1
|
Jasim MH, Saadoon Abbood R, Sanghvi G, Roopashree R, Uthirapathy S, Kashyap A, Sabarivani A, Ray S, Mustafa YF, Yasin HA. Flavonoids in the regulation of microglial-mediated neuroinflammation; focus on fisetin, rutin, and quercetin. Exp Cell Res 2025; 447:114537. [PMID: 40147710 DOI: 10.1016/j.yexcr.2025.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Neuroinflammation is a critical mechanism in central nervous system (CNS) inflammatory disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), traumatic brain injury (TBI), encephalitis, spinal cord injury (SCI), and cerebral stroke. Neuroinflammation is characterized by increased blood vessel permeability, leukocyte infiltration, glial cell activation, and elevated production of inflammatory mediators, such as chemokines and cytokines. Microglia act as the resident macrophages of the central nervous system, serving as the principal defense mechanism in brain tissue. After CNS injury, microglia modify their morphology and downregulate genes that promote homeostatic functions. Despite comprehensive transcriptome analyses revealing specific gene modifications in "pathological" microglia, microglia's precise protective or harmful functions in neurological disorders remain insufficiently comprehended. Accumulating data suggests that the polarization of microglia into the M1 proinflammatory phenotype or the M2 antiinflammatory phenotype may serve as a sensible therapeutic strategy for neuroinflammation. Flavonoids, including rutin, fisetin, and quercetin, function as crucial chemical reservoirs with unique structures and diverse actions and are extensively used to modulate microglial polarization in treating neuroinflammation. This paper highlights the detrimental effects of neuroinflammation seen in neurological disorders such as stroke. Furthermore, we investigate their therapeutic benefits in alleviating neuroinflammation via the modulation of macrophage polarization.
Collapse
Affiliation(s)
- Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq.
| | - Rosull Saadoon Abbood
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| |
Collapse
|
2
|
Wang J, Gao S, Cui Y, Liu XZ, Chen XX, Hang CH, Li W. Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions. Antioxid Redox Signal 2025. [PMID: 40170638 DOI: 10.1089/ars.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Significance: Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. Recent Advances: The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. Critical Issues: Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. Future Directions: The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yue Cui
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Sato R, Liu K, Shibata T, Hoshino K, Yamaguchi K, Miyazaki T, Hiranuma R, Fukui R, Motoi Y, Fukuda-Ohta Y, Zhang Y, Reuter T, Ishida Y, Kondo T, Chiba T, Asahara H, Taoka M, Yamauchi Y, Isobe T, Kaisho T, Furukawa Y, Latz E, Nakatani K, Izumi Y, Nie Y, Taniguchi H, Miyake K. RNase T2 deficiency promotes TLR13-dependent replenishment of tissue-protective Kupffer cells. J Exp Med 2025; 222:e20230647. [PMID: 39853307 PMCID: PMC11758922 DOI: 10.1084/jem.20230647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/18/2024] [Accepted: 12/04/2024] [Indexed: 01/26/2025] Open
Abstract
Lysosomal stress due to the accumulation of nucleic acids (NAs) activates endosomal TLRs in macrophages. Here, we show that lysosomal RNA stress, caused by the lack of RNase T2, induces macrophage accumulation in multiple organs such as the spleen and liver through TLR13 activation by microbiota-derived ribosomal RNAs. TLR13 triggered emergency myelopoiesis, increasing the number of myeloid progenitors in the bone marrow and spleen. Splenic macrophages continued to proliferate and mature into macrophages expressing the anti-inflammatory cytokine IL-10. In the liver, TLR13 activated monocytes/macrophages to proliferate and mature into monocyte-derived KCs (moKCs), in which, the liver X receptor (LXR) was activated. In accumulated moKCs, tissue clearance genes such as MerTK, AXL, and apoptosis inhibitor of macrophage (AIM) were highly expressed, while TLR-dependent production of proinflammatory cytokines was impaired. Consequently, Rnaset2-/- mice were resistant to acute liver injuries elicited by acetaminophen (APAP) and LPS with D-galactosamine. These findings suggest that TLR13 activated by lysosomal RNA stress promotes the replenishment of tissue-protective Kupffer cells.
Collapse
Affiliation(s)
- Ryota Sato
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Kaiwen Liu
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Takuma Shibata
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Japan
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | | | - Ryosuke Hiranuma
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Yuji Motoi
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Japan
| | - Yun Zhang
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Tatjana Reuter
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Japan
| | - Tomoki Chiba
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Tsuneyasu Kaisho
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Japan
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), Berlin, Germany
| | - Kohta Nakatani
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Japan
| | - Yunzhong Nie
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| |
Collapse
|
4
|
Jeong S, Yang K, Lee Y, Park JW, Park EM, Kang JL. Gas6 induces AIM to suppress acute lung injury in mice by inhibiting NLRP3 inflammasome activation and inducing autophagy. Front Immunol 2025; 16:1523166. [PMID: 40034700 PMCID: PMC11873840 DOI: 10.3389/fimmu.2025.1523166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Growth arrest-specific 6 (Gas6) protein signaling plays a critical role in maintaining immune homeostasis and regulating inflammation. However, novel mechanisms for modulating macrophage activity through the Gas6 axis are being identified. Gas6 enhances the production of apoptosis inhibitor of macrophages (AIM), a protein with potent anti-inflammatory properties. This study investigates whether Gas6-induced AIM suppresses acute lung injury (ALI) in mice by modulating key inflammatory pathways, including inflammasome activation, autophagy, reactive oxygen species (ROS) generation, and efferocytosis. Methods ALI was induced in wild-type (WT) and AIM-/- mice via intratracheal administration of LPS. To evaluate the effects of the Gas6-AIM axis on lung inflammation, recombinant Gas6 (rGas6) was treated intraperitoneally. Inflammatory responses were evaluated using enzyme-linked immunosorbent assay, a cell-sizing analyzer, and Bicinchoninic acid assays. Lung pathology was assessed using hematoxylin-eosin staining. NLRP3 inflammasome activation and autophagy were evaluated using western blot, quantitative real-time PCR, and immunofluorescence. Reactive oxygen species (ROS) levels in alveolar macrophages were measured via fluorescence microscopy, while efferocytosis was assessed in cytospin-stained BAL cells and cultured alveolar macrophages co-cultured with apoptotic Jurkat cells. Additionally, rGas6-mediated effects on NLRP3 inflammasome activation and autophagy were validated in mouse bone marrow-derived macrophages (BMDMs) using siRNAs targeting AIM, Axl, LXRα, or LXRβ. Results Proinflammatory cytokine production, neutrophil infiltration, and protein levels in BALF were significantly reduced by rGas6 administration in WT mice but not in AIM-/- mice. Specifically, rGas6 reduced IL-1β and IL-18 levels, caspase-1 activity, and the production of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) in alveolar macrophages. Additionally, rGas6 promoted autophagy and efferocytosis in alveolar macrophages while reducing ROS levels through AIM production. These protective effects were absent in AIM-/- mice. Furthermore, siRNA-mediated silencing of Axl, LXRα, LXRβ, or AIM reversed the inhibitory effects of rGas6 on NLRP3 inflammasome activation in BMDMs, and AIM was essential for rGas6-induced autophagy. Conclusion Gas6-induced AIM production protects against LPS-induced ALI by inhibiting NLRP3 inflammasome activation, enhancing autophagy and efferocytosis, and reducing oxidative stress. These findings highlight the Gas6-AIM axis as a potential therapeutic target for mitigating inflammatory lung diseases.
Collapse
Affiliation(s)
- Seonghee Jeong
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyungwon Yang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ye‐Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yasuda K, Nishijima A, Inoue T, Takagi T, Tanabe K, Minakuchi J, Arai S, Miyazaki T. Release of apoptosis inhibitor of macrophage (AIM) from pentameric IgM in serum predicts prognosis after hemodialysis initiation. COMMUNICATIONS MEDICINE 2025; 5:15. [PMID: 39794503 PMCID: PMC11724077 DOI: 10.1038/s43856-025-00735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The optimal timing for initiating dialysis and prognostic markers in chronic kidney disease (CKD) patients are under debate, with mortality and cardiovascular risks varying among patients. This study investigates whether the apoptosis inhibitor of macrophage (AIM), which is mostly bound to pentameric IgM, could serve as an effective indicator. METHODS We prospectively followed 423 patients at dialysis initiation and 563 at various CKD stages. AIM dissociation from IgM and other serum components were measured in their serum samples. In vitro treatment of IgM-AIM complexes with their serum was conducted to assess AIM release from IgM. Survival analysis determined the associations of each variable with mortality and cardiovascular risk, and a cutoff value was calculated and validated using cross-validation. RESULTS AIM dissociation from IgM increases with CKD progression and correlates with the serum uremic state, as shown by enhanced AIM release from IgM in vitro with sera from patients starting dialysis, but not those at earlier CKD stages. Patients at dialysis initiation with high proportion of serum IgM-free AIM (fAIM%) show elevated uremic toxins and other toxic metabolites, higher mortality, and increased cardiovascular risk compared to those with low fAIM%. This prognostic association is not seen with other CKD biomarkers, such as eGFR, creatinine, or inositol-phosphate. We determined the fAIM% cutoff of 46.27%, which predicts mortality two years post-dialysis initiation. CONCLUSIONS These findings suggest that the serum fAIM% could function as a prognostic marker at dialysis initiation and may have potential as a criterion for determining dialysis timing.
Collapse
Affiliation(s)
- Keisuke Yasuda
- The Institute for AIM Medicine (IAM), Tokyo, Japan
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Shonan Kamakura General Hospital, Kamakura, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine (IAM), Tokyo, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine (IAM), Tokyo, Japan.
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine, Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Daneshpour A, Shaka Z, Rezaei N. Interplay of cell death pathways and immune responses in ischemic stroke: insights into novel biomarkers. Rev Neurosci 2024:revneuro-2024-0128. [PMID: 39681004 DOI: 10.1515/revneuro-2024-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Stroke is a severe neurological disease and a major worldwide issue, mostly manifesting as ischemic stroke (IS). In order to create effective treatments for IS, it is imperative to fully understand the underlying pathologies, as the existing therapeutic choices are inadequate. Recent investigations have shown the complex relationships between several programmed cell death (PCD) pathways, including necroptosis, ferroptosis, and pyroptosis, and their correlation with immune responses during IS. However, this relationship is still unclear. To address this gap, this review study explored the cellular interactions in the immune microenvironment of IS. Then, to validate prior findings and uncover biomarkers, the study investigated bioinformatics studies. Several pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Toll-like receptor 4 (TLR4), and receptor-interacting protein kinase (RIPK), were involved in PCD-immune interactions. The bioinformatics studies reported key biomarkers such as glutathione peroxidase 4 (GPX4), NOD-like receptor family pyrin domain containing 3 (NLRP3), gasdermin D (GSDMD), and TLR4, which have important implications in ferroptosis, cuproptosis, pyroptosis, and necroptosis respectively. These biomarkers were associated with PCD mechanisms such as oxidative stress and inflammatory reactions. The immune infiltration analysis consistently revealed a significant correlation between PCD pathways and detrimental immune cells, such as neutrophils and γδ T cells. Conversely, M2 macrophages and T helper cells showed protective effects. In conclusion, considering the intricate network of interactions between immune responses and PCD pathways, this study emphasized the necessity of a paradigm shift in therapeutic approaches to address the injuries that are related to this complex network.
Collapse
Affiliation(s)
- Arian Daneshpour
- Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Zoha Shaka
- Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793 Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793 Iran
| |
Collapse
|
7
|
Zhou B, Xue J, Wang J, Yu D, Zhou F, Duan JA, Niu Y, Wang H. Amygdalin alleviates LPS-induced acute lung injury in mice by targeting CD5L/iNOS pathway. Mol Immunol 2024; 176:22-29. [PMID: 39561489 DOI: 10.1016/j.molimm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Amygdalins (AMY) from bitter almonds are distinguished by their anti-inflammatory, antibacterial and antioxidant properties, but their role in the treatment of acute lung injury (ALI) and their mechanisms need to be clarified. We sought to investigate whether AMY provides protection against lipopolysaccharide (LPS)-induced ALI in mice and explore the mechanisms of its protection. Results showed that AMY effectively alleviated LPS-induced ALI in a dose-dependent manner by reducing in vivo lung wet/dry ratio, lung/body weight ratio, and myeloperoxidase (MPO). In addition, AMY can significantly reduce lung histopathological injury, decreased bronchoalveolar lavage fluid (BALF) lymphocyte, neutrophil, and monocyte numbers, and decreased the secretion of inflammatory cytokines IL-6, IL-1β, and TNF-α. Through transcriptome sequencing, AMY was found to effectively reduce the mRNA level of CD5L in mice. In AAV-CD5L transfected mice, CD5L overexpression was found to block the protective effect of AMY in LPS-induced ALI mice. It was revealed that AMY inhibited NF-κB entry into the nucleus to reduce iNOS by targeting CD5L. Taken together, AMY can effectively reduce lung inflammation and alleviate ALI, and is a potential novel protective agent against LPS-induced ALI.
Collapse
Affiliation(s)
- Bo Zhou
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jiahui Xue
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Wang
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Donghua Yu
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Fangling Zhou
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Niu
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hanqing Wang
- College of Pharmacy, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
8
|
Chen Q, Ishii K, Mori H, Nishijima A, Arai S, Miyazaki T, Rosenthal PB. Cryo-EM reveals structural basis for human AIM/CD5L recognition of polymeric immunoglobulin M. Nat Commun 2024; 15:9387. [PMID: 39477921 PMCID: PMC11525585 DOI: 10.1038/s41467-024-53615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Cell surface scavenger receptors contribute to homoeostasis and the response to pathogens and products associated with damage by binding to common molecular features on a wide range of targets. Apoptosis inhibitor of macrophage (AIM/CD5L) is a soluble protein belonging to the scavenger receptor cysteine-rich (SRCR) superfamily that contributes to prevention of a wide range of diseases associated with infection, inflammation, and cancer. AIM forms complexes with IgM pentamers which helps maintain high-levels of circulating AIM in serum for subsequent activation on release from the complex. The structural basis for AIM recognition of IgM as well as other binding targets is unknown. Here we apply cryogenic electron microscopy imaging (cryo-EM) to show how interfaces on both of AIM's C-terminal SRCR domains interact with the Fcμ constant region and J chain components of the IgM core. Both SRCR interfaces are also shown to contribute interactions important for AIM binding to damage-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Kazuhiro Ishii
- The Institute for AIM Medicine, Tokyo, Japan
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Mori
- The Institute for AIM Medicine, Tokyo, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine, Tokyo, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, Japan.
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Huang Y, Jiang W, Zhou R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat Rev Immunol 2024; 24:703-719. [PMID: 38684933 DOI: 10.1038/s41577-024-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Wang Y, Su C, Ji C, Xiao J. CD5L associates with IgM via the J chain. Nat Commun 2024; 15:8397. [PMID: 39333069 PMCID: PMC11437284 DOI: 10.1038/s41467-024-52175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
CD5 antigen-like (CD5L), also known as Spα or AIM (Apoptosis inhibitor of macrophage), emerges as an integral component of serum immunoglobulin M (IgM). However, the molecular mechanism underlying the interaction between IgM and CD5L has remained elusive. In this study, we present a cryo-electron microscopy structure of the human IgM pentamer core in complex with CD5L. Our findings reveal that CD5L binds to the joining chain (J chain) in a Ca2+-dependent manner and further links to IgM via a disulfide bond. We further corroborate recently published data that CD5L reduces IgM binding to the mucosal transport receptor pIgR, but does not impact the binding of the IgM-specific receptor FcμR. Additionally, CD5L does not interfere with IgM-mediated complement activation. These results offer a more comprehensive understanding of IgM and shed light on the function of the J chain in the immune system.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China.
- Changping Laboratory, Beijing, P.R. China.
| |
Collapse
|
11
|
Tian H, Liu Q, Yu X, Cao Y, Huang X. Damage-associated molecular patterns in viral infection: potential therapeutic targets. Crit Rev Microbiol 2024:1-18. [PMID: 39091137 DOI: 10.1080/1040841x.2024.2384885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Frequent viral infections leading to infectious disease outbreaks have become a significant global health concern. Fully elucidating the molecular mechanisms of the immune response against viral infections is crucial for epidemic prevention and control. The innate immune response, the host's primary defense against viral infection, plays a pivotal role and has become a breakthrough in research mechanisms. A component of the innate immune system, damage-associated molecular patterns (DAMPs) are involved in inducing inflammatory responses to viral infections. Numerous DAMPs are released from virally infected cells, activating downstream signaling pathways via internal and external receptors on immune cells. This activation triggers immune responses and helps regulate viral host invasion. This review examines the immune regulatory mechanisms of various DAMPs, such as the S100 protein family, high mobility group box 1 (HMGB1), and heat shock proteins, in various viral infections to provide a theoretical basis for designing novel antiviral drugs.
Collapse
Affiliation(s)
- Huizhen Tian
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanli Cao
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Liu Y, Leng C, Li Y, Zhou M, Ye X, Li C, Xia X, Sun B, Shu X, Liu W. A novel p55PIK signaling peptide inhibitor alleviates neuroinflammation via the STAT3/NF-kB signaling pathway in experimental stroke. J Stroke Cerebrovasc Dis 2024; 33:107736. [PMID: 38679216 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Ischemic stroke remains the predominant contributor to mortality and disability globally. Microglia undergo rapid activation and initiate inflammatory cascade reactions by phenotypic polarization, participating in the regulation of inflammatory injury and tissue repair post-ischemic stroke. Regulating microglia-mediated neuroinflammation is a promising therapeutic strategy for ischemic stroke. Previously, we designed and synthesized a novel p55PIK inhibitor, TAT-N15 polypeptide, which presents inhibitive activity on NF-κB signaling-mediated inflammation in acute conjunctivitis and allergic rhinitis. The present study aimed to explore the therapeutic effect and mechanism of TAT-N15 on ischemia stroke. METHODS The mouse model of transient cerebral ischemia was made using the intraluminal filament method. After being treated with daily intraperitoneal injections of TAT-N15 (10 mg/kg) for 7 d, the neurological outcomes and the cerebral infarction volume were evaluated. Histopathology of the ischemia cerebral hemisphere was observed by H&E and Nissl staining. Neuronal survival, astrogliosis, and co-labeling of CD86/Iba1 and CD206/Iba1 were detected by immunofluorescence. The cell apoptosis was estimated by TUNEL staining. The expression levels of apoptosis-associated proteins, proinflammatory cytokines, protein markers of M1 and M2 microglia, and the phosphorylation of NF-κB and STAT3 proteins in the ischemic penumbra were detected by Western blot. RESULTS TAT-N15 treatment significantly decreased the infarct volume and alleviated neurological functional impairment, neuronal injury, and neuron apoptosis. Meanwhile, TAT-N15 treatment restrained the activation of microglia and astrocytes as well as the protein expression of proinflammatory cytokine in ischemic penumbra. Additionally, the administration of TAT-N15 treatment resulted in a significant reduction in the density of M1 phenotype microglia while concurrently increasing the density of M2 phenotype microglia within the ischemic penumbra. Finally, mechanical analysis unveiled that TAT-N15 exerted a substantial inhibitory effect on the protein expression of phosphorylated STAT3 and NF-κB. CONCLUSION TAT-N15 may inhibit neuroinflammation via regulating microglia activation and polarization through the STAT3/NF-κB pathway, which exhibits the neuroprotection effect in ischemic stroke.
Collapse
Affiliation(s)
- Yujing Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Youwei Li
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Meiling Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiansheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chaoxing Li
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Xianmin Xia
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
13
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
14
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
15
|
Zhou X, Zhu Y, Gao D, Li M, Lin L, Wang Z, Du H, Xu Y, Liu J, He Y, Guo Y, Wang S, Qiao S, Bao Y, Liu Y, Zhang H. Matrilin-3 supports neuroprotection in ischemic stroke by suppressing astrocyte-mediated neuroinflammation. Cell Rep 2024; 43:113980. [PMID: 38520693 DOI: 10.1016/j.celrep.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
In the brain, the role of matrilin-3, an extracellular matrix component in cartilage, is unknown. Here, we identify that matrilin-3 decreased in reactive astrocytes but was unchanged in neurons after ischemic stroke in animals. Importantly, it declined in serum of patients with acute ischemic stroke. Genetic or pharmacological inhibition or supplementation of matrilin-3 aggravates or reduces brain injury, astrocytic cell death, and glial scar, respectively, but has no direct effect on neuronal cell death. RNA sequencing demonstrates that Matn3-/- mice display an increased inflammatory response profile in the ischemic brain, including the nuclear factor κB (NF-κB) signaling pathway. Both endogenous and exogenous matrilin-3 reduce inflammatory mediators. Mechanistically, extracellular matrilin-3 enters astrocytes via caveolin-1-mediated endocytosis. Cytoplasmic matrilin-3 translocates into the nucleus by binding to NF-κB p65, suppressing inflammatory cytokine transcription. Extracellular matrilin-3 binds to BMP-2, blocking the BMP-2/Smads pathway. Thus, matrilin-3 is required for astrocytes to exert neuroprotection, at least partially, by suppressing astrocyte-mediated neuroinflammation.
Collapse
Affiliation(s)
- Xianyong Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yongming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Defei Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liang Lin
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Zhanxiang Wang
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Huaping Du
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shigang Qiao
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu 215301, China; Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu 215163, China
| | - Yingshi Bao
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China.
| | - Huiling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
16
|
Yasuda K, Shimodan S, Maehara N, Hirota A, Iijima R, Nishijima A, Mori H, Toyama R, Ito A, Yoshikawa Y, Arai S, Miyazaki T. AIM/CD5L ameliorates autoimmune arthritis by promoting removal of inflammatory DAMPs at the lesions. J Autoimmun 2024; 142:103149. [PMID: 38006711 DOI: 10.1016/j.jaut.2023.103149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
The hallmark of autoimmune arthritis is the preceding autoantibody production and the following synovial inflammation with hyperplasia and tissue destruction of the joints. The joint inflammation is mediated not only by effector lymphocytes and auto-antibodies but also chronic activation of innate immunity, particularly promoted by the danger-associated molecular patterns (DAMPs). Here we show that apoptosis inhibitor of macrophage (AIM, also called CD5L) protein regulates arthritis by promoting removal of lesional DAMPs both physiologically and therapeutically. When the autoimmune arthritis was promoted by injecting a cocktail of anti-collagen antibodies without type-II collagen immunization, AIM-deficient (AIM-/-) mice exhibited more exacerbated and sustained swelling at multiple joints with greater synovial hyperplasia and bone erosion than wild-type mice. Administration of recombinant AIM (rAIM) reduced S100A8/9, a major DAMP known to be involved in arthritis progression, and decreased various inflammatory cytokines at the lesions in antibody-injected AIM-/- mice, leading to marked prevention of arthritis symptoms. In human rheumatoid arthritis (RA) patients, AIM was more activated via dissociating from IgM-pentamer in response to DAMPs-mediated inflammation both in serum and synovial fluid than in healthy individuals or non-autoimmune osteoarthritis patients, suggesting a disease-regulatory potency of AIM also in human RA patients. Thus, our study implied a therapeutic availability of rAIM to prevent arthritis symptoms targeting DAMPs.
Collapse
Affiliation(s)
- Keisuke Yasuda
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shieri Shimodan
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Aika Hirota
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Ruka Iijima
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | | | - Haruka Mori
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Ran Toyama
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Atsumi Ito
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France; LEAP, Japan Agency for Medical Research and Development, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Lv J, Zhu X, Xing C, Chen Y, Bian H, Yin H, Gu X, Su L. Stimulator of interferon genes (STING): Key therapeutic targets in ischemia/reperfusion injury. Biomed Pharmacother 2023; 167:115458. [PMID: 37699319 DOI: 10.1016/j.biopha.2023.115458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The Stimulator of Interferon Genes (STING) is predominantly expressed in immune cells, including macrophages, natural killer cells, dendritic cells, and T cells, functioning as a pattern recognition receptor. STING activation upon detecting cytosolic DNA released from damaged cells initiates downstream pathways, leading to the production of inflammatory cytokines such as IFNs, IL-6, and TNF-α. Dysregulated STING activation has been implicated in inflammatory and metabolic diseases. Ischemia/reperfusion injury (I/RI) is common in stroke, acute myocardial infarction, organ transplantation, and surgeries for certain end-stage diseases. Recent studies suggest that STING could be a novel therapeutic target for I/RI treatment. In this review, we provide a concise overview of the cGAS-STING signaling pathway's general functions and summarize STING's role in I/RI across various organs, including the heart, liver, kidney, and lung. Moreover, we explore potential therapeutic approaches for I/RI by targeting STING.
Collapse
Affiliation(s)
- Juan Lv
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuhong Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Xiaofeng Gu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Li Su
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Qin R, Huang L, Xu W, Qin Q, Liang X, Lai X, Huang X, Xie M, Chen L. Identification of disulfidptosis-related genes and analysis of immune infiltration characteristics in ischemic strokes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18939-18959. [PMID: 38052584 DOI: 10.3934/mbe.2023838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Immune infiltration plays a pivotal role in the pathogenesis of ischemic stroke. A novel form of cell death known as disulfidptosis has emerged in recent studies. However, there is currently a lack of research investigating the regulatory mechanism of disulfidptosis-related genes in immune infiltration during ischemic stroke. Using machine learning methods, we identified candidate key disulfidptosis-related genes (DRGs). Subsequently, we performed an analysis of immune cell infiltration to investigate the dysregulation of immune cells in the context of ischemic stroke. We assessed their diagnostic value by employing receiver operating characteristic (ROC) curves. To gain further insights, we conducted functional enrichment analyses to elucidate the signaling pathways associated with these seven DRGs. We identified two distinct subclusters based on the expression patterns of these seven DRGs. The unique roles of these subclusters were further evaluated through KEGG analysis and immune infiltration studies. Furthermore, we validated the expression profiles of these seven DRGs using both single-cell datasets and external datasets. Lastly, molecular docking was performed to explore potential drugs for the treatment of ischemic stroke. We identified seven DRGs. The seven DRGs are related to immune cells. Additionally, these seven DRGs also demonstrate potential diagnostic value in ischemic stroke. Functional enrichment analysis highlighted pathways such as platelet aggregation and platelet activation. Two subclusters related to disulfidptosis were defined, and functional enrichment analysis of their differentially expressed genes (DEGs) primarily involved pathways like cytokine-cytokine receptor interaction. Single-cell analysis indicated that these seven DRGs were primarily distributed among immune cell types. Molecular docking results suggested that genistein might be a potential therapeutic drug. This study has opened up new avenues for exploring the causes of ischemic stroke and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Rongxing Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
19
|
Nemoto H, Honjo M, Arai S, Miyazaki T, Aihara M. Apoptosis inhibitor of macrophages/CD5L enhances phagocytosis in the trabecular meshwork cells and regulates ocular hypertension. J Cell Physiol 2023; 238:2451-2467. [PMID: 37584382 DOI: 10.1002/jcp.31097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The trabecular meshwork (TM) cells of the eye are important for controlling intraocular pressure (IOP) and regulating outflow resistance in the aqueous humor. TM cells can remove particles and cellular debris by phagocytosis, decreasing both outflow resistance and IOP. However, the underlying mechanisms remain unclear. Here, we investigate whether apoptosis inhibitor of macrophages (AIM), which mediates the removal of dead cells and debris in renal tubular epithelial cells, regulates the phagocytic capacity of TM cells. In vitro experiments revealed that CD36, the main receptor for AIM, colocalized with AIM in human TM cells; additionally, phagocytosis was stimulated when AIM was provided. Furthermore, in a mouse model with transient IOP elevation induced by laser iridotomy (LI), removal of accumulated iris pigment epithelial cells or debris in the TM and recovery of IOP to baseline levels were delayed in AIM-/- mice, compared with control mice. However, treatment with AIM eyedrops rescued AIM-/- mice from the elevated IOP after LI. Since AIM is a protein known to inhibit macrophage apoptosis, we additionally verified its involvement in macrophage removal of cellular debris and IOP. There were no statistically significant differences in the number of macrophages between control mice and AIM-/- mice in the TM. Additionally, we confirmed the rescue effect of the rAIM eyedrops after macrophages had been removed by clodronate liposomes. Therefore, AIM plays an important role in regulating the phagocytic capacity of TM cells, thereby affecting outflow resistance. Our results suggest that drugs targeting the phagocytic capacity of TM cells via the AIM-CD36 pathway may be used to treat glaucoma.
Collapse
Affiliation(s)
- Hotaka Nemoto
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Chen J, Liu X, Bi R, Liu P, Gong W. NDUFC2 deficiency exacerbates endothelial mesenchymal transformation during ischemia-reperfusion via NLRP3. Neuroreport 2023; 34:670-676. [PMID: 37506315 DOI: 10.1097/wnr.0000000000001940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Ischemic stroke is the main type of cerebrovascular disease. Emergency thrombectomy combined with medication therapy is currently the primary treatment for stroke. Inflammation and oxidative stress induced by ischemia-reperfusion cause secondary damage to blood vessels, especially endothelial mesenchymal transformation (EndoMT). However, much is still unclear about the role of EndoMT in ischemia-reperfusion. In this study, an in vivo ischemia-reperfusion model was established by transient middle cerebral artery occlusion (tMCAO) in wild-type (WT) C57BL/6 mice and NLRP3 (NOD-like receptor thermal protein domain associated protein 3) knockout (KO) C57BL/6 mice. An in vitro ischemia-reperfusion model was established by oxygen glucose deprivation and reoxygenation (OGD/R) of human brain microvascular endothelial cells (HBMECs). α-SMA (alpha smooth muscle actin), CD31 (platelet endothelial cell adhesion molecule-1, PECAM-1/CD31), NDUFC2 (NADH: ubiquinone oxidoreductase subunit C2), and NLRP3 were used to evaluate EndoMT and inflammation. Real-time PCR measured superoxide dismutase 1 (SOD1) and catalase (CAT) mRNA expression to evaluate oxidative stress levels. NLRP3 was activated by ischemia-reperfusion injury and NLRP3 inactivation inhibited the EndoMT in tMCAO mice. Further experiments demonstrated that OGD/R treatment induced NLRP3 activation and EndoMT in HBMECs, which resulted in NDUFC2 deficiency. NDUFC2 overexpression suppressed NLRP3 activation and EndoMT in HBMECs induced by OGD/R. Moreover, NDUFC2 overexpression rescued SOD1 and CAT mRNA expression. These results demonstrated that NDUFC2 deficiency decreased the antioxidant levels, leading to NLRP3 activation and EndoMT during ischemia-reperfusion injury and suggesting that NDUFC2 is a potential drug target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jianwei Chen
- Interventional Medicine Center, Xi'an People's Hospital, Xi'an, China
| | | | | | | | | |
Collapse
|
21
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Takimoto-Sato M, Suzuki M, Kimura H, Ge H, Matsumoto M, Makita H, Arai S, Miyazaki T, Nishimura M, Konno S. Apoptosis inhibitor of macrophage (AIM)/CD5L is involved in the pathogenesis of COPD. Respir Res 2023; 24:201. [PMID: 37592330 PMCID: PMC10433671 DOI: 10.1186/s12931-023-02508-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Alveolar macrophages (AMs) and AM-produced matrix metalloprotease (MMP)-12 are known to play critical roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). The apoptosis inhibitor of the macrophages (AIM)/CD5 molecule-like (CD5L) is a multifunctional protein secreted by the macrophages that mainly exists in the blood in a combined form with the immunoglobulin (Ig)M pentamer. Although AIM has both facilitative and suppressive roles in various diseases, its role in COPD remains unclear. METHODS We investigated the role of AIM in COPD pathogenesis using porcine pancreas elastase (PPE)-induced and cigarette smoke-induced emphysema mouse models and an in vitro model using AMs. We also analyzed the differences in the blood AIM/IgM ratio among nonsmokers, healthy smokers, and patients with COPD and investigated the association between the blood AIM/IgM ratio and COPD exacerbations and mortality in patients with COPD. RESULTS Emphysema formation, inflammation, and cell death in the lungs were attenuated in AIM-/- mice compared with wild-type (WT) mice in both PPE- and cigarette smoke-induced emphysema models. The PPE-induced increase in MMP-12 was attenuated in AIM-/- mice at both the mRNA and protein levels. According to in vitro experiments using AMs stimulated with cigarette smoke extract, the MMP-12 level was decreased in AIM-/- mice compared with WT mice. This decrease was reversed by the addition of recombinant AIM. Furthermore, an analysis of clinical samples showed that patients with COPD had a higher blood AIM/IgM ratio than healthy smokers. Additionally, the blood AIM/IgM ratio was positively associated with disease severity in patients with COPD. A higher AIM/IgM ratio was also associated with a shorter time to the first COPD exacerbation and higher all-cause and respiratory mortality. CONCLUSIONS AIM facilitates the development of COPD by upregulating MMP-12. Additionally, a higher blood AIM/IgM ratio was associated with poor prognosis in patients with COPD. TRIAL REGISTRATION This clinical study, which included nonsmokers, healthy smokers, and smokers with COPD, was approved by the Ethics Committee of the Hokkaido University Hospital (012-0075, date of registration: September 5, 2012). The Hokkaido COPD cohort study was approved by the Ethics Committee of the Hokkaido University School of Medicine (med02-001, date of registration: December 25, 2002).
Collapse
Affiliation(s)
- Michiko Takimoto-Sato
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Hiroki Kimura
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Haiyan Ge
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Munehiro Matsumoto
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hironi Makita
- Hokkaido Medical Research Institute of Respiratory Diseases, Sapporo, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
- Hokkaido Medical Research Institute of Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
23
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
24
|
Li M, Yao M, Shao K, Shen X, Li Y, Ge Z. Serum cold-inducible RNA-binding protein (CIRP) levels as a prognostic indicator in patients with acute ischemic stroke. Front Neurol 2023; 14:1211108. [PMID: 37521290 PMCID: PMC10381024 DOI: 10.3389/fneur.2023.1211108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Acute ischemic stroke (AIS) is the leading cause of morbidity and mortality among cerebrovascular diseases. While animal studies have suggested a correlation between cold-inducible RNA-binding protein (CIRP) serum levels and the severity and prognosis of cerebral infarction, there has been a lack of research exploring this association in humans with cerebral infarction. Materials and methods A total of 148 patients diagnosed with AIS within 7 days from symptom onset were included in this study. Comprehensive information regarding the patients' basic demographics, medical history, clinical parameters, the severity of cerebral infarction, and serum CIRP levels was collected. Follow-up data were obtained through telephonic interviews or by reviewing clinical notes for 3 months after the patients were discharged to assess the functional outcomes of treatment. Results The findings of this study demonstrated a significant increase in serum CIRP levels during the early stages of AIS, followed by a gradual decline after 3 days. Significant differences were observed in the serum CIRP levels between the 1-day group and the 4-7 day group (P < 0.0047), as well as between the 2-3 day group and the 4-7 day group (P < 0.0006). Moreover, a significant positive correlation was observed between the serum CIRP levels and the severity of cerebral infarction. Higher serum CIRP levels were associated with more severe National Institutes of Health Stroke Scale scores (P < 0.05) and larger cerebral infarction volumes (P < 0.05). Furthermore, patients with higher serum CIRP levels exhibited poorer modified Rankin scale scores (P < 0.05). These findings indicate that serum CIRP serves as an essential pro-inflammatory mediator and a valuable biomarker for assessing brain injury in patients with AIS. Conclusion The findings of this study suggest an elevation in serum CIRP levels among patients with AIS. These levels are positively correlated with the severity of AIS and serve as indicators of a poor prognosis. Therefore, CIRP could serve as a target for early clinical intervention while managing AIS, and further research should explore serum CIRP levels as prognostic indicators in AIS.
Collapse
Affiliation(s)
- Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, China
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, China
| | - Min Yao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, China
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
25
|
Yang H, Luo Y, Lai X. The comprehensive role of apoptosis inhibitor of macrophage (AIM) in pathological conditions. Clin Exp Immunol 2023; 212:184-198. [PMID: 36427004 PMCID: PMC10243866 DOI: 10.1093/cei/uxac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 08/19/2023] Open
Abstract
CD5L/AIM (apoptosis inhibitor of macrophage), as an important component in maintaining tissue homeostasis and inflammation, is mainly produced and secreted by macrophages but partially dissociated and released from blood AIM-IgM. AIM plays a regulatory role in intracellular physiological mechanisms, including lipid metabolism and apoptosis. AIM not only increases in autoimmune diseases, directly targets liver cells in liver cancer and promotes cell clearance in acute kidney injury, but also causes arteriosclerosis and cardiovascular events, and aggravates inflammatory reactions in lung diseases and sepsis. Obviously, AIM plays a pleiotropic role in the body. However, to date, studies have failed to decipher the mechanisms behind its different roles (beneficial or harmful) in inflammatory regulation. The inflammatory response is a "double-edged sword," and maintaining balance is critical for effective host defense while minimizing the adverse side effects of acute inflammation. Enhancing the understanding of AIM function could provide the theoretical basis for new therapies in these pathological settings. In this review, we discuss recent studies on the roles of AIM in lipid metabolism, autoimmune diseases and organic tissues, such as liver cancer, myocardial infarction, and kidney disease.
Collapse
Affiliation(s)
- Huiqing Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Luo
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
26
|
Zhong X, Sun Y, Lu Y, Xu L. Immunomodulatory role of estrogen in ischemic stroke: neuroinflammation and effect of sex. Front Immunol 2023; 14:1164258. [PMID: 37180115 PMCID: PMC10167039 DOI: 10.3389/fimmu.2023.1164258] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Although estrogen is predominantly related to the maintenance of reproductive functioning in females, it mediates various physiological effects in nearly all tissues, especially the central nervous system. Clinical trials have revealed that estrogen, especially 17β-estradiol, can attenuate cerebral damage caused by an ischemic stroke. One mechanism underlying this effect of 17β-estradiol is by modulating the responses of immune cells, indicating its utility as a novel therapeutic strategy for ischemic stroke. The present review summarizes the effect of sex on ischemic stroke progression, the role of estrogen as an immunomodulator in immune reactions, and the potential clinical value of estrogen replacement therapy. The data presented here will help better understand the immunomodulatory function of estrogen and may provide a basis for its novel therapeutic use in ischemic stroke.
Collapse
Affiliation(s)
- Xiaojun Zhong
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yajun Lu
- Department of Internal Medicine, Sunto Women & Children’s Hospital, Jiaxing, China
| | - Lei Xu
- Department of Neurology, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
27
|
Cheng W, Zhao Q, Li C, Xu Y. Neuroinflammation and brain-peripheral interaction in ischemic stroke: A narrative review. Front Immunol 2023; 13:1080737. [PMID: 36685518 PMCID: PMC9849888 DOI: 10.3389/fimmu.2022.1080737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Excessive immune activation within the lesion site can be observed after stroke onset. Such neuroinflammation within the brain parenchyma represents the innate immune response, as well as the result of the additional interactions between peripheral and resident immune cells. Accumulative studies have illustrated that the pathological process of ischemic stroke is associated with resident and peripheral immunity. The infiltration of peripheral immune cells within the brain parenchyma implicitly contributes to secondary brain injuries. Therefore, better understanding of the roles of resident and peripheral immune reactions toward ischemic insult is necessary. In this review, we summarized the interaction between peripheral and resident immunity on systemic immunity and the clinical outcomes after stroke onset and also discussed various potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Wenjing Cheng
- Department of Laboratory Medicine, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China,*Correspondence: Wenjing Cheng,
| | - Qing Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chengzhen Li
- Department of Laboratory Medicine, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhi Xu
- Department of Laboratory Medicine, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Yu Z, Hu E, Cai Y, Zhu W, Chen Q, Li T, Li Z, Wang Y, Tang T. mRNA and lncRNA co-expression network in mice of acute intracerebral hemorrhage. Front Mol Neurosci 2023; 16:1166875. [PMID: 37187956 PMCID: PMC10175784 DOI: 10.3389/fnmol.2023.1166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe subtype of stroke lacking effective pharmacological targets. Long noncoding RNA (lncRNA) has been confirmed to participate in the pathophysiological progress of various neurological disorders. However, how lncRNA affects ICH outcomes in the acute phase is not completely clear. In this study, we aimed to reveal the relationship of lncRNA-miRNA-mRNA following ICH. Method We conducted the autologous blood injection ICH model and extracted total RNAs on day 7. Microarray scanning was used to obtain mRNA and lncRNA profiles, which were validated by RT-qPCR. GO/KEGG analysis of differentially expressed mRNAs was performed using the Metascape platform. We calculated the Pearson correlation coefficients (PCCs) of lncRNA-mRNA for co-expression network construction. A competitive endogenous (Ce-RNA) network was established based on DIANALncBase and miRDB database. Finally, the Ce-RNA network was visualized and analyzed by Cytoscape. Results In total, 570 differentially expressed mRNAs and 313 differentially expressed lncRNAs were identified (FC ≥ 2 and value of p <0.05). The function of differentially expressed mRNAs was mainly enriched in immune response, inflammation, apoptosis, ferroptosis, and other typical pathways. The lncRNA-mRNA co-expression network contained 57 nodes (21 lncRNAs and 36 mRNAs) and 38 lncRNA-mRNA pairs. The ce-RNA network was generated with 303 nodes (29 lncRNAs, 163 mRNAs, and 111 miRNAs) and 906 edges. Three hub clusters were selected to indicate the most significant lncRNA-miRNA-mRNA interactions. Conclusion Our study suggests that the top differentially expressed RNA molecules may be the biomarker of acute ICH. Furthermore, the hub lncRNA-mRNA pairs and lncRNA-miRNA-mRNA correlations may provide new clues for ICH treatment.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiqing Cai
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenxin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Chen
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhilin Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Tao Tang,
| |
Collapse
|
29
|
Okanoue T, Yamaguchi K, Shima T, Mitsumoto Y, Mizuno M, Katayama T, Seko Y, Moriguchi M, Umemura A, Itoh Y, Miyazaki T. Serum levels of immunoglobulin M-free inhibitors of macrophage/CD5L as a predictive and early diagnostic marker for nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatol Res 2022; 52:998-1008. [PMID: 35939571 DOI: 10.1111/hepr.13826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The apoptosis inhibitor of macrophage (AIM) is usually associated with the immunoglobulin M (IgM) pentamer in the blood and is dissociated from IgM in various diseases, including hepatocellular carcinoma (HCC) in nonalcoholic steatohepatitis (NASH). We aimed to elucidate whether IgM-free AIM (fAIM) is useful for detecting latent HCC in NASH. METHODS This research consisted of two cohort studies. The levels of serum fAIM, alpha-fetoprotein (AFP), and des-gamma carboxy prothrombin (DCP) of 18 NASH patients who developed HCC were measured during the follow-up period before HCC diagnosis (median, 4.7 years). In total, 199 patients with nonalcoholic fatty liver disease (NAFLD) were included in the HCC survey. The serum fAIM levels were analyzed using enzyme-linked immunosorbent assays. RESULTS In the cohort of 18 patients with HCC, 12 had high fAIM at the time of the initial blood sample, three had normal fAIM levels throughout the follow-up period, and three had fAIM elevated from normal to positive. The positive ratio of fAIM prior to HCC diagnosis remained significantly higher than that of AFP and DCP, and the fAIM ratio gradually increased. In a survey of 199 non-HCC NAFLD patients, a Cox regression analysis using independent variables, such as AFP, fAIM, age, albumin, bilirubin, and fibrosis stage, revealed that fAIM and AFP were significantly associated with the incidence of HCC. CONCLUSIONS During the development of NASH-HCC, AIM activation in blood appears to start even before HCC is diagnostically detectable. Thus, the serum IgM-free AIM levels could be a new, sensitive biomarker for latent NASH-HCC.
Collapse
Affiliation(s)
- Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yasuhide Mitsumoto
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Masayuki Mizuno
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Takayuki Katayama
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toru Miyazaki
- The Institute for AIM Medicine, TWINS, Tokyo, Japan.,LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.,Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Fang Y, Doyle MF, Chen J, Alosco ML, Mez J, Satizabal CL, Qiu WQ, Murabito JM, Lunetta KL. Association between inflammatory biomarkers and cognitive aging. PLoS One 2022; 17:e0274350. [PMID: 36083988 PMCID: PMC9462682 DOI: 10.1371/journal.pone.0274350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory cytokines and chemokines related to the innate and adaptive immune system have been linked to neuroinflammation in Alzheimer's Disease, dementia, and cognitive disorders. We examined the association of 11 plasma proteins (CD14, CD163, CD5L, CD56, CD40L, CXCL16, SDF1, DPP4, SGP130, sRAGE, and MPO) related to immune and inflammatory responses with measures of cognitive function, brain MRI and dementia risk. We identified Framingham Heart Study Offspring participants who underwent neuropsychological testing (n = 2358) or brain MRI (n = 2100) within five years of the seventh examination where a blood sample for quantifying the protein biomarkers was obtained; and who were followed for 10 years for incident all-cause dementia (n = 1616). We investigated the association of inflammatory biomarkers with neuropsychological test performance and brain MRI volumes using linear mixed effect models accounting for family relationships. We further used Cox proportional hazards models to examine the association with incident dementia. False discovery rate p-values were used to account for multiple testing. Participants included in the neuropsychological test and MRI samples were on average 61 years old and 54% female. Participants from the incident dementia sample (average 68 years old at baseline) included 124 participants with incident dementia. In addition to CD14, which has an established association, we found significant associations between higher levels of CD40L and myeloperoxidase (MPO) with executive dysfunction. Higher CD5L levels were significantly associated with smaller total brain volumes (TCBV), whereas higher levels of sRAGE were associated with larger TCBV. Associations persisted after adjustment for APOE ε4 carrier status and additional cardiovascular risk factors. None of the studied inflammatory biomarkers were significantly associated with risk of incident all-cause dementia. Higher circulating levels of soluble CD40L and MPO, markers of immune cell activation, were associated with poorer performance on neuropsychological tests, while higher CD5L, a key regulator of inflammation, was associated with smaller total brain volumes. Higher circulating soluble RAGE, a decoy receptor for the proinflammatory RAGE/AGE pathway, was associated with larger total brain volume. If confirmed in other studies, this data indicates the involvement of an activated immune system in abnormal brain aging.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Jiachen Chen
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
| | - Claudia L. Satizabal
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Wei Qiao Qiu
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Psychiatry, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Department of Medicine, Section of General Internal Medicine, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Boston Medical Center, Boston University, Boston, Massachusetts, United States of America
| | - Kathryn L. Lunetta
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Transcriptomic Profiling of Electroacupuncture Regulating the Molecular Network in Hippocampus of Rats with Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6053106. [PMID: 36091595 PMCID: PMC9463016 DOI: 10.1155/2022/6053106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the mechanism of electroacupuncture stimulation of the hand-taiyin meridian in regulating the molecular network of rats with cerebral ischemia-reperfusion injury based on transcriptomics. Methods. Male SD rats were randomly divided into sham operation group, model group, and electroacupuncture (EA) group. Middle cerebral artery embolization/reperfusion injury (MCAO/R) was used to establish the model group and EA group. The sham operation group only performed sham operation without modeling and any intervention, and the model group was bound daily. The EA group received electroacupuncture to stimulate the acupoints of hand-taiyin meridian for 14 days. Then, neurological scores, pathomorphological observations, and Tunel staining were performed. Finally, the affected hippocampus of the rat was used for transcriptome sequencing and RT-PCR detection. Results. After electroacupuncture intervention in rats, neurological function scores were improved, and neuronal apoptosis was reduced. The results of transcriptomics showed that a total of 1097 differentially expressed genes were obtained, of which 422 were upregulated and 675 were downregulated. The bioinformatics analysis showed that those differentially expressed genes were related to axon development, neuron projection development, neuron projection morphogenesis, plasma membrane cell projection morphogenesis, cell part morphogenesis, notch signaling pathway, long-term potentiation, MAPK signaling pathway, Hedgehog signaling pathway, and so on. The results of RT-PCR showed that Caspase 9 mRNA increased and BDNF, Grin2a, and PlexinD1 mRNA decreased after electroacupuncture intervention
. Conclusion. Electroacupuncture intervention on hand-taiyin meridian may reduce neurological function scores, inhibit neuron apoptosis, and enhance neuronal repair neuroreparation in MCAO/R rats, which may be related to the regulation of genes such as Caspase 9, BDNF, Grin2a, and PlexinD1.
Collapse
|
32
|
Two independent modes of kidney stone suppression achieved by AIM/CD5L and KIM-1. Commun Biol 2022; 5:783. [PMID: 35922481 PMCID: PMC9349198 DOI: 10.1038/s42003-022-03750-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
The prevalence of kidney stones is increasing and its recurrence rate within the first 5 years is over 50%. No treatments that prevent the occurrence/recurrence of stones have reached the clinic. Here, we show that AIM (also called CD5L) suppresses stone development and improves stone-associated physical damages. The N-terminal domain of AIM associates with calcium oxalate crystals via charge-based interaction to impede the development of stones, whereas the 2nd and C-terminal domains capture the inflammatory DAMPs to promote their phagocytic removal. Accordingly, when stones were induced by glyoxylate in mice, recombinant AIM (rAIM) injection dramatically reduced stone development. Expression of injury molecules and inflammatory cytokines in the kidney and overall renal dysfunction were abrogated by rAIM. Among various negatively charged substances, rAIM was most effective in stone prevention due to its high binding affinity to crystals. Furthermore, only AIM was effective in improving the physical complaints including bodyweight-loss through its DAMPs removal effect. We also found that tubular KIM-1 may remove developed stones. Our results could be the basis for the development of a comprehensive therapy against kidney stone disease. The circulating protein apoptosis inhibitor of macrophage (AIM) reduces kidney stone development and prevents build up, providing the basis for kidney stone disease therapy.
Collapse
|
33
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Akama-Garren EH, Carroll MC. Lupus Susceptibility Loci Predispose Mice to Clonal Lymphocytic Responses and Myeloid Expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2403-2424. [PMID: 35477687 PMCID: PMC9254690 DOI: 10.4049/jimmunol.2200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 05/17/2023]
Abstract
Lupus susceptibility results from the combined effects of numerous genetic loci, but the contribution of these loci to disease pathogenesis has been difficult to study due to the large cellular heterogeneity of the autoimmune immune response. We performed single-cell RNA, BCR, and TCR sequencing of splenocytes from mice with multiple polymorphic lupus susceptibility loci. We not only observed lymphocyte and myeloid expansion, but we also characterized changes in subset frequencies and gene expression, such as decreased CD8 and marginal zone B cells and increased Fcrl5- and Cd5l-expressing macrophages. Clonotypic analyses revealed expansion of B and CD4 clones, and TCR repertoires from lupus-prone mice were distinguishable by algorithmic specificity prediction and unsupervised machine learning classification. Myeloid differential gene expression, metabolism, and altered ligand-receptor interaction were associated with decreased Ag presentation. This dataset provides novel mechanistic insight into the pathophysiology of a spontaneous model of lupus, highlighting potential therapeutic targets for autoantibody-mediated disease.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; and
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|