced sarcopenia in normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631996. [PMID: 39868236 PMCID: PMC11760773 DOI: 10.1101/2025.01.09.631996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sarcopenia, which diminishes lifespan and healthspan in the elderly, is commonly exacerbated by viral pneumonia, including influenza and COVID-19. In a study of influenza A pneumonia in mice, young mice fully recovered from sarcopenia, while older mice did not. We identified a population of tissue-resident skeletal muscle macrophages that form a spatial niche with satellite cells and myofibers in young mice but are lost with age. Mice with a gain-of-function mutation in the Mertk receptor maintained this macrophage-myofiber interaction during aging and fully recovered from influenza-induced sarcopenia. In contrast, deletion of Mertk in macrophages or loss of Cx3cr1 disrupted this niche, preventing muscle regeneration. Heterochronic parabiosis did not restore the niche in old mice. These findings suggest that age-related loss of Mertk in muscle tissue-resident macrophages disrupts the cellular signaling necessary for muscle regeneration after viral pneumonia, offering a potential target to mitigate sarcopenia in aging.
Collapse
Affiliation(s)
- Constance E Runyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Lucy Luo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Fei Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Maxwell J Schleck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Radmila A Nafikova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Raul Piseaux Aillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Elsie G Bunyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - William T Plodzeen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Craig Weiss
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| |
Collapse
|
4
|
Wang Y, Zhang W, Zhang C, Van HQT, Seino T, Zhang Y. Reducing functionally defective old HSCs alleviates aging-related phenotypes in old recipient mice. Cell Res 2025; 35:45-58. [PMID: 39743633 PMCID: PMC11701126 DOI: 10.1038/s41422-024-01057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Aging is a process accompanied by functional decline in tissues and organs with great social and medical consequences. Developing effective anti-aging strategies is of great significance. In this study, we demonstrated that transplantation of young hematopoietic stem cells (HSCs) into old mice can mitigate aging phenotypes, underscoring the crucial role of HSCs in the aging process. Through comprehensive molecular and functional analyses, we identified a subset of HSCs in aged mice that exhibit "younger" molecular profiles and functions, marked by low levels of CD150 expression. Mechanistically, CD150low HSCs from old mice but not their CD150high counterparts can effectively differentiate into downstream lineage cells. Notably, transplantation of old CD150low HSCs attenuates aging phenotypes and prolongs lifespan of elderly mice compared to those transplanted with unselected or CD150high HSCs. Importantly, reducing the dysfunctional CD150high HSCs can alleviate aging phenotypes in old recipient mice. Thus, our study demonstrates the presence of "younger" HSCs in old mice, and that aging-associated functional decline can be mitigated by reducing dysfunctional HSCs.
Collapse
Affiliation(s)
- Yuting Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wenhao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Hoang Q Tran Van
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Takashi Seino
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Madigan LA, Jaime D, Chen I, Fallon JR. MuSK-BMP signaling in adult muscle stem cells maintains quiescence and regulates myofiber size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541238. [PMID: 37292636 PMCID: PMC10245747 DOI: 10.1101/2023.05.17.541238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A central question in adult stem cell biology is elucidating the signaling pathways regulating their dynamics and function in diverse physiological and age-related contexts. Muscle stem cells in adults (Satellite Cells; SCs) are generally quiescent but can activate and contribute to muscle repair and growth. Here we tested the role of the MuSK-BMP pathway in regulating adult SC quiescence by deletion of the BMP-binding MuSK Ig3 domain ('ΔIg3-MuSK'). At 3 months of age SC and myonuclei numbers and myofiber size were comparable to WT. However, at 5 months of age SC density was decreased while myofiber size, myonuclear number and grip strength were increased - indicating that SCs had activated and productively fused into the myofibers over this interval. Transcriptomic analysis showed that SCs from uninjured ΔIg3-MuSK mice exhibit signatures of activation. Regeneration experiments showed that ΔIg3-MuSK SCs maintain full stem cell function. Expression of ΔIg3-MuSK in adult SCs was sufficient to break quiescence and increase myofiber size. We conclude that the MuSK-BMP pathway regulates SC quiescence and myofiber size in a cell autonomous, age-dependent manner. Targeting MuSK-BMP signaling in muscle stem cells thus emerges a therapeutic strategy for promoting muscle growth and function in the settings of injury, disease, and aging. Highlights MuSK, in its role as a BMP co-receptor, regulates adult muscle stem cell quiescenceThe MuSK-BMP pathway acts cell autonomouslyIncreased muscle size and function with preservation of myonuclear density and stemness in mice with attenuated MuSK-BMP signaling.
Collapse
|
7
|
Rendon CJ, Sempere L, Lauver A, Watts SW, Contreras GA. Anatomical location, sex, and age modulate adipocyte progenitor populations in perivascular adipose tissues. Front Physiol 2024; 15:1411218. [PMID: 39072214 PMCID: PMC11282503 DOI: 10.3389/fphys.2024.1411218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Perivascular adipose tissue (PVAT) regulates vascular function due to its capacity to synthesize vasoactive products and its mechanical properties. PVATs most abundant cells are adipocytes, and their populations are maintained by the maturation of adipocyte progenitor cells (APC), which may play a pivotal role in the pathogenesis of cardiovascular diseases. However, the distribution of APC within PVAT depots, their potential variation in spatial location, and the influence of sex and age on their abundance remain unknown. We hypothesize that APC abundance in PVAT is affected by location, age, sex and that APC subtypes have specific spatial distributions. PVAT from thoracic and abdominal aorta, and mesenteric arteries, and AT from interscapular, gonadal, and subcutaneous depots from 13-week and 30-week-old females and males Pdgfrα-CreERT2 x LSL-tdTomato mice (n = 28) were analyzed. Abdominal aorta PVAT had fewer progenitors than mesenteric PVAT and gonadal AT. Aging reduced the abundance of APC in the thoracic aorta but increased their numbers in mesenteric PVAT. Females had more APC than males in mesenteric PVAT and gonadal AT depots. APC exhibited unique spatial distribution in the aorta and mesenteric PVAT where they localized neighboring vasa vasorum and arteries. APC subtypes (APC1, APC2, APC3, diff APC) were identified in all PVAT depots. Thoracic aorta PVAT APC3 were located in the adventitia while diff APC were in the parenchyma. This study identified variability in APC populations based on depot, age, and sex. The distinctive spatial distribution and the presence of diverse APC subtypes suggest that they may contribute differently to cardiovascular diseases-induced PVAT remodeling.
Collapse
Affiliation(s)
- C. Javier Rendon
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Adam Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Tracking of Nascent Matrix Deposition during Muscle Stem Cell Activation across Lifespan Using Engineered Hydrogels. Adv Biol (Weinh) 2024; 8:e2400091. [PMID: 38616175 DOI: 10.1002/adbi.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.
Collapse
Affiliation(s)
- Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleanor Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Todorov-Völgyi K, González-Gallego J, Müller SA, Beaufort N, Malik R, Schifferer M, Todorov MI, Crusius D, Robinson S, Schmidt A, Körbelin J, Bareyre F, Ertürk A, Haass C, Simons M, Paquet D, Lichtenthaler SF, Dichgans M. Proteomics of mouse brain endothelium uncovers dysregulation of vesicular transport pathways during aging. NATURE AGING 2024; 4:595-612. [PMID: 38519806 DOI: 10.1038/s43587-024-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.
Collapse
Affiliation(s)
- Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Judit González-Gallego
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mihail Ivilinov Todorov
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dennis Crusius
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sophie Robinson
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Bareyre
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Division of Metabolic Biochemistry, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
10
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. NPJ Microgravity 2024; 10:35. [PMID: 38514677 PMCID: PMC10957960 DOI: 10.1038/s41526-024-00386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.
Collapse
Affiliation(s)
- Nadab H Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Blanc RS, Shah N, Salama NAS, Meng FW, Mousaei A, Yang BA, Aguilar CA, Chakkalakal JV, Onukwufor JO, Murphy PJ, Calvi L, Dirksen R. Epigenetic erosion of H4K20me1 induced by inflammation drives aged stem cell ferroptosis. RESEARCH SQUARE 2024:rs.3.rs-3937628. [PMID: 38410478 PMCID: PMC10896381 DOI: 10.21203/rs.3.rs-3937628/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Aging is associated with a decline in stem cell functionality and number across the organism. In this study, we aimed to further unravel Muscle Stem Cells (MuSCs) aging by assessing how systemic factors influence MuSC fate decisions through long-term epigenetic landscape remodelling. As aging is intricately linked to a pro-inflammatory shift, we studied the epigenetic effects of inflammatory signals in MuSCs and measured decreased H4K20me1 levels. This loss disrupts MuSC quiescence, largely through epigenetic silencing of Notch target genes. In the setting of inflammatory signals or aging, the lack of Kmt5a and the subsequent absence of de novoH4K20me1 culminate in cell death by ferroptosis. Aged MuSCs manifest abnormal iron metabolism and reduced Gpx4 levels, resulting in the accumulation of intracellular iron, increased reactive oxygen species, genomic instability, and lipid peroxidation. We showed that ferroptosis is the predominant mode of cell death in aged MuSCs, with remarkably high levels of lipid peroxidation; a phenomenon we also observed in aged hematopoietic stem cells. Implementing preventative strategies to inhibit systemic inflammation prevented aged MuSC ferroptosis, preserving their numbers and regenerative capabilities. This intervention significantly enhanced aged muscle regeneration and strength recovery and extended both lifespan and healthspan in mice. This study delineates a previously underappreciated fate trajectory for stem cell aging, and offers meaningful insights into the treatment of age-related disorders.
Collapse
|
12
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583164. [PMID: 38464311 PMCID: PMC10925314 DOI: 10.1101/2024.03.03.583164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Guilhot C, Catenacci M, Lofaro S, Rudnicki MA. The satellite cell in skeletal muscle: A story of heterogeneity. Curr Top Dev Biol 2024; 158:15-51. [PMID: 38670703 DOI: 10.1016/bs.ctdb.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a highly represented tissue in mammals and is composed of fibers that are extremely adaptable and capable of regeneration. This characteristic of muscle fibers is made possible by a cell type called satellite cells. Adjacent to the fibers, satellite cells are found in a quiescent state and located between the muscle fibers membrane and the basal lamina. These cells are required for the growth and regeneration of skeletal muscle through myogenesis. This process is known to be tightly sequenced from the activation to the differentiation/fusion of myofibers. However, for the past fifteen years, researchers have been interested in examining satellite cell heterogeneity and have identified different subpopulations displaying distinct characteristics based on localization, quiescence state, stemness capacity, cell-cycle progression or gene expression. A small subset of satellite cells appears to represent multipotent long-term self-renewing muscle stem cells (MuSC). All these distinctions led us to the hypothesis that the characteristics of myogenesis might not be linear and therefore may be more permissive based on the evidence that satellite cells are a heterogeneous population. In this review, we discuss the different subpopulations that exist within the satellite cell pool to highlight the heterogeneity and to gain further understanding of the myogenesis progress. Finally, we discuss the long term self-renewing MuSC subpopulation that is capable of dividing asymmetrically and discuss the molecular mechanisms regulating MuSC polarization during health and disease.
Collapse
Affiliation(s)
- Corentin Guilhot
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marie Catenacci
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie Lofaro
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Santarelli P, Rosti V, Vivo M, Lanzuolo C. Chromatin organization of muscle stem cell. Curr Top Dev Biol 2024; 158:375-406. [PMID: 38670713 DOI: 10.1016/bs.ctdb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.
Collapse
Affiliation(s)
- Philina Santarelli
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valentina Rosti
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy
| | - Maria Vivo
- Università degli studi di Salerno, Fisciano, Italy.
| | - Chiara Lanzuolo
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy.
| |
Collapse
|
15
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Quantification of local matrix deposition during muscle stem cell activation using engineered hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576326. [PMID: 38328131 PMCID: PMC10849481 DOI: 10.1101/2024.01.20.576326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, the increased nascent matrix deposition was associated with stem cell activation. Reducing the ability to deposit nascent matrix in muscle stem cells attenuated function and mimicked impairments observed from muscle stem cells isolated from old aged muscles, which could be rescued with therapeutic supplementation of insulin-like growth factors. These results highlight how nascent matrix production is critical for maintaining healthy stem cell function.
Collapse
Affiliation(s)
- Pamela Duran
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eleanor Plaster
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Madeline Eiken
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
17
|
Castor-Macias JA, Larouche JA, Wallace EC, Spence BD, Eames A, Duran P, Yang BA, Fraczek PM, Davis CA, Brooks SV, Maddipati KR, Markworth JF, Aguilar CA. Maresin 1 repletion improves muscle regeneration after volumetric muscle loss. eLife 2023; 12:e86437. [PMID: 38131691 PMCID: PMC10807862 DOI: 10.7554/elife.86437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.
Collapse
Affiliation(s)
- Jesus A Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Emily C Wallace
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Bonnie D Spence
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Alec Eames
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Pamela Duran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Paula M Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Carol A Davis
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State UniversityDetroitUnited States
| | - James F Markworth
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IndianaUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
18
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle. Skelet Muscle 2023; 13:15. [PMID: 37705115 PMCID: PMC10498607 DOI: 10.1186/s13395-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nick Baumann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Sun
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
19
|
Zeng W, Zhang W, Tse EHY, Liu J, Dong A, Lam KSW, Luan S, Kung WH, Chan TC, Cheung TH. Restoration of CPEB4 prevents muscle stem cell senescence during aging. Dev Cell 2023; 58:1383-1398.e6. [PMID: 37321216 DOI: 10.1016/j.devcel.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Age-associated impairments in adult stem cell functions correlate with a decline in somatic tissue regeneration capacity. However, the mechanisms underlying the molecular regulation of adult stem cell aging remain elusive. Here, we provide a proteomic analysis of physiologically aged murine muscle stem cells (MuSCs), illustrating a pre-senescent proteomic signature. During aging, the mitochondrial proteome and activity are impaired in MuSCs. In addition, the inhibition of mitochondrial function results in cellular senescence. We identified an RNA-binding protein, CPEB4, downregulated in various aged tissues, which is required for MuSC functions. CPEB4 regulates the mitochondrial proteome and activity through mitochondrial translational control. MuSCs devoid of CPEB4 induced cellular senescence. Importantly, restoring CPEB4 expression rescued impaired mitochondrial metabolism, improved geriatric MuSC functions, and prevented cellular senescence in various human cell lines. Our findings provide the basis for the possibility that CPEB4 regulates mitochondrial metabolism to govern cellular senescence, with an implication of therapeutic intervention for age-related senescence.
Collapse
Affiliation(s)
- Wenshu Zeng
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenxin Zhang
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jing Liu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Anqi Dong
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kim S W Lam
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shaoyuan Luan
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Hing Kung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tsz Ching Chan
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
20
|
Lazure F, Blackburn DM, Soleimani VD. Transcriptional Profiling of Skeletal Muscle Stem Cells After In Vivo Engraftment into a Heterologous Niche Environment. Curr Protoc 2023; 3:e877. [PMID: 37638781 DOI: 10.1002/cpz1.877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Adult stem cells play a critical role in the maintenance and repair of the organs in which they reside. However, their function is highly dependent on the crosstalk with their niche environment that changes during development and in disease states. The niche provides signals to stem cells to activate, proliferate, self-renew, or remain in quiescence. In skeletal muscle, the niche is perturbed in disease contexts such as aging, muscular dystrophies, and cachexia. Therefore, it is important to develop methods that permit the decoupling of niche-mediated from cell-intrinsic changes that occur in muscle stem cells (MuSCs) in development and disease contexts. With the purpose of determining the effect of the niche environment on the MuSC transcriptome, function, or health, we have coupled an allogeneic stem cell transplantation system, meaning the transplantation of MuSCs from a donor mouse into a recipient host mouse, with Switching Mechanism at 5' End of RNA Template (SMART-Seq) to quantify the effects of the niche on the MuSC transcriptome in vivo. Briefly, MuSCs are isolated from a GFP reporter donor mouse (Pax7-nGFP) and transplanted into the irradiated muscles of immunocompromised allogeneic hosts. The MuSCs are re-isolated by fluorescence-activated cell sorting (FACS) after three weeks of inhabiting the heterologous niche, defined as a niche that is different from their originating niche, and sequencing-ready libraries are created. This method allows for the direct comparison of the transcriptome of stem cells before and after transplantation into a host of a different age, disease status, or genetic background. This method can be used to accurately quantify the direct effect of the niche environment on the stem cell gene expression profile and to decouple cell-intrinsic versus niche-mediated alterations in the stem cell transcriptome. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Allogeneic muscle stem cell transplantation.
Collapse
Affiliation(s)
- Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
- Present address: Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
21
|
Mao S, Su J, Wang L, Bo X, Li C, Chen H. A transcriptome-based single-cell biological age model and resource for tissue-specific aging measures. Genome Res 2023; 33:1381-1394. [PMID: 37524436 PMCID: PMC10547252 DOI: 10.1101/gr.277491.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Accurately measuring biological age is crucial for improving healthcare for the elderly population. However, the complexity of aging biology poses challenges in how to robustly estimate aging and interpret the biological significance of the traits used for estimation. Here we present SCALE, a statistical pipeline that quantifies biological aging in different tissues using explainable features learned from literature and single-cell transcriptomic data. Applying SCALE to the "Mouse Aging Cell Atlas" (Tabula Muris Senis) data, we identified tissue-level transcriptomic aging programs for more than 20 murine tissues and created a multitissue resource of mouse quantitative aging-associated genes. We observe that SCALE correlates well with other age indicators, such as the accumulation of somatic mutations, and can distinguish subtle differences in aging even in cells of the same chronological age. We further compared SCALE with other transcriptomic and methylation "clocks" in data from aging muscle stem cells, Alzheimer's disease, and heterochronic parabiosis. Our results confirm that SCALE is more generalizable and reliable in assessing biological aging in aging-related diseases and rejuvenating interventions. Overall, SCALE represents a valuable advancement in our ability to measure aging accurately, robustly, and interpretably in single cells.
Collapse
Affiliation(s)
- Shulin Mao
- Yuanpei College, Peking University, Beijing 100871, China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiayu Su
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
| | - Longteng Wang
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-NIBS, Peking University, Beijing 100871, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China;
- Center for Statistical Science, Peking University, Beijing 100871, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China;
| |
Collapse
|
22
|
Yeo RW, Zhou OY, Zhong BL, Sun ED, Navarro Negredo P, Nair S, Sharmin M, Ruetz TJ, Wilson M, Kundaje A, Dunn AR, Brunet A. Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging. NATURE AGING 2023; 3:866-893. [PMID: 37443352 PMCID: PMC10353944 DOI: 10.1038/s43587-023-00449-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Mahfuza Sharmin
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mikaela Wilson
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Feng X, Wang AH, Juan AH, Ko KD, Jiang K, Riparini G, Ciuffoli V, Kaba A, Lopez C, Naz F, Jarnik M, Aliberti E, Hu S, Segalés J, Khateb M, Acevedo-Luna N, Randazzo D, Cheung TH, Muñoz-Cánoves P, Dell'Orso S, Sartorelli V. Polycomb Ezh1 maintains murine muscle stem cell quiescence through non-canonical regulation of Notch signaling. Dev Cell 2023; 58:1052-1070.e10. [PMID: 37105173 PMCID: PMC10330238 DOI: 10.1016/j.devcel.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Organismal homeostasis and regeneration are predicated on committed stem cells that can reside for long periods in a mitotically dormant but reversible cell-cycle arrest state defined as quiescence. Premature escape from quiescence is detrimental, as it results in stem cell depletion, with consequent defective tissue homeostasis and regeneration. Here, we report that Polycomb Ezh1 confers quiescence to murine muscle stem cells (MuSCs) through a non-canonical function. In the absence of Ezh1, MuSCs spontaneously exit quiescence. Following repeated injuries, the MuSC pool is progressively depleted, resulting in failure to sustain proper muscle regeneration. Rather than regulating repressive histone H3K27 methylation, Ezh1 maintains gene expression of the Notch signaling pathway in MuSCs. Selective genetic reconstitution of the Notch signaling corrects stem cell number and re-establishes quiescence of Ezh1-/- MuSCs.
Collapse
Affiliation(s)
- Xuesong Feng
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - A Hongjun Wang
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Aster H Juan
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining & Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Giulia Riparini
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Aissah Kaba
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Christopher Lopez
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Faiza Naz
- Genomic Technology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Michal Jarnik
- Cell Biology and Neurobiology Branch, NICHD, NIH, Bethesda, MD, USA
| | - Elizabeth Aliberti
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Shenyuan Hu
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jessica Segalés
- Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Mamduh Khateb
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Natalia Acevedo-Luna
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | | | - Tom H Cheung
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), Barcelona, Spain; Altos Labs Inc, San Diego, CA, USA
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
24
|
Graca FA, Stephan A, Minden-Birkenmaier BA, Shirinifard A, Wang YD, Demontis F, Labelle M. Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles. Nat Commun 2023; 14:2900. [PMID: 37217480 DOI: 10.1038/s41467-023-38624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Benjamin A Minden-Birkenmaier
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
25
|
Cui CY, Ferrucci L, Gorospe M. Macrophage Involvement in Aging-Associated Skeletal Muscle Regeneration. Cells 2023; 12:1214. [PMID: 37174614 PMCID: PMC10177543 DOI: 10.3390/cells12091214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The skeletal muscle is a dynamic organ composed of contractile muscle fibers, connective tissues, blood vessels and nerve endings. Its main function is to provide motility to the body, but it is also deeply involved in systemic metabolism and thermoregulation. The skeletal muscle frequently encounters microinjury or trauma, which is primarily repaired by the coordinated actions of muscle stem cells (satellite cells, SCs), fibro-adipogenic progenitors (FAPs), and multiple immune cells, particularly macrophages. During aging, however, the capacity of skeletal muscle to repair and regenerate declines, likely contributing to sarcopenia, an age-related condition defined as loss of muscle mass and function. Recent studies have shown that resident macrophages in skeletal muscle are highly heterogeneous, and their phenotypes shift during aging, which may exacerbate skeletal muscle deterioration and inefficient regeneration. In this review, we highlight recent insight into the heterogeneity and functional roles of macrophages in skeletal muscle regeneration, particularly as it declines with aging.
Collapse
Affiliation(s)
- Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
26
|
Larouche JA, Wallace EC, Spence BD, Buras E, Aguilar CA. Spatiotemporal mapping of immune and stem cell dysregulation after volumetric muscle loss. JCI Insight 2023; 8:e162835. [PMID: 36821376 PMCID: PMC10132146 DOI: 10.1172/jci.insight.162835] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells. The dysregulated response impinged on muscle stem cell-mediated repair, and targeting this circuit resulted in increased regeneration and reductions in inflammation and fibrosis. Collectively, these results enhance our understanding of the cellular crosstalk that drives aberrant regeneration and provides further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
| | | | | | - Eric Buras
- Biointerfaces Institute
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Carlos A. Aguilar
- Department of Biomedical Engineering
- Biointerfaces Institute
- Program in Cellular and Molecular Biology, University of Michigan (UM), Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Yang BA, Larouche JA, Sabin KM, Fraczek PM, Parker SCJ, Aguilar CA. Three-dimensional chromatin re-organization during muscle stem cell aging. Aging Cell 2023; 22:e13789. [PMID: 36727578 PMCID: PMC10086523 DOI: 10.1111/acel.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome. To quantitatively understand how hierarchical chromatin architecture changes during muscle stem cell aging, we generated 3D chromatin conformation maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and transcriptome) profiles from bulk populations and single cells. We observed that muscle stem cells display static behavior at global scales of chromatin organization during aging and extensive rewiring of local contacts at finer scales that were associated with variations in transcription factor binding and aberrant gene expression. These data provide insights into genome topology as a regulator of molecular function in stem cell aging.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline A. Larouche
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Kaitlyn M. Sabin
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paula M. Fraczek
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen C. J. Parker
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Computational Medicine & BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Carlos A. Aguilar
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
28
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534956. [PMID: 37034612 PMCID: PMC10081271 DOI: 10.1101/2023.03.30.534956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transcription factors (TFs) play key roles in regulating the differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associated domains. Unexpectedly, Myod1 Cre -driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7 CreER or Rosa26 CreER driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remain to be elucidated.
Collapse
|
29
|
Yang BA, da Rocha AM, Newton I, Shcherbina A, Wong SW, Fraczek PM, Larouche JA, Hiraki HL, Baker BM, Shin JW, Takayama S, Thouless MD, Aguilar CA. Manipulation of the nucleoscaffold potentiates cellular reprogramming kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532246. [PMID: 36993714 PMCID: PMC10055010 DOI: 10.1101/2023.03.12.532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Isabel Newton
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Shcherbina
- Dept. of Biomedical Informatics, Stanford University, Palo Alto, CA 94305, USA
| | - Sing-Wan Wong
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula M. Fraczek
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A. Larouche
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harrison L. Hiraki
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae-Won Shin
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuichi Takayama
- Wallace Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - M. D. Thouless
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Benjamin DI, Brett JO, Both P, Benjamin JS, Ishak HL, Kang J, Kim S, Chung M, Arjona M, Nutter CW, Tan JH, Krishnan AK, Dulay H, Louie SM, de Morree A, Nomura DK, Rando TA. Multiomics reveals glutathione metabolism as a driver of bimodality during stem cell aging. Cell Metab 2023; 35:472-486.e6. [PMID: 36854304 PMCID: PMC10015599 DOI: 10.1016/j.cmet.2023.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/14/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
With age, skeletal muscle stem cells (MuSCs) activate out of quiescence more slowly and with increased death, leading to defective muscle repair. To explore the molecular underpinnings of these defects, we combined multiomics, single-cell measurements, and functional testing of MuSCs from young and old mice. The multiomics approach allowed us to assess which changes are causal, which are compensatory, and which are simply correlative. We identified glutathione (GSH) metabolism as perturbed in old MuSCs, with both causal and compensatory components. Contrary to young MuSCs, old MuSCs exhibit a population dichotomy composed of GSHhigh cells (comparable with young MuSCs) and GSHlow cells with impaired functionality. Mechanistically, we show that antagonism between NRF2 and NF-κB maintains this bimodality. Experimental manipulation of GSH levels altered the functional dichotomy of aged MuSCs. These findings identify a novel mechanism of stem cell aging and highlight glutathione metabolism as an accessible target for reversing MuSC aging.
Collapse
Affiliation(s)
- Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel S Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather L Ishak
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingyu Chung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Nutter
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jenna H Tan
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ananya K Krishnan
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter Dulay
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharon M Louie
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Antoine de Morree
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
31
|
Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther 2023; 243:108357. [PMID: 36764462 DOI: 10.1016/j.pharmthera.2023.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Skeletal muscle contraction is essential for the movement of our musculoskeletal system. Tendons and ligaments that connect the skeletal muscles to bones in the correct position at the appropriate time during development are also required for movement to occur. Since the musculoskeletal system is essential for maintaining basic bodily functions as well as enabling interactions with the environment, dysfunctions of these tissues due to disease can significantly reduce quality of life. Unfortunately, as people live longer, skeletal muscle and tendon/ligament diseases are becoming more common. Sarcopenia, a disease in which skeletal muscle function declines, and tendinopathy, which involves chronic tendon dysfunction, are particularly troublesome because there have been no significant advances in their treatment. In this review, we will summarize previous reports on the development and regeneration/healing of skeletal muscle and tendon tissues, including a discussion of the molecular and cellular mechanisms involved that may be used as potential therapeutic targets.
Collapse
|
32
|
Sahinyan K, Lazure F, Blackburn DM, Soleimani VD. Decline of regenerative potential of old muscle stem cells: contribution to muscle aging. FEBS J 2023; 290:1267-1289. [PMID: 35029021 DOI: 10.1111/febs.16352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, posttranscriptional, or posttranslational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
33
|
Lazure F, Farouni R, Sahinyan K, Blackburn DM, Hernández-Corchado A, Perron G, Lu T, Osakwe A, Ragoussis J, Crist C, Perkins TJ, Jahani-Asl A, Najafabadi HS, Soleimani VD. Transcriptional reprogramming of skeletal muscle stem cells by the niche environment. Nat Commun 2023; 14:535. [PMID: 36726011 PMCID: PMC9892560 DOI: 10.1038/s41467-023-36265-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Adult stem cells are indispensable for tissue regeneration, but their function declines with age. The niche environment in which the stem cells reside plays a critical role in their function. However, quantification of the niche effect on stem cell function is lacking. Using muscle stem cells (MuSC) as a model, we show that aging leads to a significant transcriptomic shift in their subpopulations accompanied by locus-specific gain and loss of chromatin accessibility and DNA methylation. By combining in vivo MuSC transplantation and computational methods, we show that the expression of approximately half of all age-altered genes in MuSCs from aged male mice can be restored by exposure to a young niche environment. While there is a correlation between gene reversibility and epigenetic alterations, restoration of gene expression occurs primarily at the level of transcription. The stem cell niche environment therefore represents an important therapeutic target to enhance tissue regeneration in aging.
Collapse
Affiliation(s)
- Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Rick Farouni
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Aldo Hernández-Corchado
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Quantitative Life Sciences, McGill University, Montreal, Canada
| | - Adrien Osakwe
- Quantitative Life Sciences, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada. .,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada. .,Quantitative Life Sciences, McGill University, Montreal, Canada.
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada. .,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
34
|
Ageing Skeletal Muscle: The Ubiquitous Muscle Stem Cell. Subcell Biochem 2023; 102:365-377. [PMID: 36600140 DOI: 10.1007/978-3-031-21410-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In 1999, in a review by Beardsley, the potential of adult stem cells, in repair and regeneration was heralded (Beardsley Sci Am 281:30-31, 1999). Since then, the field of regenerative medicine has grown exponentially, with the capability of restoring or regenerating the function of damaged, diseased or aged human tissues being an underpinning motivation. If successful, stem cell therapies offer the potential to treat, for example degenerative diseases. In the subsequent 20 years, extensive progress has been made in the arena of adult stem cells (for a recent review see (Zakrzewski et al. Stem Cell Res Ther 10:68, 2019)). Prior to the growth of the adult stem cell research arena, much focus had been placed on the potential of embryonic stem cells (ESCs). The first research revealing the potential of these cells was published in 1981, when scientists reported the ability of cultured stem cells from murine embryos, to not only self-renew, but to also become all cells of the three germ layers of the developing embryo (Evans and Kaufman Nature 292:154-156, 1981), (Martin Proc Natl Acad Sci U S A 78:7634-7638, 1981). It took almost 20 years, following these discoveries, for this technology to translate to human ESCs, using donated human embryos. In 1998, Thomson et al. reported the creation of the first human embryonic cell line (Thomson et al. Science 282:1145-1147, 1998). However, research utilising human ESCs was hampered by ethical and religious constraints and indeed in 2001 George W. Bush restricted US research funding to human ESCs, which had already been banked. The contentious nature of this arena perhaps facilitated the use of and the research potential for adult stem cells. It is beyond the scope of this review to focus on ESCs, although their potential for enhancing our understanding of human development is huge (for a recent review see (Cyranoski Nature 555:428-430, 2018)). Rather, although ESCs and their epigenetic regulation will be introduced for background understanding, the focus will be on stem cells more generally, the role of epigenetics in stem cell fate, skeletal muscle, skeletal muscle stem cells, the impact of ageing on muscle wasting and the mechanisms underpinning loss, with a focus on epigenetic adaptation.
Collapse
|
35
|
Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol 2023; 24:45-62. [PMID: 35859206 PMCID: PMC9879573 DOI: 10.1038/s41580-022-00510-w] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Most adult organs contain regenerative stem cells, often organized in specific niches. Stem cell function is critical for tissue homeostasis and repair upon injury, and it is dependent on interactions with the niche. During ageing, stem cells decline in their regenerative potential and ability to give rise to differentiated cells in the tissue, which is associated with a deterioration of tissue integrity and health. Ageing-associated changes in regenerative tissue regions include defects in maintenance of stem cell quiescence, differentiation ability and bias, clonal expansion and infiltration of immune cells in the niche. In this Review, we discuss cellular and molecular mechanisms underlying ageing in the regenerative regions of different tissues as well as potential rejuvenation strategies. We focus primarily on brain, muscle and blood tissues, but also provide examples from other tissues, such as skin and intestine. We describe the complex interactions between different cell types, non-cell-autonomous mechanisms between ageing niches and stem cells, and the influence of systemic factors. We also compare different interventions for the rejuvenation of old regenerative regions. Future outlooks in the field of stem cell ageing are discussed, including strategies to counter ageing and age-dependent disease.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
| | - Margaret A Goodell
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
| | - Thomas A Rando
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Sonam S, Bangru S, Perry KJ, Chembazhi UV, Kalsotra A, Henry JJ. Cellular and molecular profiles of larval and adult Xenopus corneal epithelia resolved at the single-cell level. Dev Biol 2022; 491:13-30. [PMID: 36049533 PMCID: PMC10241109 DOI: 10.1016/j.ydbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for homeostasis and maintaining corneal transparency. Owing to our limited knowledge of cell fates and gene activity within the cornea, the search for unique markers to identify and isolate these cells remains crucial for ocular surface reconstruction. We performed single-cell RNA sequencing of corneal cells from larval and adult stages of Xenopus. Our results indicate that as the cornea develops and matures, there is an increase in cellular diversity, which is accompanied by a substantial shift in transcriptional profile, gene regulatory network and cell-cell communication dynamics. Our data also reveals several novel genes expressed in corneal cells and changes in gene expression during corneal differentiation at both developmental time-points. Importantly, we identify specific basal cell clusters in both the larval and adult cornea that comprise a relatively undifferentiated cell type and express distinct stem cell markers, which we propose are the putative larval and adult CESCs, respectively. This study offers a detailed atlas of single-cell transcriptomes in the frog cornea. In the future, this work will be useful to elucidate the function of novel genes in corneal epithelial homeostasis, wound healing and regeneration.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA.
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
37
|
Luo W, Xu Y, Liu R, Liao Y, Wang S, Zhang H, Li X, Wang H. Retinoic acid and RARγ maintain satellite cell quiescence through regulation of translation initiation. Cell Death Dis 2022; 13:838. [PMID: 36175396 PMCID: PMC9522790 DOI: 10.1038/s41419-022-05284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
In adult skeletal muscle, satellite cells are in a quiescent state, which is essential for the future activation of muscle homeostasis and regeneration. Multiple studies have investigated satellite cell proliferation and differentiation, but the molecular mechanisms that safeguard the quiescence of satellite cells remain largely unknown. In this study, we purposely activated dormant satellite cells by using various stimuli and captured the in vivo-preserved features from quiescence to activation transitions. We found that retinoic acid signaling was required for quiescence maintenance. Mechanistically, retinoic acid receptor gamma (RARγ) binds to and stimulates genes responsible for Akt dephosphorylation and subsequently inhibits overall protein translation initiation in satellite cells. Furthermore, the alleviation of retinoic acid signaling released the satellite cells from quiescence, but this restraint was lost in aged cells. Retinoic acid also preserves the quiescent state during satellite cell isolation, overcoming the cellular stress caused by the isolation process. We conclude that active retinoic acid signaling contributes to the maintenance of the quiescent state of satellite cells through regulation of the protein translation initiation process.
Collapse
Affiliation(s)
- Wenzhe Luo
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yueyuan Xu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruige Liu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinlong Liao
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoyuan Zhang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Heng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
38
|
Chen YF, Lee CW, Wu HH, Lin WT, Lee OK. Immunometabolism of macrophages regulates skeletal muscle regeneration. Front Cell Dev Biol 2022; 10:948819. [PMID: 36147742 PMCID: PMC9485946 DOI: 10.3389/fcell.2022.948819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia is an age-related progressive loss of skeletal muscle mass, quality, and strength disease. In addition, sarcopenia is tightly correlated with age-associated pathologies, such as sarcopenic obesity and osteoporosis. Further understanding of disease mechanisms and the therapeutic strategies in muscle regeneration requires a deeper knowledge of the interaction of skeletal muscle and other cells in the muscle tissue. Skeletal muscle regeneration is a complex process that requires a series of highly coordinated events involving communication between muscle stem cells and niche cells, such as muscle fibro/adipogenic progenitors and macrophages. Macrophages play a critical role in tissue regeneration and the maintenance of muscle homeostasis by producing growth factors and cytokines that regulate muscle stem cells and myofibroblast activation. Furthermore, the aging-related immune dysregulation associated with the release of trophic factors and the polarization in macrophages transiently affect the inflammatory phase and impair muscle regeneration. In this review, we focus on the role and regulation of macrophages in skeletal muscle regeneration and homeostasis. The aim of this review is to highlight the important roles of macrophages as a therapeutic target in age-related sarcopenia and the increasing understanding of how macrophages are regulated will help to advance skeletal muscle regeneration.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Wei Lee
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ting Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Oscar K. Lee
- Center for Translational Genomics Research, China Medical University Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Oscar K. Lee,
| |
Collapse
|
39
|
Dong A, Liu J, Lin K, Zeng W, So WK, Hu S, Cheung TH. Global chromatin accessibility profiling analysis reveals a chronic activation state in aged muscle stem cells. iScience 2022; 25:104954. [PMID: 36093058 PMCID: PMC9459695 DOI: 10.1016/j.isci.2022.104954] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/30/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
|
40
|
The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell 2022; 29:1315-1332.e9. [PMID: 35998642 DOI: 10.1016/j.stem.2022.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
Quiescence regulation is essential for adult stem cell maintenance and sustained regeneration. Our studies uncovered that physiological changes in mitochondrial shape regulate the quiescent state of adult muscle stem cells (MuSCs). We show that MuSC mitochondria rapidly fragment upon an activation stimulus, via systemic HGF/mTOR, to drive the exit from deep quiescence. Deletion of the mitochondrial fusion protein OPA1 and mitochondrial fragmentation transitions MuSCs into G-alert quiescence, causing premature activation and depletion upon a stimulus. OPA1 loss activates a glutathione (GSH)-redox signaling pathway promoting cell-cycle progression, myogenic gene expression, and commitment. MuSCs with chronic OPA1 loss, leading to mitochondrial dysfunction, continue to reside in G-alert but acquire severe cell-cycle defects. Additionally, we provide evidence that OPA1 decline and impaired mitochondrial dynamics contribute to age-related MuSC dysfunction. These findings reveal a fundamental role for OPA1 and mitochondrial dynamics in establishing the quiescent state and activation potential of adult stem cells.
Collapse
|
41
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
42
|
So KKH, Huang Y, Zhang S, Qiao Y, He L, Li Y, Chen X, Sham MH, Sun H, Wang H. seRNA PAM controls skeletal muscle satellite cell proliferation and aging through trans regulation of Timp2 expression synergistically with Ddx5. Aging Cell 2022; 21:e13673. [PMID: 35851988 PMCID: PMC9381903 DOI: 10.1111/acel.13673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 12/11/2022] Open
Abstract
Muscle satellite cells (SCs) are responsible for muscle homeostasis and regeneration and lncRNAs play important roles in regulating SC activities. Here, in this study, we identify PAM (Pax7 Associated Muscle lncRNA) that is induced in activated/proliferating SCs upon injury to promote SC proliferation as myoblast cells. PAM is generated from a myoblast-specific super-enhancer (SE); as a seRNA it binds with a number of target genomic loci predominantly in trans. Further studies demonstrate that it interacts with Ddx5 to tether PAM SE to its inter-chromosomal targets Timp2 and Vim to activate the gene expression. Lastly, we show that PAM expression is increased in aging SCs, which leads to enhanced inter-chromosomal interaction and target genes upregulation. Altogether, our findings identify PAM as a previously unknown lncRNA that regulates both SC proliferation and aging through its trans gene regulatory activity.
Collapse
Affiliation(s)
- Karl Kam Hei So
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Yulong Qiao
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Mai Har Sham
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| |
Collapse
|
43
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
44
|
Proliferin-1 Ameliorates Cardiotoxin-Related Skeletal Muscle Repair in Mice. Stem Cells Int 2021; 2021:9202990. [PMID: 34950212 PMCID: PMC8692050 DOI: 10.1155/2021/9202990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Background We recently demonstrated that proliferin-1 (PLF-1) functions as an apoptotic cell-derived growth factor and plays an important role in vascular pathobiology. We therefore investigated its role in muscle regeneration in response to cardiotoxin injury. Methods and Results To determine the effects of PLF-1 on muscle regeneration, we used a CTX-induced skeletal muscle injury model in 9-week-old male mice that were administered with the recombinant PLF-1 (rPLF-1) or neutralizing PLF-1 antibody. The injured muscles exhibited increased levels of PLF-1 gene expression in a time-dependent manner. On day 14 after injury, rPLF-1 supplementation ameliorated CTX-induced alterations in muscle fiber size, interstitial fibrosis, muscle regeneration capacity, and muscle performance. On day 3 postinjury, rPLF-1 increased the levels of proteins or genes for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, p-p38MAPK, interleukin-10, Pax7, MyoD, and Cyclin B1, and it increased the numbers of CD34+/integrin-α7+ muscle stem cells and proliferating cells in the muscles and/or bone marrow of CTX mice. An enzyme-linked immunosorbent assay revealed that rPLF-1 suppressed the levels of plasma tumor necrosis factor-α and interleukin-1β in CTX mice. PLF-1 blocking accelerated CTX-related muscle damage and dysfunction. In C2C12 myoblasts, rPLF-1 increased the levels of proteins for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, and p-p38MAPK as well as cellular functions; and these effects were diminished by the depletion of PLF-1 or silencing of its mannose-6-phosphate receptor. Conclusions These findings demonstrated that PLF-1 can improve skeletal muscle repair in response to injury, possibly via the modulation of inflammation and proliferation and regeneration, suggesting a novel therapeutic strategy for the management of skeletal muscle diseases.
Collapse
|
45
|
Moyle LA, Davoudi S, Gilbert PM. Innovation in culture systems to study muscle complexity. Exp Cell Res 2021; 411:112966. [PMID: 34906582 DOI: 10.1016/j.yexcr.2021.112966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.
Collapse
Affiliation(s)
- Louise A Moyle
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Sadegh Davoudi
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
46
|
Yang BA, Castor-Macias J, Fraczek P, Cornett A, Brown LA, Kim M, Brooks SV, Lombaert IMA, Lee JH, Aguilar CA. Sestrins regulate muscle stem cell metabolic homeostasis. Stem Cell Reports 2021; 16:2078-2088. [PMID: 34388363 PMCID: PMC8452514 DOI: 10.1016/j.stemcr.2021.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
The health and homeostasis of skeletal muscle are preserved by a population of tissue-resident muscle stem cells (MuSCs) that maintain a state of mitotic and metabolic quiescence in adult tissues. The capacity of MuSCs to preserve the quiescent state declines with aging and metabolic insults, promoting premature activation and stem cell exhaustion. Sestrins are a class of stress-inducible proteins that act as antioxidants and inhibit the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Despite these pivotal roles, the role of Sestrins has not been explored in adult stem cells. We show that SESTRIN1,2 loss results in hyperactivation of the mTORC1 complex, increased propensity to enter the cell cycle, and shifts in metabolic flux. Aged SESTRIN1,2 knockout mice exhibited loss of MuSCs and a reduced ability to regenerate injured muscle. These findings demonstrate that Sestrins help maintain metabolic pathways in MuSCs that protect quiescence against aging.
Collapse
Affiliation(s)
- Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paula Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashley Cornett
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan V Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabelle M A Lombaert
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Chow LS, Bosnakovski D, Mashek DG, Kyba M, Perlingeiro RCR, Magli A. Chromatin accessibility profiling identifies evolutionary conserved loci in activated human satellite cells. Stem Cell Res 2021; 55:102496. [PMID: 34411972 PMCID: PMC8917817 DOI: 10.1016/j.scr.2021.102496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022] Open
Abstract
Satellite cells represent the main myogenic population accounting for skeletal muscle homeostasis and regeneration. While our knowledge of the signaling pathways controlling satellite cell regenerative capability is increasing, the underlying epigenetic mechanisms are still not clear, especially in the case of human satellite cells. Here, by performing chromatin accessibility profiling (ATAC-seq) in samples isolated from human and murine muscles, we investigated the changes in the epigenetic landscape occurring during the transition from activated satellite cells to myoblasts. Our analysis identifies a compendium of putative regulatory elements defining human activated satellite cells and myoblasts, respectively. A subset of these differentially accessible loci is shared by both murine and human satellite cells, includes elements associated with known self-renewal regulators, and is enriched for motifs bound by transcription factors participating in satellite cell regulation. Integration of transcriptional and epigenetic data reveals that known regulators of metabolic gene expression, such as PPARGC1A, represent potential PAX7 targets. Through characterization of genomic networks and the underlying effectors, our data represent an important starting point for decoding and manipulating the molecular mechanisms underlying human satellite cell muscle regenerative potential.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; University Goce Delcev - Shtip, Faculty of Medical Sciences, Shtip, Macedonia
| | - Douglas G Mashek
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Magli
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
48
|
Larouche JA, Mohiuddin M, Choi JJ, Ulintz PJ, Fraczek P, Sabin K, Pitchiaya S, Kurpiers SJ, Castor-Macias J, Liu W, Hastings RL, Brown LA, Markworth JF, De Silva K, Levi B, Merajver SD, Valdez G, Chakkalakal JV, Jang YC, Brooks SV, Aguilar CA. Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging. eLife 2021; 10:e66749. [PMID: 34323217 PMCID: PMC8360658 DOI: 10.7554/elife.66749] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
Collapse
Affiliation(s)
- Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Mahir Mohiuddin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeongmoon J Choi
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Ulintz
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Paula Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | | | - Sarah J Kurpiers
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Wenxuan Liu
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Robert Louis Hastings
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - James F Markworth
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kanishka De Silva
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin Levi
- Department of Surgery, University of Texas SouthwesternDallasUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| | - Sofia D Merajver
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Gregorio Valdez
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
49
|
Blum J, Epstein R, Watts S, Thalacker-Mercer A. Importance of Nutrient Availability and Metabolism for Skeletal Muscle Regeneration. Front Physiol 2021; 12:696018. [PMID: 34335302 PMCID: PMC8322985 DOI: 10.3389/fphys.2021.696018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is fundamentally important for quality of life. Deterioration of skeletal muscle, such as that observed with advancing age, chronic disease, and dystrophies, is associated with metabolic and functional decline. Muscle stem/progenitor cells promote the maintenance of skeletal muscle composition (balance of muscle mass, fat, and fibrotic tissues) and are essential for the regenerative response to skeletal muscle damage. It is increasing recognized that nutrient and metabolic determinants of stem/progenitor cell function exist and are potential therapeutic targets to improve regenerative outcomes and muscle health. This review will focus on current understanding as well as key gaps in knowledge and challenges around identifying and understanding nutrient and metabolic determinants of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jamie Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Rebekah Epstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
50
|
Thalacker-Mercer A, Blum J. Discovery and application of dietary compounds to optimize human health, a focus on skeletal muscle regeneration. Curr Opin Biotechnol 2021; 70:131-135. [PMID: 33971586 DOI: 10.1016/j.copbio.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Worldwide, the number of persons over the age of 65 years and those at risk of malnutrition (over and under) is growing, and the prevalence of diet-related chronic disease is at a record high. Pathologies that are linked to poor nutrition underlie the leading causes of death. Safe and effective strategies to improve human health outcomes are urgently required. Identification of nutrient needs for health outcomes has led to the development of food products, supplements, and dietary pattern recommendations. Application of these nutrient-based therapies have the potential to optimize clinical outcomes, such as tissue regeneration post-skeletal muscle trauma. However, despite progress in identifying nutrient needs there is often a delay in the utilization of products in clinical practice.
Collapse
Affiliation(s)
- Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Jamie Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|