1
|
Orozco-Ochoa AK, González-Gómez JP, Quiñones B, Castro-Del Campo N, Valdez-Torres JB, Chaidez-Quiroz C. Bacteriophage Indie resensitizes multidrug-resistant Acinetobacter baumannii to antibiotics in vitro. Sci Rep 2025; 15:11578. [PMID: 40185918 PMCID: PMC11971354 DOI: 10.1038/s41598-025-96669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Antimicrobial resistance in Acinetobacter baumannii poses a significant global health challenge. Phage therapy, particularly through phage-antibiotic synergy (PAS), offers a promising strategy to combat this pathogen. This study demonstrated significant PAS, where the combination of phage Indie and ceftazidime achieved a bacterial reduction of more than 85% of A. baumannii strain AbAK03 at 17 h using low doses. Notably, this combination overcame phage resistance observed at 4 h when the phage was used alone, extending bacterial eradication by 13 h. Furthermore, phage Indie restored bacterial susceptibility to ceftazidime, supporting its role in improving interventional treatments against multidrug-resistant A. baumannii. To explore this interaction, phage Indie was isolated and characterized from multidrug-resistant clinical strains. An in vitro PAS experiment was performed using ceftazidime and piperacillin-tazobactam. The combination of phage Indie with ceftazidime consistently showed superior bactericidal effects compared to either agent alone, while the combination of phage Indie with piperacillin-tazobactam exhibited an antagonistic effect. These findings provide clear evidence supporting the application of phage-antibiotic combinations as an effective intervention strategy and lay the groundwork for future in vivo trials in a mouse model to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Alma Karen Orozco-Ochoa
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - Jean Pierre González-Gómez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - Beatriz Quiñones
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, 94710, USA
| | - Nohelia Castro-Del Campo
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - José Benigno Valdez-Torres
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico
| | - Cristóbal Chaidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacan, Sinaloa, Mexico.
| |
Collapse
|
2
|
Hegarty B. Making waves: Intelligent phage cocktail design, a pathway to precise microbial control in water systems. WATER RESEARCH 2025; 268:122594. [PMID: 39405620 DOI: 10.1016/j.watres.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 12/19/2024]
Abstract
Current practices in water and wastewater treatment to control unwanted microbes have led to new problems, including health effects from disinfection byproducts, growth of opportunistic pathogens resistant to residual disinfectants (e.g., chlorine), and antibiotic resistance. These challenges are spurring interest in rethinking our practices of microbial control. Simultaneously, advances in molecular biology and computation power are driving renewed interest in using phages (viruses that infect bacteria) to precisely control microbial growth (aka, phage biocontrol). In this Making Waves article, I begin by reviewing the current state of research into phage cocktail design, emphasizing our limited understanding of the features of successful phage cocktails (combinations of multiple types of phages). I describe the state of modeling phage-bacteria interactions and underscore the need for increasing research efforts to predict phage cocktail success, a key gap slowing the application of phage biocontrol. I also detail how research must also focus on techniques for engineering more effective phages to offer a more rapid alternative to phage discovery from natural environments. In this way, phage cocktails comprised of phages with complementary infection strategies may be designed. The final area for increased research effort that I highlight is the need for phage cocktail design to account for possible unintended environmental effects, a risk that is increasingly acknowledged in phage ecology studies but mostly ignored by those developing phage biocontrol technologies. By focusing more research effort towards the areas necessary for intelligent phage cocktail design, we can accelerate the development of phage-based biocontrol in water systems and improve public health.
Collapse
Affiliation(s)
- Bridget Hegarty
- Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH, 44118, USA.
| |
Collapse
|
3
|
Rao GG, Vallé Q, Mahadevan R, Sharma R, Barr JJ, Van Tyne D. Crossing the Chasm: How to Approach Translational Pharmacokinetic-Pharmacodynamic Modeling of Phage Dosing. Clin Pharmacol Ther 2025; 117:94-105. [PMID: 39313763 DOI: 10.1002/cpt.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/28/2024] [Indexed: 09/25/2024]
Abstract
Effectively treating multidrug-resistant bacterial infections remains challenging due to the limited drug development pipeline and a scarcity of novel agents effective against these highly resistant pathogens. Bacteriophages (phages) are a potential addition to the antimicrobial treatment arsenal. Though, phages are currently being tested in clinical trials for antibiotic-resistant infections, phages lack a fundamental understanding of optimal dosing in humans. Rationally designed preclinical studies using in vitro and in vivo infection models, allow us to assess clinically relevant phage +/- antibiotic exposure (pharmacokinetics), the resulting treatment impact on the infecting pathogen (pharmacodynamics) and host immune response (immunodynamics). A mechanistic modeling framework allows us to integrate this knowledge gained from preclinical studies to develop predictive models. We reviewed recently published mathematical models based on in vitro and/or in vivo data that evaluate the effects of varying bacterial or phage densities, phage characteristics (burst size, adsorption rate), phage pharmacokinetics, phage-antibiotic combinations and host immune responses. In our review, we analyzed study designs and the data used to inform the development of these mechanistic models. Insights gained from model-based simulations were reviewed as they help identify crucial phage parameters for determining effective phage dosing. These efforts contribute to bridging the gap between phage therapy research and its clinical translation.
Collapse
Affiliation(s)
- Gauri G Rao
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Quentin Vallé
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Ramya Mahadevan
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Rajnikant Sharma
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Van Overfelt S, Duyvejonck H, Baeke F, De Rycke R, Merabishvili M, Vermeulen S, Cools P, Vaneechoutte M, Van Mechelen E. Free DNA partially clarifies discrepancies between qPCR and the conventional phage quantification method. PLoS One 2024; 19:e0313774. [PMID: 39625917 PMCID: PMC11614264 DOI: 10.1371/journal.pone.0313774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
To use phages in a personalized therapy and industrial applications, an accurate quantification is needed. The gold standard method, namely the culture-based double agar overlay (DAO) method, provides an accurate estimate of the number of infectious phages but is laborious and time-intensive. Quantitative polymerase chain reaction (qPCR) can be used as a fast alternative but tends to overestimate the number of infectious phage particles. Here we describe the use of a DNase treatment before quantification of the Staphylococcus aureus phage ISP with qPCR to obtain a more accurate estimate of the number of infectious phage particles. We showed that DNase treatment results in a significant decrease of the concentration when measured with qPCR although for two out of three tested ISP phage stocks, there was still a significant difference with the DAO method. We also showed that the discrepancy between quantification with qPCR and the DAO method is dependent on the storage period of the phage stock, with a larger discrepancy for older stocks. Additionally, we used negative contrast immune electron microscopy to confirm the presence of DNA in the medium of the phage stock and the impact of the DNase treatment on the free DNA.
Collapse
Affiliation(s)
- Saar Van Overfelt
- Research Centre Health and Water Technology, University of Applied Sciences and Arts Ghent, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Laboratory Bacteriology Research (LBR), Ghent University, Ghent, Belgium
| | - Hans Duyvejonck
- Research Centre Health and Water Technology, University of Applied Sciences and Arts Ghent, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Laboratory Bacteriology Research (LBR), Ghent University, Ghent, Belgium
| | - Femke Baeke
- VIB BioImaging Core, Ghent, Belgium and VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- VIB BioImaging Core, Ghent, Belgium and VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology (LabMCT), Burn Wound Center, Queen Astrid Military Hospital, Brussels, Belgium
| | - Stefan Vermeulen
- Research Centre Health and Water Technology, University of Applied Sciences and Arts Ghent, Ghent, Belgium
| | - Piet Cools
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Laboratory Bacteriology Research (LBR), Ghent University, Ghent, Belgium
| | - Mario Vaneechoutte
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Laboratory Bacteriology Research (LBR), Ghent University, Ghent, Belgium
| | - Els Van Mechelen
- Research Centre Health and Water Technology, University of Applied Sciences and Arts Ghent, Ghent, Belgium
| |
Collapse
|
5
|
Yuan X, Song X, Zhang X, Hu L, Zhou D, Zhang J, Dai C. Unraveling host-pathogen dynamics in a murine Model of septic peritonitis induced by vancomycin-resistant Enterococcus faecium. Virulence 2024; 15:2367659. [PMID: 38951957 PMCID: PMC11221476 DOI: 10.1080/21505594.2024.2367659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (E. faecium) infection is associated with higher mortality rates. Previous studies have emphasized the importance of innate immune cells and signalling pathways in clearing E. faecium, but a comprehensive analysis of host-pathogen interactions is lacking. Here, we investigated the interplay of host and E. faecium in a murine model of septic peritonitis. Following injection with a sublethal dose, we observed significantly increased murine sepsis score and histological score, decreased weight and bacterial burden, neutrophils and macrophages infiltration, and comprehensive activation of cytokine-mediated signalling pathway. In mice receiving a lethal dose, hypothermia significantly improved survival, reduced bacterial burden, cytokines, and CD86 expression of MHC-II+ recruited macrophages compared to the normothermia group. A mathematical model constructed by observational data from 80 animals, recapitulated the host-pathogen interplay, and further verified the benefits of hypothermia. These findings indicate that E. faecium triggers a severe activation of cytokine-mediated signalling pathway, and hypothermia can improve outcomes by reducing bacterial burden and inflammation.
Collapse
Affiliation(s)
- Xin Yuan
- School of Life Sciences, Ludong University, Yantai, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
| | - Chenxi Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
6
|
Palma M, Qi B. Advancing Phage Therapy: A Comprehensive Review of the Safety, Efficacy, and Future Prospects for the Targeted Treatment of Bacterial Infections. Infect Dis Rep 2024; 16:1127-1181. [PMID: 39728014 DOI: 10.3390/idr16060092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Phage therapy, a treatment utilizing bacteriophages to combat bacterial infections, is gaining attention as a promising alternative to antibiotics, particularly for managing antibiotic-resistant bacteria. This study aims to provide a comprehensive review of phage therapy by examining its safety, efficacy, influencing factors, future prospects, and regulatory considerations. The study also seeks to identify strategies for optimizing its application and to propose a systematic framework for its clinical implementation. METHODS A comprehensive analysis of preclinical studies, clinical trials, and regulatory frameworks was undertaken to evaluate the therapeutic potential of phage therapy. This included an in-depth assessment of key factors influencing clinical outcomes, such as infection site, phage-host specificity, bacterial burden, and immune response. Additionally, innovative strategies-such as combination therapies, bioengineered phages, and phage cocktails-were explored to enhance efficacy. Critical considerations related to dosing, including inoculum size, multiplicity of infection, therapeutic windows, and personalized medicine approaches, were also examined to optimize treatment outcomes. RESULTS Phage therapy has demonstrated a favorable safety profile in both preclinical and clinical settings, with minimal adverse effects. Its ability to specifically target harmful bacteria while preserving beneficial microbiota underpins its efficacy in treating a range of infections. However, variable outcomes in some studies highlight the importance of addressing critical factors that influence therapeutic success. Innovative approaches, including combination therapies, bioengineered phages, expanded access to diverse phage banks, phage cocktails, and personalized medicine, hold significant promise for improving efficacy. Optimizing dosing strategies remains a key area for enhancement, with critical considerations including inoculum size, multiplicity of infection, phage kinetics, resistance potential, therapeutic windows, dosing frequency, and patient-specific factors. To support the clinical application of phage therapy, a streamlined four-step guideline has been developed, providing a systematic framework for effective treatment planning and implementation. CONCLUSION Phage therapy offers a highly adaptable, targeted, and cost-effective approach to addressing antibiotic-resistant infections. While several critical factors must be thoroughly evaluated to optimize treatment efficacy, there remains significant potential for improvement through innovative strategies and refined methodologies. Although phage therapy has yet to achieve widespread approval in the U.S. and Europe, its accessibility through Expanded Access programs and FDA authorizations for food pathogen control underscores its promise. Established practices in countries such as Poland and Georgia further demonstrate its clinical feasibility. To enable broader adoption, regulatory harmonization and advancements in production, delivery, and quality control will be essential. Notably, the affordability and scalability of phage therapy position it as an especially valuable solution for developing regions grappling with escalating rates of antibiotic resistance.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
- R&D Drug Discovery, Protheragen Inc., Holbrook, NY 11741, USA
| | - Bowen Qi
- Drug Discovery and Development, Creative Biolabs Inc., Shirley, NY 11967, USA
| |
Collapse
|
7
|
Gaborieau B, Delattre R, Adiba S, Clermont O, Denamur E, Ricard JD, Debarbieux L. Variable fitness effects of bacteriophage resistance mutations in Escherichia coli: implications for phage therapy. J Virol 2024; 98:e0111324. [PMID: 39213164 PMCID: PMC11495123 DOI: 10.1128/jvi.01113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Bacteria exposed to bactericidal treatment, such as antibiotics or bacteriophages (phages), often develop resistance. While phage therapy is proposed as a solution to the antibiotic resistance crisis, the bacterial resistance emerging during phage therapy remains poorly characterized. In this study, we examined a large population of phage-resistant extra-intestinal pathogenic Escherichia coli 536 clones that emerged from both in vitro (non-limited liquid medium) and in vivo (murine pneumonia) conditions. Genome sequencing uncovered a convergent mutational pattern in phage resistance mechanisms under both conditions, particularly targeting two cell-wall components, the K15 capsule and the lipopolysaccharide (LPS). This suggests that their identification in vivo could be predicted from in vitro assays. Phage-resistant clones exhibited a wide range of fitness according to in vitro tests, growth rate, and resistance to amoeba grazing, which could not distinguish between the K15 capsule and LPS mutants. In contrast, K15 capsule mutants retained virulence comparable to the wild-type strain, whereas LPS mutants showed significant attenuation in the murine pneumonia model. Additionally, we observed that resistance to the therapeutic phage through a nonspecific mechanism, such as capsule overproduction, did not systematically lead to co-resistance to other phages that were initially capable or incapable of infecting the wild-type strain. Our findings highlight the importance of incorporating a diverse range of phages in the design of therapeutic cocktails to target potential future phage-resistant clones effectively. IMPORTANCE This study isolated more than 50 phage-resistant mutants from both in vitro and in vivo conditions, exposing an extra-intestinal pathogenic Escherichia coli strain to a single virulent phage. The characterization of these clones revealed several key findings: (1) mutations occurring during phage treatment affect the same pathways as those identified in vitro; (2) the resistance mechanisms are associated with the modification of two cell-wall components, with one involving receptor deletion (phage-specific mechanism) and the other, less frequent, involving receptor masking (phage-nonspecific mechanism); (3) an in vivo virulence assay demonstrated that the absence of the receptor abolishes virulence while masking the receptor preserves it; and (4) clones with a resistance mechanism nonspecific to a particular phage can remain susceptible to other phages. This supports the idea of incorporating diverse phages into therapeutic cocktails designed to collectively target both wild-type and phage-resistant strains, including those with resistance mechanisms nonspecific to a phage.
Collapse
Affiliation(s)
- Baptiste Gaborieau
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Raphaëlle Delattre
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Sandrine Adiba
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure CNRS UMR8197, Paris, France
| | | | - Erick Denamur
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- APHP, Hôpital Bichat, Service de Génétique Moléculaire, Paris, France
| | - Jean-Damien Ricard
- Université Paris Cité, INSERM UMR1137, IAME, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| |
Collapse
|
8
|
Rodriguez-Gonzalez RA, Balacheff Q, Debarbieux L, Marchi J, Weitz JS. Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection. mSystems 2024; 9:e0017124. [PMID: 39230264 PMCID: PMC11562898 DOI: 10.1128/msystems.00171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Infections caused by multidrug resistant (MDR) pathogenic bacteria are a global health threat. Bacteriophages ("phage") are increasingly used as alternative or last-resort therapeutics to treat patients infected by MDR bacteria. However, the therapeutic outcomes of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infections. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, including host innate immune responses and the emergence of phage-resistant bacterial mutants. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils, given the sufficient innate immune activity and efficient phage-induced lysis. The metapopulation model simulations also predict that MDR bacteria are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa, while highlighting potential limits to therapy in a spatially structured environment given impaired innate immune responses and/or inefficient phage-induced lysis. IMPORTANCE Phage therapy is increasingly employed as a compassionate treatment for severe infections caused by multidrug-resistant (MDR) bacteria. However, the mixed outcomes observed in larger clinical studies highlight a gap in understanding when phage therapy succeeds or fails. Previous research from our team, using in vivo experiments and single-compartment mathematical models, demonstrated the synergistic clearance of acute P. aeruginosa pneumonia by phage and neutrophils despite the emergence of phage-resistant bacteria. In fact, the lung environment is highly structured, prompting the question of whether immunophage synergy explains the curative treatment of P. aeruginosa when incorporating realistic physical connectivity. To address this, we developed a metapopulation network model mimicking the lung branching structure to assess phage therapy efficacy for MDR P. aeruginosa pneumonia. The model predicts the synergistic elimination of P. aeruginosa by phage and neutrophils but emphasizes potential challenges in spatially structured environments, suggesting that higher innate immune levels may be required for successful bacterial clearance. Model simulations reveal a spatial pattern in pathogen clearance where P. aeruginosa are cleared faster at distal nodes of the bronchial tree than in primary nodes. Interestingly, image analysis of infected mice reveals a concordant and statistically significant pattern: infection intensity clears in the bottom before the top of the lungs. The combined use of modeling and image analysis supports the application of phage therapy for acute P. aeruginosa pneumonia while emphasizing potential challenges to curative success in spatially structured in vivo environments, including impaired innate immune responses and reduced phage efficacy.
Collapse
Affiliation(s)
- Rogelio A. Rodriguez-Gonzalez
- Interdisciplinary
Graduate Program in Quantitative Biosciences,Georgia Institute of
Technology, Atlanta,
Georgia, USA
- School of Biological
Sciences, Georgia Institute of
Technology, Atlanta,
Georgia, USA
| | - Quentin Balacheff
- CHU Félix
Guyon, Service des maladies
respiratoires, La
Réunion, France
| | - Laurent Debarbieux
- Department of
Microbiology, Institut Pasteur, Université Paris Cité,
CNRS UMR6047, Bacteriophage Bacterium
Host, Paris,
France
| | - Jacopo Marchi
- Department of Biology,
University of Maryland, College
Park, Maryland, USA
| | - Joshua S. Weitz
- Department of Biology,
University of Maryland, College
Park, Maryland, USA
- Department of Physics,
University of Maryland, College
Park, Maryland, USA
- Institut de Biologie,
École Normale Supérieure,
Paris, France
| |
Collapse
|
9
|
Zborowsky S, Seurat J, Balacheff Q, Ecomard S, Nguyen Ngoc Minh C, Titécat M, Evrard E, Rodriguez-Gonzalez RA, Marchi J, Weitz JS, Debarbieux L. Macrophage-induced reduction of bacteriophage density limits the efficacy of in vivo pulmonary phage therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575879. [PMID: 38293203 PMCID: PMC10827109 DOI: 10.1101/2024.01.16.575879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The rise of antimicrobial resistance has led to renewed interest in evaluating phage therapy. In murine models highly effective treatment of acute pneumonia caused by Pseudomonas aeruginosa relies on the synergistic antibacterial activity of bacteriophages with neutrophils. Here, we show that depletion of alveolar macrophages (AM) shortens the survival of mice without boosting the P. aeruginosa load in the lungs. Unexpectedly, upon bacteriophage treatment, pulmonary levels of P. aeruginosa were significantly lower in AM-depleted than in immunocompetent mice. To explore potential mechanisms underlying the benefit of AM-depletion in treated mice, we developed a mathematical model of phage, bacteria, and innate immune system dynamics. Simulations from the model fitted to data suggest that AM reduce bacteriophage density in the lungs. We experimentally confirmed that the in vivo decay of bacteriophage is faster in immunocompetent compared to AM-depleted animals. These findings demonstrate the involvement of feedback between bacteriophage, bacteria, and the immune system in shaping the outcomes of phage therapy in clinical settings.
Collapse
Affiliation(s)
- Sophia Zborowsky
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- These authors contributed equally
| | - Jérémy Seurat
- Institut de Biologie, Ecole Normale Supérieure, Paris 75005, France
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA
- These authors contributed equally
| | - Quentin Balacheff
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- CHU Felix Guyon, Service des maladies respiratoires, La Réunion, France
| | - Solène Ecomard
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- DGA, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Chau Nguyen Ngoc Minh
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Marie Titécat
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille 59000, France
| | - Emma Evrard
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
| | - Rogelio A. Rodriguez-Gonzalez
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Jacopo Marchi
- Department of Biology, University of Maryland, College Park MD 20742, USA
| | - Joshua S. Weitz
- Institut de Biologie, Ecole Normale Supérieure, Paris 75005, France
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA
- Department of Biology, University of Maryland, College Park MD 20742, USA
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
| |
Collapse
|
10
|
Yang F, Labani-Motlagh A, Bohorquez JA, Moreira JD, Ansari D, Patel S, Spagnolo F, Florence J, Vankayalapati A, Sakai T, Sato O, Ikebe M, Vankayalapati R, Dennehy JJ, Samten B, Yi G. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. Commun Biol 2024; 7:294. [PMID: 38461214 PMCID: PMC10924958 DOI: 10.1038/s42003-024-06006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024] Open
Abstract
The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we show that bacteriophage strains D29 and DS6A can efficiently lyse Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently kills H37Rv in liquid culture and in Mtb-infected human primary macrophages. We further show in subsequent experiments that, after the humanized mice were infected with aerosolized H37Rv, then treated with DS6A intravenously, the DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduces Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrate the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alireza Labani-Motlagh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Jose Alejandro Bohorquez
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Josimar Dornelas Moreira
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Sahil Patel
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Fabrizio Spagnolo
- Life Sciences Department, Long Island University Post, Brookville, NY, USA
| | - Jon Florence
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Abhinav Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tsuyoshi Sakai
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Osamu Sato
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Mitsuo Ikebe
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, Flushing, NY, USA.
- The Graduate Center of The City University of New York, New York, NY, USA.
| | - Buka Samten
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA.
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
11
|
Resch G, Brives C, Debarbieux L, Hodges FE, Kirchhelle C, Laurent F, Moineau S, Martins AFM, Rohde C. Between Centralization and Fragmentation: The Past, Present, and Future of Phage Collections. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:22-29. [PMID: 40114810 PMCID: PMC11920704 DOI: 10.1089/phage.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Despite over a century of collecting bacteriophages, there has been a persistent lack of interest in systematically cataloging resulting phage banks. The result was a situation in which the ongoing growth of phage infrastructures was paralleled by an increasing fragmentation of knowledge about collections' contents and existence. Over the last two decades, renewed interest in phage therapy and phage biology has further exacerbated confusion amid a rapid increase in the number of large and small phage collections and an ongoing dearth of coordination and standardized cataloging. Whatever the modalities (isolated phages or genomes), the time has undoubtedly come to create sustainable, interconnected, and equitable phage banking infrastructures. This article reviews both the history and current status of microbial collections, provides a nonexhaustive overview of relevant phage collections, and reflects on the challenges and potential of centralizing therapeutically relevant collections ahead of likely paradigm shifts caused by synthetic biology and artificial intelligence.
Collapse
Affiliation(s)
- Grégory Resch
- Laboratory of Bacteriophages and Phage Therapy, Center for Research and Innovation in Clinical Pharmaceutical Sciences (CRISP), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage, Bacterium, Host, Paris, France
| | | | | | - Frédéric Laurent
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Sylvain Moineau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, Canada
| | - Ana Filipa Moreira Martins
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Department Bioresources for Bioeconomy and Health Research, Leibniz Institute, Braunschweig, Germany
| | - Christine Rohde
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Department Bioresources for Bioeconomy and Health Research, Leibniz Institute, Braunschweig, Germany
| |
Collapse
|
12
|
Rodriguez-Gonzalez RA, Balacheff Q, Debarbieux L, Marchi J, Weitz JS. Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578251. [PMID: 38352502 PMCID: PMC10862780 DOI: 10.1101/2024.01.31.578251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Infections caused by multi-drug resistant (MDR) pathogenic bacteria are a global health threat. Phage therapy, which uses phage to kill bacterial pathogens, is increasingly used to treat patients infected by MDR bacteria. However, the therapeutic outcome of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infection. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, and included the emergence of phage-resistant bacterial mutants and host innate immune responses. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils given sufficiently active immune states and suitable phage life history traits. Moreover, the metapopulation model simulations predict that local MDR pathogens are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice (n=13) revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa while highlighting potential limits to therapy given a spatially structured environment, such as impaired innate immune responses and low phage efficacy.
Collapse
Affiliation(s)
- Rogelio A. Rodriguez-Gonzalez
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Quentin Balacheff
- CHU Felix Guyon, Service des maladies respiratoires, La Réunion, France
| | | | - Jacopo Marchi
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joshua S. Weitz
- Department of Biology, University of Maryland, College Park, Maryland, USA
- Department of Physics, University of Maryland, College Park, Maryland, USA
- Institut de Biologie de l’École Normale Supérieure, Paris, France
| |
Collapse
|
13
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
14
|
Chae D. Phage-host-immune system dynamics in bacteriophage therapy: basic principles and mathematical models. Transl Clin Pharmacol 2023; 31:167-190. [PMID: 38196997 PMCID: PMC10772058 DOI: 10.12793/tcp.2023.31.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 01/11/2024] Open
Abstract
Phage therapy is progressively being recognized as a viable alternative to conventional antibiotic treatments, particularly in the context of multi-drug resistant bacterial challenges. However, the intricacies of the pharmacokinetics and pharmacodynamics (PKPD) pertaining to phages remain inadequately elucidated. A salient characteristic of phage PKPD is the inherent ability of phages to undergo replication. In this review, I proffer mathematical models that delineate the intricate dynamics encompassing the phage, the host organism, and the immune system. Fundamental tenets associated with proliferative and inundation thresholds are explored, and distinctions between active and passive therapies are accentuated. Furthermore, I present models that aim to illuminate the multifaceted interactions amongst diverse phage strains and bacterial subpopulations, each possessing distinct sensitivities to phages. The synergistic relationship between phages and the immune system is critically examined, demonstrating how the host's immunological function can influence the requisite phage dose for an optimal therapeutic outcome. A profound understanding of the presented modeling methodologies is paramount for researchers in the realms of clinical pharmacology and PKPD modeling interested in phage therapy. Such insights facilitate a more nuanced interpretation of dose-response relationships, enable the selection of potent phages, and aid in the optimization of phage cocktails.
Collapse
Affiliation(s)
- Dongwoo Chae
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
15
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
16
|
Ling KM, Stick SM, Kicic A. Pulmonary bacteriophage and cystic fibrosis airway mucus: friends or foes? Front Med (Lausanne) 2023; 10:1088494. [PMID: 37265479 PMCID: PMC10230084 DOI: 10.3389/fmed.2023.1088494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
For those born with cystic fibrosis (CF), hyper-concentrated mucus with a dysfunctional structure significantly impacts CF airways, providing a perfect environment for bacterial colonization and subsequent chronic infection. Early treatment with antibiotics limits the prevalence of bacterial pathogens but permanently alters the CF airway microenvironment, resulting in antibiotic resistance and other long-term consequences. With little investment into new traditional antibiotics, safe and effective alternative therapeutic options are urgently needed. One gathering significant traction is bacteriophage (phage) therapy. However, little is known about which phages are effective for respiratory infections, the dynamics involved between phage(s) and the host airway, and associated by-products, including mucus. Work utilizing gut cell models suggest that phages adhere to mucus components, reducing microbial colonization and providing non-host-derived immune protection. Thus, phages retained in the CF mucus layer result from the positive selection that enables them to remain in the mucus layer. Phages bind weakly to mucus components, slowing down the diffusion motion and increasing their chance of encountering bacterial species for subsequent infection. Adherence of phage to mucus could also facilitate phage enrichment and persistence within the microenvironment, resulting in a potent phage phenotype or vice versa. However, how the CF microenvironment responds to phage and impacts phage functionality remains unknown. This review discusses CF associated lung diseases, the impact of CF mucus, and chronic bacterial infection. It then discusses the therapeutic potential of phages, their dynamic relationship with mucus and whether this may enhance or hinder airway bacterial infections in CF.
Collapse
Affiliation(s)
- Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA, Australia
| | - Stephen Michael Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Division of Paediatrics, Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| |
Collapse
|
17
|
Yi G, Yang F, Labani-Motlagh A, Moreira JD, Ansari D, Bohorquez JA, Patel S, Spagnolo F, Florence J, Vankayalapati A, Vankayalapati R, Dennehy JJDJ, Samten B. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525188. [PMID: 36747734 PMCID: PMC9900801 DOI: 10.1101/2023.01.23.525188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we tested three bacteriophage strains for their Mtb-killing activities and found that two of them efficiently lysed Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently killed H37Rv in liquid culture and in Mtb-infected human primary macrophages. In subsequent experiments, we infected humanized mice with aerosolized H37Rv, then treated these mice with DS6A intravenously to test its in vivo efficacy. We found that DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduced Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrated the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.
Collapse
|
18
|
Gaborieau B, Debarbieux L. The role of the animal host in the management of bacteriophage resistance during phage therapy. Curr Opin Virol 2023; 58:101290. [PMID: 36512896 DOI: 10.1016/j.coviro.2022.101290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Multi-drug-resistant bacteria are associated with significantly higher morbidity and mortality. The possibilities for discovering new antibiotics are limited, but phage therapy - the use of bacteriophages (viruses infecting bacteria) to cure infections - is now being investigated as an alternative or complementary treatment to antibiotics. However, one of the major limitations of this approach lies in the antagonistic coevolution between bacteria and bacteriophages, which determines the ultimate success or failure of phage therapy. Here, we review the possible influence of the animal host on phage resistance and its consequences for the efficacy of phage therapy. We also discuss the value of in vitro assays for anticipating the dynamics of phage resistance observed in vivo.
Collapse
Affiliation(s)
- Baptiste Gaborieau
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France; Université Paris Cité, INSERM UMR1137, IAME, Paris, France; APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France.
| |
Collapse
|
19
|
Tamma PD, Souli M, Billard M, Campbell J, Conrad D, Ellison DW, Evans B, Evans SR, Greenwood-Quaintance KE, Filippov AA, Geres HS, Hamasaki T, Komarow L, Nikolich MP, Lodise TP, Nayak SU, Norice-Tra C, Patel R, Pride D, Russell J, Van Tyne D, Chambers HF, FowlerJr VG, Schooley RT, for the Antibacterial Resistance Leadership Group. Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial. Trials 2022; 23:1057. [PMID: 36578069 PMCID: PMC9795609 DOI: 10.1186/s13063-022-07047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bacteriophages (phages) are a promising anti-infective option for human disease. Major gaps remain in understanding their potential utility. METHODS This is a randomized, placebo-controlled, double-blind study of a single dose of intravenous phage in approximately 72 clinically stable adult cystic fibrosis volunteers recruited from up to 20 US sites with Pseudomonas aeruginosa airway colonization. The single dose of phage consists of a mixture of four anti-pseudomonal phages. Six sentinel participants will be sequentially enrolled with dose escalation of the phage mixture by one log10 beginning with 4 × 107 plaque-forming units in an unblinded stage 1. If no serious adverse events related to the study product are identified, the trial will proceed to a double-blinded stage 2. In stage 2a, 32 participants will be randomly assigned to one of three phage dosages or placebo in a 1:1:1:1 allocation. An interim analysis will be performed to determine the phage dosage with the most favorable safety and microbiological activity profile to inform phage dosing in stage 2b. During stage 2b, up to 32 additional volunteers will be randomized 1:1 to the phage or placebo arm. Primary outcomes include (1) the number of grade 2 or higher treatment-emergent adverse events, (2) change in log10 P. aeruginosa total colony counts in sputum, and (3) the probability of a randomly selected subject having a more favorable outcome ranking if assigned to receive phage therapy versus placebo. Exploratory outcomes include (1) sputum and serum phage pharmacokinetics, (2) the impact of phage on lung function, (3) the proportion of P. aeruginosa isolates susceptible to the phage mixture before and after study product administration, and (4) changes in quality of life. DISCUSSION This trial will investigate the activity of phages in reducing P. aeruginosa colony counts and provide insights into the safety profile of phage therapy. TRIAL REGISTRATION ClinicalTrials.gov NCT05453578. Registered on 12 July 2022.
Collapse
Affiliation(s)
- Pranita D. Tamma
- grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3149, Baltimore, MD 21287 USA
| | - Maria Souli
- grid.189509.c0000000100241216Duke Clinical Research Institute, Duke University Medical Center, Durham, NC USA
| | | | - Joseph Campbell
- grid.419681.30000 0001 2164 9667National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of Microbiology and Infectious Diseases, Bethesda, MD USA
| | - Douglas Conrad
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California San Diego, San Diego, CA USA
| | - Damon W. Ellison
- grid.507680.c0000 0001 2230 3166Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Beth Evans
- grid.189509.c0000000100241216Duke Clinical Research Institute, Duke University Medical Center, Durham, NC USA
| | - Scott R. Evans
- grid.253615.60000 0004 1936 9510The Biostatistics Center, The George Washington University, Rockville, MD USA
| | | | - Andrey A. Filippov
- grid.507680.c0000 0001 2230 3166Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Holly S. Geres
- grid.189509.c0000000100241216Duke Clinical Research Institute, Duke University Medical Center, Durham, NC USA
| | - Toshimitsu Hamasaki
- grid.253615.60000 0004 1936 9510The Biostatistics Center, The George Washington University, Rockville, MD USA
| | - Lauren Komarow
- grid.253615.60000 0004 1936 9510The Biostatistics Center, The George Washington University, Rockville, MD USA
| | - Mikeljon P. Nikolich
- grid.507680.c0000 0001 2230 3166Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Thomas P. Lodise
- grid.413555.30000 0000 8718 587XDepartment of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY USA
| | - Seema U. Nayak
- grid.419681.30000 0001 2164 9667National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of Microbiology and Infectious Diseases, Bethesda, MD USA
| | - Carmelle Norice-Tra
- grid.419681.30000 0001 2164 9667National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of Microbiology and Infectious Diseases, Bethesda, MD USA
| | - Robin Patel
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA ,grid.66875.3a0000 0004 0459 167XInfectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN USA
| | - David Pride
- grid.266100.30000 0001 2107 4242Departments of Medicine and Pathology, University of California San Diego, San Diego, CA USA
| | - Janie Russell
- grid.419681.30000 0001 2164 9667National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of Microbiology and Infectious Diseases, Bethesda, MD USA
| | - Daria Van Tyne
- grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Henry F. Chambers
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Vance G. FowlerJr
- grid.189509.c0000000100241216Duke Clinical Research Institute, Duke University Medical Center, Durham, NC USA ,grid.189509.c0000000100241216Department of Medicine, Duke University Medical Center, Durham, NC USA
| | - Robert T. Schooley
- grid.266100.30000 0001 2107 4242Departments of Medicine and Pathology, University of California San Diego, San Diego, CA USA
| | | |
Collapse
|
20
|
Molendijk MM, Phan MVT, Bode LGM, Strepis N, Prasad DK, Worp N, Nieuwenhuijse DF, Schapendonk CME, Boekema BKHL, Verbon A, Koopmans MPG, de Graaf M, van Wamel WJB. Microcalorimetry: A Novel Application to Measure In Vitro Phage Susceptibility of Staphylococcus aureus in Human Serum. Viruses 2022; 15:14. [PMID: 36680055 PMCID: PMC9865112 DOI: 10.3390/v15010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Infections involving antibiotic resistant Staphylococcus aureus (S. aureus) represent a major challenge to successful treatment. Further, although bacteriophages (phages) could be an alternative to antibiotics, there exists a lack of correlation in phage susceptibility results between conventional in vitro and in vivo assays. This discrepancy may hinder the potential implementation of bacteriophage therapy. In this study, the susceptibility of twelve S. aureus strains to three commercial phage cocktails and two single phages was assessed. These S. aureus strains (including ten clinical isolates, five of which were methicillin-resistant) were compared using four assays: the spot test, efficiency of plating (EOP), the optical density assay (all in culture media) and microcalorimetry in human serum. In the spot test, EOP and optical density assay, all cocktails and single phages lysed both methicillin susceptible and methicillin resistant S. aureus strains. However, there was an absence of phage-mediated lysis in high concentrations of human serum as measured using microcalorimetry. As this microcalorimetry-based assay more closely resembles in vivo conditions, we propose that microcalorimetry could be included as a useful addition to conventional assays, thereby facilitating more accurate predictions of the in vivo susceptibility of S. aureus to phages during phage selection for therapeutic purposes.
Collapse
Affiliation(s)
- Michèle M. Molendijk
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - My V. T. Phan
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
- Medical Research Council/Uganda Virus Research Institute, London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda
| | - Lonneke G. M. Bode
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Nikolas Strepis
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Divyae K. Prasad
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Nathalie Worp
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | | | | | | | - Annelies Verbon
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | | | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Willem J. B. van Wamel
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| |
Collapse
|
21
|
The Selection of Antibiotic- and Bacteriophage-Resistant Pseudomonas aeruginosa Is Prevented by Their Combination. Microbiol Spectr 2022; 10:e0287422. [PMID: 36135376 PMCID: PMC9602269 DOI: 10.1128/spectrum.02874-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacteria developing resistance compromise the efficacy of antibiotics or bacteriophages (phages). We tested the association of these two antibacterials to circumvent resistance. With the Hollow Fiber Infection Model (HFIM), we mimicked the concentration profile of ciprofloxacin in the lungs of patients treated orally for Pseudomonas aeruginosa infections and, independently, mimicked a single inhaled administration of phages (one or two phages). Each treatment selects for antibiotic- or phage-resistant clones in less than 30 h. In contrast, no bacteria were recovered from the HFIM at 72 h when ciprofloxacin was started 4 h post phage administration, even when increasing the initial bacterial concentration by 1,000-fold. The combination of phages with antibiotics used according to clinical regimens prevents the growth of resistant clones, providing opportunities to downscale the use of multiple antibiotics. IMPORTANCE In the treatment of bacterial infections, the use of antibiotics or bacteriophages (phages) is limited by the ability of bacteria to develop resistance. The resistance frequency depends on the exposure to antibacterials. Therefore, determination of concentration profiles of antibiotics is key to define optimal regimens during treatments. In the laboratory, the Hollow Fiber Infection Model (HFIM) mimics concentration profiles observed in patients. In this study, we used the HFIM to evaluate the killing efficacy of the combination of phages and ciprofloxacin. We demonstrated that dosing schedule of phages first and the antibiotic second prevent the selection of resistant bacteria. These results demonstrate that combination efficacy relies on a strong initial reduction of the bacterial population by phages followed by antibiotics before any resistant arise.
Collapse
|
22
|
Igler C. Phenotypic flux: The role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 2022; 8:veac086. [PMID: 36225237 PMCID: PMC9547521 DOI: 10.1093/ve/veac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, the viruses of bacteria, have been studied for over a century. They were not only instrumental in laying the foundations of molecular biology, but they are also likely to play crucial roles in shaping our biosphere and may offer a solution to the control of drug-resistant bacterial infections. However, it remains challenging to predict the conditions for bacterial eradication by phage predation, sometimes even under well-defined laboratory conditions, and, most curiously, if the majority of surviving cells are genetically phage-susceptible. Here, I propose that even clonal phage and bacterial populations are generally in a state of continuous 'phenotypic flux', which is caused by transient and nongenetic variation in phage and bacterial physiology. Phenotypic flux can shape phage infection dynamics by reducing the force of infection to an extent that allows for coexistence between phages and susceptible bacteria. Understanding the mechanisms and impact of phenotypic flux may be key to providing a complete picture of phage-bacteria coexistence. I review the empirical evidence for phenotypic variation in phage and bacterial physiology together with the ways they have been modeled and discuss the potential implications of phenotypic flux for ecological and evolutionary dynamics between phages and bacteria, as well as for phage therapy.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|