1
|
Emont MP, Essene AL, Gulko A, Bozadjieva-Kramer N, Jacobs C, Nagesh S, Seeley RJ, Tsai LT, Rosen ED. Semaglutide and bariatric surgery induce distinct changes in the composition of mouse white adipose tissue. Mol Metab 2025; 95:102126. [PMID: 40139440 PMCID: PMC11999362 DOI: 10.1016/j.molmet.2025.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Adipose tissue is a central player in energy balance and glucose homeostasis, expanding in the face of caloric overload in order to store energy safely. If caloric overload continues unabated, however, adipose tissue becomes dysfunctional, leading to systemic metabolic compromise in the form of insulin resistance and type 2 diabetes. Changes in adipose tissue during the development of metabolic disease are varied and complex, made all the more so by the heterogeneity of cell types within the tissue. Here we present detailed comparisons of atlases of murine WAT in the setting of diet-induced obesity, as well as after weight loss induced by either vertical sleeve gastrectomy (VSG) or treatment with the GLP-1 receptor agonist semaglutide. We focus on identifying populations of cells that return to a lean-like phenotype versus those that persist from the obese state, and examine pathways regulated in these cell types across conditions. These data provide a resource for the study of the cell type changes in WAT during weight loss, and paint a clearer picture of the differences between adipose tissue from lean animals that have never been obese, versus those that have.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Adam L Essene
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soumya Nagesh
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Reinisch I, Ghosh A, Noé F, Sun W, Dong H, Leary P, Dietrich A, Hoffmann A, Blüher M, Wolfrum C. Unveiling adipose populations linked to metabolic health in obesity. Cell Metab 2025; 37:640-655.e4. [PMID: 39694039 DOI: 10.1016/j.cmet.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/06/2024] [Accepted: 11/10/2024] [Indexed: 12/20/2024]
Abstract
Precision medicine is still not considered as a standard of care in obesity treatment, despite a large heterogeneity in the metabolic phenotype of individuals with obesity. One of the strongest factors influencing the variability in metabolic disease risk is adipose tissue (AT) dysfunction; however, there is little understanding of the link between distinct cell populations, cell-type-specific transcriptional programs, and disease severity. Here, we generated a comprehensive cellular map of subcutaneous and visceral AT of individuals with metabolically healthy and unhealthy obesity. By combining single-nucleus RNA-sequencing data with bulk transcriptomics and clinical parameters, we identified that mesothelial cells, adipocytes, and adipocyte-progenitor cells exhibit the strongest correlation with metabolic disease. Furthermore, we uncovered cell-specific transcriptional programs, such as the transitioning of mesothelial cells to a mesenchymal phenotype, that are involved in uncoupling obesity from metabolic disease. Together, these findings provide valuable insights by revealing biological drivers of clinical endpoints.
Collapse
Affiliation(s)
- Isabel Reinisch
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Stem Cell Bio Regenerative Med Institute, Stanford University, Stanford, CA, USA
| | - Peter Leary
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Fu W, Lai Y, Li K, Yang Y, Guo X, Gong Q, Zhou X, Zhou L, Liu C, Zhang Z, So J, Zhang Y, Huang L, Lu G, Yi C, Wang Q, Fan C, Liu C, Wang J, Yu H, Zhao Y, Huang T, Roh HC, Liu T, Tang H, Qi J, Xu M, Zheng Y, Huang H, Li J. Neurotensin-neurotensin receptor 2 signaling in adipocytes suppresses food intake through regulating ceramide metabolism. Cell Res 2025; 35:117-131. [PMID: 39748047 PMCID: PMC11770130 DOI: 10.1038/s41422-024-01038-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025] Open
Abstract
Neurotensin (NTS) is a secretory peptide produced by lymphatic endothelial cells. Our previous study revealed that NTS suppressed the activity of brown adipose tissue via interactions with NTSR2. In the current study, we found that the depletion of Ntsr2 in white adipocytes upregulated food intake, while the local treatment of NTS suppressed food intake. Our mechanistic study revealed that suppression of NTS-NTSR2 signaling enhanced the phosphorylation of ceramide synthetase 2, increased the abundance of its products ceramides C20-C24, and downregulated the production of GDF15 in white adipose tissues, which was responsible for the elevation of food intake. We discovered a potential causal and positive correlation between serum C20-C24 ceramide levels and human food intake in four populations with different ages and ethnic backgrounds. Together, our study shows that NTS-NTSR2 signaling in white adipocytes can regulate food intake via its direct control of lipid metabolism and production of GDF15. The ceramides C20-C24 are key factors regulating food intake in mammals.
Collapse
Affiliation(s)
- Wei Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College, Henan University of Science and Technology, Luoyang, Henan, China
- National Center for Clinical Research of Metabolic Diseases, Luoyang Center for Endocrinology and Metabolism, Luoyang, Henan, China
- Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Yuanting Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kexin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qifan Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cenxi Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yufeng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyou Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qichu Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenyu Fan
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Chao Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Jiaxing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Yimin Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianping Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - He Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Todd LA, Le Dreff-Kerwin E, Bui-Marinos MP, Dharmasiddhi IPW, Vo NTK, Katzenback BA. Development and use of two Xenopus laevis spleen stromal cell lines to study the role of splenic stromal cells in anuran immune processes. Mol Immunol 2024; 176:96-110. [PMID: 39602982 DOI: 10.1016/j.molimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The spleen is an important immune organ in adult Xenopus laevis, supporting the differentiation of B cells and acting as the main peripheral lymphoid organ. Key to these processes are the supporting non-hematopoietic cells, or stromal cells, within the spleen tissue. Despite the importance of the spleen to frog immunity, few frog cell lines originating from spleen tissue have been reported. In this study, we report on the establishment and characterization of two cell lines originating from X. laevis spleen tissue, Xela S5F and Xela S5E. Morphological observations and gene expression profiling suggest that Xela S5F is fibroblast-like and Xela S5E is epithelial-like. Both cell lines express transcripts corresponding to a variety of hematopoietic growth factors, suggesting their potential utility as a feeder cell line to support ex vivo myelopoietic cell differentiation. Xela S5F and Xela S5E produce transcripts for a diversity of pattern recognition receptors including toll-like receptors, scavenger receptors, and cytosolic nucleic acid sensors, suggesting anuran spleen stromal cells may be important cellular sensors of pathogens filtered through the spleen. This idea is supported by the increase in transcript levels for antiviral and proinflammatory genes in both cell lines in response to treatment with the commercially available toll-like receptor ligands, flagellin and poly(I:C). However, despite the ability to sense extracellular synthetic analogues of viral nucleic acids [i.e. poly(I:C)] and susceptibility and permissibility of both cell lines to frog virus 3 (FV3), a large double-stranded DNA virus that infects amphibians, neither cell line upregulates key antiviral or proinflammatory transcripts when challenged with FV3. The establishment of Xela S5F and S5E cell lines expands the current X. laevis invitrome and provides new in vitro cell model systems to investigate the role of splenic stromal cells in anuran immune functions.
Collapse
Affiliation(s)
- Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | | | | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|
5
|
Ferrero R, Rainer PY, Rumpler M, Russeil J, Zachara M, Pezoldt J, van Mierlo G, Gardeux V, Saelens W, Alpern D, Favre L, Vionnet N, Mantziari S, Zingg T, Pitteloud N, Suter M, Matter M, Schlaudraff KU, Canto C, Deplancke B. A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion. Cell Metab 2024; 36:1566-1585.e9. [PMID: 38729152 DOI: 10.1016/j.cmet.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of >30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions. Furthermore, we identified an omental-specific, high IGFBP2-expressing stromal population that transitions between mesothelial and mesenchymal cell states and inhibits hASPC adipogenesis through IGFBP2 secretion. Our analyses highlight the molecular and cellular uniqueness of different adipose niches, while our discovery of an anti-adipogenic IGFBP2+ omental-specific population provides a new rationale for the biomedically relevant, limited adipogenic capacity of omental hASPCs.
Collapse
Affiliation(s)
- Radiana Ferrero
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Pernille Yde Rainer
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marie Rumpler
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Magda Zachara
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joern Pezoldt
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Daniel Alpern
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Lucie Favre
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Nathalie Vionnet
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Styliani Mantziari
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Tobias Zingg
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Michel Suter
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Maurice Matter
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | | | - Carles Canto
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Daley AD, Bénézech C. Fat-associated lymphoid clusters: Supporting visceral adipose tissue B cell function in immunity and metabolism. Immunol Rev 2024; 324:78-94. [PMID: 38717136 DOI: 10.1111/imr.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.
Collapse
Affiliation(s)
- Alexander D Daley
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Xu J, Deng Y, Li G. Keratin 19 (Krt19) is a novel marker gene for epicardial cells. Front Genet 2024; 15:1385867. [PMID: 38831775 PMCID: PMC11145414 DOI: 10.3389/fgene.2024.1385867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Epicardial cells regulate heart growth by secreting numerous growth factors and undergoing lineage specification into other cardiac lineages. However, the lack of specific marker genes for epicardial cells has hindered the understanding of this cell type in heart development. Through the analysis of a cardiac single cell mRNA sequencing dataset, we identified a novel epicardial gene named Keratin 19 (Krt19). Further analysis of the expression patterns of Krt19 and Wt1, a well-known epicardial gene, revealed their preferences in major cardiac cell types. Using lineage-tracing analysis, we analyzed Krt19-CreER labeled cells at multiple time windows and found that it labels epicardial cells at both embryonic and neonatal stages. Furthermore, we studied the function of epicardial cells using a diphtheria toxin A chain (DTA)-based cell ablation system. We discovered that Krt19-CreER labeled cells are essential for fetal heart development. Finally, we investigated the function of Krt19-CreER and Wt1-CreER labeled cells in neonatal mouse development. We observed that the Krt19-CreER; Rosa-DTA mice displayed a smaller size after tamoxifen treatment, suggesting the potential importance of Krt19-CreER labeled cells in neonatal mouse development. Additionally, we found that Wt1-CreER; Rosa-DTA mice died at early stages, likely due to defects in the kidney and spleen. In summary, we have identified Krt19 as a new epicardial cell marker gene and further explored the function of epicardial cells using the Krt19-CreER and Wt1-CreER-mediated DTA ablation system.
Collapse
Affiliation(s)
| | | | - Guang Li
- Department of Cell Biology, Center for Integrative Organ Systems, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Xie L, Hu W, Zhang H, Ding Y, Zeng Q, Liao X, Wang D, Xie W, Hui HX, Deng T. Single-nucleus RNA sequencing reveals heterogeneity among multiple white adipose tissue depots. LIFE METABOLISM 2023; 2:load045. [PMID: 39872854 PMCID: PMC11748973 DOI: 10.1093/lifemeta/load045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2025]
Abstract
Regardless of its anatomical site, adipose tissue shares a common energy-storage role but exhibits distinctive properties. Exploring the cellular and molecular heterogeneity of white adipose tissue (WAT) is crucial for comprehending its function and properties. However, existing single-nucleus RNA sequencing (snRNA-seq) studies of adipose tissue heterogeneity have examined only one or two depots. In this study, we employed snRNA-seq to test five representative depots including inguinal, epididymal, mesenteric, perirenal, and pericardial adipose tissues in mice under physiological conditions. By analyzing the contents of main cell categories and gene profiles of various depots, we identified their distinctive physiological properties. Immune cells and fibro-adipogenic progenitor cells (FAPs) showed dramatic differences among WAT depots, while adipocytes seemed to be conserved. The heightened presence of regulatory macrophages and B cells in pericardial adipose tissues implied their potential contribution to the preservation of coronary vascular function. Moreover, the selective aggregation of pericytes within mesenteric adipose tissue was likely associated with the maintenance of intestinal barrier homeostasis. Using a combination of RNA sequencing and snRNA-seq analysis, the major subpopulations of FAPs derived from these depots determined the site characteristics of FAPs to a certain extent. Our work establishes a systematic and reliable foundation for investigating the heterogeneity of WAT depots and elucidating the unique roles these depots play in coordinating the function of adjacent organs.
Collapse
Affiliation(s)
- Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haowei Zhang
- The First Affiliated Hospital, Department of Orthopedics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wanqin Xie
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410028, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
Ford H, Liu Q, Fu X, Strieder-Barboza C. White Adipose Tissue Heterogeneity in the Single-Cell Era: From Mice and Humans to Cattle. BIOLOGY 2023; 12:1289. [PMID: 37886999 PMCID: PMC10604679 DOI: 10.3390/biology12101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissue is a major modulator of metabolic function by regulating energy storage and by acting as an endocrine organ through the secretion of adipokines. With the advantage of next-generation sequencing-based single-cell technologies, adipose tissue has been studied at single-cell resolution, thus providing unbiased insight into its molecular composition. Recent single-cell RNA sequencing studies in human and mouse models have dissected the transcriptional cellular heterogeneity of subcutaneous (SAT), visceral (VAT), and intramuscular (IMAT) white adipose tissue depots and revealed unique populations of adipose tissue progenitor cells, mature adipocytes, immune cell, vascular cells, and mesothelial cells that play direct roles on adipose tissue function and the development of metabolic disorders. In livestock species, especially in bovine, significant gaps of knowledge remain in elucidating the roles of adipose tissue cell types and depots on driving the pathogenesis of metabolic disorders and the distinct fat deposition in VAT, SAT, and IMAT in meat animals. This review summarizes the current knowledge on the transcriptional and functional cellular diversity of white adipose tissue revealed by single-cell approaches and highlights the depot-specific function of adipose tissue in different mammalian species, with a particular focus on recent findings and future implications in cattle.
Collapse
Affiliation(s)
- Hunter Ford
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
| | - Qianglin Liu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Xing Fu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
10
|
Garritson JD, Zhang J, Achenbach A, Ferhat M, Eich E, Stubben CJ, Martinez PL, Ibele AR, Hilgendorf KI, Boudina S. BMPER is a marker of adipose progenitors and adipocytes and a positive modulator of adipogenesis. Commun Biol 2023; 6:638. [PMID: 37311809 PMCID: PMC10264349 DOI: 10.1038/s42003-023-05011-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Autocrine and paracrine signaling regulating adipogenesis in white adipose tissue remains largely unclear. Here we used single-cell RNA-sequencing (RNA-seq) and single nuclei RNA-sequencing (snRNA-seq) to identify markers of adipose progenitor cells (APCs) and adipogenic modulators in visceral adipose tissue (VAT) of humans and mice. Our study confirmed the presence of major cellular clusters in humans and mice and established important sex and diet-specific dissimilarities in cell proportions. Here we show that bone morphogenetic protein (BMP)-binding endothelial regulator (BMPER) is a conserved marker for APCs and adipocytes in VAT in humans and mice. Further, BMPER is highly enriched in lineage negative stromal vascular cells and its expression is significantly higher in visceral compared to subcutaneous APCs in mice. BMPER expression and release peaked by day four post-differentiation in 3T3-L1 preadipocytes. We reveal that BMPER is required for adipogenesis both in 3T3-L1 preadipocytes and in mouse APCs. Together, this study identified BMPER as a positive modulator of adipogenesis.
Collapse
Affiliation(s)
- Jacob D Garritson
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Alan Achenbach
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maroua Ferhat
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Emile Eich
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chris J Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Paige L Martinez
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna R Ibele
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Keren I Hilgendorf
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
11
|
Abstract
The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.
Collapse
Affiliation(s)
- Chelsea Hepler
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
12
|
Emont MP, Rosen ED. Exploring the heterogeneity of white adipose tissue in mouse and man. Curr Opin Genet Dev 2023; 80:102045. [PMID: 37094486 PMCID: PMC10330284 DOI: 10.1016/j.gde.2023.102045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Adipose tissue is a heterogeneous organ, comprising cell types, including mature adipocytes, progenitor cells, immune cells, and vascular cells. Here, we discuss the heterogeneity of human and mouse white adipose tissue in general and white adipocytes specifically, focusing on how our understanding of adipocyte subpopulations has expanded with the advent of single nuclear RNA sequencing and spatial transcriptomics. Furthermore, we discuss critical remaining questions regarding how these distinct populations arise, how their functions differ from one another, and which potentially contribute to metabolic pathophysiology.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA.
| |
Collapse
|
13
|
English J, Orofino J, Cederquist CT, Paul I, Li H, Auwerx J, Emili A, Belkina A, Cardamone D, Perissi V. GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity. Mol Metab 2023; 69:101682. [PMID: 36731652 PMCID: PMC9922684 DOI: 10.1016/j.molmet.2023.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells. METHODS We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding. RESULTS Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion. CONCLUSIONS Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the 'secretome' released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Carly T. Cederquist
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Indranil Paul
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Anna Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
14
|
Boulet N, Briot A, Galitzky J, Bouloumié A. The Sexual Dimorphism of Human Adipose Depots. Biomedicines 2022; 10:2615. [PMID: 36289874 PMCID: PMC9599294 DOI: 10.3390/biomedicines10102615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 08/21/2023] Open
Abstract
The amount and the distribution of body fat exhibit trajectories that are sex- and human species-specific and both are determinants for health. The enhanced accumulation of fat in the truncal part of the body as a risk factor for cardiovascular and metabolic diseases is well supported by epidemiological studies. In addition, a possible independent protective role of the gluteofemoral fat compartment and of the brown adipose tissue is emerging. The present narrative review summarizes the current knowledge on sexual dimorphism in fat depot amount and repartition and consequences on cardiometabolic and reproductive health. The drivers of the sex differences and fat depot repartition, considered to be the results of complex interactions between sex determination pathways determined by the sex chromosome composition, genetic variability, sex hormones and the environment, are discussed. Finally, the inter- and intra-depot heterogeneity in adipocytes and progenitors, emphasized recently by unbiased large-scale approaches, is highlighted.
Collapse
Affiliation(s)
| | | | | | - Anne Bouloumié
- Inserm, Unité Mixte de Recherche (UMR) 1297, Team 1, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, F-31432 Toulouse, France
| |
Collapse
|
15
|
Michelotti TC, Kisby BR, Flores LS, Tegeler AP, Fokar M, Crasto C, Menarim BC, Loux SC, Strieder-Barboza C. Single-nuclei analysis reveals depot-specific transcriptional heterogeneity and depot-specific cell types in adipose tissue of dairy cows. Front Cell Dev Biol 2022; 10:1025240. [PMID: 36313560 PMCID: PMC9616121 DOI: 10.3389/fcell.2022.1025240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue (AT) is an endocrine organ with a central role on whole-body energy metabolism and development of metabolic diseases. Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, respectively) analyses in mice and human AT have revealed vast cell heterogeneity and functionally distinct subtypes that are potential therapeutic targets to metabolic disease. In periparturient dairy cows, AT goes through intensive remodeling and its dysfunction is associated with metabolic disease pathogenesis and decreased productive performance. The contributions of depot-specific cells and subtypes to the development of diseases in dairy cows remain to be studied. Our objective was to elucidate differences in cellular diversity of visceral (VAT) and subcutaneous (SAT) AT in dairy cows at the single-nuclei level. We collected matched SAT and VAT samples from three dairy cows and performed snRNA-seq analysis. We identified distinct cell types including four major mature adipocytes (AD) and three stem and progenitor cells (ASPC) subtypes, along with endothelial cells (EC), mesothelial cells (ME), immune cells, and pericytes and smooth muscle cells. All major cell types were present in both SAT and VAT, although a strong VAT-specificity was observed for ME, which were basically absent in SAT. One ASPC subtype was defined as adipogenic (PPARG+) while the other two had a fibro-adipogenic profile (PDGFRA+). We identified vascular and lymphatic EC subtypes, and different immune cell types and subtypes in both SAT and VAT, i.e., macrophages, monocytes, T cells, and natural killer cells. Not only did VAT show a greater proportion of immune cells, but these visceral immune cells had greater activation of pathways related to immune and inflammatory response, and complement cascade in comparison with SAT. There was a substantial contrast between depots for gene expression of complement cascade, which were greatly expressed by VAT cell subtypes compared to SAT, indicating a pro-inflammatory profile in VAT. Unprecedently, our study demonstrated cell-type and depot-specific heterogeneity in VAT and SAT of dairy cows. A better understanding of depot-specific molecular and cellular features of SAT and VAT will aid in the development of AT-targeted strategies to prevent and treat metabolic disease in dairy cows, especially during the periparturient period.
Collapse
Affiliation(s)
- Tainara C. Michelotti
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX, United States
| | - Lauryn S. Flores
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Alexandra P. Tegeler
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
- Department of Computer Science, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, United States
- Department of University Studies, Texas Tech University, Lubbock, TX, United States
| | - Bruno C. Menarim
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Shavahn C. Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- *Correspondence: Clarissa Strieder-Barboza,
| |
Collapse
|
16
|
Zhang Q, Shan B, Guo L, Shao M, Vishvanath L, Elmquist G, Xu L, Gupta RK. Distinct functional properties of murine perinatal and adult adipose progenitor subpopulations. Nat Metab 2022; 4:1055-1070. [PMID: 35982290 PMCID: PMC9940036 DOI: 10.1038/s42255-022-00613-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Adult white adipose tissue (WAT) harbors distinct mesenchymal stromal cell subpopulations that differentially affect WAT function and plasticity. Here we unveil the cellular landscape of the perinatal epididymal WAT primordium using single-cell transcriptomics in male mice. We reveal that adipocyte precursor cells and fibro-inflammatory progenitors (FIPs) emerge as functionally distinct PDGFRβ+ subpopulations within the epididymal WAT anlagen prior to adipocyte accrual. We further identify important molecular and functional differences between perinatal and adult FIPs, including differences in their pro-inflammatory response, adipogenic capacity and anti-adipogenic behavior. Notably, we find that transient overexpression of Pparg in PDGFRβ+ cells only during postnatal days 0.5 to 7.5 in male mice leads to hyperplastic WAT development, durable progenitor cell reprogramming, and protection against pathologic WAT remodeling and glucose intolerance in adult-onset obesity. Thus, factors that alter the adipogenic capacity of perinatal adipose progenitors can have long-lasting effects on progenitor plasticity, tissue expandability and metabolic health into adulthood.
Collapse
Affiliation(s)
- Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Elmquist
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Lecoutre S, Lambert M, Drygalski K, Dugail I, Maqdasy S, Hautefeuille M, Clément K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022; 11:cells11152310. [PMID: 35954152 PMCID: PMC9367348 DOI: 10.3390/cells11152310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Mélanie Lambert
- Labex Inflamex, Université Sorbonne Paris Nord, INSERM, F-93000 Bobigny, France;
| | - Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), IBPS, Sorbonne Université, F-75005 Paris, France;
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
- Assistance Publique Hôpitaux de Paris, Nutrition Department, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
- Correspondence: or
| |
Collapse
|
18
|
Factors Associated with White Fat Browning: New Regulators of Lipid Metabolism. Int J Mol Sci 2022; 23:ijms23147641. [PMID: 35886989 PMCID: PMC9325132 DOI: 10.3390/ijms23147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Mammalian adipose tissue can be divided into white and brown adipose tissue based on its colour, location, and cellular structure. Certain conditions, such as sympathetic nerve excitement, can induce the white adipose adipocytes into a new type of adipocytes, known as beige adipocytes. The process, leading to the conversion of white adipocytes into beige adipocytes, is called white fat browning. The dynamic balance between white and beige adipocytes is closely related to the body’s metabolic homeostasis. Studying the signal transduction pathways of the white fat browning might provide novel ideas for the treatment of obesity and alleviation of obesity-related glucose and lipid metabolism disorders. This article aimed to provide an overview of recent advances in understanding white fat browning and the role of BAT in lipid metabolism.
Collapse
|
19
|
Duerre DJ, Galmozzi A. Deconstructing Adipose Tissue Heterogeneity One Cell at a Time. Front Endocrinol (Lausanne) 2022; 13:847291. [PMID: 35399946 PMCID: PMC8990929 DOI: 10.3389/fendo.2022.847291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
As a central coordinator of physiologic metabolism, adipose tissue has long been appreciated as a highly plastic organ that dynamically responds to environmental cues. Once thought of as a homogenous storage depot, recent advances have enabled deep characterizations of the underlying structure and composition of adipose tissue depots. As the obesity and metabolic disease epidemics continue to accelerate due to modern lifestyles and an aging population, elucidation of the underlying mechanisms that control adipose and systemic homeostasis are of critical importance. Within the past decade, the emergence of deep cell profiling at tissue- and, recently, single-cell level has furthered our understanding of the complex dynamics that contribute to tissue function and their implications in disease development. Although many paradigm-shifting findings may lie ahead, profound advances have been made to forward our understanding of the adipose tissue niche in both health and disease. Now widely accepted as a highly heterogenous organ with major roles in metabolic homeostasis, endocrine signaling, and immune function, the study of adipose tissue dynamics has reached a new frontier. In this review, we will provide a synthesis of the latest advances in adipose tissue biology made possible by the use of single-cell technologies, the impact of epigenetic mechanisms on adipose function, and suggest what next steps will further our understanding of the role that adipose tissue plays in systemic physiology.
Collapse
Affiliation(s)
- Dylan J. Duerre
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
20
|
Kirschner KM, Scholz H. WT1 in Adipose Tissue: From Development to Adult Physiology. Front Cell Dev Biol 2022; 10:854120. [PMID: 35372335 PMCID: PMC8965737 DOI: 10.3389/fcell.2022.854120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Much of the fascination of the Wilms tumor protein (WT1) emanates from its unique roles in development and disease. Ubiquitous Wt1 deletion in adult mice causes multiple organ failure including a reduction of body fat. WT1 is expressed in fat cell progenitors in visceral white adipose tissue (WAT) but detected neither in energy storing subcutaneous WAT nor in heat producing brown adipose tissue (BAT). Our recent findings indicate that WT1 represses thermogenic genes and maintains the white adipose identity of visceral fat. Wt1 heterozygosity in mice is associated with molecular and morphological signs of browning including elevated levels of uncoupling protein 1 (UCP1) in epididymal WAT. Compared to their wild-type littermates, Wt1 heterozygous mice exhibit significantly improved whole-body glucose tolerance and alleviated hepatic steatosis under high-fat diet. Partial protection of heterozygous Wt1 knockout mice against metabolic dysfunction is presumably related to browning of their epididymal WAT. In the light of recent advancements, this article reviews the role of WT1 in the development of visceral WAT and its supposed function as a regulator of white adipose identity.
Collapse
|
21
|
Localization of aquaglyceroporins in human and murine white adipose tissue. Histochem Cell Biol 2022; 157:623-639. [PMID: 35235046 DOI: 10.1007/s00418-022-02090-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
The glycerol channel AQP7 facilitates glycerol efflux from adipose tissue (AT), and AQP7 deficiency has been suggested to promote obesity. However, the release of glycerol from AT is not fully blocked in AQP7-deficient mice, which suggests that either alternative glycerol channels are present in AT or significant simple diffusion of glycerol occurs. Previous investigations of the expression of other aquaglyceroporins (AQP3, AQP9, AQP10) than AQP7 in AT are contradictory. Therefore, we here aim at determining the cellular localization of AQP3 and AQP9 in addition to AQP7 in human and mouse AT using well-characterized antibodies for immunohistochemistry (IHC) and immunoblotting as well as available single-cell transcriptomic data from human and mouse AT. We confirm that AQP7 is expressed in endothelial cells and adipocytes in human AT and find ex vivo evidence for interaction between AQP7 and perilipin-1 in adipocytes. In addition, labeling for AQP7 in human AT also includes CD68-positive cells. No labeling for AQP3 or AQP9 was identified in endothelial cells or adipocytes in human or mouse AT using IHC. Instead, in human AT, AQP3 was predominantly found in erythrocytes, whereas AQP9 expression was observed in a small number of CD15-positive cells. The transcriptomic data revealed that AQP3 mRNA was found in a low number of cells in most of the identified cell clusters, whereas AQP9 mRNA was found in myeloid cell clusters as well as in clusters likely representing mesothelial progenitor cells. No AQP10 mRNA was identified in human AT. In conclusion, the presented results do not suggest a functional overlap between AQP3/AQP9/AQP10 and AQP7 in human or mouse white AT.
Collapse
|
22
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 421] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
23
|
Abstract
Obesity is a chronic and progressive process affecting whole-body energy balance and is associated with comorbidities development. In addition to increased fat mass, obesity induces white adipose tissue (WAT) inflammation and fibrosis, leading to local and systemic metabolic dysfunctions, such as insulin resistance (IR). Accordingly, limiting inflammation or fibrosis deposition may improve IR and glucose homeostasis. Although no targeted therapy yet exists to slow or reverse adipose tissue fibrosis, a number of findings have clarified the underlying cellular and molecular mechanisms. In this review, we highlight adipose tissue remodeling events shown to be associated with fibrosis deposition, with a focus on adipose progenitors involved in obesity-induced healthy as well as unhealthy WAT expansion. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Geneviève Marcelin
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; ,
| | | | - Karine Clément
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; , .,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
24
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|