1
|
Wang X, Qiu Z, Zhong Z, Liang S. TREM2-expressing macrophages in liver diseases. Trends Endocrinol Metab 2025:S1043-2760(25)00084-0. [PMID: 40368708 DOI: 10.1016/j.tem.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 30% of the global population and spans a spectrum of liver abnormalities, including simple steatosis, inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent studies have identified triggering receptors expressed on myeloid cells 2 (TREM2)-expressing macrophages as key regulators of MASLD progression. TREM2 plays a pivotal role in regulating macrophage-mediated processes such as efferocytosis, inflammatory control, and fibrosis resolution. Additionally, soluble TREM2 (sTREM2) was proposed as a noninvasive biomarker for diagnosing and monitoring MASLD progression. However, the molecular mechanisms through which TREM2 influences MASLD pathogenesis remain incompletely understood. This review summarizes the current understanding of TREM2-expressing macrophages in MASLD, with the goal of illuminating future research and guiding the development of innovative therapeutic strategies targeting TREM2 signaling pathways.
Collapse
Affiliation(s)
- Xiaochen Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Qiu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Zhao S, Zhang Y, Meng X, Wang Y, Li Y, Li H, Zhao X, Yang P, Liu S, Yang C. INHBA + macrophages and Pro-inflammatory CAFs are associated with distinctive immunosuppressive tumor microenvironment in submucous Fibrosis-Derived oral squamous cell carcinoma. BMC Cancer 2025; 25:857. [PMID: 40355814 PMCID: PMC12067746 DOI: 10.1186/s12885-025-14261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Transcriptomic and metabolic profiles of tumor cells and stromal cells in oral squamous cell carcinoma (OSCC)-derived from oral submucosal fibrosis (OSF) (ODSCC) have been reported. However, the complex intercellular regulatory network within the tumor immunosuppressive microenvironment (TISME) in ODSCC remains poorly elucidated. Here, we utilized single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data from GEO database and multiple immunofluorescence staining (mIF) to reveal distinctive TISME of ODSCC. Results found that compared to OSCC without OSF history (NODSCC), OSCC derived from OSF (ODSCC) showed a significant increase in exhausted CD8+T and Treg cells (Ro/e > 1, p < 0.05) and a decrease in cytotoxic T (CTL) (Ro/e < 1). ODSCC enriched in more Inhibin subunit beta A+ Macrophages (INHBA+Mac) and Proinflammatory Cancer-associated Fibroblast (iCAF) versus NODSCC. INHBA+Mac possessed strongest immune-suppressive functions, evidenced by highest immune checkpoint scores, lowest MHC scores and highest expression of SPP1 among macrophages. Moreover, INHBA+Mac in ODSCC presented stronger immune-suppressive functions than that in NODSCC. iCAF differentially highly expressed INHBA and enriched in immune-related pathways and collagen/ECM pathways across CAF subsets, and possessed stronger immune-suppressive functions, as shown by up-regulated gene expression of TDO2, IDO1 and DUSP4 in ODSCC versus in NODSCC. Furthermore, INHBA expression was higher in ODSCC than in NODSCC (p < 0.01). The classic OSF-inducing molecule arecoline significantly increases the expression of INHBA (p < 0.0001) in vitro experiments stimulating THP-1 cells. ST analysis revealed a close co-location of INHBA+Mac, iCAF and Treg and SpaGene identified INHBA-ACVR1/ACVR2A/ACVR2B interaction regions overlapping with distribution of three types of cells. Collectively, ODSCC shows a more severe TISME and potentially poorer sensitivity to immunotherapy than NODSCC. The increased INHBA+Mac and iCAF in ODSCC are associated with the observed more severe TISME. The upregulated INHBA in ODSCC and its interaction with INHBA-ACVR1/ACVR2A/ACVR2B may mediate the modulation effect of INHBA+ Mac and iCAF on Treg differentiation and functionality.
Collapse
Affiliation(s)
- Simin Zhao
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Zhang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqin Meng
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Ye Wang
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yahui Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Hao Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Xingyu Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Department of Plastic, Aesthetic, and Burn Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Shaopeng Liu
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Liang H, Zhang S. Thrombospondin-1 induces CD8 + T cell exhaustion and immune suppression within the tumor microenvironment of ovarian cancer. J Ovarian Res 2025; 18:99. [PMID: 40349060 PMCID: PMC12065243 DOI: 10.1186/s13048-025-01668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) progression is heavily influenced by the tumor microenvironment (TME), where immune suppression plays a critical role. This study explores the role of thrombospondin-1 (THBS1) in regulating tumor-associated macrophages (TAMs), T cell exhaustion, and immune checkpoint expression, as well as its transcriptional regulation by SNF2H. METHODS We analyzed THBS1 expression and its clinical significance using publicly available datasets (TCGA-OV, GSE14407) and tissue microarrays containing OC and adjacent normal tissues. In vitro functional studies were conducted using OC cell lines (SKOV3, A2780) and co-cultures with macrophages. Chromatin immunoprecipitation (ChIP) assays and RNA interference were employed to investigate SNF2H-mediated transcriptional regulation of THBS1. In vivo, the role of THBS1 in immune suppression was validated using mouse tumor models. RESULTS THBS1 was significantly overexpressed in OC tissues and associated with poor prognosis. High levels of THBS1 correlated with increased TAM infiltration, M2 macrophage polarization, and upregulation of immune checkpoints PD-L1 and GAL-3, which contribute to T cell exhaustion. Functional assays demonstrated that THBS1 promotes macrophage recruitment and induces M2 polarization through TGF-β1 and IL-4 signaling. Additionally, ChIP assays identified SNF2H as a transcriptional regulator of THBS1, contributing to its overexpression. In vitro targeting of THBS1 reduced TAM-mediated immune suppression and restored T cell cytotoxicity. CONCLUSION This study positions THBS1 as a key regulator of the OC TME, linking TAM recruitment and polarization to CD8+ T cell exhaustion via immune checkpoint modulation. By identifying SNF2H as a transcriptional regulator of THBS1, we offer new insights into its epigenetic dysregulation and suggest potential therapeutic strategies to reprogram the TME and improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of Reproductive Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515031, Guangdong, China
| | - Suwei Zhang
- Department of Clinical Laboratory, Shantou Central Hospital, No.114 of Waima Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
4
|
Papakonstantinou D, Wang H, Bani MA, Mulder K, Dunsmore G, Boilève A, Jules-Clément G, Panunzi L, de Sousa LR, de la Calle Fabregat C, Deloger M, Signolle N, Gessain G, Nikolaev SI, Ducreux M, Hollebecque A, Ginhoux F, Blériot C. Molecular analysis highlights TREM2 as a discriminating biomarker for patients suffering from pancreatic ductal adenocarcinoma. Cancer Treat Res Commun 2025; 43:100939. [PMID: 40354768 DOI: 10.1016/j.ctarc.2025.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Pancreatic cancer is projected to become the second leading cause of cancer-related deaths by 2030, with its mortality continuing to rise, unlike other common cancers such as breast or colorectal. Late-stage diagnosis, often accompanied by metastatic dissemination, drastically impairs patient survival and underscores the urgent need for improved biomarkers to guide therapeutic strategies. While molecular signatures have been proposed to stratify pancreatic cancer patients, their ability to predict outcomes remains limited. In this study, we applied established molecular signatures to our in-house transcriptomic data from a cohort of pancreatic cancer patients. We took advantage of published datasets to construct comprehensive atlases of cells present in primary and metastatic pancreatic cancers. The atlas of metastasis samples, representative of routinely harvested patient biopsies, revealed that monocyte/macrophage signatures provided superior discriminatory power compared to existing molecular classifications. Notably, the abundance of TREM2-expressing macrophages emerged as a significant parameter for stratifying patients. Our findings position TREM2+ macrophages as a promising biomarker for pancreatic cancer, with potential to enhance patient stratification and inform the development of targeted therapies. This work highlights the critical role of tumor-associated macrophages in pancreatic cancer progression and lays the groundwork for further functional and translational studies.
Collapse
Affiliation(s)
| | - Haiding Wang
- Gustave Roussy Cancer Campus, CNRS UMR9018, Villejuif, France
| | - Mohamed-Amine Bani
- Gustave Roussy Cancer Campus, Medical oncology department, Villejuif, France
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, INSERM U1015, Villejuif, France
| | - Garett Dunsmore
- Gustave Roussy Cancer Campus, INSERM U1015, Villejuif, France
| | - Alice Boilève
- Gustave Roussy Cancer Campus, INSERM U1279, Université Paris Saclay, Villejuif, France; Gustave Roussy Cancer Campus, Biopathology department, Villejuif, France
| | - Gérôme Jules-Clément
- Gustave Roussy Cancer Campus, Bioinformatics Core Facility, CNRS, INSERM, Université Paris-Saclay, Villejuif, France
| | - Leonardo Panunzi
- Gustave Roussy Cancer Campus, INSERM U981, Université Paris Saclay, Villejuif, France
| | | | | | - Marc Deloger
- Gustave Roussy Cancer Campus, Bioinformatics Core Facility, CNRS, INSERM, Université Paris-Saclay, Villejuif, France
| | - Nicolas Signolle
- Gustave Roussy Cancer Campus, Biopathology department, Villejuif, France
| | - Grégoire Gessain
- Gustave Roussy Cancer Campus, Biopathology department, Villejuif, France
| | - Sergey I Nikolaev
- Gustave Roussy Cancer Campus, INSERM U981, Université Paris Saclay, Villejuif, France
| | - Michel Ducreux
- Gustave Roussy Cancer Campus, Medical oncology department, Villejuif, France
| | - Antoine Hollebecque
- Gustave Roussy Cancer Campus, Medical oncology department, Villejuif, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, INSERM U1015, Villejuif, France
| | - Camille Blériot
- Gustave Roussy Cancer Campus, INSERM U1015, Villejuif, France; Gustave Roussy Cancer Campus, CNRS UMR9018, Villejuif, France; Institut Necker Enfants Malades, CNRS, INSERM, Université Paris Cité, Paris, France.
| |
Collapse
|
5
|
Karimova AF, Khalitova AR, Suezov R, Markov N, Mukhamedshina Y, Rizvanov AA, Huber M, Simon HU, Brichkina A. Immunometabolism of tumor-associated macrophages: A therapeutic perspective. Eur J Cancer 2025; 220:115332. [PMID: 40048925 DOI: 10.1016/j.ejca.2025.115332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment (TME), actively contributing to the formation of an immunosuppressive niche that fosters tumor progression. Consequently, there has been a growing interest in targeting TAMs as a promising avenue for cancer therapy. Recent advances in the field of immunometabolism have shed light on the influence of metabolic adaptations on macrophage physiology in the context of cancer. Here, we discuss the key metabolic pathways that shape the phenotypic diversity of macrophages. We place special emphasis on how metabolic reprogramming impacts the activation status of TAMs and their functions within the TME. Additionally, we explore alterations in TAM metabolism and their effects on phagocytosis, production of cytokines/chemokines and interaction with cytotoxic T and NK immune cells. Moreover, we examine the application of nanomedical approaches to target TAMs and assess the clinical significance of modulating the metabolism of TAMs as a strategy to develop new anti-cancer therapies. Taken together, in this comprehensive review article focusing on TAMs, we provide invaluable insights for the development of effective immunotherapeutic strategies and the enhancement of clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Adelya F Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya R Khalitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roman Suezov
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025; 22:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
7
|
Wang Y, Dong A, Man J, Chen H, Shen W, Wang L, Yang H, Hu L, Yang K. TREM2 scFv-Engineering Escherichia coli Displaying Modulation of Macrophages to Boost Cancer Radio-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417920. [PMID: 40103438 DOI: 10.1002/adma.202417920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Preoperative neoadjuvant radio-chemotherapy is a cornerstone in the treatment of low rectal cancer, yet its effectiveness can be limited by the insensitivity of some patients, profoundly impacting their quality of life. Through preliminary research, it is found that TREM2+ macrophages play a pivotal role in the non-responsiveness to immunotherapy. To address this challenge, a novel ionizing radiation-responsive delivery system is developed for the precise expression of anti-TREM2 single-chain antibody fragments (scFv) using an engineered probiotic, Escherichia coli Nissle 1917 (EcN), to modulate immunotherapy. The released anti-TREM2 scFv can be precisely targeted and delivered to the tumor site via the engineered EcN outer membrane vesicles (OMVs), thereby reversing the immunosuppressive tumor microenvironment and enhancing tumor therapeutic efficiency when used in combination with the αPD-L1 immune checkpoint inhibitor. Additionally, these engineered bacteria can be further modified to enhance the intestinal colonization capabilities through oral administration, thereby regulating the gut microbiota and its metabolic byproducts. Consequently, the ionizing radiation-responsive drug delivery system based on the engineered bacteria not only introduces a promising new therapeutic option for low rectal cancer but also showcases the potential to finely tune immune responses within the intricate tumor microenvironment, paving the way for innovative strategies in tumor radio-immunotherapy.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Anqi Dong
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianping Man
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hua Chen
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenhao Shen
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lei Wang
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hongli Yang
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Hu
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- Department of Pathology at the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
8
|
Liu Z, Yang Y, Fang H, Cen B, Fan Y, Li J, Wang L, He S. Single-cell and spatial analyses reveal the effect of VSIG4 +S100A10 +TAMs on the immunosuppression of glioblastoma and anti-PD-1 immunotherapy. Int J Biol Macromol 2025; 308:142415. [PMID: 40127797 DOI: 10.1016/j.ijbiomac.2025.142415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Therapeutic strategies aiming at the tumor immune microenvironment (TIME) hold promise for glioblastoma (GBM) treatment. However, adjuvant immunotherapies targeting checkpoint inhibitors just prove effective for a selected group of GBM patients. The extensive involvement of GBM-associated macrophages highlights their potential role in tumor behavior. In-depth exploration of the impact of macrophages on the efficacy of immunotherapy is crucial for enhancing treatment outcomes. In this study, we conducted a comprehensive analysis using bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), and spatial transcriptomics to explore the heterogeneity of tumor-associated macrophages (TAMs) in GBM. Flow cytometry was employed to investigate the effects of VSIG4 on TAM phenotypes, and co-culture cellular assays were performed to evaluate its contribution to GBM malignancy. Integrating 16 patient samples, we examined the immunological significance of VSIG4+S100A10+TAMs. VSIG4 expression on macrophages is significantly upregulated and correlated with the TIME, promoting the polarization of macrophages towards M2 and facilitating GBM progression. Spatial transcriptomics and human samples multiplex immunofluorescence (mIF) confirmed the co-localization of VSIG4+S100A10+TAMs with various T cells, resulting in the inhibition of T cell immune responses and a reduction in anti-tumor immunity. Our findings demonstrate for the first time that VSIG4+S100A10+TAM is an independent prognostic indicator of poor outcome for GBM and markedly accumulates in patients exhibiting non-responsiveness to anti-PD-1 immunotherapy. Targeting this specific bifunctional subgroup can potentially open up new avenues for the immunotherapy of GBM.
Collapse
Affiliation(s)
- Ziyuan Liu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yufan Yang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haiting Fang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bohong Cen
- National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiqi Fan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianlong Li
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Lijie Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025; 46:403-415. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
10
|
Zhang G, Yu H, Liu J, Dong G, Cai Z. Myeloid-lineage-specific membrane protein LRRC25 suppresses immunity in solid tumor and is a potential cancer immunotherapy checkpoint target. Cell Rep 2025; 44:115631. [PMID: 40279244 DOI: 10.1016/j.celrep.2025.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/20/2025] [Accepted: 04/09/2025] [Indexed: 04/27/2025] Open
Abstract
Leucine-rich repeat containing 25 (LRRC25), a type I membrane protein, is specifically expressed in myeloid cells including neutrophils and macrophages. The anti-inflammatory role of LRRC25 was suggested in a few pathogenic models. However, its role in cancer immunity has not been interrogated. Here, we demonstrate that LRRC25 is robustly expressed in tumor-associated macrophages (TAMs). Lrrc25 deficiency in the tumor microenvironment (TME) suppresses growth of multiple murine tumor models by reprogramming TAMs toward an anti-tumor phenotype and thereby enhancing infiltration and activation of CD8+ T cells. The Nox2-ROS-Nlrp3-Il1β pathway is elevated in Lrrc25-deficient TAMs. Furthermore, a human myeloid cell line or mice with loss of Lrrc25 appear normal, indicating that LRRC25 is a safe immune target. Our results suggest that as an unappreciated immune checkpoint for tumor immunotherapy, the myeloid-specific membrane protein LRRC25 orchestrates the activity of TAMs via the canonical Nlrp3-IL1β inflammatory pathway and influences CD8+ T cell chemotaxis to the TME.
Collapse
Affiliation(s)
- Guorong Zhang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hanzhi Yu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ge Dong
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zhigang Cai
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
| |
Collapse
|
11
|
Yamashita M, Yano H, Komohara Y, Yamada R, Fujiwara Y, Hirayama M, Seki Y, Yoshida R, Nakayama H. Cytotoxic T Lymphocyte Density and PD-L1 Expression Predict the Response to Anti-PD1 Therapy in Recurrent Oral Squamous Cell Carcinoma. Microbiol Immunol 2025. [PMID: 40221937 DOI: 10.1111/1348-0421.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common head and neck cancers, and immunotherapy targeting programmed cell death 1 (PD-1) has become a treatment option for recurrent OSCC after surgery and radiation therapy. However, few studies have identified definitive biomarkers for predicting patient response to anti-PD1 therapy in OSCC. In the present study, biopsy specimens were obtained from 23 patients with recurrent OSCC who were subsequently treated with anti-PD1 therapy. Immunohistochemical examinations of CD3, CD8, FOXP3, CD103, CD163, programmed cell death ligand 1 (PD-L1), HLA-A/B/C, HLA-DR, and β2 microglobulin were performed, and their correlation with clinical response was statistically analyzed. We found that an increased density of CD8-positive lymphocytes and increased PD-L1 expression predicted a favorable response to anti-PD1 therapy in recurrent OSCC. In contrast, clinical factors such as age and sex, and immune-related factors such as HLA-Classes I and II, were not associated with the response to anti-PD1 therapy. Taken together, our results suggest that immunohistochemical analysis of CD8 and PD-L1 may be useful for predicting the efficacy of anti-PD1 therapy in recurrent OSCC.
Collapse
Affiliation(s)
- Mayuko Yamashita
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Oral & Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Tumor Pathology, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rin Yamada
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral & Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Seki
- Department of Oral & Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Pierro EW, Cottam MA, An H, Lehmann BD, Pietenpol JA, Wellen KE, Makowski L, Rathmell JC, Fingleton B, Hasty AH. Comparison of Lean, Obese, and Weight-Loss Models Reveals TREM2 Deficiency Attenuates Breast Cancer Growth Uniquely in Lean Mice and Alters Clonal T-cell Populations. Cancer Res 2025; 85:1219-1235. [PMID: 39841585 PMCID: PMC11968228 DOI: 10.1158/0008-5472.can-24-3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/19/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Obesity is an established risk factor for breast cancer development and poor prognosis. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression, and triggering receptor expressed on myeloid cells 2 (TREM2), a transmembrane receptor expressed on macrophages in adipose tissue and tumors, is an emerging therapeutic target for cancer. A better understanding of the mechanisms for the obesity-breast cancer association and the potential benefits of weight loss could help inform treatment strategies. In this study, we utilized lean, obese, and weight-loss mouse models to examine the impact of TREM2 deficiency on postmenopausal breast cancer depending on weight history conditions. Trem2 deficiency constrained tumor growth in lean, but not in obese or weight-loss, mice. Single-cell RNA sequencing, in conjunction with variable-diversity-joining sequencing, of tumor and tumor-adjacent mammary adipose tissue immune cells revealed differences in the immune landscapes across the different models. Tumors of lean TREM2-deficient mice exhibited a shift in clonal CD8+ T cells from an exhausted to an effector memory state, accompanied by increased clonality of CD4+ Th1 cells, that was not observed in any other diet-genotype group. Notably, identical T-cell clonotypes were identified in the tumor and tumor-adjacent mammary adipose tissue of the same mouse. Finally, anti-PD-1 therapy restricted tumor growth in lean and weight-loss, but not in obese, mice. These findings indicate that weight history could affect the efficacy of TREM2 inhibition in postmenopausal breast cancer. The reported immunologic interactions between tumors and the surrounding adipose tissue highlight significant differences under obese and weight-loss conditions. Significance: Weight history impacts the immunological landscape of postmenopausal breast cancer and the efficacy of TREM2 modulation and anti-PD-1 therapy, which has implications for personalized medicine.
Collapse
Affiliation(s)
- Elysa W. Pierro
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Matthew A. Cottam
- Department of Surgery, Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Hanbing An
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN
| | - Brian D. Lehmann
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer A. Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Kathryn E. Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Liza Makowski
- Department of Medicine, Division of Hematology-Oncology, University of Tennessee Health Science Center, Memphis, TN, 31863, USA
| | - Jeffrey C. Rathmell
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Barbara Fingleton
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern, Dallas, TX
| |
Collapse
|
13
|
Wang X, Wang Y, Yang L, Zhang Y, Yang L. TREM2 + macrophages: a key role in disease development. Front Immunol 2025; 16:1550893. [PMID: 40242752 PMCID: PMC12000036 DOI: 10.3389/fimmu.2025.1550893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Triggering receptors expressed on myeloid cells 2 (TREM2), an immune receptor expressed on myeloid cells, has garnered considerable attention in recent years due to its role in unique signaling pathways and diverse biological functions, including phagocytosis, lipid metabolism, cell survival, and inflammatory responses. Although TREM2 is expressed in various cell types, such as macrophages, dendritic cells (DCs), osteoclasts, and others, where it exhibits context-dependent functional characteristics, it is mainly expressed in macrophages. Notably, TREM2 is implicated in the development and progression of multiple diseases, playing dual and often opposing roles in noncancerous diseases and cancers. This review aims to highlight the pivotal role of TREM2 in macrophages and immune-related diseases, elucidate its underlying mechanisms of action, explore its potential as a clinical diagnostic and prognostic marker, and propose therapeutic strategies targeting TREM2 based on current clinical trial data, providing comprehensive guidance and references for clinical practice.
Collapse
Affiliation(s)
- Xinxin Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunhan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| |
Collapse
|
14
|
Hochstadt J, Martínez Pacheco S, Casanova-Acebes M. Embracing diversity: macrophage complexity in cancer. Trends Cancer 2025; 11:351-364. [PMID: 39753470 DOI: 10.1016/j.trecan.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 04/11/2025]
Abstract
Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics. However, understanding TAM biology and its fundamental functional programs is still challenging, probably because of the lack of models that fully integrate TAM complexity. Here, we aim to review TAM diversity not only at the level of single-cell phenotypes but also by integrating complex physiological signals that determine their complexity and plasticity in tumors.
Collapse
Affiliation(s)
- Jan Hochstadt
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sarai Martínez Pacheco
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
15
|
Malhi NK, Luo Y, Tang X, Chadha RS, Tapia A, Yuan D, Yin S, Chen M, Liu X, Reddy M, Qi M, Wei L, Cooke JP, Lee E, Natarajan R, Southerland KW, Chen ZB. Mapping Endothelial-Macrophage Interactions in Diabetic Vasculature: Role of TREM2 in Vascular Inflammation and Ischemic Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.594235. [PMID: 38798611 PMCID: PMC11118321 DOI: 10.1101/2024.05.14.594235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Diabetes mellitus (DM) significantly accelerates vascular diseases like peripheral arterial disease (PAD). Endothelial cells (ECs) and macrophages (MΦs) singularly and synergistically are important contributors to DM-associated vascular dysfunction. Single-cell (sc) profiling technologies are revealing the true heterogeneity of ECs and MΦs, but how this cellular diversity translates to cell-cell interactions, and consequentially vascular function, remains unknown. We leveraged scRNA sequencing and spatial transcriptome (ST) profiling to analyze human mesenteric arteries from non-diabetic (ND) and type 2 diabetic (T2D) donors. We generated a transcriptome and interactome map encompassing the major arterial cells and highlighted Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) as a top T2D-induced gene in mononuclear phagocytes (MPs), with concomitant increases of TREM2 ligands in ECs. We verified DM-associated TREM2 induction in cell and mouse models, and found that TREM2 inhibition decreases pro-inflammatory responses in MPs and ECs, as well as increases EC migration in vitro. Furthermore, TREM2 inhibition using a neutralizing antibody enhanced ischemic recovery and flow reperfusion in DM mice subjected to hindlimb ischemia, suggesting that TREM2 promotes ischemic injury in DM. Finally, in human PAD, co-existing DM was associated with greater expression of TREM2 and its interaction with ECs, with a further increase in ischemic tissue compared to patient-matched non-ischemic tissue. Collectively, our study presents the first atlas of human diabetic vessels with single cell and spatial resolution, and identifies TREM2-EC interaction as a key driver of diabetic vasculopathies, the targeting of which may offer an opportunity to ameliorate vascular dysfunction associated with DM-PAD.
Collapse
|
16
|
Cao Q, Sun D, Tu C, Wang J, Fu R, Gong R, Xiao Y, Liu Q, Li X. Defining gastric cancer ecology: the crucial roles of TREM2 + macrophages and fibroblasts in tumor microenvironments. Commun Biol 2025; 8:514. [PMID: 40155473 PMCID: PMC11953254 DOI: 10.1038/s42003-025-07512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/10/2025] [Indexed: 04/01/2025] Open
Abstract
Gastric cancer (GC) remains a major global health challenge, characterized by a complex tumor microenvironment (TME) that significantly influences disease progression and therapeutic outcomes. This study focuses on TREM2+ lipid-associated macrophages (LAM) and cancer-associated fibroblasts (CAFs) in modulating the GC microenvironment. Utilizing advanced single-cell RNA sequencing and bulk RNA analyses, we elucidated the interactive mechanisms through which CAFs enhance the immunosuppressive capabilities of TREM2+ LAMs via the CXCL12-CXCR4 signaling axis. Our findings reveal that this interaction facilitates tumor proliferation and inhibits apoptotic processes in GC cells. In vitro experiments confirmed the modulation of this pathway significantly affects tumor cell viability and invasiveness, underscoring the critical roles of these cellular interactions in promoting GC progression. These insights present TREM2+ LAMs and CAFs as potential therapeutic targets, offering new avenues for improving outcomes in GC treatment.
Collapse
Affiliation(s)
- Qianqian Cao
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Dianshui Sun
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Can Tu
- Vascular Intervention Department, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Jihua Wang
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Runjia Fu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Rumei Gong
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yueying Xiao
- Department of Spine Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qin Liu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
17
|
Wischnewski V, Guerrero Aruffo P, Massara M, Maas RR, Soukup K, Joyce JA. The local microenvironment suppresses the synergy between irradiation and anti-PD1 therapy in breast-to-brain metastasis. Cell Rep 2025; 44:115427. [PMID: 40106433 DOI: 10.1016/j.celrep.2025.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The brain environment is uniquely specialized to protect its neuronal tissue from excessive inflammation by tightly regulating adaptive immunity. However, in the context of brain cancer progression, this regulation can lead to a conflict between T cell activation and suppression. Here, we show that, while CD8+ T cells can infiltrate breast cancer-brain metastases, their anti-tumor cytotoxicity is locally suppressed in the brain. Conversely, CD8+ T cells exhibited tumoricidal activity in extracranial mammary lesions originating from the same cancer cells. Consequently, combined high-dose irradiation and anti-programmed cell death protein 1 (PD1) therapy was effective in extracranial tumors but not intracranial lesions. Transcriptional analyses and functional studies identified neutrophils and Trem2-expressing macrophages as key sources for local T cell suppression within the brain, providing rational targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Vladimir Wischnewski
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| |
Collapse
|
18
|
Ramirez CFA, Akkari L. Myeloid cell path to malignancy: insights into liver cancer. Trends Cancer 2025:S2405-8033(25)00054-8. [PMID: 40140328 DOI: 10.1016/j.trecan.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Clinically approved treatments for advanced liver cancer often lack potency because of the heterogeneous characteristics of hepatocellular carcinoma (HCC). This complexity is largely driven by context-dependent inflammatory responses brought on by diverse etiologies, such as metabolic dysfunction-associated steatohepatitis (MASH), the genetic makeup of cancer cells, and the versatile adaptability of immune cells, such as myeloid cells. In this review, we discuss the evolutionary dynamics of the immune landscape, particularly that of liver-resident Kupffer cells (KCs), TREM2+, and SPP1+ macrophages with an active role during liver disease progression, which eventually fuels hepatocarcinogenesis. We highlight exploitable immunomodulatory avenues amenable to mitigate both the inherent pathological characteristics of liver cancers and the associated external factors that favor malignancy, paving a roadmap toward improving the management and therapeutic outcome for patients with HCC.
Collapse
Affiliation(s)
- Christel F A Ramirez
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Yeku OO, Barve M, Tan WW, Wang J, Patnaik A, LoRusso P, Richardson DL, Naqash AR, Lynam SK, Fu S, Gordon M, Hubbard J, Kummar S, Kyriakopoulos C, Dowlati A, Chamberlain M, Winer I. Myeloid targeting antibodies PY159 and PY314 for platinum-resistant ovarian cancer. J Immunother Cancer 2025; 13:e010959. [PMID: 40081941 PMCID: PMC11907075 DOI: 10.1136/jitc-2024-010959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Novel treatment options are required in patients with platinum-resistant ovarian cancer (PROC). Myeloid-derived suppressor cells promote a hostile tumor microenvironment and are associated with worse clinical outcomes in PROC. We evaluated the safety and preliminary efficacy of PY159, an agonist antibody to Triggering receptor expressed on myeloid cells-1 (TREM1) that reprograms immunosuppressive intratumoral myeloid cells, and PY314, an antagonist antibody to Triggering receptor expressed on myeloid cells-2 (TREM2) that depletes tumor-associated macrophages, as single agents and in combination with pembrolizumab in subjects with PROC. METHODS PY159 and PY314 were individually evaluated in patients with PROC. Patients were treated with monotherapy (PY159 3 mg/kg or PY314 10 mg/kg), based on the recommended dose for expansion derived from the phase 1a studies. At the time of first progression, patients could continue study drug and crossover to combination therapy with pembrolizumab (200 mg) every 3 weeks at the discretion of the investigator. Disease assessment by Response Evaluation Criteria in Solid Tumor version 1.1 was performed every 6 weeks. RESULTS 17 patients were enrolled in the PY159 study (median age 67, range 22-77; median prior therapies 6, range 2-18) and 16 patients in PY314 (median age 65.5, range 49-81; median prior therapies 4, range 2-10). 7 patients in PY159 and 8 patients in PY314 crossed over to combination therapy. Safety events included the following: treatment-related adverse events occurred in 15 patients (88.2%) in PY159 and 9 patients (56.3%) in PY314. Infusion-related reactions occurred in 6 patients (35.3%) in PY159 and 3 patients (18.8%) in PY314. Immune-related adverse events occurred in 13 patients (76.5%) in PY159 (arthralgias) and 1 patient (6.3%) in PY314 (diarrhea). Serious adverse events occurred in 6 patients (36.3%) in PY159 (1 related) and 12 patients (75%) in PY314 (all unrelated). The best radiographic response in PY159 was stable disease in 8/16 patients (50%; median 16 weeks, range 9-33), and in PY314, it was stable disease in 8/16 patients (50%; median 12 weeks, range 6-36). Median PFS was 2.76 months and 2.69 months in PY159 and PY314, respectively. There were no responses in the crossover arm. CONCLUSIONS Both PY159 and PY314 were well tolerated, with an acceptable safety profile, as both single agents and in combination with pembrolizumab. Both agents warrant further investigation in heavily pretreated PROC.
Collapse
Affiliation(s)
- Oladapo O Yeku
- Medicine/Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Minal Barve
- Mary Crowley Cancer Research, Dallas, Texas, USA
| | | | - Judy Wang
- Drug Development Unit, Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida, USA
| | - Amita Patnaik
- The START Center for Cancer Research, San Antonio, Texas, USA
| | | | - Debra L Richardson
- Division of Gynecologic Oncology, The University of Oklahoma Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
- Sarah Cannon Research Institute, Oklahoma City, Oklahoma, USA
| | - Abdul Rafeh Naqash
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center/Sarah Cannon Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sarah K Lynam
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Siqing Fu
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Joleen Hubbard
- Allina Health Cancer Institute, Minneapolis, Minnesota, USA
| | - Shivaani Kummar
- Oregon Health & Science University Knight Cancer Institute, Portland, Oregon, USA
| | | | - Afshin Dowlati
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Ira Winer
- Wayne State University and Karmanos Cancer Center, Detroit, Michigan, USA
| |
Collapse
|
20
|
Lepland A, Peranzoni E, Haljasorg U, Asciutto EK, Crespí‐Amer M, Modesti L, Kilk K, Lombardia M, Acosta G, Royo M, Peterson P, Marigo I, Teesalu T, Scodeller P. Peptide-Drug Conjugate for Therapeutic Reprogramming of Tumor-Associated Macrophages in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410288. [PMID: 39840532 PMCID: PMC11904948 DOI: 10.1002/advs.202410288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Indexed: 01/23/2025]
Abstract
In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I. Binding studies to recombinant CD206 revealed a 15-fold lower KD for MACTIDE compared to parental mUNO. Mass spectrometry further demonstrated a 5-fold increase in MACTIDE's half-life in tumor lysates compared to mUNO. Homing studies in TNBC-bearing mice shows that fluorescein (FAM)-MACTIDE precisely targeted CD206+ tumor-associated macrophages (TAM) upon intravenous, intraperitoneal, and even oral administration, with minimal liver accumulation. MACTIDE was conjugated to Verteporfin, an FDA-approved photosensitizer and YAP/TAZ pathway inhibitor to create the conjugate MACTIDE-V. In the orthotopic 4T1 TNBC mouse model, non-irradiated MACTIDE-V-treated mice exhibited anti-tumoral effects comparable to those treated with irradiated MACTIDE-V, with fewer signs of toxicity, prompting further investigation into the laser-independent activity of the conjugate. In vitro studies using bone marrow-derived mouse macrophages showed that MACTIDE-V excluded YAP from the nucleus, increased phagocytic activity, and upregulated several genes associated with cytotoxic anti-tumoral macrophages. In mouse models of TNBC, MACTIDE-V slowed primary tumor growth, suppressed lung metastases, and increased markers of phagocytosis and antigen presentation in TAM and monocytes, increasing the tumor infiltration of several lymphocyte subsets. MACTIDE-V is proposed as a promising peptide-drug conjugate for modulating macrophage function in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Anni Lepland
- Institute of Biomedicine and Translational MedicineUniversity of TartuRavila 14BTartu50411Estonia
| | - Elisa Peranzoni
- Immunology and Molecular Oncology DiagnosticsVeneto Institute of Oncology IOV – IRCCSPadua35128Italy
| | - Uku Haljasorg
- Molecular Pathology Research GroupInstitute of Biomedicine and Translational MedicineUniversity of TartuTartu50411Estonia
| | - Eliana K. Asciutto
- Instituto de Ciencias FísicasUniversidad Nacional de San Martin (UNSAM) and CONICETCampus Migueletes25 de Mayo y FranciaBuenos AiresCP 1650Argentina
| | - Maria Crespí‐Amer
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
| | - Lorenzo Modesti
- Immunology and Molecular Oncology DiagnosticsVeneto Institute of Oncology IOV – IRCCSPadua35128Italy
| | - Kalle Kilk
- Department of biochemistryInstitute of Biomedicine and Translational MedicineUniversity of TartuRavila 19Tartu50411Estonia
| | - Manuel Lombardia
- Proteomics core facilityCentro Nacional de BiotecnologiaCNB‐CSICCalle Darwin 3Madrid28049Spain
| | - Gerardo Acosta
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and NanomedicineIQAC‐CSICBarcelona08034Spain
| | - Miriam Royo
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and NanomedicineIQAC‐CSICBarcelona08034Spain
| | - Pärt Peterson
- Molecular Pathology Research GroupInstitute of Biomedicine and Translational MedicineUniversity of TartuTartu50411Estonia
| | - Ilaria Marigo
- Immunology and Molecular Oncology DiagnosticsVeneto Institute of Oncology IOV – IRCCSPadua35128Italy
- Department of SurgeryOncology and Gastroenterology (DISCOG)University of PadovaPadova35128Italy
| | - Tambet Teesalu
- Institute of Biomedicine and Translational MedicineUniversity of TartuRavila 14BTartu50411Estonia
| | - Pablo Scodeller
- Institute of Biomedicine and Translational MedicineUniversity of TartuRavila 14BTartu50411Estonia
- Institute for Advanced Chemistry of CataloniaIQAC‐CSICJordi Girona 18–26Barcelona08034Spain
| |
Collapse
|
21
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Mestrallet G, Brown M, Vaninov N, Cho NW, Velazquez L, Ananthanarayanan A, Spitzer M, Vabret N, Cimen Bozkus C, Samstein RM, Bhardwaj N. Coordinated macrophage and T cell interactions mediate response to checkpoint blockade in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637954. [PMID: 40027748 PMCID: PMC11870396 DOI: 10.1101/2025.02.12.637954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mismatch repair deficiency (MMRd), either due to inherited or somatic mutation, is prevalent in colorectal cancer (CRC) and other cancers. While anti-PD-1 therapy is utilized in both local and advanced disease, up to 50% of MMRd CRC fail to respond. Using animal and human models of MMRd, we determined that interactions between MHC+ C1Q+ CXCL9+ macrophages and TCF+ BHLHE40+ PRF1+ T cell subsets are associated with control of MMRd tumor growth, during anti-PD-1 treatment. In contrast, resistance is associated with upregulation of TIM3, LAG3, TIGIT, and PD-1 expression on T cells, and infiltration of the tumor with immunosuppressive TREM2+ macrophages and monocytes. By combining anti-PD-1 with anti-LAG3/CTLA4/TREM2, up to 100% tumor eradication was achieved in MMRd CRC and remarkably, in >70% in MMRp CRC. This study identifies key T cell and macrophage subsets mediating the efficacy of immunotherapy in overcoming immune escape in both MMRd and MMRp CRC settings. Abstract Figure Highlights Anti-PD-1 therapy leads to the accumulation and colocalization of MHCI/II+ C1Q+ CXCL9+ macrophages and DCs with TCF+ CCL5+ T cells that have high TCR diversity.Resistance to anti-PD-1 therapy involves multiple T cell checkpoints, TREM2+ macrophages, IL1B+ TREM1+ monocytes and neutrophils, and IFITM+ tumor cells.Simultaneous blockade of PD-1, LAG3, CTLA-4 and TREM2 dramatically prevents progression of both MMRd and MMRp tumors.Combination therapy completely eliminates tumors by leveraging MHC+ macrophage, CD4+ and CD8+ T cell interactions, facilitating durable anti-tumor effects.
Collapse
|
23
|
Sherpally D, Manne A. Advancing Immunotherapy in Pancreatic Cancer: A Brief Review of Emerging Adoptive Cell Therapies. Cancers (Basel) 2025; 17:589. [PMID: 40002184 PMCID: PMC11853216 DOI: 10.3390/cancers17040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic cancer has the lowest 5-year survival rate (13%) among major cancers and is the third leading cause of cancer-related deaths in the United States. The high lethality of this cancer is attributed to its insidious onset, late-stage diagnosis, rapid progression, and limited treatment options. Addressing these challenges requires a deeper understanding of the complex tumor microenvironment to identify novel therapeutic targets. Newer approaches like adoptive cell therapy have shown remarkable success in treating hematological malignancies, but their application in solid tumors, particularly pancreatic cancer, is still in the early stages of development. ACT broadly involves isolating immune cells (T lymphocytes, Natural Killer cells, and macrophages) from the patient, followed by genetic engineering to enhance and mount a specific anti-tumor response. Various ACT modalities are under investigation for pancreatic cancer, including chimeric antigen receptor T cells (CAR-T), chimeric antigen receptor NK cells (CAR-NK), tumor-infiltrating lymphocytes (TIL), T-cell receptor (TCR)-engineered T cells, and cytokine-induced killer cells (CIK). Major hurdles have been identifying actionable tumor antigens and delivering focused cellular therapies to overcome the immunosuppressive and dense fibrotic stroma surrounding the pancreatic cancer. Further studies are needed to explore the limitations faced by cellular therapy in pancreatic cancer and identify novel combination treatment approaches in order to improve clinical outcomes.
Collapse
Affiliation(s)
- Deepak Sherpally
- Department of Internal Medicine, New York Medical College, Metropolitan, New York, NY 10029, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| |
Collapse
|
24
|
Rugo HS, Campbell M, Yau C, Jo Chien A, Wallace AM, Isaacs C, Boughey JC, Han HS, Buxton M, Clennell JL, Asare SM, Steeg K, Wilson A, Singhrao R, Matthews JB, Perlmutter J, Fraser Symmans W, Hylton NM, DeMichele AM, Yee D, Van't Veer LJ, Berry DA, Esserman LJ. Pexidartinib and standard neoadjuvant therapy in the adaptively randomized I-SPY2 trial for early breast cancer. Breast Cancer Res Treat 2025; 209:487-492. [PMID: 39625569 PMCID: PMC11785665 DOI: 10.1007/s10549-024-07555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE We investigated the small-molecule receptor tyrosine kinase-inhibitor of colony-stimulating factor-1 receptor pexidartinib in the stage II/III breast cancer in the I-SPY2 platform trial. METHODS I-SPY2 is an adaptive platform trial that features multiple arms of experimental agents administered on a background of standard neoadjuvant therapy with paclitaxel and adriamycin/cyclophosphamide, followed by definitive surgery. The adaptive randomization engine preferentially assigns patients based upon cumulative performance of each agent in a given breast cancer subtype based on hormone receptor and HER2 receptor status. The study endpoint is pathologic complete response. RESULTS A total of 9 participants were randomized to receive pexidartinib with neoadjuvant paclitaxel before enrollment was halted due to a serious adverse event of vanishing bile duct syndrome. No participants received a full course of the study drug. CONCLUSION Although there remains interest in agents targeting CSF-1, hepatic toxicity appears to be a limiting factor for their use in early breast cancer. TRIAL REGISTRATION NCT01042379 ( www. CLINICALTRIALS gov/ct2/show/NCT01042379 ).
Collapse
Affiliation(s)
- Hope S Rugo
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA.
| | - Mike Campbell
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Christina Yau
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - A Jo Chien
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | | | | | - Hyo S Han
- Moffitt Cancer Center, Tampa, FL, USA
| | - Meredith Buxton
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Julia L Clennell
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Katherine Steeg
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Ruby Singhrao
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Jeffrey B Matthews
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | | | - Nola M Hylton
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | - Douglas Yee
- University of Minnesota, Minneapolis, MN, USA
| | - Laura J Van't Veer
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | - Laura J Esserman
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| |
Collapse
|
25
|
Jin R, Neufeld L, McGaha TL. Linking macrophage metabolism to function in the tumor microenvironment. NATURE CANCER 2025; 6:239-252. [PMID: 39962208 DOI: 10.1038/s43018-025-00909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Macrophages are present at high frequency in most solid tumor types, and their relative abundance negatively correlates with therapy responses and survival outcomes. Tissue-resident macrophages are highly tuned to integrate tissue niche signals, and multiple factors within the idiosyncratic tumor microenvironment (TME) drive macrophages to polarization states that favor immune suppression, tumor growth and metastasis. These diverse functional states are underpinned by extensive and complex rewiring of tumor-associated macrophage (TAM) metabolism. In this Review, we link distinct and specific macrophage functional states within the TME to major, phenotype-sustaining metabolic programs and discuss the metabolic impact of macrophage-modulating therapeutic interventions.
Collapse
Affiliation(s)
- Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Luke Neufeld
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Zhao S, Tian D, Huang F, Wang L, Cheng J, He Z, Shen Q, Liang S, Gong D, Liu J, Yi C, Zhang C, Bian E, Jing J, Wang T. Comprehensive analysis of ESCRT transcriptome-associated signatures and identification of the regulatory role of LMO7-AS1 in osteosarcoma. Cancer Cell Int 2025; 25:29. [PMID: 39885569 PMCID: PMC11783933 DOI: 10.1186/s12935-025-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis. Analysis of internal and external datasets revealed that the ERG signature has good predictive ability and reproducibility. Immune analysis demonstrated a significant correlation between OS patient immune status and ERG signature score. Moreover, ERG signature score was found to be associated with the response of OS patients to immunotherapy and anticancer drugs. Additionally, we constructed a prognostic signature consisting of 10 ESCRT-related long noncoding RNAs (ERLs) that effectively predicted the prognosis of OS patients. Furthermore, two subgroups of OS patients with distinct prognoses (clusters 1 and 2) were identified. Finally, LMO7-AS1 was chosen for functional experimental validation. The knockdown of LMO7-AS1 suppressed the malignant progression of OS cells. Furthermore, transcriptome sequencing was performed on OS cells and revealed a correlation between LMO7-AS1 and the PI3K-Akt signaling pathway. In conclusion, our ESCRT transcriptome-associated signatures can act as prognostic biomarkers for OS, and LMO7-AS1 is a novel therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lei Wang
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230601, China
- Department of Bone and Soft Tissue Surgery, Anhui Provincial Cancer Hospital, Hefei, 230601, China
| | - Jinhao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhitao He
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qitian Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shuai Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Tao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
27
|
Martinenaite E, Lecoq I, Aaboe-Jørgensen M, Ahmad SM, Perez-Penco M, Glöckner HJ, Chapellier M, Lara de la Torre L, Olsen LR, Rømer AMA, Pedersen AW, Andersen MH. Arginase-1-specific T cells target and modulate tumor-associated macrophages. J Immunother Cancer 2025; 13:e009930. [PMID: 39880485 PMCID: PMC11781113 DOI: 10.1136/jitc-2024-009930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/14/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization. METHODS Murine Arg1-specific CD4+T cells isolated from splenocytes of animals vaccinated with an Arg1-derived peptide in the adjuvant montanide were co-cultured with either in vitro M2-differentiated bone marrow-derived macrophages or ex vivo isolated F4/80+TAMs. Human Arg1-specific CD4+T cell clones were co-cultured with Arg1-expressing TAMs generated in vitro from either PBMC-derived CD14+cells or the myeloid cell lines MonoMac1 and THP-1. MHC class II-restricted Arg-1 peptide presentation by macrophages was confirmed by immunopeptidomics. T-cell-mediated changes in the macrophage immune phenotype and cytokine microenvironment were examined using flow cytometry, RT-qPCR and multiplex immunoassay. The effect of Arg1-derived peptide IMV on TAMs in vivo was assessed by multiplex gene analysis of F4/80+cells. RESULTS We show that Arg1-based IMV-mediated tumor control was linked to a decrease in multiple immunosuppressive pathways in the TAM population of the treated animals. Tumor-conditioned media (TCM) derived from Arg1-vaccinated mice induced significantly higher upregulation of MHC-II on exposed myeloid cells compared with controls. Furthermore, murine CD4+Arg1-specific T cells were able to target TAMs and effectively reprogram their phenotype ex vivo by secreting IL2 and IFNγ. Next, we established that human Arg1+TAMs present Arg1-derived peptides and are directly recognized by proinflammatory CD4+Arg1-specific T cell clones. These CD4+Arg1-specific T cells were able to reprogram TCM-conditioned macrophages as observed by increased expression of CD80 and HLA-DR. CONCLUSIONS TAMs may be directly targeted and modulated by Arg1-specific CD4+T cells. These findings provide a strong rationale for future clinical development of Arg1-based IMVs to alter the immune-suppressive TME by reprogramming TAMs and promoting a proinflammatory TME.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Inés Lecoq
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Mia Aaboe-Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Lucía Lara de la Torre
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- Department of Immunology, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
28
|
Chaurasia A, Brigi C, Daghrery A, Asa'ad F, Spirito F, Hasuike A, González-Alva P, Kojic DD, Ünsal RBK, Sivaramakrishnan G. Tumour-Associated Macrophages in Oral Squamous Cell Carcinoma. Oral Dis 2025. [PMID: 39846431 DOI: 10.1111/odi.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Tumour-associated macrophages (TAMs) are crucial in the progression and treatment response of oral squamous cell carcinoma (OSCC). TAMs infiltrate OSCC, adopting an M2-like phenotype that promotes tumour growth, metastasis and immune suppression. The current narrative review explored the roles of TAMs in OSCC, focusing on their impact on the tumour microenvironment, invasion, metastasis, angiogenesis, immunosuppression and potential therapeutic targeting. METHODS A comprehensive analysis of the current literature on TAMs in OSCC was conducted. Specifically, we evaluated the biological functions of TAMs, their interactions within the tumour microenvironment, and their influence on disease progression and treatment outcomes. RESULTS TAMs contribute to OSCC progression by secreting cytokines, such as IL-10 and TGF-β, that inhibit effector immune cells. They facilitate angiogenesis, extracellular matrix remodelling and the epithelial-mesenchymal transition, which are essential for tumour invasion and metastasis. TAMs support cancer stem cells and recruit regulatory T cells and myeloid-derived suppressor cells, enhancing resistance to therapies. Their presence correlates with advanced OSCC stages, lymph node metastasis and poor prognosis. CONCLUSION TAMs regulate OSCC progression and therapy resistance. Reprogramming them to an M1-like phenotype or depleting them enhances treatments. Understanding TAM-OSCC interactions is crucial for developing interventions against their tumour-promoting functions and restoring anti-tumour immunity.
Collapse
Affiliation(s)
- Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow, India
| | - Carel Brigi
- Department of Oral Diagnosis, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Farah Asa'ad
- Department of Oral Biochemistry, Institute for Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Dave D Kojic
- Restorative Dentistry, A.T. Still University, Missouri School of Dentistry & Oral Health, Kirksville, Missouri, USA
| | - Revan Birke Koca Ünsal
- Department of Periodontics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
29
|
Guo H, Wang M, Ni C, Yang C, Fu C, Zhang X, Chen X, Wu X, Hou J, Wang L. TREM2 promotes the formation of a tumor-supportive microenvironment in hepatocellular carcinoma. J Exp Clin Cancer Res 2025; 44:20. [PMID: 39838454 PMCID: PMC11748316 DOI: 10.1186/s13046-025-03287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells 2 (TREM2), a surface receptor predominantly expressed on myeloid cells, is a major hub gene in pathology-induced immune signaling. However, its function in hepatocellular carcinoma (HCC) remains controversial. This study aimed to evaluate the role of TREM2 in the tumor microenvironment in the context of HCC progression. METHODS HCC was experimentally induced in wild-type (WT) and Trem2-deficient (Trem2-/-) mice, and clinical sample analysis and in vitro studies on macrophages were conducted. HCC cells were treated with conditioned medium from WT or Trem2-/- macrophages, and their malignant phenotypes and underlying mechanisms were analyzed. RESULTS TREM2 deficiency reduced liver tumor burden in orthotopic and subcutaneous HCC models by altering CD8+ T cell infiltration. Trem2-deficient macrophages presented increased chemokine secretion. TGF-β1 was found to be positively correlated with TREM2 expression in HCC, and TGF-β blockade reversed TREM2 induction. On the other hand, TREM2+ macrophages were found to be associated with glycolysis and PKM2 expression in HCC cells; this association may be related to the secretion of IL-1β, which enhances the malignant phenotypes of HCC cells. CONCLUSIONS These results reveal that TREM2+ macrophages play a driving role in HCC progression by suppressing CD8+ T cell infiltration and promoting tumor cell glycolysis, providing a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Hanrui Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meiling Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Jinan Maternity and Child Care Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Caiya Ni
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Affiliated Tianfu Hospital of Southwest Medical University (Meishan Tianfu New Area People's Hospital), Meishan, Sichuan, China
| | - Chunxue Fu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaoman Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
30
|
Montagne JM, Mitchell JT, Tandurella JA, Christenson ES, Danilova LV, Deshpande A, Loth M, Sidiropoulos DN, Davis-Marcisak E, Bergman DR, Zhu Q, Wang H, Kagohara LT, Engle LL, Green BF, Favorov AV, Ho WJ, Lim SJ, Zhang R, Li P, Gai J, Mo G, Mitchell S, Wang R, Vaghasia A, Hou W, Xu Y, Zimmerman JW, Elisseeff JH, Yegnasubramanian S, Anders RA, Jaffee EM, Zheng L, Fertig EJ. CD137 agonism enhances anti-PD1 induced activation of expanded CD8 + T cell clones in a neoadjuvant pancreatic cancer clinical trial. iScience 2025; 28:111569. [PMID: 39811671 PMCID: PMC11730579 DOI: 10.1016/j.isci.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist. Treatment with GVAX and anti-PD-1 led to increased CD8+ T cell activation and expression of cytoskeletal and extracellular matrix (ECM)-interacting components. Addition of CD137 agonist increased abundance of clonally expanded CD8+ T cells and increased immunosuppressive TREM2 signaling in tumor associated macrophages (TAMs), identified by comparison of ligand-receptor networks, corresponding to changes in metabolism and ECM interactions. These findings associate therapy with GVAX, anti-PD1, and CD137 agonist with enhanced CD8+ T cell function while inducing alternative immunosuppressive pathways in patients with PDAC.
Collapse
Affiliation(s)
- Janelle M. Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Joseph A. Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric S. Christenson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ludmila V. Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie Loth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios N. Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Daniel R. Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qingfeng Zhu
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Logan L. Engle
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin F. Green
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander V. Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, RF, Russia
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Jin Lim
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rui Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pan Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanglan Mo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rulin Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yao Xu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- InHealth Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
31
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
32
|
Lanman NA, Meco E, Fitchev P, Kolliegbo AK, Broman MM, Filipovich Y, Kothandaraman H, Cresswell GM, Talaty P, Antoniak M, Brumer S, Glaser AP, Higgins AM, Helfand BT, Franco OE, Wang CH, Crawford SE, Ratliff TL, Hayward SW, Vickman RE. Infiltrating lipid-rich macrophage subpopulations identified as a regulator of increasing prostate size in human benign prostatic hyperplasia. Front Immunol 2025; 15:1494476. [PMID: 39867899 PMCID: PMC11757139 DOI: 10.3389/fimmu.2024.1494476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia. Methods Single-cell RNA-seq of CD45+ transition zone leukocytes from 10 large (>90 grams) and 10 small (<40 grams) human prostates was conducted. Macrophage subpopulations were defined using marker genes and evaluated by flow cytometry. Results BPH macrophages do not distinctly categorize into M1 and M2 phenotypes. Instead, macrophages with neither polarization signature preferentially accumulate in large versus small prostates. Specifically, macrophage subpopulations with altered lipid metabolism pathways, demarcated by TREM2 and MARCO expression, accumulate with increased prostate volume. TREM2 high and MARCO high macrophage abundance positively correlates with patient body mass index and urinary symptom scores. TREM2high macrophages have a statistically significant increase in neutral lipid compared to TREM2low macrophages from BPH tissues. Lipid-rich macrophages were observed to localize within the stroma in BPH tissues. In vitro studies indicate that lipid-loaded macrophages increase prostate epithelial and stromal cell proliferation compared to control macrophages. Discussion These data define two new BPH immune subpopulations, TREM2high and MARCOhigh macrophages, and suggest that lipid-rich macrophages may exacerbate lower urinary tract symptoms in patients with large prostates. Further investigation is needed to evaluate the therapeutic benefit of targeting these cells in BPH.
Collapse
Affiliation(s)
- Nadia Atallah Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Era Meco
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Philip Fitchev
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Andree K. Kolliegbo
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Meaghan M. Broman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Yana Filipovich
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Harish Kothandaraman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Gregory M. Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Pooja Talaty
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Malgorzata Antoniak
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Svetlana Brumer
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
| | - Alexander P. Glaser
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Andrew M. Higgins
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Brian T. Helfand
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Omar E. Franco
- Department of Biochemistry and Molecular Biology, Feist-Weiller Cancer Center, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Chi-Hsiung Wang
- Biostatistics and Research Informatics, Endeavor Health, Evanston, IL, United States
- Department of Medicine, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Susan E. Crawford
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Simon W. Hayward
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Renee E. Vickman
- Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States
- Division of Urology, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| |
Collapse
|
33
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
34
|
Ezaki A, Yano H, Pan C, Fujiwara Y, Anami T, Ibe Y, Ozaki Y, Nishizawa H, Motoshima T, Yatsuda J, Watanabe H, Maruyama T, Takeo T, Kamba T, Komohara Y. Immunohistochemical Analysis of a1-Acid Glycoprotein and Tumor Associated Macrophages in Clear Cell Renal Cell Carcinoma. Cancer Genomics Proteomics 2025; 22:103-111. [PMID: 39730181 PMCID: PMC11696322 DOI: 10.21873/cgp.20491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM α1-Acid glycoprotein (AGP), also known as orosomucoid, is an acute-phase protein that has been found increased in plasma of cancer patients. This study investigates the role of AGP expression in clear cell renal cell carcinoma (ccRCC) and its association with clinical outcomes. MATERIALS AND METHODS We investigated the correlation between AGP levels and the prognosis of ccRCC through an analysis of The Cancer Genome Atlas (TCGA) database. To examine AGP expression and its clinicopathological associations, immunostaining was performed on paraffin-embedded tissue samples of 92 ccRCC cases. RESULTS AGP expression was found to be higher in RCC cell lines compared to normal renal epithelial cells. Analysis of the TCGA dataset showed that patients with AGP gene expression had significantly worse overall survival. However, AGP expression was not correlated with age, sex, or cancer stage. A mouse monoclonal antibody against AGP was generated. This antibody reacted with human and mouse hepatocytes, but not in AGP-deficient mice. From 92 examined ccRCC cases, AGP protein expression was detected in 89 cases, with only 3 being negative. AGP expression levels did not correlate with clinicopathological factors, such as age, tumor size, or nuclear grade. CD14, a receptor of AGP, was found to be expressed in Iba1-positive monocytes and tumor-associated macrophages (TAMs) but not in other cell types like lymphocytes or cancer cells. No significant correlation was found between AGP expression and the number of Iba1-positive cells in ccRCC tissues. Iba1-positive cells were correlated with Fuhrman grade, and patients with ≥30% Iba1-positive cells were, on average, significantly younger and had more aggressive tumor. CONCLUSION AGP expression is linked to poorer survival in ccRCC, but its association with immune cell infiltration (via Iba1-positive cells) is unclear.
Collapse
Affiliation(s)
- Ayano Ezaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiki Anami
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Ibe
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Youjiro Ozaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidekazu Nishizawa
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Wu Y, Zhai Y, Ding Z, Xie T, Zhu W, Zhang C, Lu Y, Chen Y, Ren S, Hu Y, Li X, Zhong F, Liang Y, Wang S. Single-cell transcriptomics reveals tumor microenvironment changes and prognostic gene signatures in hepatocellular carcinoma. Int Immunopharmacol 2024; 143:113317. [PMID: 39447409 DOI: 10.1016/j.intimp.2024.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer, accounting for the majority of liver cancer cases. Hepatocellular Carcinoma not only exhibits high heterogeneity but also possesses an immune-suppressive tumor microenvironment that promotes tumor evasion, posing substantial difficulties for efficient therapy. Our aim is to utilize single-cell RNA transcriptome data to investigate the dynamic changes in the tumor microenvironment during the malignant progression of HCC, the communication among immune cells, and the marker genes associated with patient prognosis. METHODS We constructed expression matrices from open single-cell RNA transcriptome data (GSE149614) of HCC patients (representing stages I-IV), establishing single-cell RNA transcriptional atlases for different stages of HCC progression. For each stage, we conducted cell subgroup analysis to identify cell types at each stage. Horizontally, we explored the dynamic changes of the same cell type across different stages, performing trajectory analysis and prognosis analysis. Vertically, we investigated pairwise comparisons of different stages of HCC progression, probing the dynamic alterations in tumor microenvironment immune cell signaling pathways. Finally, potential drugs for the treatment of HCC were predicted based on relevant genes. FINDINGS As the HCC advances towards increased malignancy, there is a shift in the predominant composition of the tumor microenvironment, with a decline in the dominance of hepatic cells. Tumor-infiltrating immune cells migrate and accumulate within the tumor microenvironment, where T cells and myeloid cells display distinct patterns of change. Genes associated with cancer-associated fibroblasts (CAFs) and T cells are correlated with adverse patient outcomes. In the late stages of HCC, the tumor microenvironment is infiltrated by more myeloid-derived suppressor cells (MDSCs), and a prognostic model constructed based on genes related to myeloid cells can predict patient outcomes. Additionally, in the analysis of transcription factors, YY1 and MYC are found to be highly expressed. Cell communication analysis among tumor-infiltrating immune cells reveals significant differences in the main signaling pathways at different stages of HCC progression. Finally, drug sensitivity analysis based on key genes identifies Acetalax, Allopurinol, and Amonafide as potential candidates for HCC treatment.
Collapse
Affiliation(s)
- Yilin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yangyang Zhai
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhilong Ding
- Department of Hepatobiliary Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China
| | - Tong Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - WeiJie Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Cui Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ying Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yunli Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Shiying Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yihuai Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Yong Liang
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Shiyan Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| |
Collapse
|
36
|
Sigalov AB. TREM-1 and TREM-2 as therapeutic targets: clinical challenges and perspectives. Front Immunol 2024; 15:1498993. [PMID: 39737196 PMCID: PMC11682994 DOI: 10.3389/fimmu.2024.1498993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
TREM-1 and TREM-2 as Therapeutic Targets: Clinical Challenges and Perspectives.
Collapse
|
37
|
Yang H, Kim C, Zou W. Metabolism and macrophages in the tumor microenvironment. Curr Opin Immunol 2024; 91:102491. [PMID: 39368171 DOI: 10.1016/j.coi.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the primary subset of immune cells within the tumor microenvironment (TME). Exhibiting both phenotypic and functional heterogeneity, TAMs play distinct roles in tumor initiation, progression, and responses to therapy in patients with cancer. In response to various immune and metabolic cues within the TME, TAMs dynamically alter their metabolic profiles to adapt. Changes in glucose, amino acid, and lipid metabolism in TAMs, as well as their interaction with oncometabolites, not only sustain their energy demands but also influence their impact on tumor immune responses. Understanding the molecular mechanisms underlying the metabolic reprogramming of TAMs and their orchestration of metabolic processes can offer insights for the development of novel cancer immunotherapies targeting TAMs. Here, we discuss how metabolism reprograms macrophages in the TME and review clinical trials aiming to normalize metabolic alterations in TAMs and alleviate TAM-mediated immune suppression and protumor activity.
Collapse
Affiliation(s)
- Hannah Yang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chan Kim
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Programs in Cancer Biology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
39
|
Ma K, Guo S, Li J, Wei T, Liang T. Biological and clinical role of TREM2 in liver diseases. Hepatol Commun 2024; 8:e0578. [PMID: 39774286 PMCID: PMC11567705 DOI: 10.1097/hc9.0000000000000578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/27/2024] [Indexed: 01/11/2025] Open
Abstract
Liver diseases constitute a major health burden worldwide, accounting for more than 4% of all disease-related mortalities. While the incidence of viral hepatitis is expected to decrease, metabolic liver disorders are increasingly diagnosed. Liver pathology is diverse, with functional and molecular alterations in both parenchymal and mesenchymal cells, including immune cells. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and mainly expressed on myeloid cells. Several studies have demonstrated that TREM2 plays a critical role in tissue physiology and various pathological conditions. TREM2 is recognized as being associated with the development of liver diseases by regulating tissue homeostasis and the immune microenvironment. The biological and clinical impact of TREM2 is complex, given its diverse context-dependent functions. This review aims to summarize recent progress in understanding the association between TREM2 and different liver disorders and shed light on the clinical significance of targeting TREM2.
Collapse
Affiliation(s)
- Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Shouliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Gronauer R, Madersbacher L, Monfort-Lanzas P, Floriani G, Sprung S, Zeimet AG, Marth C, Fiegl H, Hackl H. Integrated immunogenomic analyses of high-grade serous ovarian cancer reveal vulnerability to combination immunotherapy. Front Immunol 2024; 15:1489235. [PMID: 39669575 PMCID: PMC11634877 DOI: 10.3389/fimmu.2024.1489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Background The efficacy of immunotherapies in high-grade serous ovarian cancer (HGSOC) is limited, but clinical trials investigating the potential of combination immunotherapy including poly-ADP-ribose polymerase inhibitors (PARPis) are ongoing. Homologous recombination repair deficiency or BRCAness and the composition of the tumor microenvironment appear to play a critical role in determining the therapeutic response. Methods We conducted comprehensive immunogenomic analyses of HGSOC using data from several patient cohorts. Machine learning methods were used to develop a classification model for BRCAness from gene expression data. Integrated analysis of bulk and single-cell RNA sequencing data was used to delineate the tumor immune microenvironment and was validated by immunohistochemistry. The impact of PARPi and BRCA1 mutations on the activation of immune-related pathways was studied using ovarian cancer cell lines, RNA sequencing, and immunofluorescence analysis. Results We identified a 24-gene signature that predicts BRCAness. Comprehensive immunogenomic analyses across patient cohorts identified samples with BRCAness and high immune infiltration. Further characterization of these samples revealed increased infiltration of immunosuppressive cells, including tumor-associated macrophages expressing TREM2, C1QA, and LILRB4, as specified by single-cell RNA sequencing data and gene expression analysis of samples from patients receiving combination therapy with PARPi and anti-PD-1. Our findings show also that genomic instability and PARPi activated the cGAS-STING signaling pathway in vitro and the downstream innate immune response in a similar manner to HGSOC patients with BRCAness status. Finally, we have developed a web application (https://ovrseq.icbi.at) and an associated R package OvRSeq, which allow for comprehensive characterization of ovarian cancer patient samples and assessment of a vulnerability score that enables stratification of patients to predict response to the combination immunotherapy. Conclusions Genomic instability in HGSOC affects the tumor immune environment, and TAMs play a crucial role in modulating the immune response. Based on various datasets, we have developed a diagnostic application that uses RNA sequencing data not only to comprehensively characterize HGSOC but also to predict vulnerability and response to combination immunotherapy.
Collapse
Affiliation(s)
- Raphael Gronauer
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonie Madersbacher
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Floriani
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Sprung
- Institute of Pathology, Innpath GmbH, Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Keshari S, Shavkunov AS, Miao Q, Saha A, Minowa T, Molgora M, Williams CD, Chaib M, Highsmith AM, Pineda JE, Alekseev S, Alspach E, Hu KH, Colonna M, Pauken KE, Chen K, Gubin MM. Comparing neoantigen cancer vaccines and immune checkpoint therapy unveils an effective vaccine and anti-TREM2 macrophage-targeting dual therapy. Cell Rep 2024; 43:114875. [PMID: 39446585 PMCID: PMC11785356 DOI: 10.1016/j.celrep.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1- neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy.
Collapse
Affiliation(s)
- Sunita Keshari
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander S Shavkunov
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akata Saha
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Minowa
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Charmelle D Williams
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehdi Chaib
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna M Highsmith
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Josué E Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sayan Alekseev
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kenneth H Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew M Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Scortegagna M, Murad R, Bina P, Feng Y, Porritt R, Terskikh A, Tian X, Adams PD, Vuori K, Ronai ZA. Age-associated modulation of TREM1/2- expressing macrophages promotes melanoma progression and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624563. [PMID: 39605514 PMCID: PMC11601507 DOI: 10.1101/2024.11.20.624563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aging is a known risk factor for melanoma, yet mechanisms underlying melanoma progression and metastasis in older populations remain largely unexplored. Among the current knowledge gaps is how aging alters phenotypes of cells in the melanoma microenvironment. Here we demonstrate that age enriches the immunosuppressor tumor microenvironment, which is linked to phenotypes associated with melanoma metastasis. Among cellular populations enriched by aging were macrophages with a tolerogenic phenotype expressing TREM2 and dysfunctional CD8-positive cells with an exhausted phenotype, while macrophages with profibrotic phenotype expressing TREM1 were depleted. Notably, TREM1 inhibition decreased melanoma growth in young but not old mice, whereas TREM2 inhibition prevented lung metastasis in aged mice. These data identify novel targets associated with melanoma metastasis and may guide aged-dependent immunotherapies.
Collapse
|
43
|
Fan CY, Zheng JS, Hong LL, Ling ZQ. Macrophage crosstalk and therapies: Between tumor cells and immune cells. Int Immunopharmacol 2024; 141:113037. [PMID: 39213868 DOI: 10.1016/j.intimp.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In the tumor microenvironment, macrophages exhibit different phenotypes and functions in response to various signals, playing a crucial role in the initiation and progression of tumors. Several studies have indicated that intervention in the functions of different phenotypes of tumor-associated macrophages causes significant changes in the crosstalk between tumor cells and immune-related cells, such as T, NK, and B cells, markedly altering the course of tumor development. However, only a few specific therapeutic strategies targeting macrophages are yet available. This article comprehensively reviews the molecular biology mechanisms through which tumor-associated macrophages mediate the crosstalk between tumor cells and immune-related cells. Also, various treatment methods currently used in clinical practice and those in the clinical trial phase have been summarized, and the novel strategies for targeting tumor-associated macrophages have been categorized accordingly.
Collapse
Affiliation(s)
- Cheng-Yuan Fan
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
| | - Jing-Sen Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
44
|
Zhu B, Liu Y, Peng D. The double-edged role and therapeutic potential of TREM2 in atherosclerosis. Biomark Res 2024; 12:131. [PMID: 39497214 PMCID: PMC11533605 DOI: 10.1186/s40364-024-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease characterized by infiltration of large numbers of macrophages. The progression of the disease is closely related to the status of macrophages in atherosclerotic plaques. Recent advances in plaque analysis have revealed a subpopulation of macrophages that express high levels of triggering receptor expressed on myeloid cells 2 (TREM2). Although TREM2 is known to play a critical role in inflammation, lipid metabolism, and tissue repair, its role in atherosclerosis is still not fully understood. Recent studies have shown that TREM2 promotes macrophage cholesterol uptake and efflux, enhances efferocytosis function, regulates inflammation and metabolism, and promotes cell survival, all of which are significant functions in atherosclerosis. In early plaques TREM2 promotes lipid uptake and increases lesion size. In advanced plaques TREM2 promotes macrophage survival and increases plaque stability. The dualistic nature of TREM2 in atherosclerosis, where it can exert both protective effect and a side effect of increased lesion size, presents a complex but crucial area of study. Understanding these dual roles could help in the development of new therapeutic strategies to modulate TREM2 activity and utilize its atheroprotective function while mitigating its deleterious effects. In this review, we discuss the roles and mechanisms of TREM2 during different stages of atherosclerotic plaques, as well as the potential applications of TREM2 in the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Botao Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yuxuan Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
45
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
46
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
48
|
Liang Y, Bu Q, You W, Zhang R, Xu Z, Gan X, Zhou J, Qiao L, Huang T, Lu L. Single-cell analysis reveals hypoxia-induced immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167276. [PMID: 38844114 DOI: 10.1016/j.bbadis.2024.167276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
The role of hypoxia in the tumor microenvironment of intrahepatic cholangiocarcinoma (iCCA) remains unclear. Here, we generated a comprehensive atlas of the entire tumor microenvironment and delineated the multifaceted cell-cell interactions to decipher hypoxia-induced pro-tumor immune suppression. We discovered hypoxia is significantly associated with iCCA progression via the activation of HIF1A expression. Moreover, hypoxia-dependent PPARγ-mediated fatty acid oxidation in APOE+ TAMs promoted M2 macrophage polarization by activating the HIF1A-PPARG-CD36 axis. These polarized APOE+ TAMs recruited Treg cell infiltration via the CCL3-CCR5 pair to form an immunosuppressive microenvironment. APOE+ TAMs tended to co-localize spatially with Treg cells in the malignant tissue based on spatial transcriptome data and immunofluorescence analysis results. We identified tumor-reactive CXCL13+ CD8-PreTex with specific high expression of ENTPD1 and ITGAE, which acted as precursors of CD8-Tex and had higher cytotoxicity, lower exhaustion, and more vigorous proliferation. Consequently, CXCL13+ CD8-PreTex functioned as a positive regulator of antitumor immunity by expressing the pro-inflammatory cytokines IFNG and TNF, associated with a better survival outcome. Our study reveals the mechanisms involved in hypoxia-induced immunosuppression and suggests that targeting precursor-exhausted CXCL13+CD8+ T cells might provide a pratical immunotherapeutic approach.
Collapse
Affiliation(s)
- Yuan Liang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojie Gan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
49
|
Cheng X, Cao Y, Liu X, Li Y, Li Q, Gao D, Yu Q. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med 2024; 14:e70036. [PMID: 39350478 PMCID: PMC11442492 DOI: 10.1002/ctm2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuke Cao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiangyi Liu
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuanheng Li
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Li
- Department of Oncologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Dian Gao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
50
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|