1
|
Zhang Q, Liao J, Liu Z, Song S, Tian L, Wang Y. The immune tolerance role of Bregs in inhibiting human inflammatory diseases, with a focus on diabetes mellitus. Front Immunol 2025; 16:1565158. [PMID: 40370441 PMCID: PMC12074967 DOI: 10.3389/fimmu.2025.1565158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Regulatory B cells (Bregs) are pivotal modulators of immune tolerance, suppressing inflammation through cytokine secretion and cellular interactions. Their role is particularly significant in inflammatory diseases such as type 1 and type 2 diabetes mellitus (T1DM and T2DM), where immune dysregulation contributes to disease progression. In T1DM, Bregs mitigate β-cell autoimmunity via IL-10 production and FOXP3-mediated pathways, but genetic mutations and dysfunctions in these mechanisms exacerbate autoimmunity. In T2DM, chronic inflammation and metabolic stress impair Breg numbers and function, further fueling insulin resistance. While Bregs play a central role in T1DM by directly preventing β-cell destruction, their role in T2DM is more supportive, modulating inflammation in metabolically stressed tissues. Emerging therapeutic strategies aim to enhance Breg function through IL-10 induction, ex vivo expansion, or targeting Breg-specific pathways using gene-editing and small molecules. Future research should explore Breg heterogeneity, novel markers, and personalized therapies to unlock their full potential. Understanding and leveraging the immune tolerance role of Bregs may offer transformative strategies to inhibit inflammatory diseases like diabetes mellitus.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Pathology Department, University of Texas, MD Anderson Cancer Center, Texas, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Limin Tian
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zheng H. The critical immunoregulatory roles and molecular mechanisms of IL-10 and IL-18 genes in pneumonia and sepsis. Medicine (Baltimore) 2025; 104:e42104. [PMID: 40258759 PMCID: PMC12014067 DOI: 10.1097/md.0000000000042104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/28/2025] [Indexed: 04/23/2025] Open
Abstract
Pneumonia and sepsis are severe diseases with high mortality and recurrence rates globally, especially fatal among immunocompromised patients. The dual regulatory effects of the cytokines Interleukin-10 (IL-10) and interleukin-18 (IL-18) in inflammatory responses have been observed across various diseases. However, their specific mechanisms in pneumonia and sepsis remain unclear. This study aims to explore the expression characteristics and functions of IL-10 and IL-18 in these diseases using bioinformatics approaches. The pneumonia and sepsis dataset GSE218494 was downloaded from the gene expression omnibus database. Differentially expressed genes were identified using the R package "limma," and functional enrichment analyses were performed using gene ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analysis. Additionally, weighted gene co-expression network analysis was conducted to identify key module genes, and the Search Tool for the Retrieval of Interacting Genes database and Cytoscape software were used to construct a protein-protein interaction network to identify core genes. Further analysis of miRNA targets associated with these core genes was performed to elucidate their potential molecular mechanisms in the diseases. The analysis revealed that IL-10 and IL-18 were downregulated in patients with pneumonia and sepsis, closely associated with poor prognosis. Functional enrichment analysis showed that these genes are primarily involved in biological processes related to inflammation and immune regulation, including the cell cycle, TGF-β signaling pathway, and Jak-STAT signaling pathway. Protein-protein interaction network analysis identified IL-10 and IL-18 as potential key regulatory genes in pneumonia and sepsis. miRNA prediction indicated that several miRNAs are closely associated with the regulation of these genes' expression. IL-10 and IL-18 play critical immunoregulatory roles in the development and progression of pneumonia and sepsis, impacting patient prognosis. These findings provide theoretical support for future IL-10 and IL-18-targeted therapeutic strategies, which may improve clinical outcomes for patients with pneumonia and sepsis.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Outpatient (East), The First Central Hospital of Baoding, Baoding City, China
| |
Collapse
|
3
|
Li XC, Zhu XY, Wang YY, Tong SL, Chen ZL, Lu ZY, Zhang JH, Song LL, Wang XH, Zhang C, Sun YH, Zhong CY, Su LH, Wang LX, Huang XY. Canagliflozin alleviates pulmonary hypertension by activating PPARγ and inhibiting its S225 phosphorylation. Acta Pharmacol Sin 2024; 45:1861-1878. [PMID: 38719955 PMCID: PMC11335861 DOI: 10.1038/s41401-024-01286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/07/2024] [Indexed: 08/22/2024]
Abstract
Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.
Collapse
Affiliation(s)
- Xiu-Chun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xia-Yan Zhu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Yang-Yue Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | | | - Zhi-Li Chen
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Zi-Yi Lu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | | | - Lan-Lan Song
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xing-Hong Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Chi Zhang
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Han Sun
- Wenzhou Medical University, Wenzhou, 325000, China
| | | | - Li-Huang Su
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Liang-Xing Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xiao-Ying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Yang J, Liu Y, Wang M, Chen S, Miao Q, Liu Z, Zhang B, Deng G. Repair Effect of Umbilical Cord Mesenchymal Stem Cells Embedded in Hydrogel on Mouse Insulinoma 6 Cells Injured by Streptozotocin. Polymers (Basel) 2024; 16:1845. [PMID: 39000700 PMCID: PMC11244345 DOI: 10.3390/polym16131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) possess the capabilities of differentiation and immune modulation, which endow them with therapeutic potential in the treatment of type 2 diabetes mellitus (T2DM). In this study, to investigate the repair mechanism of UC-MSCs in hydrogel on pancreatic β-cells in diabetes, mouse insulinoma 6 (MIN-6) cells damaged by streptozotocin (STZ) in vitro were used in co-culture with UC-MSCs in hydrogel (UC-MSCs + hydrogel). It was found that UC-MSCs + hydrogel had a significant repair effect on injured MIN-6 cells, which was better than the use of UC-MSCs alone (without hydrogel). After repair, the expression of superoxide dismutase (SOD) and catalase (CAT) as well as the total antioxidant capacity (T-AOC) of the repaired MIN-6 cells were increased, effectively reducing the oxidative stress caused by STZ. In addition, UC-MSCs + hydrogel were able to curb the inflammatory response by promoting the expression of anti-inflammatory factor IL-10 and reducing inflammatory factor IL-1β. In addition, the expression of both nuclear antigen Ki67 for cell proliferation and insulin-related genes such as Pdx1 and MafA was increased in the repaired MIN-6 cells by UC-MSCs + hydrogel, suggesting that the repair effect promotes the proliferation of the injured MIN-6 cells. Compared with the use of UC-MSCs alone, UC-MSCs + hydrogel exhibit superior antioxidant stress resistance against injured MIN-6 cells, better proliferation effects and a longer survival time of UC-MSCs because the porous structure and hydrophilic properties of the hydrogel could affect the growth of cells and slow down their metabolic activities, resulting in a better repair effect on the injured MIN-6 cells.
Collapse
Affiliation(s)
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, China; (J.Y.); (M.W.); (S.C.); (Q.M.); (Z.L.); (B.Z.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Artimovič P, Badovská Z, Toporcerová S, Špaková I, Smolko L, Sabolová G, Kriváková E, Rabajdová M. Oxidative Stress and the Nrf2/PPARγ Axis in the Endometrium: Insights into Female Fertility. Cells 2024; 13:1081. [PMID: 38994935 PMCID: PMC11240766 DOI: 10.3390/cells13131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Successful pregnancy depends on precise molecular regulation of uterine physiology, especially during the menstrual cycle. Deregulated oxidative stress (OS), often influenced by inflammatory changes but also by environmental factors, represents a constant threat to this delicate balance. Oxidative stress induces a reciprocally regulated nuclear factor erythroid 2-related factor 2/peroxisome proliferator-activated receptor-gamma (Nrf2/PPARγ) pathway. However, increased PPARγ activity appears to be a double-edged sword in endometrial physiology. Activated PPARγ attenuates inflammation and attenuates OS to restore redox homeostasis. However, it also interferes with physiological processes during the menstrual cycle, such as hormonal signaling and angiogenesis. This review provides an elucidation of the molecular mechanisms that support the interplay between PPARγ and OS. Additionally, it offers fresh perspectives on the Nrf2/PPARγ pathway concerning endometrial receptivity and its potential implications for infertility.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Eva Kriváková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| |
Collapse
|
6
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
7
|
Zhou Z, Ou-yang C, Chen Q, Ren Z, Guo X, Lei M, Liu C, Yang X. Trafficking and effect of released DNA on cGAS-STING signaling pathway and cardiovascular disease. Front Immunol 2023; 14:1287130. [PMID: 38152400 PMCID: PMC10751357 DOI: 10.3389/fimmu.2023.1287130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Evidence from clinical research and animal studies indicates that inflammation is an important factor in the occurrence and development of cardiovascular disease (CVD). Emerging evidence shows that nucleic acids serve as crucial pathogen-associated molecular patterns (PAMPs) or non-infectious damage-associated molecular patterns (DAMPs), are released and then recognized by pattern recognition receptors (PRRs), which activates immunological signaling pathways for host defense. Mechanistically, the released nucleic acids activate cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING) to promote type I interferons (IFNs) production, which play an important regulatory function during the initiation of an innate immune response to various diseases, including CVD. This pathway represents an essential defense regulatory mechanism in an organism's innate immune system. In this review, we outline the overall profile of cGAS-STING signaling, summarize the latest findings on nucleic acid release and trafficking, and discuss their potential role in CVD. This review also sheds light on potential directions for future investigations on CVD.
Collapse
Affiliation(s)
- Zimo Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Changhan Ou-yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
8
|
Wei R, Han X, Li M, Ji Y, Zhang L, Christodoulou MI, Hameed Aga NJ, Zhang C, Gao R, Liu J, Fu J, Lu G, Xiao X, Liu X, Yang PC, McInnes IB, Sun Y, Gao P, Qin C, Huang SK, Zhou Y, Xu D. The nuclear cytokine IL-37a controls lethal cytokine storms primarily via IL-1R8-independent transcriptional upregulation of PPARγ. Cell Mol Immunol 2023; 20:1428-1444. [PMID: 37891333 PMCID: PMC10687103 DOI: 10.1038/s41423-023-01091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cytokine storms are crucial in the development of various inflammatory diseases, including sepsis and autoimmune disorders. The immunosuppressive cytokine INTERLEUKIN (IL)-37 consists of five isoforms (IL-37a-e). We identified IL-37a as a nuclear cytokine for the first time. Compared to IL-37b, IL-37a demonstrated greater efficacy in protecting against Toll-like receptor-induced cytokine hypersecretion and lethal endotoxic shock. The full-length (FL) form of IL-37a and the N-terminal fragment, which is processed by elastase, could translocate into cell nuclei through a distinctive nuclear localization sequence (NLS)/importin nuclear transport pathway. These forms exerted their regulatory effects independent of the IL-1R8 receptor by transcriptionally upregulating the nuclear receptor peroxisome proliferator-activated receptor (PPARγ). This process involved the recruitment of the H3K4 methyltransferase complex WDR5/MLL4/C/EBPβ and H3K4me1/2 to the enhancer/promoter of Pparg. The receptor-independent regulatory pathway of the nuclear IL-37a-PPARγ axis and receptor-dependent signaling by secreted IL-37a maintain homeostasis and are potential therapeutic targets for various inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biom--acromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Han
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyuan Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Yuan Ji
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Maria-Ioanna Christodoulou
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 2404, Cyprus
| | | | - Caiyan Zhang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiangning Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jinrong Fu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoyu Liu
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ying Sun
- Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Peisong Gao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.
| | - Shau-Ku Huang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, China.
| | - Yufeng Zhou
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State-level Regional Children's Medical Center, Children's Hospital of Fudan University at Xiamen (Xiamen Children's Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen, China.
| | - Damo Xu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
9
|
Zheng X, Wang L, Zhang Z, Tang H. The emerging roles of SUMOylation in pulmonary diseases. Mol Med 2023; 29:119. [PMID: 37670258 PMCID: PMC10478458 DOI: 10.1186/s10020-023-00719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Small ubiquitin-like modifier mediated modification (SUMOylation) is a critical post-translational modification that has a broad spectrum of biological functions, including genome replication and repair, transcriptional regulation, protein stability, and cell cycle progression. Perturbation or deregulation of a SUMOylation and deSUMOylation status has emerged as a new pathophysiological feature of lung diseases. In this review, we highlighted the link between SUMO pathway and lung diseases, especially the sumoylated substrate such as C/EBPα in bronchopulmonary dysplasia (BDP), PPARγ in pneumonia, TFII-I in asthma, HDAC2 in chronic obstructive pulmonary disease (COPD), KLF15 in hypoxic pulmonary hypertension (HPH), SMAD3 in idiopathic pulmonary fibrosis (IPF), and YTHDF2 in cancer. By exploring the impact of SUMOylation in pulmonary diseases, we intend to shed light on its potential to inspire the development of innovative diagnostic and therapeutic strategies, holding promise for improving patient outcomes and overall respiratory health.
Collapse
Affiliation(s)
- Xuyang Zheng
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China.
| | - Lingqiao Wang
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China
| | - Zhen Zhang
- Department of Orthopedics Surgery, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, P.R. China
| | - Huifang Tang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medicial Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China.
| |
Collapse
|
10
|
Garg M, Johri S, Chakraborty K. Immunomodulatory role of mitochondrial DAMPs: a missing link in pathology? FEBS J 2023; 290:4395-4418. [PMID: 35731715 DOI: 10.1111/febs.16563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
In accordance with the endosymbiotic theory, mitochondrial components bear characteristic prokaryotic signatures, which act as immunomodulatory molecules when released into the extramitochondrial compartment. These endogenous immune triggers, called mitochondrial damage-associated molecular patterns (mtDAMPs), have been implicated in the pathogenesis of various diseases, yet their role remains largely unexplored. In this review, we summarise the available literature on mtDAMPs in diseases, with a special focus on respiratory diseases. We highlight the need to bolster mtDAMP research using a multipronged approach, to study their effect on specific cell types, receptors and machinery in pathologies. We emphasise the lacunae in the current understanding of mtDAMPs, particularly in their cellular release and the chemical modifications they undergo. Finally, we conclude by proposing additional effects of mtDAMPs in diseases, specifically their role in modulating the immune system.
Collapse
Affiliation(s)
- Mayank Garg
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saumya Johri
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnendu Chakraborty
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
11
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
12
|
Larson-Casey JL, Liu S, Pyles JM, Lapi SE, Saleem K, Antony VB, Gonzalez ML, Crossman DK, Carter AB. Impaired PPARγ activation by cadmium exacerbates infection-induced lung injury. JCI Insight 2023; 8:e166608. [PMID: 36928191 PMCID: PMC10243824 DOI: 10.1172/jci.insight.166608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Emerging data indicate an association between environmental heavy metal exposure and lung disease, including lower respiratory tract infections (LRTIs). Here, we show by single-cell RNA sequencing an increase in Pparg gene expression in lung macrophages from mice exposed to cadmium and/or infected with Streptococcus pneumoniae. However, the heavy metal cadmium or infection mediated an inhibitory posttranslational modification of peroxisome proliferator-activated receptor γ (PPARγ) to exacerbate LRTIs. Cadmium and infection increased ERK activation to regulate PPARγ degradation in monocyte-derived macrophages. Mice harboring a conditional deletion of Pparg in monocyte-derived macrophages had more severe S. pneumoniae infection after cadmium exposure, showed greater lung injury, and had increased mortality. Inhibition of ERK activation with BVD-523 protected mice from lung injury after cadmium exposure or infection. Moreover, individuals residing in areas of high air cadmium levels had increased cadmium concentration in their bronchoalveolar lavage (BAL) fluid, increased barrier dysfunction, and showed PPARγ inhibition that was mediated, at least in part, by ERK activation in isolated BAL cells. These observations suggest that impaired activation of PPARγ in monocyte-derived macrophages exacerbates lung injury and the severity of LRTIs.
Collapse
Affiliation(s)
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine
| | | | | | - Komal Saleem
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Veena B. Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A. Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Shiraishi M, Suzuki K, Yamaguchi A. Effect of mechanical tension on fibroblast transcriptome profile and regulatory mechanisms of myocardial collagen turnover. FASEB J 2023; 37:e22841. [PMID: 36856975 DOI: 10.1096/fj.202201899r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Excess deposition of extracellular matrix in the myocardium is a predictor of reduced left ventricular function. Although reducing the hemodynamic load is known to improve myocardial fibrosis, the mechanisms underlying the reversal of the fibrosis have not been elucidated. We focused on the elasticity of myocardial tissue, which is assumed to influence the fibroblast phenotype. Normal and fibrotic myocardium were cultured in 16 kPa and 64 kPa silicone gel-coated dishes supplemented with recombinant TGFβ protein, respectively. Matrix-degrading myocardium was cultured in 64 kPa silicone gel-coated dishes with recombinant TGFβ protein and then in 16 kPa silicone gel-coated dishes. Cardiac fibroblasts were cultured in this three-part in vitro pathological models and compared. Fibroblasts differentiated into activated or matrix-degrading types in response to the pericellular environment. Comprehensive gene expression analysis of fibroblasts in each in vitro condition showed Selenbp1 to be one of the genes responsible for regulating differentiation of fibroblasts. In vitro knockdown of Selenbp1 enhanced fibroblast activation and inhibited conversion to the matrix-degrading form. In vivo knockdown of Selenbp1 resulted in structural changes in the left ventricle associated with progressive tissue fibrosis and left ventricular diastolic failure. Selenbp1 is involved in regulating fibroblast differentiation and appears to be one of the major molecules regulating collagen turnover in cardiac fibrosis.
Collapse
Affiliation(s)
- Manabu Shiraishi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
14
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
15
|
Liao D, Su X, Wang J, Yu J, Luo H, Tian W, Ye Z, He J. Pushing the envelope: Immune mechanism and application landscape of macrophage-activating lipopeptide-2. Front Immunol 2023; 14:1113715. [PMID: 36761746 PMCID: PMC9902699 DOI: 10.3389/fimmu.2023.1113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Mycoplasma fermentans can cause respiratory diseases, arthritis, genitourinary tract infections, and chronic fatigue syndrome and have been linked to the development of the human immunodeficiency virus. Because mycoplasma lacks a cell wall, its outer membrane lipoproteins are one of the main factors that induce inflammation in the organism and contribute to disease development. Macrophage-activating lipopeptide-2 (MALP-2) modulates the inflammatory response of monocytes/macrophages in a bidirectional fashion, indirectly enhances the cytotoxicity of NK cells, promotes oxidative bursts in neutrophils, upregulates surface markers on lymphocytes, enhances antigen presentation on dendritic cells and induces immune inflammatory responses in sebocytes and mesenchymal cells. MALP-2 is a promising vaccine adjuvant for this application. It also promotes vascular healing and regeneration, accelerates wound and bone healing, suppresses tumors and metastasis, and reduces lung infections and inflammation. MALP-2 has a simple structure, is easy to synthesize, and has promising prospects for clinical application. Therefore, this paper reviews the mechanisms of MALP-2 activation in immune cells, focusing on the application of MALP-2 in animals/humans to provide a basis for the study of pathogenesis in Mycoplasma fermentans and the translation of MALP-2 into clinical applications.
Collapse
Affiliation(s)
- Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Jun He,
| |
Collapse
|
16
|
Guo Y, Zuo W, Yin L, Gu T, Wang S, Fang Z, Wang B, Dong H, Hou W, Zuo Z, Deng J. Pioglitazone Attenuates Ischemic Stroke Aggravation By Blocking PPARγ Reduction and Inhibiting Chronic Inflammation in Diabetic Mice. Eur J Neurosci 2022; 56:4948-4961. [PMID: 35945686 DOI: 10.1111/ejn.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Diabetes can cause vascular remodeling and is associated with worse outcome after ischemic stroke. Pioglitazone is a commonly used anti-diabetic agent. However, it is not known whether pioglitazone use before ischemia could reduce brain ischemic injury. Pioglitazone was administered to 5-week-old db+ or db/db mice. Cerebral vascular remodeling was examined at the age of 9 weeks. Expression of peroxisome proliferator-activated receptor-γ (PPARγ), p-PPARγ (S112 and S273), nucleotide-binding domain (NOD)-like receptor protein 3 (Nlrp3), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was evaluated in the somatosensory cortex of mice. Neurological outcome was evaluated 24 h after brain ischemia. Results showed that early pioglitazone treatment provided a long-lasting effect of euglycemia but enhanced hyperlipidemia in the db/db mice. Diabetic mice exhibited increased vascular tortuosity, narrower middle cerebral artery (MCA) width and IgG leakage in the brain. These changes were blocked by early pioglitazone treatment. In diabetic animals, PPARγ expression was reduced and p-PPARγ at S273 but not S112, Nlrp3, IL-1β and TNF-α were increased in the somatosensory cortex. PPARγ decrease and Nlrp3 increase were mainly in the neurons of the diabetic brain, which was reversed by early pioglitazone treatment. Pioglitazone attenuated the aggravated neurological outcome after stroke in diabetic mice. But this protective effect was abolished through restoring cerebral inflammation by intracerebroventricular administration of IL-1β and TNF-α in pioglitazone treated diabetic mice before MCAO. In summary, early pioglitazone treatment attenuates cerebral vascular remodeling and ischemic brain injury possibly via blocking chronic neuroinflammation in the db/db mice.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Gu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bairen Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
17
|
Wijers CDM, Pham L, Menon S, Boyd KL, Noel HR, Skaar EP, Gaddy JA, Palmer LD, Noto MJ. Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infect Immun 2021; 89:e0045421. [PMID: 34460288 PMCID: PMC8594612 DOI: 10.1128/iai.00454-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1β) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1β production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.
Collapse
Affiliation(s)
- Christiaan D. M. Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, Kerala, India
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael J. Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Budai Z, Al-Zaeed N, Szentesi P, Halász H, Csernoch L, Szondy Z, Sarang Z. Impaired Skeletal Muscle Development and Regeneration in Transglutaminase 2 Knockout Mice. Cells 2021; 10:3089. [PMID: 34831312 PMCID: PMC8623654 DOI: 10.3390/cells10113089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle regeneration is triggered by local inflammation and is accompanied by phagocytosis of dead cells at the injury site. Efferocytosis regulates the inflammatory program in macrophages by initiating the conversion of their inflammatory phenotype into the healing one. While pro-inflammatory cytokines induce satellite cell proliferation and differentiation into myoblasts, growth factors, such as GDF3, released by healing macrophages drive myoblast fusion and myotube growth. Therefore, improper efferocytosis may lead to impaired muscle regeneration. Transglutaminase 2 (TG2) is a versatile enzyme participating in efferocytosis. Here, we show that TG2 ablation did not alter the skeletal muscle weights or sizes but led to the generation of small size myofibers and to decreased grip force in TG2 null mice. Following cardiotoxin-induced injury, the size of regenerating fibers was smaller, and the myoblast fusion was delayed in the tibialis anterior muscle of TG2 null mice. Loss of TG2 did not affect the efferocytic capacity of muscle macrophages but delayed their conversion to Ly6C-CD206+, GDF3 expressing cells. Finally, TG2 promoted myoblast fusion in differentiating C2C12 myoblasts. These results indicate that TG2 expressed by both macrophages and myoblasts contributes to proper myoblast fusion, and its ablation leads to impaired muscle development and regeneration in mice.
Collapse
Affiliation(s)
- Zsófia Budai
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - Nour Al-Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.S.); (L.C.)
| | - Hajnalka Halász
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.S.); (L.C.)
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|