1
|
Tao Y, Sun Y, Chai Y, Duma L, Rossez Y. Fatty acid desaturases in non-photosynthetic bacteria: classification, regulation, and roles in plasma membrane function and cellular homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159630. [PMID: 40368272 DOI: 10.1016/j.bbalip.2025.159630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/25/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Fatty acid desaturases are key enzymes that catalyze the desaturation of acyl lipid chains by regioselectively introducing double bonds into saturated or pre-existing alkene fatty acids to produce unsaturated fatty acids. While extensive studies have focused on desaturases in higher organisms, research on these enzymes in non-photosynthetic bacteria remains limited, largely due to insufficient structural and functional data. This review aims to summarize the current knowledge on the structural features and catalytic mechanisms of desaturases in non-photosynthetic bacteria, shedding light on the sophisticated regulatory strategies underlying unsaturated fatty acid biosynthesis. In addition, factors influencing desaturase activity are presented and analyzed. This comprehensive review provides insights into bacterial homeostatic adaptation to environmental changes and highlights potential applications in nutraceutical development and therapeutic target identification.
Collapse
Affiliation(s)
- Ye Tao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yilin Sun
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yidan Chai
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Luminita Duma
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Yannick Rossez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
2
|
Suwanawat N, Ogawa T, Toyotake Y, Kawamoto J, Kurihara T. Biochemical characterization and mutational analysis of lysophosphatidic acid acyltransferases of Escherichia coli highlighting their involvement in the generation of membrane phospholipid diversity. J Biochem 2025; 177:259-272. [PMID: 39727331 DOI: 10.1093/jb/mvae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Lysophosphatidic acid acyltransferase (LPAAT) is an enzyme responsible for the second acylation step of phospholipid biosynthesis and transforms lysophosphatidic acid to phosphatidic acid, a universal precursor of various phospholipids. In addition to the well-studied plsC-encoded LPAAT (EcPlsC), we previously found that Escherichia coli has another LPAAT that is encoded by yihG (EcYihG). EcPlsC and EcYihG are integral membrane proteins and have never been solubilized and purified in their active form. To better understand the difference in their enzymatic functions and how the two paralogs differently contribute to lipid diversity, we established a method to purify both enzymes in their active form and comparatively analysed their biochemical characteristics. Our findings illustrate that EcPlsC possesses the highest activity at pH 8.0 and 37°C with selectivity for unsaturated fatty acyl-CoAs (e.g. palmitoleoyl-CoA), whereas EcYihG works optimally at pH 7.5 and 30°C and prefers saturated fatty acyl-CoAs (e.g. myristoyl-CoA). In addition, we performed a mutational analysis based on AlphaFold2 models and revealed that one residue, which is located at the putative acyl-donor-selectivity tunnel entrance, plays a pivotal role in selecting acyl donor substrates. This provides new insights into how LPAATs recognize specific fatty acyl groups and incorporate them into membrane phospholipids.
Collapse
Affiliation(s)
- Nittikarn Suwanawat
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yosuke Toyotake
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Geng J, Long J, Hu Q, Liu M, Ge A, Du Y, Zhang T, Jin Y, Yang H, Chen S, Duan G. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb Pathog 2025; 200:107295. [PMID: 39805345 DOI: 10.1016/j.micpath.2025.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs). Compelling evidence suggests a large role for the cfa gene and CFAs in bacterial adaptive responses. This review provides an overview of the relationship of CFAs with bacterial cell membrane properties and physiological functions, including the roles of cell membrane fluidity, stability, and permeability to protons, bacterial growth, acid resistance, and especially in bacterial antibiotic resistance and pathogenicity. The dysregulation and inhibition of the cfa gene may serve as potential therapeutic targets against bacterial drug resistance and pathogenicity. Therefore, elucidating the biological function of CFAs during the stationary growth phase therefore provides invaluable insights into the bacterial pathogenesis and the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengyue Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Anmin Ge
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China; Penglai Center for Disease Control and Prevention, Yantai, China
| | - Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Santos RMS, Samelo J, Oliveira AC, Cordeiro MM, Mora MJ, Granero GE, Filipe HAL, Loura LMS, Moreno MJ. Interaction of the Antibiotic Rifampicin with Lipid Membranes. Biomolecules 2025; 15:320. [PMID: 40149856 PMCID: PMC11940268 DOI: 10.3390/biom15030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Rifampicin is a broad-spectrum antibiotic, active against several bacterial infections such as tuberculosis. It is a relatively large and structurally complex molecule, including numerous polar groups. Although violating several of Lipinski's rules for efficient intestinal absorption, rifampicin shows good oral bioavailability, permeating through cell membranes in the absorption pathway and those of the target organisms. Some hypotheses have been proposed for its efficient membrane permeation, but the details are mostly unknown. In this work, the interaction of rifampicin with POPC lipid bilayers is studied using experimental biophysics methodologies and atomistic molecular dynamics simulations considering the two most prevalent ionic species at physiological pH, the anionic and the zwitterionic forms. The results show that both ionization forms of rifampicin establish favorable interactions with the membrane lipids, in agreement with the relatively high partition coefficient obtained experimentally. The results from MD simulations and isothermal titration calorimetry using different pH buffers show that the piperazine group inserts deeply in the membrane and is accompanied by a stabilization of its neutral form. The bulky nature of rifampicin and its deep insertion in the membrane lead to a strong perturbation in the lipids local order, decreasing the membrane barrier properties as evaluated from the rate of carboxyfluorescein leaching. Altogether, the comparison between the experimental and MD simulations results provides important insight regarding the rifampicin molecular features responsible for its relatively fast membrane permeation. The lipid POPC used in this study was selected as a simple membrane with relevance for different organisms across all kingdoms. Further studies using more complex lipid compositions will provide details on eventual specificities for rifampicin interaction with the membranes of distinct organisms.
Collapse
Affiliation(s)
- Rui M. S. Santos
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jaime Samelo
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Alexandre C. Oliveira
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Margarida M. Cordeiro
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Julia Mora
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET) and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (M.J.M.); (G.E.G.)
| | - Gladys E. Granero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET) and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (M.J.M.); (G.E.G.)
| | - Hugo A. L. Filipe
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- BRIDGES-Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal (A.C.O.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
5
|
Barrantes FJ. The pleomorphic cholesterol sensing motifs of transmembrane proteins. Chem Phys Lipids 2025; 266:105460. [PMID: 39615777 DOI: 10.1016/j.chemphyslip.2024.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Millions of years of phylogenetic evolution have shaped the crosstalk between sterols and membrane-embedded proteins. This lengthy process, which began before the appearance of eukaryotic cells, has sculpted the two types of molecules to cover a wide spectrum of structural interconnectedness, ranging from rapid touch-and-go hits of low-affinity between surfaces to stronger lock-and-key type structural contacts. The former usually involve relatively loose contacts between linear amino acid sequences on the membrane-exposed transmembrane domains of the protein, readily accessible to the sterols as they briefly visit clefts between adjacent transmembrane segments while in rapid exchange with the bulk lipid bilayer. This operational mode is probably the most ancestral one, since it was already present in primitive bacteria interacting with hopanoid lipids. At the other end of this spectrum are more complex cholesterol binding sites that have required the acquisition of complex 3D non-sequential segments of the membrane protein to establish stereochemically elaborate 3D designs complementary to the rough and smooth surfaces of the eukaryotic neutral lipid, cholesterol. This short review explores cholesterol-membrane protein interactions using membrane protein paradigms having in common their participation in intercellular communications neurotransmission, hormone signalling, amino acid/neurotransmitter transport- and in cancer.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Buenos Aires C1107AAF, Argentina.
| |
Collapse
|
6
|
Wood PL, Kunigelis SC. Copepod Lipidomics: Fatty Acid Substituents of Structural Lipids in Labidocerca aestiva, a Dominant Species in the Food Chain of the Apalachicola Estuary of the Gulf of Mexico. Life (Basel) 2024; 15:43. [PMID: 39859983 PMCID: PMC11766502 DOI: 10.3390/life15010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Zooplanktonic copepods represent a major biological mass in the marine food chain that can be affected by climate change. Monitoring the health of this critical biomass is essential for increasing our understanding of the impact of environmental changes on marine environments. Since the lipidomes of marine organisms are known to adapt to alterations in pH, temperature, and availability of metabolic precursors, lipidomics is one technology that can be used for monitoring copepod adaptations. Among the key lipid parameters that can be monitored are the fatty acid substituents of glycerolipids and glycerophospholipids. We utilized high-resolution tandem mass spectrometry (≤2 ppm mass error) to characterize the fatty acid substituents of triacylglycerols, glycerophosphocholines, ceramides, and sphingomyelins of Labidocerca aestiva. This included monitoring for furan fatty acid substituents, a family of fatty acids unique to marine organisms. These data will contribute to establishing a lipid database of the fatty acid substituents of essential structural lipids. The key findings were that polyunsaturated fatty acids (PUFAs) were only major substituents in glycerophosphocholines with 36 to 44 carbons. Triacylglycerols, ceramides, and sphingomyelins contained minimal PUFA substituents. Furan fatty acids were limited to mono- and di-acylglycerols. In summary, we have built a baseline database of the fatty acid substituents of key structural lipids in Labidocerca aestiva. With this database, we will next evaluate potential seasonal changes in these lipid substituents and long-term effects of climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| |
Collapse
|
7
|
Justice I, Kiesel P, Safronova N, von Appen A, Saenz JP. A tuneable minimal cell membrane reveals that two lipid species suffice for life. Nat Commun 2024; 15:9679. [PMID: 39516463 PMCID: PMC11549477 DOI: 10.1038/s41467-024-53975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
All cells are encapsulated by a lipid membrane that facilitates their interactions with the environment. How cells manage diverse mixtures of lipids, which dictate membrane property and function, is experimentally challenging to address. Here, we present an approach to tune and minimize membrane lipid composition in the bacterium Mycoplasma mycoides and its derived 'minimal cell' (JCVI-Syn3A), revealing that a two-component lipidome can support life. Systematic reintroduction of phospholipids with different features demonstrates that acyl chain diversity is more important for growth than head group diversity. By tuning lipid chirality, we explore the lipid divide between Archaea and the rest of life, showing that ancestral lipidomes could have been heterochiral. However, in these simple organisms, heterochirality leads to impaired cellular fitness. Thus, our approach offers a tunable minimal membrane system to explore the fundamental lipidomic requirements for life, thereby extending the concept of minimal life from the genome to the lipidome.
Collapse
Affiliation(s)
- Isaac Justice
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
- Technische Universität Dresden, Faculty of Medicine, Dresden, Germany.
| |
Collapse
|
8
|
Justice I, Kiesel P, Safronova N, von Appen A, Saenz JP. A tuneable minimal cell membrane reveals that two lipid species suffice for life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563757. [PMID: 39464110 PMCID: PMC11507672 DOI: 10.1101/2023.10.24.563757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
All cells are encapsulated by a lipid membrane which facilitates the interaction between life and its environment. How life exploits the diverse mixtures of lipids that dictate membrane property and function has been experimentally challenging to address. We introduce an approach to tune and minimize lipidomes in Mycoplasma mycoides and the Minimal Cell (JCVI-Syn3A) revealing that a 2-component lipidome can support life. Systematically reintroducing phospholipid features demonstrated that acyl chain diversity is more critical for growth than head group diversity. By tuning lipid chirality, we explored the lipid divide between Archaea and the rest of life, showing that ancestral lipidomes could have been heterochiral. Our approach offers a tunable minimal membrane system to explore the fundamental lipidomic requirements for life, thereby extending the concept of minimal life from the genome to the lipidome.
Collapse
Affiliation(s)
- Isaac Justice
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, 01307 Dresden
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, 01307 Dresden
| | - James P. Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Dresden 01307, Germany
| |
Collapse
|
9
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
10
|
Walczak-Skierska J, Ludwiczak A, Sibińska E, Pomastowski P. Environmental Influence on Bacterial Lipid Composition: Insights from Pathogenic and Probiotic Strains. ACS OMEGA 2024; 9:37789-37801. [PMID: 39281888 PMCID: PMC11391446 DOI: 10.1021/acsomega.4c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
The lipid composition of bacterial membranes is pivotal in regulating bacterial physiology, pathogenicity, and interactions with hosts. This study presents a comprehensive analysis of bacterial membrane lipid profiles across diverse Gram-positive and Gram-negative species. Utilizing matrix-assisted laser desorption/ionization (MALDI) in conjunction with advanced chemometric tools, we investigate the influence of environmental factors, isolation sources, and host metabolism on bacterial lipid profiles. Our findings unveil significant variations in lipid composition attributed to factors such as carbon/energy availability and exposure to chemicals, including antibiotics. Moreover, we identify distinct lipidomic signatures associated with pathogenic and probiotic bacterial strains, shedding light on their functional properties and metabolic pathways. Notably, bacterial strains isolated from clinical samples exhibit unique lipid profiles influenced by host metabolic dysregulation, particularly evident in conditions such as diabetic foot infections. These results deepen our understanding of the intricate mechanisms governing bacterial membrane lipid biology and hold promise for informing the development of innovative therapeutic and biotechnological strategies.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Agnieszka Ludwiczak
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Str., Toruń 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Ewelina Sibińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| |
Collapse
|
11
|
Safronova N, Junghans L, Saenz JP. Temperature change elicits lipidome adaptation in the simple organisms Mycoplasma mycoides and JCVI-syn3B. Cell Rep 2024; 43:114435. [PMID: 38985673 DOI: 10.1016/j.celrep.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
Cell membranes mediate interactions between life and its environment, with lipids determining their properties. Understanding how cells adjust their lipidomes to tune membrane properties is crucial yet poorly defined due to the complexity of most organisms. We used quantitative shotgun lipidomics to study temperature adaptation in the simple organism Mycoplasma mycoides and the minimal cell JCVI-syn3B. We show that lipid abundances follow a universal logarithmic distribution across eukaryotes and bacteria, with comparable degrees of lipid remodeling for adaptation regardless of lipidomic or organismal complexity. Lipid features analysis demonstrates head-group-specific acyl chain remodeling as characteristic of lipidome adaptation; its deficiency in Syn3B is associated with impaired homeoviscous adaptation. Temporal analysis reveals a two-stage cold adaptation process: swift cholesterol and cardiolipin shifts followed by gradual acyl chain modifications. This work provides an in-depth analysis of lipidome adaptation in minimal cells, laying a foundation to probe the design principles of living membranes.
Collapse
Affiliation(s)
- Nataliya Safronova
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lisa Junghans
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - James P Saenz
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany; Faculty of Medicine, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
12
|
Mellouk A, Jaouen P, Ruel LJ, Lê M, Martini C, Moraes TF, El Bakkouri M, Lagüe P, Boisselier E, Calmettes C. POTRA domains of the TamA insertase interact with the outer membrane and modulate membrane properties. Proc Natl Acad Sci U S A 2024; 121:e2402543121. [PMID: 38959031 PMCID: PMC11252910 DOI: 10.1073/pnas.2402543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic β-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.
Collapse
Affiliation(s)
- Abdelkader Mellouk
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Paul Jaouen
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Louis-Jacques Ruel
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Michel Lê
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Cyrielle Martini
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Majida El Bakkouri
- National Research Council Canada, Human Health Therapeutics, Montréal, QCH4P 2R2, Canada
| | - Patrick Lagüe
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Elodie Boisselier
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Charles Calmettes
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| |
Collapse
|
13
|
Nguyen HNA, Sharp L, Lyman E, Saenz JP. Varying the position of phospholipid acyl chain unsaturation modulates hopanoid and sterol ordering. Biophys J 2024; 123:1896-1902. [PMID: 38850024 PMCID: PMC11267422 DOI: 10.1016/j.bpj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the ordering of hydrocarbon chains and the packing of lipids. Many eukaryotes synthesize sterols, which are uniquely capable of modulating the lipid order to decouple membrane stability from fluidity. Ancient sterol analogs known as hopanoids are found in many bacteria and proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. In this work, simulations, monolayer experiments, and cellular assays show that hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest that cholesterol's broader lipid-ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.
Collapse
Affiliation(s)
- Ha Ngoc Anh Nguyen
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; College of Arts and Sciences, Fairfield University, Fairfield, Connecticut
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany; Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Ding S, Grossi V, Hopmans EC, Bale NJ, Cravo-Laureau C, Sinninghe Damsté JS. Nitrogen and sulfur for phosphorus: Lipidome adaptation of anaerobic sulfate-reducing bacteria in phosphorus-deprived conditions. Proc Natl Acad Sci U S A 2024; 121:e2400711121. [PMID: 38833476 PMCID: PMC11181052 DOI: 10.1073/pnas.2400711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Vincent Grossi
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, CNRS, Université Claude Bernard Lyon 1, Villeurbanne69622, France
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Cristiana Cravo-Laureau
- Institut des Sciences Analytiques et de Physico-chimie pour l’environnement et les Matériaux, Universite de Pau et des Pays de l’Adour, CNRS, Pau64000, France
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, CB3584, The Netherlands
| |
Collapse
|
15
|
Wood PL, Le A, Palazzolo DL. Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria. Metabolites 2024; 14:240. [PMID: 38668368 PMCID: PMC11052126 DOI: 10.3390/metabo14040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The oral cavity contains a vast array of microbes that contribute to the balance between oral health and disease. In addition, oral bacteria can gain access to the circulation and contribute to other diseases and chronic conditions. There are a limited number of publications available regarding the comparative lipidomics of oral bacteria and fungi involved in the construction of oral biofilms, hence our decision to study the lipidomics of representative oral bacteria and a fungus. We performed high-resolution mass spectrometric analyses (<2.0 ppm mass error) of the lipidomes from five Gram-positive commensal bacteria: Streptococcus oralis, Streptococcus intermedius, Streptococcus mitis, Streptococcus sanguinis, and Streptococcus gordonii; five Gram-positive opportunistic bacteria: Streptococcus mutans, Staphylococcus epidermis, Streptococcus acidominimus, Actinomyces viscosus, and Nanosynbacter lyticus; seven Gram-negative opportunistic bacteria: Porphyromonas gingivalis. Prevotella brevis, Proteus vulgaris, Fusobacterium nucleatum, Veillonella parvula, Treponema denticola, and Alkermansia muciniphila; and one fungus: Candida albicans. Our mass spectrometric analytical platform allowed for a detailed evaluation of the many structural modifications made by microbes for the three major lipid scaffolds: glycerol, sphingosine and fatty acyls of hydroxy fatty acids (FAHFAs).
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Annie Le
- Clinical Training Program, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Dominic L. Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
16
|
Gentile R, Modric M, Thiele B, Jaeger KE, Kovacic F, Schott-Verdugo S, Gohlke H. Molecular Mechanisms Underlying Medium-Chain Free Fatty Acid-Regulated Activity of the Phospholipase PlaF from Pseudomonas aeruginosa. JACS AU 2024; 4:958-973. [PMID: 38559719 PMCID: PMC10976570 DOI: 10.1021/jacsau.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
PlaF is a membrane-bound phospholipase A1 from Pseudomonas aeruginosa that is involved in remodeling membrane glycerophospholipids (GPLs) and modulating virulence-associated signaling and metabolic pathways. Previously, we identified the role of medium-chain free fatty acids (FFAs) in inhibiting PlaF activity and promoting homodimerization, yet the underlying molecular mechanism remained elusive. Here, we used unbiased and biased molecular dynamics simulations and free energy computations to assess how PlaF interacts with FFAs localized in the water milieu surrounding the bilayer or within the bilayer and how these interactions regulate PlaF activity. Medium-chain FFAs localized in the upper bilayer leaflet can stabilize inactive dimeric PlaF, likely through interactions with charged surface residues, as has been experimentally validated. Potential of mean force (PMF) computations indicate that membrane-bound FFAs may facilitate the activation of monomeric PlaF by lowering the activation barrier for changing into a tilted, active configuration. We estimated that the coupled equilibria of PlaF monomerization-dimerization and tilting at the physiological concentration of PlaF lead to the majority of PlaF forming inactive dimers when in a cell membrane loaded with decanoic acid (C10). This is in agreement with a suggested in vivo product feedback loop and gas chromatography-mass spectrometry profiling results, indicating that PlaF catalyzes the release of C10 from P. aeruginosa membranes. Additionally, we found that C10 in the water milieu can access the catalytic site of active monomeric PlaF, contributing to the competitive component of C10-mediated PlaF inhibition. Our study provides mechanistic insights into how medium-chain FFAs may regulate the activity of PlaF, a potential bacterial drug target.
Collapse
Affiliation(s)
- Rocco Gentile
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matea Modric
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Björn Thiele
- Institute
of Bio- and Geosciences (IBG-2: Plant Sciences and IBG-3: Agrosphere), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Institute
of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Filip Kovacic
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Stephan Schott-Verdugo
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
17
|
Lee TH, Charchar P, Separovic F, Reid GE, Yarovsky I, Aguilar MI. The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes. Chem Sci 2024; 15:3408-3427. [PMID: 38455013 PMCID: PMC10915831 DOI: 10.1039/d3sc04523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
It is now evident that the cell manipulates lipid composition to regulate different processes such as membrane protein insertion, assembly and function. Moreover, changes in membrane structure and properties, lipid homeostasis during growth and differentiation with associated changes in cell size and shape, and responses to external stress have been related to drug resistance across mammalian species and a range of microorganisms. While it is well known that the biomembrane is a fluid self-assembled nanostructure, the link between the lipid components and the structural properties of the lipid bilayer are not well understood. This perspective aims to address this topic with a view to a more detailed understanding of the factors that regulate bilayer structure and flexibility. We describe a selection of recent studies that address the dynamic nature of bacterial lipid diversity and membrane properties in response to stress conditions. This emerging area has important implications for a broad range of cellular processes and may open new avenues of drug design for selective cell targeting.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Patrick Charchar
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
- Department of Biochemistry and Pharmacology, University of Melbourne Parkville VIC 3010 Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
18
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Nguyen HNA, Sharp L, Lyman E, Saenz JP. Varying the position of phospholipid acyl chain unsaturation modulates hopanoid and sterol ordering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.06.556521. [PMID: 38370701 PMCID: PMC10871177 DOI: 10.1101/2023.09.06.556521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the thermodynamic ordering of lipids. Most Eukaryotes employ sterols, which are uniquely capable of modulating lipid order to decouple membrane stability from fluidity. Ancient sterol analogues known as hopanoids are found in many bacteria and are proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. We reveal that both hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid's acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest cholesterol's broader lipid ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.
Collapse
Affiliation(s)
- Ha-Ngoc-Anh Nguyen
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark DE 19716
- College of Arts and Sciences, Fairfield University, Fairfield, CT 06824
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark DE 19716
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
- Medical Faculty, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Kiirikki AM, Antila HS, Bort LS, Buslaev P, Favela-Rosales F, Ferreira TM, Fuchs PFJ, Garcia-Fandino R, Gushchin I, Kav B, Kučerka N, Kula P, Kurki M, Kuzmin A, Lalitha A, Lolicato F, Madsen JJ, Miettinen MS, Mingham C, Monticelli L, Nencini R, Nesterenko AM, Piggot TJ, Piñeiro Á, Reuter N, Samantray S, Suárez-Lestón F, Talandashti R, Ollila OHS. Overlay databank unlocks data-driven analyses of biomolecules for all. Nat Commun 2024; 15:1136. [PMID: 38326316 PMCID: PMC10850068 DOI: 10.1038/s41467-024-45189-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.
Collapse
Affiliation(s)
- Anne M Kiirikki
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
| | - Hanne S Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Lara S Bort
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- University of Potsdam, Institute of Physics and Astronomy, 14476, Potsdam-Golm, Germany
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Fernando Favela-Rosales
- Departamento de Ciencias Básicas, Tecnológico Nacional de México - ITS Zacatecas Occidente, Sombrerete, 99102, Zacatecas, Mexico
| | - Tiago Mendes Ferreira
- NMR group - Institute for Physics, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Patrick F J Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), F-75005, Paris, France
- Université Paris Cité, F-75006, Paris, France
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | | | - Batuhan Kav
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- ariadne.ai GmbH (Germany), Häusserstraße 3, 69115, Heidelberg, Germany
| | - Norbert Kučerka
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32, Bratislava, Slovakia
| | - Patrik Kula
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610, Prague, Czech Republic
| | - Milla Kurki
- School of Pharmacy, University of Eastern Finland, 70211, Kuopio, Finland
| | | | - Anusha Lalitha
- Institut Charles Gerhardt Montpellier (UMR CNRS 5253), Université Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 05, France
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
- Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesper J Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 33612, Tampa, FL, USA
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, 33612, Tampa, FL, USA
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - Cedric Mingham
- Hochschule Mannheim, University of Applied Sciences, 68163, Mannheim, Germany
| | - Luca Monticelli
- University of Lyon, CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), F-69007, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Ricky Nencini
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Alexey M Nesterenko
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - Thomas J Piggot
- Chemistry, University of Southampton, Highfield, SO17 1BJ, Southampton, UK
| | - Ángel Piñeiro
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - Suman Samantray
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Fabián Suárez-Lestón
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, 15782, Santiago de Compostela, Spain
| | - Reza Talandashti
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - O H Samuli Ollila
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland.
- VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|
21
|
Ugwuodo CJ, Colosimo F, Adhikari J, Bloodsworth K, Wright SA, Eder J, Mouser PJ. Changes in environmental and engineered conditions alter the plasma membrane lipidome of fractured shale bacteria. Microbiol Spectr 2024; 12:e0233423. [PMID: 38059585 PMCID: PMC10782966 DOI: 10.1128/spectrum.02334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Microorganisms inadvertently introduced into the shale reservoir during fracturing face multiple stressors including brine-level salinities and starvation. However, some anaerobic halotolerant bacteria adapt and persist for long periods of time. They produce hydrogen sulfide, which sours the reservoir and corrodes engineering infrastructure. In addition, they form biofilms on rock matrices, which decrease shale permeability and clog fracture networks. These reduce well productivity and increase extraction costs. Under stress, microbes remodel their plasma membrane to optimize its roles in protection and mediating cellular processes such as signaling, transport, and energy metabolism. Hence, by observing changes in the membrane lipidome of model shale bacteria, Halanaerobium congolense WG10, and mixed consortia enriched from produced fluids under varying subsurface conditions and growth modes, we provide insight that advances our knowledge of the fractured shale biosystem. We also offer data-driven recommendations for improving biocontrol efficacy and the efficiency of energy recovery from unconventional formations.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, New Hampshire, USA
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | | | | | - Kent Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Stephanie A. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Josie Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
22
|
Lee Y, Fracassi A, Devaraj NK. Light-Driven Membrane Assembly, Shape-Shifting, and Tissue Formation in Chemically Responsive Synthetic Cells. J Am Chem Soc 2023; 145:25815-25823. [PMID: 37963186 PMCID: PMC10690792 DOI: 10.1021/jacs.3c09894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Living systems create remarkable complexity from a limited repertoire of biological building blocks by controlling assembly dynamics at the molecular, cellular, and multicellular level. An open question is whether simplified synthetic cells can gain similar complex functionality by being driven away from equilibrium. Here, we describe a dynamic synthetic cell system assembled using artificial lipids that are responsive to both light and chemical stimuli. Irradiation of disordered aggregates of lipids leads to the spontaneous emergence of giant cell-like vesicles, which revert to aggregates when illumination is turned off. Under irradiation, the synthetic cell membranes can interact with chemical building blocks, remodeling their composition and forming new structures that prevent the membranes from undergoing retrograde aggregation processes. The remodeled light-responsive synthetic cells reversibly alter their shape under irradiation, transitioning from spheres to rodlike shapes, mimicking energy-dependent functions normally restricted to living materials. In the presence of noncovalently interacting multivalent polymers, light-driven shape changes can be used to trigger vesicle cross-linking, leading to the formation of functional synthetic tissues. By controlling light and chemical inputs, the stepwise, one-pot transformation of lipid aggregates to multivesicular synthetic tissues is feasible. Our results suggest a rationale for why even early protocells may have required and evolved simple mechanisms to harness environmental energy sources to coordinate hierarchical assembly processes.
Collapse
Affiliation(s)
- Youngjun Lee
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Alessandro Fracassi
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Kumar A, Daschakraborty S. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Phys Chem Chem Phys 2023; 25:31431-31443. [PMID: 37962400 DOI: 10.1039/d3cp04081j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
24
|
Prasad SS, Taylor MC, Colombo V, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. INSECTS 2023; 14:873. [PMID: 37999072 PMCID: PMC10672513 DOI: 10.3390/insects14110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.
Collapse
Affiliation(s)
- Shirleen S. Prasad
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Matthew C. Taylor
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Valentina Colombo
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Heng Lin Yeap
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Siu Fai Lee
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - John G. Oakeshott
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| |
Collapse
|
25
|
Rempfert KR, Kraus EA, Nothaft DB, Dildar N, Spear JR, Sepúlveda J, Templeton AS. Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids. Front Microbiol 2023; 14:1198786. [PMID: 38029177 PMCID: PMC10667739 DOI: 10.3389/fmicb.2023.1198786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites). However, the geochemical conditions that arise from water-rock reaction also challenge the known limits of microbial physiology, such as hyperalkaline pH, limited electron acceptors and inorganic carbon. Because cell membranes act as a primary barrier between a cell and its environment, lipids are a vital component in microbial acclimation to challenging physicochemical conditions. To probe the diversity of cell membrane lipids produced in serpentinizing settings and identify membrane adaptations to this environment, we conducted the first comprehensive intact polar lipid (IPL) biomarker survey of microbial communities inhabiting the subsurface at a terrestrial site of serpentinization. We used an expansive, custom environmental lipid database that expands the application of targeted and untargeted lipodomics in the study of microbial and biogeochemical processes. IPLs extracted from serpentinite-hosted fluid communities were comprised of >90% isoprenoidal and non-isoprenoidal diether glycolipids likely produced by archaeal methanogens and sulfate-reducing bacteria. Phospholipids only constituted ~1% of the intact polar lipidome. In addition to abundant diether glycolipids, betaine and trimethylated-ornithine aminolipids and glycosphingolipids were also detected, indicating pervasive membrane modifications in response to phosphate limitation. The carbon oxidation state of IPL backbones was positively correlated with the reduction potential of fluids, which may signify an energy conservation strategy for lipid synthesis. Together, these data suggest microorganisms inhabiting serpentinites possess a unique combination of membrane adaptations that allow for their survival in polyextreme environments. The persistence of IPLs in fluids beyond the presence of their source organisms, as indicated by 16S rRNA genes and transcripts, is promising for the detection of extinct life in serpentinizing settings through lipid biomarker signatures. These data contribute new insights into the complexity of lipid structures generated in actively serpentinizing environments and provide valuable context to aid in the reconstruction of past microbial activity from fossil lipid records of terrestrial serpentinites and the search for biosignatures elsewhere in our solar system.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Nadia Dildar
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Julio Sepúlveda
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| |
Collapse
|
26
|
Renne MF, Ernst R. Membrane homeostasis beyond fluidity: control of membrane compressibility. Trends Biochem Sci 2023; 48:963-977. [PMID: 37652754 PMCID: PMC10580326 DOI: 10.1016/j.tibs.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Biomembranes are complex materials composed of lipids and proteins that compartmentalize biochemistry. They are actively remodeled in response to physical and metabolic cues, as well as during cell differentiation and stress. The concept of homeoviscous adaptation has become a textbook example of membrane responsiveness. Here, we discuss limitations and common misconceptions revolving around it. By highlighting key moments in the life cycle of a transmembrane protein, we illustrate that membrane thickness and a finely regulated membrane compressibility are crucial to facilitate proper membrane protein insertion, function, sorting, and inheritance. We propose that the unfolded protein response (UPR) provides a mechanism for endoplasmic reticulum (ER) membrane homeostasis by sensing aberrant transverse membrane stiffening and triggering adaptive responses that re-establish membrane compressibility.
Collapse
Affiliation(s)
- Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| |
Collapse
|
27
|
Huang Q, Zhang H, Zhang L, Xu B. Bacterial microbiota in different types of processed meat products: diversity, adaptation, and co-occurrence. Crit Rev Food Sci Nutr 2023; 65:287-302. [PMID: 37905560 DOI: 10.1080/10408398.2023.2272770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
As a double-edged sword, some bacterial microbes can improve the quality and shelf life of meat products, but others mainly responsible for deterioration of the safety and quality of meat products. This review aims to present a landscape of the bacterial microbiota in different types of processed meat products. After demonstrating a panoramic view of the bacterial genera in meat products, the diversity of bacterial microbiota was evaluated in two dimensions, namely different types of processed meat products and different meats. Then, the influence of environmental factors on bacterial communities was evaluated according to the storage temperature, packaging conditions, and sterilization methods. Furthermore, microbes are not independent. To explore interactions among those genera, co-occurrence patterns were examined. In these respects, this review highlighted the recent advances in fundamental principles that underlie the environmental adaption tricks and why some species tend to occur together frequently, such as metabolic cross-feeding, co-aggregate at microscale, and the intercellular signaling system. Further investigations are required to unveil the underlying molecular mechanisms that govern microbial community systems, ultimately contributing to developing new strategies to harness beneficial microorganisms and control harmful microorganisms.
Collapse
Affiliation(s)
- Qianli Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huijuan Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Li Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
28
|
Saini R, Debnath A. Thylakoid Composition Facilitates Chlorophyll a Dimerization through Stronger Interlipid Interactions. J Phys Chem B 2023; 127:9082-9094. [PMID: 37819861 DOI: 10.1021/acs.jpcb.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plant thylakoid membrane serves as a crucial matrix for the aggregation of chlororophyll a (CLA) pigments, essential for light harvesting. To understand the role of lipid compositions in the stability of CLA aggregates, dimerization of chlorophyll a molecules (CLA) is studied in the presence of the thylakoid and the bilayers comprising either the least or the highest unsaturated lipids by using coarse-grained molecular dynamics simulations. The thylakoid membrane enhances the stability of the CLA dimer compared with other membranes due to very strong lipid-lipid interactions. The thylakoid exhibits a distinct distribution of lipids around the CLA dimer. Less unsaturated lipids reside in close proximity to the dimer, promoting increased order and efficient packing. Conversely, higher unsaturated lipids are depleted from the dimer, imparting flexibility to the membrane. The combination of tight packing near the dimer and membrane flexibility away from the dimer enhances the stability of the dimer in the thylakoid membrane. Our results suggest that lipid mixing, rather than lipid unsaturation, plays a critical role in facilitating CLA dimerization by modulating the membrane microenvironment through stronger lipid-lipid interactions. These insights will be useful in understanding how lipid compositions affect efficient light absorption and energy transfer during photosynthesis in the future.
Collapse
Affiliation(s)
- Renu Saini
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
29
|
Arora S, Babele PK, Jha PN. Biochemical and metabolic signatures are fundamental to drought adaptation in PGPR Enterobacter bugandensis WRS7. Mol Omics 2023; 19:640-652. [PMID: 37338418 DOI: 10.1039/d3mo00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Drought alone causes more annual loss in crop yield than the sum of all other environmental stresses. There is growing interest in harnessing the potential of stress-resilient PGPR in conferring plant resistance and enhancing crop productivity in drought-affected agroecosystems. A detailed understanding of the complex physiological and biochemical responses will open up the avenues to stress adaptation mechanisms of PGPR communities under drought. It will pave the way for rhizosphere engineering through metabolically engineered PGPR. Therefore, to reveal the physiological and metabolic networks in response to drought-mediated osmotic stress, we performed biochemical analyses and applied untargeted metabolomics to investigate the stress adaptation mechanisms of a PGPR Enterobacter bugendensis WRS7 (Eb WRS7). Drought caused oxidative stress and resulted in slower growth rates in Eb WRS7. However, Eb WRS7 could tolerate drought stress and did not show changes in cell morphology under stress conditions. Overproduction of ROS caused lipid peroxidation (increment in MDA) and eventually activated antioxidant systems and cell signalling cascades, which led to the accumulation of ions (Na+, K+, and Ca2+), osmolytes (proline, exopolysaccharides, betaine, and trehalose), and modulated lipid dynamics of the plasma membranes for osmosensing and osmoregulation, suggesting an osmotic stress adaption mechanism in PGPR Eb WRS7. Finally, GC-MS-based metabolite profiling and deregulated metabolic responses highlighted the role of osmolytes, ions, and intracellular metabolites in regulating Eb WRS7 metabolism. Our results suggest that understanding the role of metabolites and metabolic pathways can be exploited for future metabolic engineering of PGPR and developing bio inoculants for plant growth promotion under drought-affected agroecosystems.
Collapse
Affiliation(s)
- Saumya Arora
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Piyoosh K Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
30
|
Melero A, Jiménez-Rojo N. Cracking the membrane lipid code. Curr Opin Cell Biol 2023; 83:102203. [PMID: 37437490 DOI: 10.1016/j.ceb.2023.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Why has nature acquired such a huge lipid repertoire? Although it would be theoretically possible to make a lipid bilayer fulfilling barrier functions with only one glycerophospholipid, there are diverse and numerous different lipid species. Lipids are heterogeneously distributed across the evolutionary tree with lipidomes evolving in parallel to organismal complexity. Moreover, lipids are different between organs and tissues and even within the same cell, different organelles have characteristic lipid signatures. At the molecular level, membranes are asymmetric and laterally heterogeneous. This lipid asymmetry at different scales indicates that these molecules may play very specific molecular functions in biology. Some of these roles have been recently uncovered: lipids have been shown to be essential in processes such as hypoxia and ferroptosis or in protein sorting and trafficking but many of them remain still unknown. In this review we will discuss the importance of understanding lipid diversity in biology across scales and we will share a toolbox with some of the emerging technologies that are helping us to uncover new lipid molecular functions in cell biology and, step by step, crack the membrane lipid code.
Collapse
Affiliation(s)
- Alejandro Melero
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Noemi Jiménez-Rojo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Instituto Biofisika (UPV/EHU, CSIC), 48940, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
31
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
32
|
Wu G, Baumeister R, Heimbucher T. Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold. Cells 2023; 12:1353. [PMID: 37408188 PMCID: PMC10216534 DOI: 10.3390/cells12101353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.
Collapse
Affiliation(s)
- Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
33
|
Jensen M, Poulsen R, Langebæk R, Jenssen BM, Moe J, Ciesielski TM, Dietz R, Sonne C, Madsen J, Hansen M. The metabolome of pink-footed goose: Heavy metals and lipid metabolism. ENVIRONMENTAL RESEARCH 2023; 231:116043. [PMID: 37156351 DOI: 10.1016/j.envres.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Wildlife is exposed to mixtures of environmental contaminants that affect health and population dynamics. Exposure to toxic heavy metals originating from anthropogenic sources may exert metabolic effects at even low exposure concentrations. Here we investigated the relationships between heavy metal exposure and metabolic changes in the migratory bird pink-footed goose (Anser brachyrhynchus). We used blood pellet and blood plasma samples from 27 free-ranging pink-footed geese to study heavy metal (Cd, Cr, Hg, and Pb) exposure in relation to the metabolome. The results relate blood concentrations of Cd (range: 0.218-1.09 ng/g), Cr (range: 0.299-5.60 ng/g), and Hg (range: 2.63-6.00 ng/g) to signal areas of fatty acids and other lipids, while no correlations were identified for Pb level (range: 21.0-64.2 ng/g) exposure. Lipid signal areas were negatively associated with concentrations of Cr and positively associated with Hg exposure (both p < 0.05). α-Linolenic acid and 9-oxononanoic acid were negatively correlated to Cr exposure (both p < 0.05) and were related in the α-linolenic acid metabolism pathway. Compared to known thresholds for aviary species, the heavy metal concentrations are below levels of toxicity, which may explain the low number of metabolites that significantly change. Nevertheless, the heavy metal exposure is still correlated to changes in the lipid metabolism that may reduce migrating birds' breeding success and increase mortality for an exposed part of the population.
Collapse
Affiliation(s)
- Mette Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark; Department of Veterinary Clinical Science, Faculty of Health Sciences, University of Copenhagen, Dyrlægevej 16, DK-1870, Frederiksberg C, Denmark
| | - Rikke Poulsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Rikke Langebæk
- Department of Veterinary Clinical Science, Faculty of Health Sciences, University of Copenhagen, Dyrlægevej 16, DK-1870, Frederiksberg C, Denmark
| | - Bjørn Munro Jenssen
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, DK-4000, Roskilde, Denmark; Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Johanna Moe
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard (UNIS), P.O. Box 156, NO-9171, Longyearbyen, Norway
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Jesper Madsen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-8, DK-8000, Aarhus C, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.
| |
Collapse
|
34
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
35
|
Di Lorenzo F, Nicolardi S, Marchetti R, Vanacore A, Gallucci N, Duda K, Nieto Fabregat F, Nguyen HNA, Gully D, Saenz J, Giraud E, Paduano L, Molinaro A, D’Errico G, Silipo A. Expanding Knowledge of Methylotrophic Capacity: Structure and Properties of the Rough-Type Lipopolysaccharide from Methylobacterium extorquens and Its Role on Membrane Resistance to Methanol. JACS AU 2023; 3:929-942. [PMID: 37006758 PMCID: PMC10052234 DOI: 10.1021/jacsau.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
The ability of Methylobacterium extorquens to grow on methanol as the sole carbon and energy source has been the object of intense research activity. Unquestionably, the bacterial cell envelope serves as a defensive barrier against such an environmental stressor, with a decisive role played by the membrane lipidome, which is crucial for stress resistance. However, the chemistry and the function of the main constituent of the M. extorquens outer membrane, the lipopolysaccharide (LPS), is still undefined. Here, we show that M. extorquens produces a rough-type LPS with an uncommon, non-phosphorylated, and extensively O-methylated core oligosaccharide, densely substituted with negatively charged residues in the inner region, including novel monosaccharide derivatives such as O-methylated Kdo/Ko units. Lipid A is composed of a non-phosphorylated trisaccharide backbone with a distinctive, low acylation pattern; indeed, the sugar skeleton was decorated with three acyl moieties and a secondary very long chain fatty acid, in turn substituted by a 3-O-acetyl-butyrate residue. Spectroscopic, conformational, and biophysical analyses on M. extorquens LPS highlighted how structural and tridimensional features impact the molecular organization of the outer membrane. Furthermore, these chemical features also impacted and improved membrane resistance in the presence of methanol, thus regulating membrane ordering and dynamics.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Roberta Marchetti
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Adele Vanacore
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Noemi Gallucci
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Consorzio
Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Katarzyna Duda
- Research
Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Ferran Nieto Fabregat
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Ha Ngoc Anh Nguyen
- B-CUBE
Center for Molecular Bioengineering, Technische
Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Djamel Gully
- IRD,
Laboratoire des Symbioses Tropicales et Méditerranéennes
(LSTM) UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J, Campus de Baillarguet, 34398 Montpellier Cedex 5, France
| | - James Saenz
- B-CUBE
Center for Molecular Bioengineering, Technische
Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Eric Giraud
- IRD,
Laboratoire des Symbioses Tropicales et Méditerranéennes
(LSTM) UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J, Campus de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Consorzio
Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Antonio Molinaro
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Gerardino D’Errico
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Consorzio
Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Alba Silipo
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
36
|
Depleting Cationic Lipids Involved in Antimicrobial Resistance Drives Adaptive Lipid Remodeling in Enterococcus faecalis. mBio 2023; 14:e0307322. [PMID: 36629455 PMCID: PMC9973042 DOI: 10.1128/mbio.03073-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bacterial cell membrane is an interface for cell envelope synthesis, protein secretion, virulence factor assembly, and a target for host cationic antimicrobial peptides (CAMPs). To resist CAMP killing, several Gram-positive pathogens encode the multiple peptide resistance factor (MprF) enzyme that covalently attaches cationic amino acids to anionic phospholipids in the cell membrane. While E. faecalis encodes two mprF paralogs, MprF2 plays a dominant role in conferring resistance to killing by the CAMP human β-defensin 2 (hBD-2) in E. faecalis strain OG1RF. The goal of the current study is to understand the broader lipidomic and functional roles of E. faecalis mprF. We analyzed the lipid profiles of parental wild-type and mprF mutant strains and show that while ΔmprF2 and ΔmprF1 ΔmprF2 mutants completely lacked cationic lysyl-phosphatidylglycerol (L-PG), the ΔmprF1 mutant synthesized ~70% of L-PG compared to the parent. Unexpectedly, we also observed a significant reduction of PG in ΔmprF2 and ΔmprF1 ΔmprF2. In the mprF mutants, particularly ΔmprF1 ΔmprF2, the decrease in L-PG and phosphatidylglycerol (PG) is compensated by an increase in a phosphorus-containing lipid, glycerophospho-diglucosyl-diacylglycerol (GPDGDAG), and D-ala-GPDGDAG. These changes were accompanied by a downregulation of de novo fatty acid biosynthesis and an accumulation of long-chain acyl-acyl carrier proteins (long-chain acyl-ACPs), suggesting that the suppression of fatty acid biosynthesis was mediated by the transcriptional repressor FabT. Growth in chemically defined media lacking fatty acids revealed severe growth defects in the ΔmprF1 ΔmprF2 mutant strain, but not the single mutants, which was partially rescued through supplementation with palmitic and stearic acids. Changes in lipid homeostasis correlated with lower membrane fluidity, impaired protein secretion, and increased biofilm formation in both ΔmprF2 and ΔmprF1 ΔmprF2, compared to the wild type and ΔmprF1. Collectively, our findings reveal a previously unappreciated role for mprF in global lipid regulation and cellular physiology, which could facilitate the development of novel therapeutics targeting MprF. IMPORTANCE The cell membrane plays a pivotal role in protecting bacteria against external threats, such as antibiotics. Cationic phospholipids such as lysyl-phosphatidyglycerol (L-PG) resist the action of cationic antimicrobial peptides through electrostatic repulsion. Here we demonstrate that L-PG depletion has several unexpected consequences in Enterococcus faecalis, including a reduction of phosphatidylglycerol (PG), enrichment of a phosphorus-containing lipid, reduced fatty acid synthesis accompanied by an accumulation of long-chain acyl-acyl carrier proteins (long chain acyl-ACPs), lower membrane fluidity, and impaired secretion. These changes are not deleterious to the organism as long as exogenous fatty acids are available for uptake from the culture medium. Our findings suggest an adaptive mechanism involving compensatory changes across the entire lipidome upon removal of a single phospholipid modification. Such adaptations must be considered when devising antimicrobial strategies that target membrane lipids.
Collapse
|
37
|
Couvillion SP, Danczak RE, Naylor D, Smith ML, Stratton KG, Paurus VL, Bloodsworth KJ, Farris Y, Schmidt DJ, Richardson RE, Bramer LM, Fansler SJ, Nakayasu ES, McDermott JE, Metz TO, Lipton MS, Jansson JK, Hofmockel KS. Rapid remodeling of the soil lipidome in response to a drying-rewetting event. MICROBIOME 2023; 11:34. [PMID: 36849975 PMCID: PMC9969633 DOI: 10.1186/s40168-022-01427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabolism of organic matter by altering microbial physiology and function. These physiological responses are mediated in part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then measured the response of the soil lipidome and metabolome during the first 3 h after wet-up. RESULTS Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccharides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, suggesting that members of this phylum were positively impacted by rewetting. CONCLUSIONS Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representative bacteria once the environmental conditions are conducive for growth. These results underscore the importance of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-environment reactions. Video Abstract.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert E Danczak
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dan Naylor
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Montana L Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kelly G Stratton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kent J Bloodsworth
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuliya Farris
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Darren J Schmidt
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachel E Richardson
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M Bramer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah J Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
38
|
Maiti A, Kumar A, Daschakraborty S. How Do Cyclopropane Fatty Acids Protect the Cell Membrane of Escherichia coli in Cold Shock? J Phys Chem B 2023; 127:1607-1617. [PMID: 36790194 DOI: 10.1021/acs.jpcb.3c00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The cyclopropanation of unsaturated lipid acyl chains of some bacterial cell membranes is an important survival strategy to protect the same against drastic cooling. To elucidate the role of cyclopropane ring-containing lipids, we have simulated the lipid membrane of Escherichia coli (E. coli) and two modified membranes by replacing the cyclopropane rings with either single or double bonds at widely different temperatures. It has been observed that the cyclopropane rings provide more rigid kinks in the lipid acyl chain compared to the double bonds and therefore further reduce the packing density of the membrane and subsequently enhance the membrane fluidity at low temperatures. They also inhibit the close packing of other lipids and deleterious phase separation by strongly interacting with them. Therefore, this study has explained why E. coli bacterial strain, susceptible to freezing environments, relies on the cyclopropanation of an unsaturated chain.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
39
|
Gattoni G, de la Haba RR, Martín J, Reyes F, Sánchez-Porro C, Feola A, Zuchegna C, Guerrero-Flores S, Varcamonti M, Ricca E, Selem-Mojica N, Ventosa A, Corral P. Genomic study and lipidomic bioassay of Leeuwenhoekiella parthenopeia: A novel rare biosphere marine bacterium that inhibits tumor cell viability. Front Microbiol 2023; 13:1090197. [PMID: 36687661 PMCID: PMC9859067 DOI: 10.3389/fmicb.2022.1090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Candida Zuchegna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,*Correspondence: Paulina Corral,
| |
Collapse
|
40
|
Tamby A, Sinninghe Damsté JS, Villanueva L. Microbial membrane lipid adaptations to high hydrostatic pressure in the marine environment. Front Mol Biosci 2023; 9:1058381. [PMID: 36685280 PMCID: PMC9853057 DOI: 10.3389/fmolb.2022.1058381] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
The deep-sea is characterized by extreme conditions, such as high hydrostatic pressure (HHP) and near-freezing temperature. Piezophiles, microorganisms adapted to high pressure, have developed key strategies to maintain the integrity of their lipid membrane at these conditions. The abundance of specific membrane lipids, such as those containing unsaturated and branched-chain fatty acids, rises with increasing HHP. Nevertheless, this strategy is not universal among piezophiles, highlighting the need to further understand the effects of HHP on microbial lipid membranes. Challenges in the study of lipid membrane adaptations by piezophiles also involve methodological developments, cross-adaptation studies, and insight into slow-growing piezophiles. Moreover, the effects of HHP on piezophiles are often difficult to disentangle from effects caused by low temperature that are often characteristic of the deep sea. Here, we review the knowledge of membrane lipid adaptation strategies of piezophiles, and put it into the perspective of marine systems, highlighting the future challenges of research studying the effects of HHP on the microbial lipid composition.
Collapse
Affiliation(s)
- Anandi Tamby
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands,*Correspondence: Anandi Tamby,
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
41
|
Ding S, Henkel JV, Hopmans EC, Bale NJ, Koenen M, Villanueva L, Sinninghe Damsté JS. Changes in the membrane lipid composition of a Sulfurimonas species depend on the electron acceptor used for sulfur oxidation. ISME COMMUNICATIONS 2022; 2:121. [PMID: 37938789 PMCID: PMC9789136 DOI: 10.1038/s43705-022-00207-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 11/09/2023]
Abstract
Sulfurimonas species are among the most abundant sulfur-oxidizing bacteria in the marine environment. They are capable of using different electron acceptors, this metabolic flexibility is favorable for their niche adaptation in redoxclines. When oxygen is depleted, most Sulfurimonas spp. (e.g., Sulfurimonas gotlandica) use nitrate ([Formula: see text]) as an electron acceptor to oxidize sulfur, including sulfide (HS-), S0 and thiosulfate, for energy production. Candidatus Sulfurimonas marisnigri SoZ1 and Candidatus Sulfurimonas baltica GD2, recently isolated from the redoxclines of the Black Sea and Baltic Sea respectively, have been shown to use manganese dioxide (MnO2) rather than [Formula: see text] for sulfur oxidation. The use of different electron acceptors is also dependent on differences in the electron transport chains embedded in the cellular membrane, therefore changes in the membrane, including its lipid composition, are expected but are so far unexplored. Here, we used untargeted lipidomic analysis to reveal changes in the composition of the lipidomes of three representative Sulfurimonas species grown using either [Formula: see text] and MnO2. We found that all Sulfurimonas spp. produce a series of novel phosphatidyldiazoalkyl-diacylglycerol lipids. Ca. Sulfurimonas baltica GD2 adapts its membrane lipid composition depending on the electron acceptors it utilizes for growth and survival. When carrying out MnO2-dependent sulfur oxidation, the novel phosphatidyldiazoalkyl-diacylglycerol headgroup comprises shorter alkyl moieties than when sulfur oxidation is [Formula: see text]-dependent. This is the first report of membrane lipid adaptation when an organism is grown with different electron acceptors. We suggest novel diazoalkyl lipids have the potential to be used as a biomarker for different conditions in redox-stratified systems.
Collapse
Affiliation(s)
- Su Ding
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands.
| | - Jan V Henkel
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Ellen C Hopmans
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Nicole J Bale
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Michel Koenen
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Laura Villanueva
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
42
|
Remodeling of the Enterococcal Cell Envelope during Surface Penetration Promotes Intrinsic Resistance to Stress. mBio 2022; 13:e0229422. [PMID: 36354750 PMCID: PMC9765498 DOI: 10.1128/mbio.02294-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enterococcus faecalis is a normal commensal of the human gastrointestinal tract (GIT). However, upon disruption of gut homeostasis, this nonmotile bacterium can egress from its natural niche and spread to distal organs. While this translocation process can lead to life-threatening systemic infections, the underlying mechanisms remain largely unexplored. Our prior work showed that E. faecalis migration across diverse surfaces requires the formation of matrix-covered multicellular aggregates and the synthesis of exopolysaccharides, but how enterococcal cells are reprogrammed during this process is unknown. Whether surface penetration endows E. faecalis with adaptive advantages is also uncertain. Here, we report that surface penetration promotes the generation of a metabolically and phenotypically distinct E. faecalis population with an enhanced capacity to endure various forms of extracellular stress. Surface-invading enterococci demonstrated major ultrastructural alterations in their cell envelope characterized by increased membrane glycolipid content. These changes were accompanied by marked induction of specific transcriptional programs enhancing cell envelope biogenesis and glycolipid metabolism. Notably, the surface-invading population demonstrated superior tolerance to membrane-damaging antimicrobials, including daptomycin and β-defensins produced by epithelial cells. Genetic mutations impairing glycolipid biosynthesis sensitized E. faecalis to envelope stressors and reduced the ability of this bacterium to penetrate semisolid surfaces and translocate through human intestinal epithelial cell monolayers. Our study reveals that surface penetration induces distinct transcriptional, metabolic, and ultrastructural changes that equip E. faecalis with enhanced capacity to resist external stressors and thrive in its surrounding environment. IMPORTANCE Enterococcus faecalis inhabits the GIT of multiple organisms, where its establishment could be mediated by the formation of biofilm-like aggregates. In susceptible individuals, this bacterium can overgrow and breach intestinal barriers, a process that may lead to lethal systemic infections. While the formation of multicellular aggregates promotes E. faecalis migration across surfaces, little is known about the metabolic and physiological states of the enterococci encased in these surface-penetrating structures. The present study reveals that E. faecalis cells capable of migrating through semisolid surfaces genetically reprogram their metabolism toward increased cell envelope and glycolipid biogenesis, which confers superior tolerance to membrane-damaging agents. E. faecalis's success as a pathobiont depends on its antimicrobial resistance, as well as on its rapid adaptability to overcome multiple environmental challenges. Thus, targeting adaptive genetic and/or metabolic pathways induced during E. faecalis surface penetration may be useful to better confront infections by this bacterium in the clinic.
Collapse
|
43
|
Steinkühler J, Jacobs ML, Boyd MA, Villaseñor CG, Loverde SM, Kamat NP. PEO- b-PBD Diblock Copolymers Induce Packing Defects in Lipid/Hybrid Membranes and Improve Insertion Rates of Natively Folded Peptides. Biomacromolecules 2022; 23:4756-4765. [PMID: 36318160 PMCID: PMC9667879 DOI: 10.1021/acs.biomac.2c00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/10/2022] [Indexed: 11/15/2022]
Abstract
Hybrid membranes assembled from biological lipids and synthetic polymers are a promising scaffold for the reconstitution and utilization of membrane proteins. Recent observations indicate that inclusion of small fractions of polymer in lipid membranes can improve protein folding and function, but the exact structural and physical changes a given polymer sequence imparts on a membrane often remain unclear. Here, we use all-atom molecular dynamics simulations to study the structure of hybrid membranes assembled from DOPC phospholipids and PEO-b-PBD diblock copolymers. We verified our computational model using new and existing experimental data and obtained a detailed picture of the polymer conformations in the lipid membrane that we can relate to changes in membrane elastic properties. We find that inclusion of low polymer fractions induces transient packing defects into the membrane. These packing defects act as insertion sites for two model peptides, and in this way, small amounts of polymer content in lipid membranes can lead to large increases in peptide insertion rates. Additionally, we report the peptide conformational space in both pure lipid and hybrid membranes. Both membranes support similar alpha helical peptide structures, exemplifying the biocompatibility of hybrid membranes.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Miranda L. Jacobs
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Margrethe A. Boyd
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Citlayi G. Villaseñor
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
| | - Sharon M. Loverde
- Department
of Chemistry, College of Staten Island, The City University of New York, Staten Island, New York10314, United States
| | - Neha P. Kamat
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois60657, United States
| |
Collapse
|
44
|
Ugwuodo CJ, Colosimo F, Adhikari J, Shen Y, Badireddy AR, Mouser PJ. Salinity and hydraulic retention time induce membrane phospholipid acyl chain remodeling in Halanaerobium congolense WG10 and mixed cultures from hydraulically fractured shale wells. Front Microbiol 2022; 13:1023575. [PMID: 36439785 PMCID: PMC9687094 DOI: 10.3389/fmicb.2022.1023575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2023] Open
Abstract
Bacteria remodel their plasma membrane lipidome to maintain key biophysical attributes in response to ecological disturbances. For Halanaerobium and other anaerobic halotolerant taxa that persist in hydraulically fractured deep subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are important perturbants of cell membrane structure, yet their effects remain poorly understood. Membrane-linked activities underlie in situ microbial growth kinetics and physiologies which drive biogeochemical reactions in engineered subsurface systems. Hence, we used gas chromatography-mass spectrometry (GC-MS) to investigate the effects of salinity and HRT on the phospholipid fatty acid composition of H. congolense WG10 and mixed enrichment cultures from hydraulically fractured shale wells. We also coupled acyl chain remodeling to membrane mechanics by measuring bilayer elasticity using atomic force microscopy (AFM). For these experiments, cultures were grown in a chemostat vessel operated in continuous flow mode under strict anoxia and constant stirring. Our findings show that salinity and HRT induce significant changes in membrane fatty acid chemistry of H. congolense WG10 in distinct and complementary ways. Notably, under nonoptimal salt concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an apparent increase in fluidity (homeoviscous adaptation principle) and thickness. Double bond index (DBI) and mean chain length (MCL) were used as proxies for membrane fluidity and thickness, respectively. These results provide new insight into our understanding of how environmental and engineered factors might disrupt the physical and biogeochemical equilibria of fractured shale by inducing physiologically relevant changes in the membrane fatty acid chemistry of persistent microbial taxa. GRAPHICAL ABSTRACTSalinity significantly alters membrane bilayer fluidity and thickness in Halanaerobium congolense WG10.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| | | | - Jishnu Adhikari
- Sanborn, Head and Associates, Inc., Concord, NH, United States
| | - Yuxiang Shen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
45
|
Erimban S, Daschakraborty S. Homeoviscous Adaptation of the Lipid Membrane of a Soil Bacterium Surviving under Diurnal Temperature Variation: A Molecular Simulation Perspective. J Phys Chem B 2022; 126:7638-7650. [PMID: 36166758 DOI: 10.1021/acs.jpcb.2c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent experiment has reported the lipidome remodeling of a soil-based plant-associated bacterium Methylobacterium extorquens due to diurnal temperature variations. The key adaptation strategy is the headgroup-specific remodeling of the acyl chain. To understand the idiosyncratic adaptation at the molecular level, we simulate the model membrane of the same bacterium using the reported lipidome compositions at four different experimental temperatures. We investigate the temperature-dependent packing density and fluidity of the membrane, the constancy of which is key to the homeoviscous adaptation. The results show that complex lipidome remodeling approximately preserves membrane properties under heat and cold stress. The headgroup-specific remodeling of the acyl chain serves to fine-tune the packing density and fluidity of the membrane at different temperatures. While lipids with strongly interacting headgroups are more abundant at higher temperatures, the lipidome is more dominated by lipids with weaker interacting headgroups at lower temperatures. This adaptation alleviates lipid membrane disruption caused by heat and cold stress. This study provides a molecular picture of the homeoviscous adaptation of the realistic lipid membrane of a soil-based bacterium.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology, Patna, Bihar 801106, India
| | | |
Collapse
|
46
|
Coral Holobionts Possess Distinct Lipid Profiles That May Be Shaped by Symbiodiniaceae Taxonomy. Mar Drugs 2022; 20:md20080485. [PMID: 36005488 PMCID: PMC9410212 DOI: 10.3390/md20080485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Symbiotic relationships are very important for corals. Abiotic stressors cause the acclimatization of cell membranes in symbionts, which possess different membrane acclimatization strategies. Membrane stability is determined by a unique lipid composition and, thus, the profile of thylakoid lipids can depend on coral symbiont species. We have analyzed and compared thylakoid lipidomes (mono- and digalactosyldiacylglycerols (MGDG and DGDG), sulfoquinovosyldiacylglycerols (SQDG), and phosphatidylglycerols (PG)) of crude extracts from symbiotic reef-building coral Acropora sp., the hydrocoral Millepora platyphylla, and the octocoral Sinularia flexibilis. S. flexibilis crude extracts were characterized by a very high SQDG/PG ratio, a DGDG/MGDG ratio < 1, a lower degree of galactolipid unsaturation, a higher content of SQDG with polyunsaturated fatty acids, and a thinner thylakoid membrane which may be explained by the presence of thermosensitive dinoflagellates Cladocopium C3. In contrast, crude extracts of M. platyphylla and Acropora sp. exhibited the lipidome features of thermotolerant Symbiodiniaceae. M. platyphylla and Acropora sp. colonies contained Cladocopium C3u and Cladocopium C71/C71a symbionts, respectively, and their lipidome profiles showed features that indicate thermotolerance. We suggest that an association with symbionts that exhibit the thermotolerant thylakoid lipidome features, combined with a high Symbiodiniaceae diversity, may facilitate further acclimatization/adaptation of M. platyphylla and Acropora sp. holobionts in the South China Sea.
Collapse
|
47
|
Güldür T. Potential linkages between circadian rhythm and membrane lipids: timekeeper and bilayer. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2096756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tayfun Güldür
- Medical Biochemistry Department, Faculty of Medicine, Inönü University, Malatya, Turkey
| |
Collapse
|
48
|
Bramkamp M. Fluidity is the way to life: lipid phase separation in bacterial membranes. EMBO J 2022; 41:e110737. [PMID: 35143047 PMCID: PMC8886535 DOI: 10.15252/embj.2022110737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
A hallmark of biological membranes is the dynamic localization of lipids and proteins. Lipids respond to temperature reduction below a critical point with phase separation, and poikilothermic animals and also bacteria adapt their lipid content to prevent gel phase formation in membranes. In a new study, Gohrbandt et al (2022) show that reduced membrane fluidity in bacterial cells causes reversible phase separation without membrane rupture in vivo, highlighting the physical robustness of biological membranes.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General MicrobiologyChristian‐Albrechts‐University KielKielGermany
| |
Collapse
|
49
|
Multi-Omic Analysis to Characterize Metabolic Adaptation of the E. coli Lipidome in Response to Environmental Stress. Metabolites 2022; 12:metabo12020171. [PMID: 35208246 PMCID: PMC8880424 DOI: 10.3390/metabo12020171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a ‘multi-omics’ strategy for comprehensive quantitative analysis of the temporal changes in the lipidome and proteome profiles that occur under exponential growth phase versus stationary growth phase conditions i.e., nutrient depletion stress. Lipidome analysis performed using ‘shotgun’ direct infusion-based ultra-high resolution accurate mass spectrometry revealed a quantitative decrease in total lipid content under stationary growth phase conditions, along with a significant increase in the mol% composition of total cardiolipin, and an increase in ‘odd-numbered’ acyl-chain length containing glycerophospholipids. The inclusion of field asymmetry ion mobility spectrometry was shown to enable the enrichment and improved depth of coverage of low-abundance cardiolipins, while ultraviolet photodissociation-tandem mass spectrometry facilitated more complete lipid structural characterisation compared with conventional collision-induced dissociation, including unambiguous assignment of the odd-numbered acyl-chains as containing cyclopropyl modifications. Proteome analysis using data-dependent acquisition nano-liquid chromatography mass spectrometry and tandem mass spectrometry analysis identified 83% of the predicted E. coli lipid metabolism enzymes, which enabled the temporal dependence associated with the expression of key enzymes responsible for the observed adaptive lipid metabolism to be determined, including those involved in phospholipid metabolism (e.g., ClsB and Cfa), fatty acid synthesis (e.g., FabH) and degradation (e.g., FadA/B,D,E,I,J and M), and proteins involved in the oxidative stress response resulting from the generation of reactive oxygen species during β-oxidation or lipid degradation.
Collapse
|
50
|
Maiti A, Daschakraborty S. Can Urea and Trimethylamine- N-oxide Prevent the Pressure-Induced Phase Transition of Lipid Membrane? J Phys Chem B 2022; 126:1426-1440. [PMID: 35139638 DOI: 10.1021/acs.jpcb.1c08891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organisms dwelling in ocean trenches are exposed to the high hydrostatic pressure of ocean water. Increasing pressure can alter the membrane packing density and fluidity and trigger the fluid-to-gel phase transition. To combat environmental stress, the organisms synthesize small polar solutes, which are known as osmolytes. Urea and trimethylamine-N-oxide (TMAO) are two such solutes found in deep-sea creatures. While TMAO stabilizes protein, urea induces protein denaturation. These solutes strongly influence the packing density and membrane fluidity of the lipid bilayer at different conditions. But can these solutes affect the pressure-induced phase transition of the lipid membrane? In the present work, we have studied the effect of these two solutes on pressure-induced fluid-to-gel phase transition based on the all-atom molecular dynamics (MD) simulation approach. A high-pressure-stimulated fluid-to-gel phase transition of the membrane is seen at 800 bar, which is consistent with previous experiments. We have also observed that in the low-pressure region (1-400 bar), urea slightly increases the membrane fluidity where TMAO decreases the same. However, the phase transition pressure remains almost unchanged on the addition of urea while TMAO shifts the phase transition toward a lower pressure. We have found that the hydrogen (H)-bond interaction between lipid and urea plays an important role in preserving the fluidity of the membrane in the low-pressure zone. However, at a higher pressure, both water and urea are excluded from the membrane surface. TMAO is also excluded from the interfacial region of the membrane at all pressures. Exclusion from the membrane surface further triggers the phase transition of the lipid membrane from the fluid to gel phase at a high pressure.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | | |
Collapse
|