1
|
Green EH, Kotrannavar SR, Rutherford ME, Lunnemann HM, Kaur H, Heiser CN, Ding H, Simmons AJ, Liu X, Lacy DB, Washington MK, Shrubsole MJ, Liu Q, Lau KS, Sears CL, Coffey RJ, Drewes JL, Markham NO. Multiomic spatial atlas shows deleted in malignant brain tumors 1 (DMBT1) glycoprotein is lost in colonic dysplasia. J Pathol 2025; 266:51-65. [PMID: 40026233 PMCID: PMC11985286 DOI: 10.1002/path.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is responsible for over 900,000 annual deaths worldwide. Emerging evidence supports pro-carcinogenic bacteria in the colonic microbiome are at least promotional in CRC development and may be causal. We previously showed toxigenic C. difficile from human CRC-associated bacterial biofilms accelerates tumorigenesis in ApcMin/+ mice, both in specific pathogen-free mice and in gnotobiotic mice colonized with a defined consortium of bacteria. To further understand host-microbe interactions during colonic tumorigenesis, we combined single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and immunofluorescence to define the molecular spatial organization of colonic dysplasia in our consortium model with or without C. difficile. Our data show a striking bipartite regulation of Deleted in Malignant Brain Tumors 1 (DMBT1) in the inflamed versus dysplastic colon. From scRNA-seq, differential gene expression analysis of normal absorptive colonocytes at 2 weeks postinoculation showed DMBT1 upregulated by C. difficile compared to colonocytes from mice without C. difficile exposure. In contrast, our spatial transcriptomic analysis showed DMBT1 dramatically downregulated in dysplastic foci compared with normal-adjacent tissue. We further integrated our datasets to generate custom colonic dysplasia scores and ligand-receptor mapping. Validation with immunofluorescence showed DMBT1 protein downregulated in dysplastic foci from three mouse models of colonic tumorigenesis and in adenomatous dysplasia from human samples. Finally, we used mouse and human organoids to implicate WNT signaling in the downregulation of DMBT1 mRNA and protein. Together, our data reveal cell type-specific regulation of DMBT1, a potential mechanistic link between bacteria and colonic tumorigenesis. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Emily H Green
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | | | - Megan E Rutherford
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Hannah M Lunnemann
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Harsimran Kaur
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Chemical and Physical Biology ProgramVanderbilt UniversityNashvilleTNUSA
| | - Cody N Heiser
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Hua Ding
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Alan J Simmons
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Xiao Liu
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - M Kay Washington
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Martha J Shrubsole
- Vanderbilt Epidemiology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Qi Liu
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Ken S Lau
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Cynthia L Sears
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Robert J Coffey
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Nicholas O Markham
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
2
|
Rizo JA, Ahmad V, Pru JM, Winuthayanon S, Challa S, Kim TH, Jeong JW, Spencer TE, Kelleher AM. Uterine organoids reveal insights into epithelial specification and plasticity in development and disease. Proc Natl Acad Sci U S A 2025; 122:e2422694122. [PMID: 39883834 PMCID: PMC11804710 DOI: 10.1073/pnas.2422694122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025] Open
Abstract
Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation. Our findings demonstrate that uterine epithelium undergoes marked age-dependent changes, transitioning from a highly plastic state capable of forming both monolayered and multilayered structures to a more restricted fate as development progresses. Interestingly, parallels emerge between the developmental plasticity of neonatal uterine epithelium and pathological conditions such as endometrial cancer, where similar regulatory mechanisms may reactivate, driving abnormal epithelial differentiation and tumorigenesis. These results not only deepen our understanding of early uterine development but also offer a valuable model for studying the progression of reproductive diseases and cancers.
Collapse
Affiliation(s)
- Jason A. Rizo
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Vakil Ahmad
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Jacob M. Pru
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sarayut Winuthayanon
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL60637
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL60637
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| |
Collapse
|
3
|
Ma Q, Meng M, Zhou X, Guo W, Feng K, Huang T, Cai YD. Identification of Key Genes in Fetal Gut Development at Single-Cell Level by Exploiting Machine Learning Techniques. Proteomics 2024; 24:e202400104. [PMID: 39324223 DOI: 10.1002/pmic.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The study of fetal gut development is critical due to its substantial influence on immediate neonatal and long-term adult health. Current research largely focuses on microbiome colonization, gut immunity, and barrier function, alongside the impact of external factors on these phenomena. Limited research has been dedicated to the categorization of developing fetal gut cells. Our study aimed to enhance our understanding of fetal gut development by employing advanced machine-learning techniques on single-cell sequencing data. This dataset consisted of 62,849 samples, each characterized by 33,694 distinct gene features. Four feature ranking algorithms were utilized to sort features according to their significance, resulting in four feature lists. Then, these lists were fed into an incremental feature selection method to extract essential genes, classification rules, and build efficient classifiers. Several important genes were recognized by multiple feature ranking algorithms, such as FGG, MDK, RBP1, RBP2, IGFBP7, and SPON2. These features were key in differentiating specific developing intestinal cells, including epithelial, immune, mesenchymal, and vasculature cells of the colon, duo jejunum, and ileum cells. The classification rules showed special gene expression patterns on some intestinal cell types and the efficient classifiers can be useful tools for identifying intestinal cells.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Mei Meng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Nascakova Z, He J, Papa G, Francas B, Azizi F, Müller A. Helicobacter pylori induces the expression of Lgr5 and stem cell properties in gastric target cells. Life Sci Alliance 2024; 7:e202402783. [PMID: 39191487 PMCID: PMC11350067 DOI: 10.26508/lsa.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Helicobacter pylori infection predisposes carriers to a high risk of developing gastric cancer. The cell-of-origin of antral gastric cancer is the Lgr5+ stem cell. Here, we show that infection of antrum-derived gastric organoid cells with H. pylori increases the expression of the stem cell marker Lgr5 as determined by immunofluorescence microscopy, qRT-PCR, and Western blotting, both when cells are grown and infected as monolayers and when cells are exposed to H. pylori in 3D structures. H. pylori exposure increases stemness properties as determined by spheroid formation assay. Lgr5 expression and the acquisition of stemness depend on a functional type IV secretion system (T4SS) and at least partly on the T4SS effector CagA. The pharmacological inhibition or genetic ablation of NF-κB reverses the increase in Lgr5 and spheroid formation. Constitutively active Wnt/β-catenin signaling because of Apc inactivation exacerbates H. pylori-induced Lgr5 expression and stemness, both of which persist even after eradication of the infection. The combined data indicate that H. pylori has stemness-inducing properties that depend on its ability to activate NF-κB signaling.
Collapse
Affiliation(s)
- Zuzana Nascakova
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Jiazhuo He
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Giovanni Papa
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Biel Francas
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Flora Azizi
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Comprehensive Cancer Center Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Westfall AK, Gopalan SS, Kay JC, Tippetts TS, Cervantes MB, Lackey K, Chowdhury SM, Pellegrino MW, Castoe TA. Single-cell resolution of intestinal regeneration in pythons without crypts illuminates conserved vertebrate regenerative mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2405463121. [PMID: 39423244 PMCID: PMC11513969 DOI: 10.1073/pnas.2405463121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Canonical models of intestinal regeneration emphasize the critical role of the crypt stem cell niche to generate enterocytes that migrate to villus ends. Burmese pythons possess extreme intestinal regenerative capacity yet lack crypts, thus providing opportunities to identify noncanonical but potentially conserved mechanisms that expand our understanding of regenerative capacity in vertebrates, including humans. Here, we leverage single-nucleus RNA sequencing of fasted and postprandial python small intestine to identify the signaling pathways and cell-cell interactions underlying the python's regenerative response. We find that python intestinal regeneration entails the activation of multiple conserved mechanisms of growth and stress response, including core lipid metabolism pathways and the unfolded protein response in intestinal enterocytes. Our single-cell resolution highlights extensive heterogeneity in mesenchymal cell population signaling and intercellular communication that directs major tissue restructuring and the shift out of a dormant fasted state by activating both embryonic developmental and wound healing pathways. We also identify distinct roles of BEST4+ enterocytes in coordinating key regenerative transitions via NOTCH signaling. Python intestinal regeneration shares key signaling features and molecules with mammalian gastric bypass, indicating that conserved regenerative programs are common to both. Our findings provide different insights into cooperative and conserved regenerative programs and intercellular interactions in vertebrates independent of crypts which have been otherwise obscured in model species where temporal phases of generative growth are limited to embryonic development or recovery from injury.
Collapse
Affiliation(s)
- Aundrea K. Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | | | - Jarren C. Kay
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Trevor S. Tippetts
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Margaret B. Cervantes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Kimberly Lackey
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX76019
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| |
Collapse
|
6
|
Islam M, Yang Y, Simmons AJ, Shah VM, Musale KP, Xu Y, Tasneem N, Chen Z, Trinh LT, Molina P, Ramirez-Solano MA, Sadien ID, Dou J, Rolong A, Chen K, Magnuson MA, Rathmell JC, Macara IG, Winton DJ, Liu Q, Zafar H, Kalhor R, Church GM, Shrubsole MJ, Coffey RJ, Lau KS. Temporal recording of mammalian development and precancer. Nature 2024; 634:1187-1195. [PMID: 39478207 PMCID: PMC11525190 DOI: 10.1038/s41586-024-07954-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/15/2024] [Indexed: 11/02/2024]
Abstract
Temporal ordering of cellular events offers fundamental insights into biological phenomena. Although this is traditionally achieved through continuous direct observations1,2, an alternative solution leverages irreversible genetic changes, such as naturally occurring mutations, to create indelible marks that enables retrospective temporal ordering3-5. Using a multipurpose, single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo, with incorporation of cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during mouse embryonic development, unconventional developmental relationships between cell types and new epithelial progenitor states by their unique genetic histories. Analysis of mouse adenomas, coupled to multiomic and single-cell profiling of human precancers, with clonal analysis of 418 human polyps, demonstrated the occurrence of polyclonal initiation in 15-30% of colonic precancers, showing their origins from multiple normal founders. Our study presents a multimodal framework that lays the foundation for in vivo recording, integrating synthetic or natural indelible genetic changes with single-cell analyses, to explore the origins and timing of development and tumorigenesis in mammalian systems.
Collapse
Affiliation(s)
- Mirazul Islam
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Vishal M Shah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Krushna Pavan Musale
- Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Zhengyi Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Linh T Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Paola Molina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Iannish D Sadien
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian G Macara
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hamim Zafar
- Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Fey SK, Vaquero-Siguero N, Jackstadt R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43:114270. [PMID: 38787726 DOI: 10.1016/j.celrep.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Collapse
Affiliation(s)
- Sigrid K Fey
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Nussbaum YI, Hossain KSMT, Kaifi J, Warren WC, Shyu CR, Mitchem JB. Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation. J Biomed Inform 2024; 154:104644. [PMID: 38631462 DOI: 10.1016/j.jbi.2024.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/29/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Gene expression analysis through single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of gene regulation in diverse cell types, tissues, and organisms. While existing methods primarily focus on identifying cell type-specific gene expression programs (GEPs), the characterization of GEPs associated with biological processes and stimuli responses remains limited. In this study, we aim to infer biologically meaningful GEPs that are associated with both cellular phenotypes and activity programs directly from scRNA-seq data. METHODS We applied linear CorEx, a machine-learning-based approach, to infer GEPs by grouping genes based on total correlation optimization function in simulated and real-world scRNA-seq datasets. Additionally, we utilized a transfer learning approach to project CorEx-inferred GEPs to other scRNA-seq datasets. RESULTS By leveraging total correlation optimization, linear CorEx groups genes and demonstrates superior performance in identifying cell types and activity programs compared to similar methods using simulated data. Furthermore, we apply this same approach to real-world scRNA-seq data from the mouse dentate gyrus and embryonic colon development, uncovering biologically relevant GEPs related to cell types, developmental ages, and cell cycle programs. We also demonstrate the potential for transfer learning by evaluating similar datasets, showcasing the cross-species sensitivity of linear CorEx. CONCLUSION Our findings validate linear CorEx as a valuable tool for comprehensively analyzing complex signals in scRNA-seq data, leading to deeper insights into gene expression dynamics, cellular heterogeneity, and regulatory mechanisms.
Collapse
Affiliation(s)
- Yulia I Nussbaum
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65201, USA
| | - K S M Tozammel Hossain
- Department of Information Science, University of North Texas, 3940 N Elm St, Denton, TX 76203, USA
| | - Jussuf Kaifi
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65201, USA; Department of Surgery, University of Missouri Hospital, 1 Hospital Dr., Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl, St. Louis, MO 63110, USA
| | - Wesley C Warren
- Department of Surgery, University of Missouri Hospital, 1 Hospital Dr., Columbia, MO 65212, USA; Bond Life Sciences Center, University of Missouri, 1201 Rollin St., Columbia, MO 65211, USA
| | - Chi-Ren Shyu
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65201, USA
| | - Jonathan B Mitchem
- VA Northeast Ohio Healthcare System, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Colon and Rectal Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA; Department of Inflammation and Immunity, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
12
|
He J, Nascakova Z, Leary P, Papa G, Valenta T, Basler K, Müller A. Inactivation of the tumor suppressor gene Apc synergizes with H. pylori to induce DNA damage in murine gastric stem and progenitor cells. SCIENCE ADVANCES 2023; 9:eadh0322. [PMID: 37967175 PMCID: PMC10651120 DOI: 10.1126/sciadv.adh0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Helicobacter pylori infection is a major risk factor for the development of gastric cancer. The bacteria reside in close proximity to gastric surface mucous as well as stem and progenitor cells. Here, we take advantage of wild-type and genetically engineered murine gastric organoids and organoid-derived monolayers to study the cellular targets of H. pylori-induced DNA damage and replication stress and to explore possible interactions with preexisting gastric cancer driver mutations. We find using alkaline comet assay, single-molecule DNA fiber assays, and immunofluorescence microscopy of DNA repair foci that H. pylori induces transcription-dependent DNA damage in actively replicating, Leucine-rich-repeat containing G-Protein-Coupled Receptor 5 (Lgr5)-positive antral stem and progenitor cells and their Troy-positive corpus counterparts, but not in other gastric epithelial lineages. Infection-dependent DNA damage is aggravated by Apc inactivation, but not by Trp53 or Smad4 loss, or Erbb2 overexpression. Our data suggest that H. pylori induces DNA damage in stem and progenitor cells, especially in settings of hyperproliferation due to constitutively active Wnt signaling.
Collapse
Affiliation(s)
- Jiazhuo He
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Zuzana Nascakova
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - Giovanni Papa
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Comprehensive Cancer Center Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Brügger MD, Basler K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol 2023; 33:834-849. [PMID: 37080817 DOI: 10.1016/j.tcb.2023.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Only in recent years have we begun to appreciate the involvement of fibroblasts in intestinal development, tissue homeostasis, and disease. These insights followed the advent of single-cell transcriptomics that allowed researchers to explore the heterogeneity of intestinal fibroblasts in unprecedented detail. Since researchers often defined cell types and their associated function based on the biological process they studied, there are a plethora of partially overlapping markers for different intestinal fibroblast populations. This ambiguity complicates putting different research findings into context. Here, we provide a census on the function and identity of intestinal fibroblasts in mouse and human. We propose a simplified framework consisting of three colonic and four small intestinal fibroblast populations to aid navigating the diversity of intestinal fibroblasts.
Collapse
Affiliation(s)
- Michael David Brügger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
15
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Berková L, Fazilaty H, Yang Q, Kubovčiak J, Stastna M, Hrckulak D, Vojtechova M, Dalessi T, Brügger MD, Hausmann G, Liberali P, Korinek V, Basler K, Valenta T. Terminal differentiation of villus tip enterocytes is governed by distinct Tgfβ superfamily members. EMBO Rep 2023; 24:e56454. [PMID: 37493498 PMCID: PMC10481656 DOI: 10.15252/embr.202256454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023] Open
Abstract
The protective and absorptive functions of the intestinal epithelium rely on differentiated enterocytes in the villi. The differentiation of enterocytes is orchestrated by sub-epithelial mesenchymal cells producing distinct ligands along the villus axis, in particular Bmps and Tgfβ. Here, we show that individual Bmp ligands and Tgfβ drive distinct enterocytic programs specific to villus zonation. Bmp4 is expressed from the centre to the upper part of the villus and activates preferentially genes connected to lipid uptake and metabolism. In contrast, Bmp2 is produced by villus tip mesenchymal cells and it influences the adhesive properties of villus tip epithelial cells and the expression of immunomodulators. Additionally, Tgfβ induces epithelial gene expression programs similar to those triggered by Bmp2. Bmp2-driven villus tip program is activated by a canonical Bmp receptor type I/Smad-dependent mechanism. Finally, we establish an organoid cultivation system that enriches villus tip enterocytes and thereby better mimics the cellular composition of the intestinal epithelium. Our data suggest that not only a Bmp gradient but also the activity of individual Bmp drives specific enterocytic programs.
Collapse
Affiliation(s)
- Linda Berková
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Hassan Fazilaty
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jan Kubovčiak
- Laboratory of Genomics and BioinformaticsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Monika Stastna
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Dusan Hrckulak
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Martina Vojtechova
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tosca Dalessi
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | | | - George Hausmann
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Vladimir Korinek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Konrad Basler
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Tomas Valenta
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Parker JB, Valencia C, Akras D, DiIorio SE, Griffin MF, Longaker MT, Wan DC. Understanding Fibroblast Heterogeneity in Form and Function. Biomedicines 2023; 11:2264. [PMID: 37626760 PMCID: PMC10452440 DOI: 10.3390/biomedicines11082264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Sarah E. DiIorio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| |
Collapse
|
18
|
Peng S, Shen L, Yu X, Zhang L, Xu K, Xia Y, Zha L, Wu J, Luo H. The role of Nrf2 in the pathogenesis and treatment of ulcerative colitis. Front Immunol 2023; 14:1200111. [PMID: 37359553 PMCID: PMC10285877 DOI: 10.3389/fimmu.2023.1200111] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease involving mainly the colorectal mucosa and submucosa, the incidence of which has been on the rise in recent years. Nuclear factor erythroid 2-related factor 2 (Nrf2), known for its key function as a transcription factor, is pivotal in inducing antioxidant stress and regulating inflammatory responses. Numerous investigations have demonstrated the involvement of the Nrf2 pathway in maintaining the development and normal function of the intestine, the development of UC, and UC-related intestinal fibrosis and carcinogenesis; meanwhile, therapeutic agents targeting the Nrf2 pathway have been widely investigated. This paper reviews the research progress of the Nrf2 signaling pathway in UC.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lanlan Zha
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Jing Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| |
Collapse
|
19
|
Goodwin K, Nelson CM. Analysis of Cre lines for targeting embryonic airway smooth muscle. Dev Biol 2023; 496:63-72. [PMID: 36706974 PMCID: PMC10041960 DOI: 10.1016/j.ydbio.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
During development of the embryonic mouse lung, the pulmonary mesenchyme differentiates into smooth muscle that wraps around the airway epithelium. Inhibiting smooth muscle differentiation leads to cystic airways, while enhancing it stunts epithelial branching. These findings support a conceptual model wherein the differentiation of smooth muscle sculpts the growing epithelium into branches at precise positions and with stereotyped morphologies. Unfortunately, most approaches to manipulate the differentiation of airway smooth muscle rely on pharmacological or physical perturbations that are conducted ex vivo. Here, we explored the use of diphtheria toxin-based genetic ablation strategies to eliminate airway smooth muscle in the embryonic mouse lung. Surprisingly, neither airway smooth muscle wrapping nor epithelial branching were affected in embryos in which the expression of diphtheria toxin or its receptor were driven by several different smooth muscle-specific Cre lines. Close examination of spatial patterns of Cre activity in the embryonic lung revealed that none of these commonly used Cre lines target embryonic airway smooth muscle robustly or specifically. Our findings demonstrate the need for airway smooth muscle-specific Cre lines that are active in the embryonic lung, and serve as a resource for researchers contemplating the use of these commonly used Cre lines for studying embryonic airway smooth muscle.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
20
|
Fazilaty H. Restoration of embryonic gene expression patterns in tissue regeneration and disease. Nat Rev Mol Cell Biol 2023; 24:375-376. [PMID: 36797367 DOI: 10.1038/s41580-023-00586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Wang Y, Song W, Yu S, Liu Y, Chen YG. Intestinal cellular heterogeneity and disease development revealed by single-cell technology. CELL REGENERATION 2022; 11:26. [PMID: 36045190 PMCID: PMC9433512 DOI: 10.1186/s13619-022-00127-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
The intestinal epithelium is responsible for food digestion and nutrient absorption and plays a critical role in hormone secretion, microorganism defense, and immune response. These functions depend on the integral single-layered intestinal epithelium, which shows diversified cell constitution and rapid self-renewal and presents powerful regeneration plasticity after injury. Derailment of homeostasis of the intestine epithelium leads to the development of diseases, most commonly including enteritis and colorectal cancer. Therefore, it is important to understand the cellular characterization of the intestinal epithelium at the molecular level and the mechanisms underlying its homeostatic maintenance. Single-cell technologies allow us to gain molecular insights at the single-cell level. In this review, we summarize the single-cell RNA sequencing applications to understand intestinal cell characteristics, spatiotemporal evolution, and intestinal disease development.
Collapse
|
22
|
Chalkidi N, Paraskeva C, Koliaraki V. Fibroblasts in intestinal homeostasis, damage, and repair. Front Immunol 2022; 13:924866. [PMID: 36032088 PMCID: PMC9399414 DOI: 10.3389/fimmu.2022.924866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
The mammalian intestine is a self-renewing tissue that ensures nutrient absorption while acting as a barrier against environmental insults. This is achieved by mature intestinal epithelial cells, the renewing capacity of intestinal stem cells at the base of the crypts, the development of immune tolerance, and the regulatory functions of stromal cells. Upon intestinal injury or inflammation, this tightly regulated mucosal homeostasis is disrupted and is followed by a series of events that lead to tissue repair and the restoration of organ function. It is now well established that fibroblasts play significant roles both in the maintenance of epithelial and immune homeostasis in the intestine and the response to tissue damage mainly through the secretion of a variety of soluble mediators and ligands and the remodeling of the extracellular matrix. In addition, recent advances in single-cell transcriptomics have revealed an unexpected heterogeneity of fibroblasts that comprise distinct cell subsets in normal and inflammatory conditions, indicative of diverse functions. However, there is still little consensus on the number, terminology, and functional properties of these subsets. Moreover, it is still unclear how individual fibroblast subsets can regulate intestinal repair processes and what is their impact on the pathogenesis of inflammatory bowel disease. In this mini-review, we aim to provide a concise overview of recent advances in the field, that we believe will help clarify current concepts on fibroblast heterogeneity and functions and advance our understanding of the contribution of fibroblasts in intestinal damage and repair.
Collapse
|
23
|
Zhao L, Song W, Chen YG. Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos. Cell Rep 2022; 40:111053. [PMID: 35830795 DOI: 10.1016/j.celrep.2022.111053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
After gut tube patterning in early embryos, the cellular and molecular changes of developing stomach and intestine remain largely unknown. Here, combining single-cell RNA sequencing and spatial RNA sequencing, we construct a spatiotemporal transcriptomic landscape of the mouse stomach and intestine during embryonic days E9.5-E15.5. Several subpopulations are identified, including Lox+ stomach mesenchyme, Aldh1a3+ small-intestinal mesenchyme, and Adamdec1+ large-intestinal mesenchyme. The regionalization and heterogeneity of both the epithelium and the mesenchyme can be traced back to E9.5. The spatiotemporal distributions of cell clusters and the mesenchymal-epithelial interaction analysis indicate that a coordinated development of the epithelium and mesenchyme contribute to the stomach regionalization, intestine segmentation, and villus formation. Using the gut tube-derived organoids, we find that the cell fate of the foregut and hindgut can be switched by the regional niche factors, including fibroblast growth factors (FGFs) and retinoic acid (RA). This work lays a foundation for further dissection of the mechanisms governing this process.
Collapse
Affiliation(s)
- Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanlu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
24
|
Kopacz A, Kloska D, Klimczyk D, Kopec M, Jozkowicz A, Piechota-Polanczyk A. Nrf2 Transcriptional Activity Governs Intestine Development. Int J Mol Sci 2022; 23:ijms23116175. [PMID: 35682851 PMCID: PMC9181470 DOI: 10.3390/ijms23116175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/06/2023] Open
Abstract
Our recent findings indicate that Nrf2 transcriptional activity is essential in maintaining the proper large intestinal structure in adult mice. Here, we aimed to verify whether Nrf2-related intestine abnormalities stemmed from the early weaning or gestational periods. Therefore, we analyzed 4-day-old pups and embryos devoid of Nrf2 transcriptional activity (tKO) and their wild-type counterparts. We found significant changes in the intestinal structure of 4-day-old Nrf2 tKO pups including a longer colon, altered crypt distribution, and enlargement of the goblet cells with a markedly higher level of mucin 2. Tracing back the origin of these alterations, we observed that they appeared as early as day 14.5 of embryonic development, independently of sex. Importantly, in this period, we observed a significant increase in the Nrf2 level and a distinctive, untimely pattern of expression of the proliferation factor Ki67. At the latest stage of embryonic development, we detected a premature drop in the differentiation factor Notch1. We suspect that intestine abnormalities in mice lacking Nrf2 transcriptional activity stem from sex-independent disturbed intestinal cell proliferation and could be further exacerbated by altered differentiation. Summing up, we identified Nrf2 transcriptional activity as an important regulator of intestinal formation. It influences the hindgut cell proliferation and differentiation at different stages of embryonic development.
Collapse
|
25
|
Jasso GJ, Jaiswal A, Varma M, Laszewski T, Grauel A, Omar A, Silva N, Dranoff G, Porter JA, Mansfield K, Cremasco V, Regev A, Xavier RJ, Graham DB. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol 2022; 20:e3001532. [PMID: 35085231 PMCID: PMC8824371 DOI: 10.1371/journal.pbio.3001532] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/08/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.
Collapse
Affiliation(s)
- Guadalupe J. Jasso
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tyler Laszewski
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Angelo Grauel
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Abdifatah Omar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nilsa Silva
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Porter
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Viviana Cremasco
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| |
Collapse
|
26
|
Melissari MT, Henriques A, Tzaferis C, Prados A, Sarris ME, Chalkidi N, Mavroeidi D, Chouvardas P, Grammenoudi S, Kollias G, Koliaraki V. Col6a1 +/CD201 + mesenchymal cells regulate intestinal morphogenesis and homeostasis. Cell Mol Life Sci 2021; 79:1. [PMID: 34910257 PMCID: PMC11073078 DOI: 10.1007/s00018-021-04071-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022]
Abstract
Intestinal mesenchymal cells encompass multiple subsets, whose origins, functions, and pathophysiological importance are still not clear. Here, we used the Col6a1Cre mouse, which targets distinct fibroblast subsets and perivascular cells that can be further distinguished by the combination of the CD201, PDGFRα and αSMA markers. Developmental studies revealed that the Col6a1Cre mouse also targets mesenchymal aggregates that are crucial for intestinal morphogenesis and patterning, suggesting an ontogenic relationship between them and homeostatic PDGFRαhi telocytes. Cell depletion experiments in adulthood showed that Col6a1+/CD201+ mesenchymal cells regulate homeostatic enteroendocrine cell differentiation and epithelial proliferation. During acute colitis, they expressed an inflammatory and extracellular matrix remodelling gene signature, but they also retained their properties and topology. Notably, both in homeostasis and tissue regeneration, they were dispensable for normal organ architecture, while CD34+ mesenchymal cells expanded, localised at the top of the crypts, and showed increased expression of villous-associated morphogenetic factors, providing thus evidence for the plasticity potential of intestinal mesenchymal cells. Our results provide a comprehensive analysis of the identities, origin, and functional significance of distinct mesenchymal populations in the intestine.
Collapse
Affiliation(s)
- Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Ana Henriques
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michalis E Sarris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Dimitra Mavroeidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - Panagiotis Chouvardas
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sofia Grammenoudi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672, Vari, Greece.
| |
Collapse
|