1
|
Kantheti U, Forward TS, Lucas ED, Schafer JB, Tamburini PJ, Burchill MA, Tamburini BAJ. PD-L1-CD80 interactions are required for intracellular signaling necessary for dendritic cell migration. SCIENCE ADVANCES 2025; 11:eadt3044. [PMID: 39879305 PMCID: PMC11777207 DOI: 10.1126/sciadv.adt3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration. We show that cis interactions between PD-L1 and CD80 are critical for promoting migration and define specific regions within these proteins necessary for migration. Furthermore, we demonstrate that αPD-L1 significantly impedes DC migration in a B16 melanoma tumor model. Last, we outline how blocking cis PD-L1:CD80 interactions or mutation of the intracellular domain of PD-L1, in an imiquimod-induced murine model of psoriasis, limits DC migration to the lymph node, decreases interleukin-17 production by CD4+ T cells in the lymph node, and reduces epidermal thickening. Therefore, PD-L1 and CD80 interactions are important regulators of DC migration to the draining lymph node.
Collapse
Affiliation(s)
- Uma Kantheti
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S. Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D. Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B. Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pierce J. Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew A. Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth Ann Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Boumpas A, Papaioannou AS, Bousounis P, Grigoriou M, Bergo V, Papafragkos I, Tasis A, Iskas M, Boon L, Makridakis M, Vlachou A, Gavriilaki E, Hatzioannou A, Mitroulis I, Trompouki E, Verginis P. PD-L1 blockade immunotherapy rewires cancer-induced emergency myelopoiesis. Front Immunol 2024; 15:1386838. [PMID: 39464894 PMCID: PMC11502414 DOI: 10.3389/fimmu.2024.1386838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/06/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit. Methods In this study, we treated tumour-bearing mice with PD-L1 blockage antibody (aPD-L1) immunotherapy, to investigate its effects on cancer-induced emergency myelopoiesis, focusing on bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). We examined the impact of aPD-L1 treatment on HSPC quiescence, proliferation, transcriptomic profile, and functionality. Results Herein, we reveal that aPD-L1 in tumour-bearing mice targets the HSPCs in the BM, mediating their exit from quiescence and promoting their proliferation. Notably, disruption of the PDL1/PD1 axis induces transcriptomic reprogramming in HSPCs, observed in both individuals with Hodgkin lymphoma (HL) and tumour-bearing mice, shifting towards an inflammatory state. Furthermore, HSPCs from aPDL1-treated mice demonstrated resistance to cancer-induced emergency myelopoiesis, evidenced by a lower generation of MDSCs compared to control-treated mice. Discussion Our findings shed light on unrecognized mechanisms of action of ICB immunotherapy in cancer, which involves targeting of BM-driven HSPCs and reprogramming of cancer-induced emergency myelopoiesis.
Collapse
Affiliation(s)
- Athina Boumpas
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Antonis S. Papaioannou
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Pavlos Bousounis
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Grigoriou
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronica Bergo
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Cellular and Molecular Immunology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Athanasios Tasis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Iskas
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlachou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Eleni Gavriilaki
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Côte, Nice, France
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
3
|
Wang M, Qin L, Thia K, Nguyen T, MacDonald S, Belobrov S, Kranz S, Goode D, Trapani JA, Wiesenfeld D, Neeson PJ. Cancer cell-specific PD-L1 expression is a predictor of poor outcome in patients with locally advanced oral cavity squamous cell carcinoma. J Immunother Cancer 2024; 12:e009617. [PMID: 39357980 PMCID: PMC11448134 DOI: 10.1136/jitc-2024-009617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Locally advanced oral cavity squamous cell carcinoma (OCSCC) presents a significant clinical challenge despite being partially responsive to standard treatment modalities. This study investigates the prognostic implications of programmed death-ligand 1 (PD-L1) expression in these tumors, focusing on its association with treatment outcomes and the immune microenvironment. METHODS We assessed tumor-infiltrating lymphocytes (TILs) in 132 patients with OCSCC to evaluate their impact on survival. Multiplex immunohistochemistry staining for CD3, CD68, CD11c, PD-L1, and P40 was used to explore correlations with clinical outcomes in patients with early-stage (n=22) and locally advanced (n=36) OCSCC. These initial findings were validated through differential gene expression analysis, gene set enrichment, and immune cell deconvolution in a The Cancer Genome Atlas cohort of 163 locally advanced OCSCC tumors. Additionally, single-cell RNA sequencing (scRNA-seq) on a smaller cohort (n=10) further characterized the PD-L1hi or PD-L1lo cancer cells in these tumors. RESULTS Elevated PD-L1 expression was associated with poor outcomes in patients with locally advanced OCSCC undergoing standard adjuvant therapy, irrespective of "hot" or "cold" classification based on TILs assessment. PD-L1hi tumors exhibited an active immune response phenotype, enriched with M1 macrophages, CD8+ T cells and T regulatory cells in the tumor microenvironment. Notably, the negative impact of PD-L1 expression on outcomes was primarily attributed to its expression by cancer cells, rather than immune cells. Furthermore, scRNA-seq revealed that immune interactions were not essential for PD-L1 upregulation in cancer cells, instead, complex regulatory networks were involved. Additionally, PD-L1lo locally advanced tumors exhibited more complex pathway enrichment and diverse T-cell populations compared with those in the early-stage. CONCLUSION Our findings underscore the prognostic significance of PD-L1 expression in locally advanced OCSCC, and unveil the complex interplay between PD-L1 expression, immune responses, and molecular pathways in the tumor microenvironment. This study provides insights that may inform future therapeutic strategies, including the possibility of tailored immunotherapeutic approaches for patients with PD-L1hi locally advanced OCSCC.
Collapse
Affiliation(s)
- Minyu Wang
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Lei Qin
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kevin Thia
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Thu Nguyen
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sean MacDonald
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Simone Belobrov
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sevastjan Kranz
- Department of Pathology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - David Goode
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - David Wiesenfeld
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
- Oral and Maxillofacial Surgery Unit, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Paul Joseph Neeson
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Miao Z, Song X, Xu A, Yao C, Li P, Li Y, Yang T, Shen G. Targeted Delivery of STING Agonist via Albumin Nanoreactor Boosts Immunotherapeutic Efficacy against Aggressive Cancers. Pharmaceutics 2024; 16:1216. [PMID: 39339252 PMCID: PMC11434985 DOI: 10.3390/pharmaceutics16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Activating the cytosolic innate immune sensor, the cGAS-STING pathway, holds great promise for enhancing antitumor immunity, particularly in combination with immune checkpoint inhibitors (ICIs). However, the clinical application of STING agonists is often hindered by poor tumor accumulation, limited cellular uptake, and rapid clearance. To address these challenges, we developed a human serum albumin (HSA)-based nanoreactor system for the efficient delivery of the STING agonist SR-717, aiming to improve its antitumor efficacy. Methods: Using a biomineralization technique, we encapsulated SR-717 within HSA nanocages to form SH-NPs. These nanoparticles were characterized in terms of size, stability, and cellular uptake, and their ability to activate the STING pathway was assessed in both in vitro and in vivo models, including freshly isolated human renal tumor tissues. In vivo antitumor efficacy was evaluated in a murine renal tumor model, and immune responses were measured. Results: SH-NPs exhibited enhanced stability, efficient cellular uptake, and superior tumor accumulation compared to free SR-717. They robustly activated the STING pathway, as evidenced by increased phosphorylation of TBK1 and IRF3, along with elevated IFN-β production. Additionally, SH-NPs reshaped the immunosuppressive tumor microenvironment, promoting T-cell-mediated immunity and improving the therapeutic efficacy of checkpoint blockade in murine models. The validation in human renal tumor tissues further highlighted their potential for clinical translation. Importantly, SH-NPs were well tolerated with minimal systemic toxicity. Conclusions: This study underscores the potential of HSA-based nanoparticles for the targeted delivery of STING agonists, effectively enhancing antitumor immunity and improving cancer immunotherapy outcomes. SH-NPs offer a promising solution to the limitations of current STING agonists in clinical settings.
Collapse
Affiliation(s)
- Zhijun Miao
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| | - Xue Song
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
| | - Anan Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
| | - Chang Yao
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| | - Peng Li
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| | - Yanan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.S.); (A.X.); (Y.L.)
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Gang Shen
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China; (Z.M.); (C.Y.); (P.L.)
| |
Collapse
|
5
|
Chen S, Han J, Deng H, Lu Y, Wang Z, Zhang Q, Xia R. Platelet PD-L1 inhibits storage-induced apoptosis by sustaining activation of the AKT signalling pathway. Thromb Res 2024; 240:109056. [PMID: 38878739 DOI: 10.1016/j.thromres.2024.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/07/2024]
Abstract
Platelet apoptosis is irreversible under current storage conditions in blood banks. Studies have shown that programmed cell death ligand 1 (PD-L1) in tumour cells is required for neoplastic progression, tumour recurrence and metastasis by regulating apoptosis. However, whether PD-L1 is involved in storage-induced apoptosis in platelets remains poorly understood. In this study, we explored whether PD-L1 on platelets participated in the regulation of storage-induced apoptosis under blood bank conditions, as well as the underlying mechanism. Several apoptotic events in platelets from humans and PD-L1-knockout mice during storage under blood bank conditions were measured. The mechanism by which storage-induced apoptosis was regulated by platelet-intrinsic PD-L1 signalling was further investigated. Our results showed that PD-L1 in platelets progressively decreased. There was a strong negative correlation between platelet PD-L1 expression and the phosphatidylserine (PS) externalization rate and cleaved caspase-3 level and a positive correlation with anti-apoptosis protein Bcl-xl. Ex vivo, PD-L1-/- platelets stored at 22 °C showed rapid apoptosis via an intrinsic mitochondria-dependent pathway over time. Likewise, inhibiting PD-L1 signalling with BMS-1166 accelerated apoptosis by intrinsic mitochondria-dependent pathway. Coimmunoprecipitation analysis revealed that PD-L1 could bind AKT in platelets, and the binding capacity of both showed a progressive decrease with time. Finally, the decrease in PD-L1 expression levels during storage could be attributed to a complex process of progressive secretion. Therefore, platelet PD-L1 inhibits storage-induced apoptosis by sustaining activation of the AKT signalling pathway, which is expected to become a target for alleviating platelet storage lesions (PSLs) under current blood bank conditions.
Collapse
Affiliation(s)
- Shaoheng Chen
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Transfusion Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Han
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huimin Deng
- Department of Transfusion Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanshan Lu
- Department of Transfusion Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Hodgins JJ, Abou-Hamad J, O’Dwyer CE, Hagerman A, Yakubovich E, Tanese de Souza C, Marotel M, Buchler A, Fadel S, Park MM, Fong-McMaster C, Crupi MF, Makinson OJ, Kurdieh R, Rezaei R, Dhillon HS, Ilkow CS, Bell JC, Harper ME, Rotstein BH, Auer RC, Vanderhyden BC, Sabourin LA, Bourgeois-Daigneault MC, Cook DP, Ardolino M. PD-L1 promotes oncolytic virus infection via a metabolic shift that inhibits the type I IFN pathway. J Exp Med 2024; 221:e20221721. [PMID: 38869480 PMCID: PMC11176258 DOI: 10.1084/jem.20221721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/04/2024] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.
Collapse
Affiliation(s)
- Jonathan J. Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - John Abou-Hamad
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Colin Edward O’Dwyer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Ash Hagerman
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Marie Marotel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Ariel Buchler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Saleh Fadel
- The Ottawa Hospital, Ottawa, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Maria M. Park
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute for Systems Biology, Ottawa, Canada
| | - Mathieu F. Crupi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Olivia Joan Makinson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Reem Kurdieh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Reza Rezaei
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Harkirat Singh Dhillon
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Carolina S. Ilkow
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - John C. Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Ottawa Institute for Systems Biology, Ottawa, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Rebecca C. Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Luc A. Sabourin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, Montreal, Canada
- Centre Hospitalier de l’Université de Montréal Research Centre, Cancer and Immunopathology axes, Montreal, Canada
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Qu P, Li X, Liu W, Zhou F, Xu X, Tang J, Sun M, Li J, Li H, Han Y, Hu C, Lei Y, Pan Q, Zhan L. Absence of PD-L1 signaling hinders macrophage defense against Mycobacterium tuberculosis via upregulating STAT3/IL-6 pathway. Microbes Infect 2024; 26:105352. [PMID: 38729294 DOI: 10.1016/j.micinf.2024.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The blockade of programmed death-ligand 1 (PD-L1) pathway has been clinically used in cancer immunotherapy, while its effects on infectious diseases remain elusive. Roles of PD-L1 signaling in the macrophage-mediated innate immune defense against M.tb is unclear. In this study, the outcomes of tuberculosis (TB) in wild-type (WT) mice treated with anti-PD-1/PD-L1 therapy and macrophage-specific Pdl1-knockout (Pdl1ΔΜΦ) mice were compared. Treatment with anti-PD-L1 or anti-PD-1 benefited protection against M.tb infection in WT mice, while Pdl1ΔΜΦ mice exhibited the increased susceptibility to M.tb infection. Mechanistically, the absence of PD-L1 signaling impaired M.tb killing by macrophages. Furthermore, elevated STAT3 activation was found in PD-L1-deficient macrophages, leading to increased interleukin (IL)-6 production and reduced inducible nitric oxide synthase (iNOS) expression. Inhibiting STAT3 phosphorylation partially impeded the increase in IL-6 production and restored iNOS expression in these PD-L1-deficient cells. These findings provide valuable insights into the complexity and mechanisms underlying anti-PD-L1 therapy in the context of tuberculosis.
Collapse
Affiliation(s)
- Peijie Qu
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinyu Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weihuang Liu
- Medical Research Center for Structural Biology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Fangting Zhou
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xiaoxu Xu
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Jun Tang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mengmeng Sun
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junli Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haifeng Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yunlin Han
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chengjun Hu
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Yueshan Lei
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Qin Pan
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China.
| | - Lingjun Zhan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
8
|
Miedema IHC, Pouw JEE, Kwakman A, Zwezerijnen GJC, Huisman MC, Timmer FEF, van de Ven R, de Gruijl TD, Hospers GAP, de Langen AJ, Menke-van der Houven van Oordt CW. Exploring the predictive potential of programmed death ligand 1 expression in healthy organs and lymph nodes as measured by 18F-BMS986-192 PET: pooled analysis of data from four solid tumor types. J Immunother Cancer 2024; 12:e008899. [PMID: 38886117 PMCID: PMC11184194 DOI: 10.1136/jitc-2024-008899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) can elicit anticancer immune responses, but predictive biomarkers are needed. We measured programmed death ligand 1 (PD-L1) expression in organs and lymph nodes using 18F-BMS-986192 positron emission tomography (PET)-imaging and looked for correlations with response and immune-related adverse events. METHODS Four 18F-BMS-986192 PET studies in patients with melanoma, lung, pancreatic and oral cancer, receiving ICI treatment, were combined. Imaging data (organ standardized uptake value (SUV)mean, lymph node SUVmax) and clinical data (response to treatment and incidence of immune-related adverse events) were extracted. RESULTS Baseline PD-L1 uptake in the spleen was on average higher in non-responding patients than in responders (spleen SUVmean 16.1±4.4 vs 12.5±3.4, p=0.02). This effect was strongest in lung cancer, and not observed in oral cancer. In the oral cancer cohort, benign tumor-draining lymph nodes (TDLNs) had higher PD-L1 uptake (SUVmax 3.3 IQR 2.5-3.9) compared with non-TDLNs (SUVmax 1.8, IQR 1.4-2.8 p=0.04). Furthermore, in the same cohort non-responders showed an increase in PD-L1 uptake in benign TDLNs on-treatment with ICIs (+15%), while for responders the PD-L1 uptake decreased (-11%). PD-L1 uptake did not predict immune-related adverse events, though elevated thyroid uptake on-treatment correlated with pre-existing thyroid disease or toxicity. CONCLUSION PD-L1 PET uptake in the spleen is a potential negative predictor of response to ICIs. On-treatment with ICIs, PD-L1 uptake in benign TDLNs increases in non-responders, while it decreases in responders, potentially indicating a mechanism for resistance to ICIs in patients with oral cancer.
Collapse
Affiliation(s)
- Iris H C Miedema
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Johanna E E Pouw
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Anne Kwakman
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Marc C Huisman
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Florentine E F Timmer
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Geke A P Hospers
- Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
9
|
Ganesh S, Kim MJ, Lee J, Feng X, Ule K, Mahan A, Krishnan HS, Wang Z, Anzahaee MY, Singhal G, Korboukh I, Lockridge JA, Sanftner L, Rijnbrand R, Abrams M, Brown BD. RNAi mediated silencing of STAT3/PD-L1 in tumor-associated immune cells induces robust anti-tumor effects in immunotherapy resistant tumors. Mol Ther 2024; 32:1895-1916. [PMID: 38549376 PMCID: PMC11184339 DOI: 10.1016/j.ymthe.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Malignant tumors are often associated with an immunosuppressive tumor microenvironment (TME), rendering most of them resistant to standard-of-care immune checkpoint inhibitors (CPIs). Signal transducer and activator of transcription 3 (STAT3), a ubiquitously expressed transcription factor, has well-defined immunosuppressive functions in several leukocyte populations within the TME. Since the STAT3 protein has been challenging to target using conventional pharmaceutical modalities, we investigated the feasibility of applying systemically delivered RNA interference (RNAi) agents to silence its mRNA directly in tumor-associated immune cells. In preclinical rodent tumor models, chemically stabilized acylated small interfering RNAs (siRNAs) selectively silenced Stat3 mRNA in multiple relevant cell types, reduced STAT3 protein levels, and increased cytotoxic T cell infiltration. In a murine model of CPI-resistant pancreatic cancer, RNAi-mediated Stat3 silencing resulted in tumor growth inhibition, which was further enhanced in combination with CPIs. To further exemplify the utility of RNAi for cancer immunotherapy, this technology was used to silence Cd274, the gene encoding the immune checkpoint protein programmed death-ligand 1 (PD-L1). Interestingly, silencing of Cd274 was effective in tumor models that are resistant to PD-L1 antibody therapy. These data represent the first demonstration of systemic delivery of RNAi agents to the TME and suggest applying this technology for immuno-oncology applications.
Collapse
Affiliation(s)
- Shanthi Ganesh
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA.
| | - Min Ju Kim
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Jenny Lee
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Xudong Feng
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Krisjanis Ule
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Amy Mahan
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | | | - Zhe Wang
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | | | - Garima Singhal
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Ilia Korboukh
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | | | - Laura Sanftner
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Rene Rijnbrand
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Marc Abrams
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| | - Bob D Brown
- Dicerna Pharmaceuticals, Inc, a Novo Nordisk Company, Lexington, MA 02421, USA
| |
Collapse
|
10
|
Li K, Chatterjee A, Qian C, Lagree K, Wang Y, Becker CA, Freeman MR, Murali R, Yang W, Underhill DM. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 2024; 630:736-743. [PMID: 38839956 DOI: 10.1038/s41586-024-07499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.
Collapse
Affiliation(s)
- Kai Li
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katherine Lagree
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Courtney A Becker
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Liu X, Zhao A, Xiao S, Li H, Li M, Guo W, Han Q. PD-1: A critical player and target for immune normalization. Immunology 2024; 172:181-197. [PMID: 38269617 DOI: 10.1111/imm.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Immune system imbalances contribute to the pathogenesis of several different diseases, and immunotherapy shows great therapeutic efficacy against tumours and infectious diseases with immune-mediated derivations. In recent years, molecules targeting the programmed cell death protein 1 (PD-1) immune checkpoint have attracted much attention, and related signalling pathways have been studied clearly. At present, several inhibitors and antibodies targeting PD-1 have been utilized as anti-tumour therapies. However, increasing evidence indicates that PD-1 blockade also has different degrees of adverse side effects, and these new explorations into the therapeutic safety of PD-1 inhibitors contribute to the emerging concept that immune normalization, rather than immune enhancement, is the ultimate goal of disease treatment. In this review, we summarize recent advancements in PD-1 research with regard to immune normalization and targeted therapy.
Collapse
Affiliation(s)
- Xuening Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Alison Zhao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Su Xiao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- People's Hospital of Zhoucun, Zibo, Shandong, China
| | - Haohao Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Menghua Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Guo
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Bettini E, Chudnovskiy A, Protti G, Nakadakari-Higa S, Ceglia S, Castaño D, Chiu J, Muramatsu H, Mdluli T, Abraham E, Lipinszki Z, Maillard I, Tam YK, Reboldi A, Pardi N, Spreafico R, Victora GD, Locci M. Distinct components of nucleoside-modified messenger RNA vaccines cooperate to instruct efficient germinal center responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594726. [PMID: 38798523 PMCID: PMC11118742 DOI: 10.1101/2024.05.17.594726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nucleoside-modified mRNA vaccines elicit protective antibodies through their ability to promote T follicular helper (Tfh) cells. The lipid nanoparticle (LNP) component of mRNA vaccines possesses inherent adjuvant activity. However, to what extent the nucleoside-modified mRNA can be sensed and contribute to Tfh cell responses remains largely undefined. Herein, we deconvoluted the signals induced by LNP and mRNA that instruct dendritic cells (DCs) to promote Tfh cell differentiation. We demonstrated that the nucleoside-modified mRNA drives the production of type I interferons that act on DCs to induce their maturation and the induction of Th1-biased Tfh responses. Conversely, LNP favors the acquisition of a Tfh cell-inducing program in DCs, a stronger Th2 polarization in Tfh cells, and allows for rapid mRNA translation by DCs within the draining lymph node. Our work unravels distinct adjuvant features of mRNA and LNP necessary for the induction of Tfh cells, with implications for vaccine design.
Collapse
|
13
|
Knutson KL. Regulation of Tumor Dendritic Cells by Programmed Cell Death 1 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1397-1405. [PMID: 38621195 PMCID: PMC11027937 DOI: 10.4049/jimmunol.2300674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 04/17/2024]
Abstract
The advent of immune checkpoint blockade therapy has revolutionized cancer treatments and is partly responsible for the significant decline in cancer-related mortality observed during the last decade. Immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), have demonstrated remarkable clinical successes in a subset of cancer patients. However, a considerable proportion of patients remain refractory to immune checkpoint blockade, prompting the exploration of mechanisms of treatment resistance. Whereas much emphasis has been placed on the role of PD-L1 and PD-1 in regulating the activity of tumor-infiltrating T cells, recent studies have now shown that this immunoregulatory axis also directly regulates myeloid cell activity in the tumor microenvironment including tumor-infiltrating dendritic cells. In this review, I discuss the most recent advances in the understanding of how PD-1, PD-L1, and programmed cell death ligand 2 regulate the function of tumor-infiltrating dendritic cells, emphasizing the need for further mechanistic studies that could facilitate the development of novel combination immunotherapies for improved cancer patient benefit.
Collapse
|
14
|
Song MS, Nam JH, Noh KE, Lim DS. Dendritic Cell-Based Immunotherapy: The Importance of Dendritic Cell Migration. J Immunol Res 2024; 2024:7827246. [PMID: 38628676 PMCID: PMC11019573 DOI: 10.1155/2024/7827246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%-10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.
Collapse
Affiliation(s)
- Min-Seon Song
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Hee Nam
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Kyung-Eun Noh
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dae-Seog Lim
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
15
|
Lee CYC, Kennedy BC, Richoz N, Dean I, Tuong ZK, Gaspal F, Li Z, Willis C, Hasegawa T, Whiteside SK, Posner DA, Carlesso G, Hammond SA, Dovedi SJ, Roychoudhuri R, Withers DR, Clatworthy MR. Tumour-retained activated CCR7 + dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity. Nat Commun 2024; 15:682. [PMID: 38267413 PMCID: PMC10808534 DOI: 10.1038/s41467-024-44787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7+ DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7+ DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7+ DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7+ DCs co-localise with PD-1+CD8+ T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7+ DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells.
Collapse
Affiliation(s)
- Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tetsuo Hasegawa
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | - David A Posner
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
16
|
Nieto C, Miller B, Alzofon N, Chimed T, Himes J, Joshi M, Gomez K, Chowdhury FN, Le PN, Weaver A, Somerset H, Morton JJ, Wang JH, Wang XJ, Gao D, Hansen K, Keysar SB, Jimeno A. The programmed death ligand 1 interactome demonstrates bidirectional signaling coordinating immune suppression and cancer progression in head and neck squamous cell carcinoma. J Natl Cancer Inst 2023; 115:1392-1403. [PMID: 37389416 PMCID: PMC10637037 DOI: 10.1093/jnci/djad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) are validated cancer targets; however, emerging mechanisms and impact of PD-L1 intracellular signaling on cancer behavior are poorly understood. METHODS We investigated the cancer cell intrinsic role of PD-L1 in multiple patient-derived models in vitro and in vivo. PD-L1 overexpression, knockdown, and PD-L1 intracellular domain (PD-L1-ICD) deletion (Δ260-290PD-L1) models were assessed for key cancer properties: clonogenicity, motility, invasion, and immune evasion. To determine how PD-L1 transduces signals intracellularly, we used the BioID2 platform to identify the PD-L1 intracellular interactome. Both human papillomavirus-positive and negative patient-derived xenografts were implanted in NOD-scid-gamma and humanized mouse models to investigate the effects of recombinant PD-1, anti-PD-L1, and anti-signal transducer and activator of transcription 3 (STAT3) in vivo. RESULTS PD-L1 intracellular signaling increased clonogenicity, motility, and invasiveness in multiple head and neck squamous cell carcinoma (HNSCC) models, and PD-1 binding enhanced these effects. Protein proximity labeling revealed the PD-L1 interactome, distinct for unbound and bound PD-1, which initiated cancer cell-intrinsic signaling. PD-L1 binding partners interleukin enhancer binding factors 2 and 3 (ILF2-ILF3) transduced their effect through STAT3. Δ260-290PD-L1 disrupted signaling and reversed pro-growth properties. In humanized HNSCC in vivo models bearing T-cells, PD-1 binding triggered PD-L1 signaling, and dual PD-L1 and STAT3 inhibition were required to achieve tumor control. CONCLUSIONS Upon PD-1 binding, the PD-L1 extracellular and intracellular domains exert a synchronized effect to promote immune evasion by inhibiting T-cell function while simultaneously enhancing cancer cell-invasive properties.
Collapse
Affiliation(s)
- Cera Nieto
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Nathaniel Alzofon
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Tugy Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Jack Himes
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | | | - Karina Gomez
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | | | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Alice Weaver
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | | | - J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, UCDSOM, Aurora, CO, USA
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiao-Jing Wang
- Department of Pathology, UCDSOM, Aurora, CO, USA
- Department of Pathology, University of California Davis, Davis, CA, USA
| | - Dexiang Gao
- Department of Pediatrics, UCDSOM, Aurora, CO, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, UCDSOM, Aurora, CO, USA
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
- Gates Center for Regenerative Medicine, UCDSOM, Aurora, CO, USA
| |
Collapse
|
17
|
Azin M, Ngo KH, Hojanazarova J, Demehri S. Topical Calcipotriol Plus Imiquimod Immunotherapy for Nonkeratinocyte Skin Cancers. JID INNOVATIONS 2023; 3:100221. [PMID: 37731472 PMCID: PMC10507651 DOI: 10.1016/j.xjidi.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/22/2023] Open
Abstract
Nonkeratinocyte cutaneous malignancies, including breast cancer cutaneous metastasis and melanoma in situ, are often poor surgical candidates. Imiquimod (IMQ), a toll-like receptor 7 agonist that activates innate immunity in the skin, is used to treat these cutaneous malignancies. However, IMQ's modest effect on the activation of adaptive immunity limits its efficacy as a monotherapy. In this study, we demonstrate that topical TSLP cytokine inducers-calcipotriol and retinoic acid-synergize with IMQ to activate CD4+ T-cell immunity against nonkeratinocyte cutaneous malignancies. Topical calcipotriol plus IMQ treatment reduced breast tumor growth compared with calcipotriol or IMQ alone (P < 0.0001). Calcipotriol plus IMQ-mediated tumor suppression was associated with significant infiltration of CD4+ effector T cells in the tumor microenvironment. Notably, topical calcipotriol plus IMQ immunotherapy enabled immune checkpoint blockade therapy to effectively control immunologically cold breast tumors, which was associated with induction of CD4+ T-cell immunity. Topical treatment with calcipotriol plus IMQ and retinoic acid plus IMQ also blocked subcutaneous melanoma growth. These findings highlight the synergistic effect of topical TSLP induction in combination with innate immune cell activation as an effective immunotherapy for malignancies affecting the skin.
Collapse
Affiliation(s)
- Marjan Azin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth H. Ngo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennet Hojanazarova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shadmehr Demehri
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Letian A, Lemma EY, Cavaliere P, Dephoure N, Altorki NK, McGraw TE. Proximity proteome mapping reveals PD-L1-dependent pathways disrupted by anti-PD-L1 antibody specifically in EGFR-mutant lung cancer cells. Cell Commun Signal 2023; 21:58. [PMID: 36915197 PMCID: PMC10010028 DOI: 10.1186/s12964-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND PD-L1, a transmembrane ligand for immune checkpoint receptor PD1, has been successfully targeted to activate an anti-tumor immune response in a variety of solid tumors, including non-small cell lung cancer (NSCLC). Despite the success of targeting PD-L1, only about 20% of patients achieve a durable response. The reasons for the heterogeneity in response are not understood, although some molecular subtypes (e.g., mutant EGF receptor tumors) are generally poor responders. Although PD-L1 is best characterized as a transmembrane PD1 ligand, the emerging view is that PD-L1 has functions independent of activating PD1 signaling. It is not known whether these cell-intrinsic functions of PD-L1 are shared among non-transformed and transformed cells, if they vary among cancer molecular subtypes, or if they are impacted by anti-PD-L1 therapy. METHODS Here we use quantitative microscopy techniques and APEX2 proximity mapping to describe the behavior of PD-L1 and to identify PD-L1's proximal proteome in human lung epithelial cells. RESULTS Our data reveal growth factor control of PD-L1 recycling as a mechanism for acute and reversible regulation of PD-L1 density on the plasma membrane. In addition, we describe novel PD-L1 biology restricted to mutant EGFR cells. Anti-PD-L1 antibody treatment of mutant EGFR cells perturbs cell intrinsic PD-L1 functions, leading to reduced cell migration, increased half-life of EGFR and increased extracellular vesicle biogenesis, whereas anti-PD-L1 antibody does not induce these changes in wild type EGFR cells. CONCLUSIONS Growth factor acute regulation of PD-L1 trafficking, by contributing to the control of plasma membrane density, might contribute to the regulation of PD-L1's immune checkpoint activity, whereas the specific effects of anti-PD-L1 on mutant EGFR cells might contribute to the poor anti-PD-L1 response of mutant EGFR tumors. Video Abstract.
Collapse
Affiliation(s)
- Anudari Letian
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
| | - Eyoel Yemanaberhan Lemma
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine and NY Presbyterian Hospital, 1300 York Ave, New York, NY 10065 USA
| | - Paola Cavaliere
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and NY Presbyterian Hospital, 1300 York Ave, New York, NY 10065 USA
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine and NY Presbyterian Hospital, 1300 York Ave, New York, NY 10065 USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and NY Presbyterian Hospital, 1300 York Ave, New York, NY 10065 USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine and NY Presbyterian Hospital, 1300 York Ave, New York, NY 10065 USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and NY Presbyterian Hospital, 1300 York Ave, New York, NY 10065 USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065 USA
| |
Collapse
|
19
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
20
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
21
|
CuMV VLPs Containing the RBM from SARS-CoV-2 Spike Protein Drive Dendritic Cell Activation and Th1 Polarization. Pharmaceutics 2023; 15:pharmaceutics15030825. [PMID: 36986686 PMCID: PMC10055701 DOI: 10.3390/pharmaceutics15030825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Dendritic cells (DCs) are the most specialized and proficient antigen-presenting cells. They bridge innate and adaptive immunity and display a powerful capacity to prime antigen-specific T cells. The interaction of DCs with the receptor-binding domain of the spike (S) protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pivotal step to induce effective immunity against the S protein-based vaccination protocols, as well as the SARS-CoV-2 virus. Herein, we describe the cellular and molecular events triggered by virus-like particles (VLPs) containing the receptor-binding motif from the SARS-CoV-2 spike protein in human monocyte-derived dendritic cells, or, as controls, in the presence of the Toll-like receptors (TLR)3 and TLR7/8 agonists, comprehending the events of dendritic cell maturation and their crosstalk with T cells. The results demonstrated that VLPs boosted the expression of major histocompatibility complex molecules and co-stimulatory receptors of DCs, indicating their maturation. Furthermore, DCs’ interaction with VLPs promoted the activation of the NF-kB pathway, a very important intracellular signalling pathway responsible for triggering the expression and secretion of proinflammatory cytokines. Additionally, co-culture of DCs with T cells triggered CD4+ (mainly CD4+Tbet+) and CD8+ T cell proliferation. Our results suggested that VLPs increase cellular immunity, involving DC maturation and T cell polarization towards a type 1 T cells profile. By providing deeper insight into the mechanisms of activation and regulation of the immune system by DCs, these findings will enable the design of effective vaccines against SARS-CoV-2.
Collapse
|
22
|
Jiang J, Huang H, Chen R, Lin Y, Ling Q. Immunotherapy for hepatocellular carcinoma recurrence after liver transplantation, can we harness the power of immune checkpoint inhibitors? Front Immunol 2023; 14:1092401. [PMID: 36875077 PMCID: PMC9978931 DOI: 10.3389/fimmu.2023.1092401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death globally and liver transplantation (LT) can serve as the best curative treatment option. However, HCC recurrence after LT remains the major obstacle to the long-term survival of recipients. Recently, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many cancers and provided a new treatment strategy for post-LT HCC recurrence. Evidence has been accumulated with the real-world application of ICIs in patients with post-LT HCC recurrence. Notably, the use of these agents as immunity boosters in recipients treated with immunosuppressors is still controversial. In this review, we summarized the immunotherapy for post-LT HCC recurrence and conducted an efficacy and safety evaluation based on the current experience of ICIs for post-LT HCC recurrence. In addition, we further discussed the potential mechanism of ICIs and immunosuppressive agents in regulating the balance between immune immunosuppression and lasting anti-tumor immunity.
Collapse
Affiliation(s)
- Jingyu Jiang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Burke KP, Patterson DG, Liang D, Sharpe AH. Immune checkpoint receptors in autoimmunity. Curr Opin Immunol 2023; 80:102283. [PMID: 36709596 PMCID: PMC10019320 DOI: 10.1016/j.coi.2023.102283] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Immune checkpoint receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), and T cell immunoglobulin and ITIM domain (TIGIT) have distinct and overlapping inhibitory functions that regulate Tcell activation, differentiation, and function. These inhibitory receptors also mediate tolerance, and dysregulation of these receptors can result in a breach of tolerance and the development of autoimmune syndromes. Similarly, antibody blockade of immune checkpoint receptors or their ligands for cancer immunotherapy may trigger a spectrum of organ inflammation that resembles autoimmunity, termed immune-related adverse events (irAE). In this review, we discuss recent advances in the regulation of autoimmunity by immune checkpoint receptors. We highlight coordinated gene expression programs linking checkpoint receptors, heterogeneity within autoreactive T-cell populations, parallels between irAE and autoimmunity, and bidirectional functional interactions between immune checkpoint receptors and their ligands.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dillon G Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Barham W, Hsu M, Liu X, Harrington SM, Hirdler JB, Gicobi JK, Zhu X, Zeng H, Pavelko KD, Yan Y, Mansfield AS, Dong H. A Novel Humanized PD-1/PD-L1 Mouse Model Permits Direct Comparison of Antitumor Immunity Generated by Food and Drug Administration-Approved PD-1 and PD-L1 Inhibitors. Immunohorizons 2023; 7:125-139. [PMID: 36656137 PMCID: PMC10106088 DOI: 10.4049/immunohorizons.2200054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Seven different anti-PD-1 and PD-L1 mAbs are now widely used in the United States to treat a variety of cancer types, but no clinical trials have compared them directly. Furthermore, because many of these Abs do not cross-react between mouse and human proteins, no preclinical models exist in which to consider these types of questions. Thus, we produced humanized PD-1 and PD-L1 mice in which the extracellular domains of both mouse PD-1 and PD-L1 were replaced with the corresponding human sequences. Using this new model, we sought to compare the strength of the immune response generated by Food and Drug Administration-approved Abs. To do this, we performed an in vivo T cell priming assay in which anti-PD-1/L1 therapies were given at the time of T cell priming against surrogate tumor Ag (OVA), followed by subsequent B16-OVA tumor challenge. Surprisingly, both control and Ab-treated mice formed an equally robust OVA-specific T cell response at the time of priming. Despite this, anti-PD-1/L1-treated mice exhibited significantly better tumor rejection versus controls, with avelumab generating the best protection. To determine what could be mediating this, we identified the increased production of CX3CR1+PD-1+CD8+ cytotoxic T cells in the avelumab-treated mice, the same phenotype of effector T cells known to increase in clinical responders to PD-1/L1 therapy. Thus, our model permits the direct comparison of Food and Drug Administration-approved anti-PD-1/L1 mAbs and further correlates successful tumor rejection with the level of CX3CR1+PD-1+CD8 + T cells, making this model a critical tool for optimizing and better utilizing anti-PD-1/L1 therapeutics.
Collapse
Affiliation(s)
- Whitney Barham
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Michelle Hsu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Xin Liu
- Department of Urology, Mayo Clinic, Rochester, MN
| | | | | | - Joanina K. Gicobi
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN; and
| | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN; and
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Yiyi Yan
- Division of Medical Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Aaron S. Mansfield
- Division of Medical Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Department of Urology, Mayo Clinic, Rochester, MN
| |
Collapse
|
25
|
Schafer JB, Lucas ED, Dzieciatkowska M, Forward T, Tamburini BAJ. Programmed death ligand 1 intracellular interactions with STAT3 and focal adhesion protein Paxillin facilitate lymphatic endothelial cell remodeling. J Biol Chem 2022; 298:102694. [PMID: 36375639 PMCID: PMC9761386 DOI: 10.1016/j.jbc.2022.102694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) comprise lymphatic capillaries and vessels that guide immune cells to lymph nodes (LNs) and form the subcapsular sinus and cortical and medullary lymphatic structures of the LN. During an active immune response, the lymphatics remodel to accommodate the influx of immune cells from the tissue, but factors involved in remodeling are unclear. Here, we determined that a TSS motif within the cytoplasmic domain of programmed death ligand 1 (PD-L1), expressed by LECs in the LN, participates in lymphatic remodeling. Mutation of the TSS motif to AAA does not affect surface expression of PD-L1, but instead causes defects in LN cortical and medullary lymphatic organization following immunostimulant, Poly I:C, administration in vivo. Supporting this observation, in vitro treatment of the LEC cell line, SVEC4-10, with cytokines TNFα and IFNα significantly impeded SVEC4-10 movement in the presence of the TSS-AAA cytoplasmic mutation. The cellular movement defects coincided with reduced F-actin polymerization, consistent with differences previously found in dendritic cells. Here, in addition to loss of actin polymerization, we define STAT3 and Paxillin as important PD-L1 binding partners. STAT3 and Paxillin were previously demonstrated to be important at focal adhesions for cellular motility. We further demonstrate the PD-L1 TSS-AAA motif mutation reduced the amount of pSTAT3 and Paxillin bound to PD-L1 both before and after exposure to TNFα and IFNα. Together, these findings highlight PD-L1 as an important component of a membrane complex that is involved in cellular motility, which leads to defects in lymphatic organization.
Collapse
Affiliation(s)
- Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
26
|
A Machine Learning Workflow of Multiplexed Immunofluorescence Images to Interrogate Activator and Tolerogenic Profiles of Conventional Type 1 Dendritic Cells Infiltrating Melanomas of Disease-Free and Metastatic Patients. JOURNAL OF ONCOLOGY 2022; 2022:9775736. [PMID: 36276271 PMCID: PMC9581597 DOI: 10.1155/2022/9775736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
Abstract
Melanoma is the deadliest form of skin cancer. Due to its high mutation rates, melanoma is a convenient model to study antitumor immune responses. Dendritic cells (DCs) play a key role in activating cytotoxic CD8+ T lymphocytes and directing them to kill tumor cells. Although there is evidence that DCs infiltrate melanomas, information about the profile of these cells, their activity states, and potential antitumor function remains unclear, particularly for conventional DCs type 1 (cDC1). Approaches to profiling tumor-infiltrating DCs are hindered by their diversity and the high number of signals that can affect their state of activation. Multiplexed immunofluorescence (mIF) allows the simultaneous analysis of multiple markers, but image-based analysis is time-consuming and often inconsistent among analysts. In this work, we evaluated several machine learning (ML) algorithms and established a workflow of nine-parameter image analysis that allowed us to study cDC1s in a reproducible and accessible manner. Using this workflow, we compared melanoma samples between disease-free and metastatic patients at diagnosis. We observed that cDC1s are more abundant in the tumor infiltrate of the former. Furthermore, cDC1s in disease-free patients exhibit an expression profile more congruent with an activator function: CD40highPD-L1low CD86+IL-12+. Although disease-free patients were also enriched with CD40−PD-L1+ cDC1s, these cells were also more compatible with an activator phenotype. The opposite was true for metastatic patients at diagnosis who were enriched for cDC1s with a more tolerogenic phenotype (CD40lowPD-L1highCD86−IL-12−IDO+). ML-based workflows like the one developed here can be used to analyze complex phenotypes of other immune cells and can be brought to laboratories with standard expertise and computer capacity.
Collapse
|
27
|
Abstract
To ensure proper immune function, most leukocytes constantly move within tissues or between them using the blood and lymphatic vessels as transport routes. While afferent lymphatic vessels transfer leukocytes from peripheral tissues to draining lymph nodes (dLNs), efferent lymphatics return lymphocytes from LNs back into the blood vascular circulation. Over the last decades, great progress has been made in our understanding of leukocyte migration into and within the lymphatic compartment, leading to the approval of new drugs targeting this process. In this review, we first introduce the anatomy of the lymphatic vasculature and the main cell types migrating through lymphatics. We primarily focus on dendritic cells (DCs) and T cells, the most prominent lymph-borne cell types, and discuss the functional significance as well as the main molecules and steps involved in their migration. Additionally, we provide an overview of the different techniques used to study lymphatic trafficking.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hazal Tatliadim
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
28
|
Tamburini BAJ. Contributions of PD-L1 reverse signaling to dendritic cell trafficking. FEBS J 2022; 289:6256-6266. [PMID: 34146376 PMCID: PMC8684559 DOI: 10.1111/febs.16084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) interactions are critical for dampening the immune response to both self and foreign antigens. The signaling of PD-L1 via its cytoplasmic domain, rather than through its interactions with PD-1 via the extracellular domain, has been termed PD-L1 reverse signaling. While this signaling is beneficial for cancer progression, little is understood about the consequences of PD-L1 reverse signaling in immune cells that express PD-L1 at steady state or in response to infection. Loss of PD-L1 during infection leads to unchecked T-cell proliferation and increased autoimmune T-cell responses. While the T-cell intrinsic role of PD-1 for inhibiting T-cell responses has been well explored, little to no effort has been directed at investigating the consequences of PD-L1 reverse signaling on the DCs interacting with PD-1+ T cells. We recently reported a defect in dendritic cell (DC) trafficking from the skin to the draining lymph node (LN) following immunization or infection in the absence of PD-L1. We demonstrated that a region within the cytoplasmic tail was responsible for the defect in DC trafficking. Here, we review the processes involved in DC trafficking and highlight what we know about PD-L1 expression, PD-L1 post-translational modifications, PD-L1 intracellular interactions, and PD-L1 extracellular interactions.
Collapse
Affiliation(s)
- Beth Ann Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
29
|
Greisen SR, Aspari M, Deleuran B. Co-Inhibitory Molecules – Their Role in Health and Autoimmunity; Highlighted by Immune Related Adverse Events. Front Immunol 2022; 13:883733. [PMID: 35784333 PMCID: PMC9243421 DOI: 10.3389/fimmu.2022.883733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint receptors are key players in regulating the immune response. They are responsible for both generating an immune response sufficient to kill invading pathogens, balancing the same response, and protecting against tissue destruction or the development of autoimmune events. The central role of the co-inhibitory receptors also referred to as inhibitory immune checkpoints, including PD-1 and CTLA-4 has become especially evident with the cancer treatments targeting these receptors. Blocking these pathways enhances the immune activity, resulting in both an increased chance of cancer clearance, at the same time induction of immune-related adverse events (irAE). Some of these irAE progress into actual autoimmune diseases with autoantibodies and symptoms, undistinguished from the naturally occurring diseases. This review will take advantage of the lessons learned from immune checkpoint blockade and relate this knowledge to our understanding of the same pathways in naturally occurring autoimmune diseases, mainly focusing on rheumatic diseases.
Collapse
Affiliation(s)
- Stinne R. Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Stinne R. Greisen,
| | - Maithri Aspari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Long Y, Yu X, Chen R, Tong Y, Gong L. Noncanonical PD-1/PD-L1 Axis in Relation to the Efficacy of Anti-PD Therapy. Front Immunol 2022; 13:910704. [PMID: 35663968 PMCID: PMC9157498 DOI: 10.3389/fimmu.2022.910704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
With programmed death 1/ligand 1 (PD-1/PD-L1) as the cornerstone, anti-PD antibodies have pioneered revolutionary immunotherapies for malignancies. But most patients struggled to respond to anti-PD owing to primary or acquired resistance or even hyperprogression, pointing to more efforts needed to explore this axis. PD-1 constrains T-cell immunoreactivity via engaging with PD-L1 of tumor/myeloid cells is the canonical PD-1/PD-L1 axis function mode. Studies are increasingly aware of the impact of noncanonical PD-1/PD-L1 expression in various cancers. PD-L1 induced on activated T-cells ligates to PD-1 to mediate self-tolerance or acts on intratumoral myeloid cells and other T-cells, affecting their survival, differentiation and immunophenotyping, leading to tumor immunosuppression. Myeloid PD-1 interferes with their proliferation, differentiation, cytokine secretion and phagocytosis, mediating remarkable pro-tumor effects. Tumor cell intrinsic PD-1 signaling has diverse functions in different tumors, resulting in pro-proliferation or proliferation inhibition. These nonclassical PD-1/PD-L1 functions may be novel anti-PD mechanisms or causes of treatment resistance. This review highlights the nonnegligible role of T-cell-intrinsic PD-L1 and tumor/myeloid PD-1 in the cell interplay network and the complex impact on the efficacy of anti-PD antibodies. Reconsidering and rational utilization of the comprehensive PD-1/PD-L1 axis could cumulate breakthroughs in precision treatment and combination for anti-PD therapies.
Collapse
Affiliation(s)
- Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runqiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongliang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
31
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
32
|
Peng B, Sun L, Zhang M, Yan H, Shi G, Xia Z, Dai R, Tang W. Role of IL-25 on Eosinophils in the Initiation of Th2 Responses in Allergic Asthma. Front Immunol 2022; 13:842500. [PMID: 35615348 PMCID: PMC9125245 DOI: 10.3389/fimmu.2022.842500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Eosinophils act as a secondary antigen-presenting cell (APC) to stimulate Th cell responses against antigens. IL-25 plays a significant role in eosinophil activation in allergic asthma. The role of IL-25 on the classic APC functions of dendritic cells has been elucidated. However, whether IL-25 facilitates eosinophils for antigen presentation is unknown. Objective To elucidate the role of IL-25 on eosinophils antigen presenting function during allergic asthma and its related mechanism. Methods Eosinophils from allergic asthma subjects were cultured with IL-25 and HDM to identify the co-stimulator molecules expression. Co-cultures of patient eosinophils and autologous naïve CD4+ T cells in the same culture system were to explore whether eosinophils had the capacity to promote Th cell differentiation in response to IL-25 engagement. In asthma mouse model, IL-25-/- mice were exposed to HDM to investigate the effect of IL-25 on eosinophils during the sensitization phase. The impact of IL-25 on the capacity for eosinophils taking up antigens was evaluated. Mouse bone marrow derived eosinophils (BmEOS) were co-cultured with naïve CD4+T cells sorted from spleens under HDM and IL-25 stimulation to identify T cell differentiation. Results IL-25 upregulated HLA-DR, PD-L1, and OX-40L expression on eosinophils from allergic asthma patients. IL-25 and HDM co-sensitized eosinophils promoted Th2 differentiation. In mouse model, IL-25-/- mice experienced restrained allergic pulmonary inflammation and reduced eosinophils recruitment and antigen uptake capacity during the early sensitization phase. In vitro, IL-25 promoted antigen uptake by eosinophils. In BmEOS and naïve CD4+T cells co-culture, IL-25 accreted the proportion of CD4+Th2 cells, which was absent in CD4+T cells culture alone. Conclusion Our data identify a novel role of IL-25 in enhancing eosinophils antigen uptake and co-stimulator molecules expression to induce Th2 priming in the context of allergic inflammation.
Collapse
Affiliation(s)
- Bo Peng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Lin Sun
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Meng Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huacheng Yan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Tang, ; Ranran Dai, ; Zhenwei Xia,
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
- *Correspondence: Wei Tang, ; Ranran Dai, ; Zhenwei Xia,
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
- *Correspondence: Wei Tang, ; Ranran Dai, ; Zhenwei Xia,
| |
Collapse
|
33
|
Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol Life Sci 2022; 79:275. [PMID: 35505125 PMCID: PMC9063628 DOI: 10.1007/s00018-022-04303-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022]
Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA.,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA. .,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
34
|
Abstract
The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, USA
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA.
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
35
|
Fierro J, DiPasquale J, Perez J, Chin B, Chokpapone Y, Tran AM, Holden A, Factoriza C, Sivagnanakumar N, Aguilar R, Mazal S, Lopez M, Dou H. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Sci Rep 2022; 12:2417. [PMID: 35165339 PMCID: PMC8844083 DOI: 10.1038/s41598-022-06430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a key role in glioblastoma multiforme (GBM) immunosuppression, vitality, proliferation, and migration, and is therefore a promising target for treating GBM. CRISPR/Cas9-mediated genomic editing can delete both cell surface and intracellular PD-L1. This systemic deliverable genomic PD-L1 deletion system can be used as an effective anti-GBM therapy by inhibiting tumor growth and migration, and overcoming immunosuppression. To target PD-L1 for CRISPR/Cas9 gene editing, we first identified two single guide RNA (sgRNA) sequences located on PD-L1 exon 3. The first sgRNA recognizes the forward strand of human PD-L1 near the beginning of exon 3 that allows editing by Cas9 at approximately base pair 82 (g82). The second sgRNA recognizes the forward strand of exon 3 that directs cutting at base pair 165 (g165). A homology-directed repair template (HDR) combined with the dual-sgRNAs was used to improve PD-L1 knockout specificity and efficiency. sgRNAs g82 and g165 were cloned into the multiplex CRISPR/Cas9 assembly system and co-transfected with the HDR template in human U87 GBM cells (g82/165 + HDR). T7E1 analysis suggests that the dual-sgRNA CRISPR/Cas9 strategy with a repair template was capable of editing the genomic level of PD-L1. This was further confirmed by examining PD-L1 protein levels by western blot and immunofluorescence assays. Western blot analysis showed that the dual-sgRNAs with the repair template caused a 64% reduction of PD-L1 protein levels in U87 cells, while immunostaining showed a significant reduction of intracellular PD-L1. PD-L1 deletion inhibited proliferation, growth, invasion and migration of U87 cells, indicating intracellular PD-L1 is necessary for tumor progression. Importantly, U87 cells treated with g82/165 + HDR polarized tumor-associated macrophages (TAM) toward an M1 phenotype, as indicated by an increase in TNF-α and a decrease in IL-4 secretions. This was further confirmed with flow cytometry that showed an increase in the M1 markers Ly6C + and CD80 +, and a decrease in the M2 marker CD206 + both in vitro and in vivo. Utilizing dual-sgRNAs and an HDR template with the CRISPR/Cas9 gene-editing system is a promising avenue for the treatment of GBM.
Collapse
Affiliation(s)
- Javier Fierro
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Jake DiPasquale
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Joshua Perez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Brandon Chin
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Yathip Chokpapone
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - An M Tran
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Arabella Holden
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Chris Factoriza
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Nikhi Sivagnanakumar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Rocio Aguilar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sarah Mazal
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Melissa Lopez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Huanyu Dou
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA.
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA.
| |
Collapse
|
36
|
Structure and Immune Function of Afferent Lymphatics and Their Mechanistic Contribution to Dendritic Cell and T Cell Trafficking. Cells 2021; 10:cells10051269. [PMID: 34065513 PMCID: PMC8161367 DOI: 10.3390/cells10051269] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.
Collapse
|
37
|
Steele MM, Lund AW. Afferent Lymphatic Transport and Peripheral Tissue Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:264-272. [PMID: 33397740 DOI: 10.4049/jimmunol.2001060] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Lymphatic vessels provide an anatomical framework for immune surveillance and adaptive immune responses. Although appreciated as the route for Ag and dendritic cell transport, peripheral lymphatic vessels are often not considered active players in immune surveillance. Lymphatic vessels, however, integrate contextual cues that directly regulate transport, including changes in intrinsic pumping and capillary remodeling, and express a dynamic repertoire of inflammatory chemokines and adhesion molecules that facilitates leukocyte egress out of inflamed tissue. These mechanisms together contribute to the course of peripheral tissue immunity. In this review, we focus on context-dependent mechanisms that regulate fluid and cellular transport out of peripheral nonlymphoid tissues to provide a framework for understanding the effects of afferent lymphatic transport on immune surveillance, peripheral tissue inflammation, and adaptive immunity.
Collapse
Affiliation(s)
- Maria M Steele
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016; .,Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016; and.,Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|