1
|
Li Y, Ding T, Zhang T, Liu S, Wang J, Zhou X, Guo Z, He Q, Zhang S. Leveraging Diverse Cell-Death Patterns to Decipher the Interactive Relation of Unfavorable Outcome and Tumor Microenvironment in Breast Cancer. Bioengineering (Basel) 2025; 12:420. [PMID: 40281780 PMCID: PMC12024675 DOI: 10.3390/bioengineering12040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Programmed cell death (PCD) dynamically influences breast cancer (BC) prognosis through interactions with the tumor microenvironment (TME). We investigated 13 PCD patterns to decipher their prognostic impact and mechanistic links to TME-driven outcomes. Our study aimed to explore the complex mechanisms underlying these interactions and establish a prognostic prediction model for breast cancer. METHODS Using TCGA and METABRIC datasets, we integrated single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network analysis (WGCNA), and Least Absolute Shrinkage and Selection Operator (LASSO) to explore PCD-TME interactions. Multi-dimensional analyses included immune infiltration, genomic heterogeneity, and functional pathway enrichment. RESULTS Our results indicated that high apoptosis and pyroptosis activity, along with low autophagy, correlated with favorable prognosis, which was driven by enhanced anti-tumor immunity, including more M1 macrophage polarization and activated CD8+ T cells in TME. PCD-related genes could promote tumor metastasis and poor prognosis via VEGF/HIF-1/MAPK signaling and immune response, including Th1/Th2 cell differentiation, while new tumor event occurrences (metastasis/secondary cancers) were linked to specific clinical features and gene mutation spectrums, including TP53/CDH1 mutations and genomic instability. We constructed a six-gene LASSO model (BCAP31, BMF, GLUL, NFKBIA, PARP3, PROM2) to predict prognosis and identify high-risk BC patients (for five-year survival, AUC = 0.76 in TCGA; 0.74 in METABRIC). Therein, the high-risk subtype patients demonstrated a poorer prognosis, also characterized by lower microenvironment matrix and downregulated immunocyte infiltration. These six gene signatures also showed prognostic value with significant differential expression in gene and protein levels of BC samples. CONCLUSION Our study provided a comprehensive landscape of the cancer survival difference and related PCD-TME interaction axis and highlighted that high-apoptosis/pyroptosis states caused favorable prognosis, underlying mechanisms closely related with the TME where anti-tumor immunity would be beneficial for patient prognosis. These findings highlighted the model's potential for risk stratification in BC.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Ting Ding
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Tong Zhang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Shuangyu Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Jinhua Wang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Zeqi Guo
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
2
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Migliaccio G, Morikka J, Del Giudice G, Vaani M, Möbus L, Serra A, Federico A, Greco D. Methylation and transcriptomic profiling reveals short term and long term regulatory responses in polarized macrophages. Comput Struct Biotechnol J 2024; 25:143-152. [PMID: 39257962 PMCID: PMC11385784 DOI: 10.1016/j.csbj.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Macrophage plasticity allows the adoption of distinct functional states in response to environmental cues. While unique transcriptomic profiles define these states, focusing solely on transcription neglects potential long-term effects. The investigation of epigenetic changes can be used to understand how temporary stimuli can result in lasting effects. Epigenetic alterations play an important role in the pathophysiology of macrophages, including their trained innate immunity, enabling faster and more efficient inflammatory responses upon subsequent encounters to the same pathogen or insult. In this study, we used a multi-omics approach to elucidate the interplay between gene expression and DNA-methylation, to explore the potential long-term effects of diverse polarizing environments on macrophage activity. We identified a common core set of genes that are differentially methylated regardless of exposure type, indicating a potential common fundamental mechanism for adaptation to various stimuli. Functional analysis revealed that processes requiring rapid responses displayed transcriptomic regulation, whereas functions critical for long-term adaptations exhibited co-regulation at both transcriptomic and epigenetic levels. Our study uncovers a novel set of genes linked to the long-term effects of macrophage polarization. This discovery underscores the potential of epigenetics in elucidating how macrophages establish long-term memory and influence health outcomes.
Collapse
Affiliation(s)
- Giorgia Migliaccio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jack Morikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| | - Giusy Del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lena Möbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Lu J, Liu H, Wang B, Chen C, Bai F, Su X, Duan P. Niraparib plays synergistic antitumor effects with NRT in a mouse ovarian cancer model with HRP. Transl Oncol 2024; 49:102094. [PMID: 39163760 PMCID: PMC11380394 DOI: 10.1016/j.tranon.2024.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE PARPi offers less clinical benefit for HRP patients compared to HRD patients. PARPi has an immunomodulatory function. NRT therapy targets tumor neoantigens without off-target immune toxicity. We explored the synergy between Niraparib and NRT in enhancing antitumor activity in an HRP ovarian cancer mouse model. METHODS In the C57BL/6 mouse ID8 ovarian cancer model, the effect of Niraparib on reshaping TIME was evaluated by immune cell infiltration analysis of transcriptomic data. The antitumor effects of Niraparib, NRT, and their combined use were systematically evaluated. To corroborate alterations in TILs, TAMs, and chemokine profiles within the TIME, we employed immunofluorescence imaging and transcriptome sequencing analysis. RESULTS Niraparib increased the M1-TAMs and activated CD8+ T cells in tumor tissues of C57BL/6 mice with ID8 ovarian cancer. GSEA showed that gene set associated with immature DC and INFα, cytokines and chemokines were significantly enriched in immune feature, KEGG and GO gene sets, meanwhile CCL5, CXCL9 and CXCL10 play dominant roles together. In the animal trials, combined group had a tumor growth delay compared with Niraparib group (P < 0.01) and control group (P < 0.001), and longer survival compared with the single agent group (P<0.01) . CONCLUSIONS Niraparib could exert immune-reshaping effects, then acts synergistic antitumor effects with NRT in HRP ovarian cancer model. Our findings provide new ideas and rationale for combined immunotherapy in HRP ovarian cancer.
Collapse
Affiliation(s)
- Jiefang Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Obstetrics and Gynecology, Lishui People's Hospital, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Lishui College, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Obstetrics and Gynecology, Lishui People's Hospital, China
| | - Binming Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Chengcheng Chen
- Department of Gastrointestinal Surgery, The Second Afliated Hospital of Wenzhou Medical University, China
| | - Fumao Bai
- Department of clinical laboratory, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, China; Department of Gastrointestinal Surgery, The Second Afliated Hospital of Wenzhou Medical University, China.
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
5
|
Huang Y, Chen S, Yao N, Lin S, Zhang J, Xu C, Wu C, Chen G, Zhou D. Molecular mechanism of PARP inhibitor resistance. Oncoscience 2024; 11:69-91. [PMID: 39318358 PMCID: PMC11420906 DOI: 10.18632/oncoscience.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) are the first-approved anticancer drug designed to exploit synthetic lethality. PARPi selectively kill cancer cells with homologous recombination repair deficiency (HRD), as a result, PARPi are widely employed to treated BRCA1/2-mutant ovarian, breast, pancreatic and prostate cancers. Currently, four PARPi including Olaparib, Rucaparib, Niraparib, and Talazoparib have been developed and greatly improved clinical outcomes in cancer patients. However, accumulating evidences suggest that required or de novo resistance emerged. In this review, we discuss the molecular mechanisms leading to PARPi resistances and review the potential strategies to overcome PARPi resistance.
Collapse
Affiliation(s)
- Yi Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Simin Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Nan Yao
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Shikai Lin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Junyi Zhang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chengrui Xu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chenxuan Wu
- School of Public Health, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Danyang Zhou
- Department of Respiratory, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210012, Jiangsu, P.R. China
| |
Collapse
|
6
|
Wu H, Gao W, Ma Y, Zhong X, Qian J, Huang D, Ge J. TRIM25-mediated XRCC1 ubiquitination accelerates atherosclerosis by inducing macrophage M1 polarization and programmed death. Inflamm Res 2024; 73:1445-1458. [PMID: 38896288 DOI: 10.1007/s00011-024-01906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Macrophage-mediated cleaning up of dead cells is a crucial determinant in reducing coronary artery inflammation and maintaining vascular homeostasis. However, this process also leads to programmed death of macrophages. So far, the role of macrophage death in the progression of atherosclerosis remains controversial. Also, the underlying mechanism by which transcriptional regulation and reprogramming triggered by macrophage death pathways lead to changes in vascular inflammation and remodeling are still largely unknown. TRIM25-mediated RIG-I signaling plays a key role in regulation of macrophages fate, however the role of TRIM25 in macrophage death-mediated atherosclerotic progression remains unclear. This study aims to investigate the relationship between TRIM25 and macrophage death in atherosclerosis. METHODS A total of 34 blood samples of patients with coronary stent implantation, including chronic total occlusion (CTO) leisions (n = 14) or with more than 50% stenosis of a coronary artery but without CTO leisions (n = 20), were collected, and the serum level of TRIM25 was detected by ELISA. Apoe-/- mice with or without TRIM25 gene deletion were fed with the high-fat diet (HFD) for 12 weeks and the plaque areas, necrotic core size, aortic fibrosis and inflammation were investigated. TRIM25 wild-type and deficient macrophages were isolated, cultured and stimulated with ox-LDL, RNA-seq, real-time PCR, western blot and FACS experiments were used to screen and validate signaling pathways caused by TRIM25 deletion. RESULTS Downregulation of TRIM25 was observed in circulating blood of CTO patients and also in HFD-induced mouse aortas. After HFD for 12 weeks, TRIM25-/-ApoeE-/- mice developed smaller atherosclerotic plaques, less inflammation, lower collagen content and aortic fibrosis compared with TRIM25+/+ApoeE-/- mice. By RNA-seq and KEGG enrichment analysis, we revealed that deletion of TRIM25 mainly affected pyroptosis and necroptosis pathways in ox-LDL-induced macrophages, and the expressions of PARP1 and RIPK3, were significantly decreased in TRIM25 deficient macrophages. Overexpression of TRIM25 promoted M1 polarization and necroptosis of macrophages, while inhibition of PARP1 reversed this process. Further, we observed that XRCC1, a repairer of DNA damage, was significantly upregulated in TRIM25 deficient macrophages, inhibiting PARP1 activity and PARP1-mediated pro-inflammatory change, M1 polarization and necroptosis of macrophages. By contrast, TRIM25 overexpression mediated ubiquitination of XRCC1, and the inhibition of XRCC1 released PARP1, and activated macrophage M1 polarization and necroptosis, which accelerated aortic inflammation and atherosclerotic plaque progression. CONCLUSIONS Our study has uncovered a crucial role of the TRIM25-XRCC1Ub-PARP1-RIPK3 axis in regulating macrophage death during atherosclerosis, and we highlight the potential therapeutic significance of macrophage reprogramming regulation in preventing the development of atherosclerosis.
Collapse
Affiliation(s)
- Hongxian Wu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Wei Gao
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Yuanji Ma
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Dong Huang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Moniot A, Schneider C, Chardin L, Yaniz-Galende E, Genestie C, Etiennot M, Henry A, Drelon C, Le Formal A, Langlois B, Venat L, Louvet C, Favier L, Lortholary A, Berton-Rigaud D, Dohollou N, Desauw C, Fabbro M, Malaurie E, Dubot C, Kurtz JE, Bonichon Lamichhane N, Pujade-Lauraine É, Jeanne A, Leary A, Dedieu S. The CD47/TSP-1 axis: a promising avenue for ovarian cancer treatment and biomarker research. Mol Cancer 2024; 23:166. [PMID: 39138571 PMCID: PMC11323699 DOI: 10.1186/s12943-024-02073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) remains one of the most challenging and deadly malignancies facing women today. While PARP inhibitors (PARPis) have transformed the treatment landscape for women with advanced OC, many patients will relapse and the PARPi-resistant setting is an area of unmet medical need. Traditional immunotherapies targeting PD-1/PD-L1 have failed to show any benefit in OC. The CD47/TSP-1 axis may be relevant in OC. We aimed to describe changes in CD47 expression with platinum therapy and their relationship with immune features and prognosis. METHODS Tumor and blood samples collected from OC patients in the CHIVA trial were assessed for CD47 and TSP-1 before and after neoadjuvant chemotherapy (NACT) and multiplex analysis was used to investigate immune markers. Considering the therapeutic relevance of targeting the CD47/TSP-1 axis, we used the CD47-derived TAX2 peptide to selectively antagonize it in a preclinical model of aggressive ovarian carcinoma. RESULTS Significant reductions in CD47 expression were observed post NACT. Tumor patients having the highest CD47 expression profile at baseline showed the greatest CD4+ and CD8+ T-cell influx post NACT and displayed a better prognosis. In addition, TSP-1 plasma levels decreased significantly under NACT, and high TSP-1 was associated with a worse prognosis. We demonstrated that TAX2 exhibited a selective and favorable biodistribution profile in mice, localizing at the tumor sites. Using a relevant peritoneal carcinomatosis model displaying PARPi resistance, we demonstrated that post-olaparib (post-PARPi) administration of TAX2 significantly reduced tumor burden and prolonged survival. Remarkably, TAX2 used sequentially was also able to increase animal survival even under treatment conditions allowing olaparib efficacy. CONCLUSIONS Our study thus (1) proposes a CD47-based stratification of patients who may be most likely to benefit from postoperative immunotherapy, and (2) suggests that TAX2 is a potential alternative therapy for patients relapsing on PARP inhibitors.
Collapse
Affiliation(s)
| | | | - Laure Chardin
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Elisa Yaniz-Galende
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Catherine Genestie
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | | | | | - Coralie Drelon
- UMR 7369 MEDyC, CNRS, Université de Reims Champagne-Ardenne, Reims, France
| | - Audrey Le Formal
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Benoit Langlois
- UMR 7369 MEDyC, CNRS, Université de Reims Champagne-Ardenne, Reims, France
| | - Laurence Venat
- Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | | | | | | | | | | | - Christophe Desauw
- Centre Hospitalier Régional Universitaire de Lille, Hôpital Huriez, Lille, France
| | | | | | - Coraline Dubot
- Institut Curie - Hôpital René Huguenin - GINECO, Saint-Cloud, France
| | | | | | | | | | - Alexandra Leary
- Gustave-Roussy Cancer Campus Université Paris-Saclay GINECO/GINEGEPS, Inserm U981, Villejuif, France
| | - Stéphane Dedieu
- UMR 7369 MEDyC, CNRS, Université de Reims Champagne-Ardenne, Reims, France.
| |
Collapse
|
8
|
Mohd ON, Heng YJ, Wang L, Thavamani A, Massicott ES, Wulf GM, Slack FJ, Doyle PS. Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors. Anal Chem 2024; 96:12729-12738. [PMID: 39044395 DOI: 10.1021/acs.analchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.
Collapse
Affiliation(s)
- Omar N Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing J Heng
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lin Wang
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Abhishek Thavamani
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Erica S Massicott
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Gerburg M Wulf
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Frank J Slack
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Patrick S Doyle
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Ashrafizadeh M, Aref AR, Sethi G, Ertas YN, Wang L. Natural product/diet-based regulation of macrophage polarization: Implications in treatment of inflammatory-related diseases and cancer. J Nutr Biochem 2024; 130:109647. [PMID: 38604457 DOI: 10.1016/j.jnutbio.2024.109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Macrophages are phagocytic cells with important physiological functions, including the digestion of cellular debris, foreign substances, and microbes, as well as tissue development and homeostasis. The tumor microenvironment (TME) shapes the aggressiveness of cancer, and the biological and cellular interactions in this complicated space can determine carcinogenesis. TME can determine the progression, biological behavior, and therapy resistance of human cancers. The macrophages are among the most abundant cells in the TME, and their functions and secretions can determine tumor progression. The education of macrophages to M2 polarization can accelerate cancer progression, and therefore, the re-education and reprogramming of these cells is promising. Moreover, macrophages can cause inflammation in aggravating pathological events, including cardiovascular diseases, diabetes, and neurological disorders. The natural products are pleiotropic and broad-spectrum functional compounds that have been deployed as ideal alternatives to conventional drugs in the treatment of cancer. The biological and cellular interactions in the TME can be regulated by natural products, and for this purpose, they enhance the M1 polarization of macrophages, and in addition to inhibiting proliferation and invasion, they impair the chemoresistance. Moreover, since macrophages and changes in the molecular pathways in these cells can cause inflammation, the natural products impair the pro-inflammatory function of macrophages to prevent the pathogenesis and progression of diseases. Even a reduction in macrophage-mediated inflammation can prevent organ fibrosis. Therefore, natural product-mediated macrophage targeting can alleviate both cancerous and non-cancerous diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, Massachusetts, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye.
| | - Lu Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
11
|
Böhi F, Hottiger MO. Expanding the Perspective on PARP1 and Its Inhibitors in Cancer Therapy: From DNA Damage Repair to Immunomodulation. Biomedicines 2024; 12:1617. [PMID: 39062190 PMCID: PMC11275100 DOI: 10.3390/biomedicines12071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This review explores the expanding roles of PARP1, highlighting its crucial interplay with the immune system during tumorigenesis. We discuss PARP1's immunomodulatory effects in macrophages and T cells, with a particular focus on cytokine expression. Understanding these immunomodulatory roles of PARP1 not only holds promise for enhancing the efficacy of PARP inhibitors in cancer therapy but also paves the way for novel treatment regimens targeting immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Ge S, Wang L, Jin C, Xie H, Zheng G, Cui Z, Zhang C. Unveiling the neuroprotection effects of Volvalerenic acid A: Mitochondrial fusion induction via IDO1-mediated Stat3-Opa1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155555. [PMID: 38579641 DOI: 10.1016/j.phymed.2024.155555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Ischemic stroke is a leading cause of death and long-term disability worldwide. Studies have suggested that cerebral ischemia induces massive mitochondrial damage. Valerianic acid A (VaA) is the main active ingredient of valerianic acid with neuroprotective activity. PURPOSE This study aimed to investigate the neuroprotective effects of VaA with ischemic stroke and explore the underlying mechanisms. METHOD In this study, we established the oxygen-glucose deprivation and reperfusion (OGD/R) cell model and the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model in vitro and in vivo. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of VaA in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP), and activities of NAD+ were detected to reflect mitochondrial function. Mechanistically, gene knockout experiments, transfection experiments, immunofluorescence, DARTS, and molecular dynamics simulation experiments showed that VaA bound to IDO1 regulated the kynurenine pathway of tryptophan metabolism and prevented Stat3 dephosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. RESULTS We showed that VaA decreased the infarct volume in a dose-dependent manner and exerted neuroprotective effects against reperfusion injury. Furthermore, VaA promoted Opa1-related mitochondrial fusion and reversed neuronal mitochondrial damage and loss after reperfusion injury. In SH-SY5Y cells, VaA (5, 10, 20 μM) exerted similar protective effects against OGD/R-induced injury. We then examined the expression of significant enzymes regulating the kynurenine (Kyn) pathway of the ipsilateral brain tissue of the ischemic stroke rat model, and these enzymes may play essential roles in ischemic stroke. Furthermore, we found that VaA can bind to the initial rate-limiting enzyme IDO1 in the Kyn pathway and prevent Stat3 phosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. Using in vivo IDO1 knockdown and in vitro IDO1 overexpressing models, we demonstrated that the promoted mitochondrial fusion and neuroprotective effects of VaA were IDO1-dependent. CONCLUSION VaA administration improved neurological function by promoting mitochondrial fusion through the IDO1-mediated Stat3-Opa1 pathway, indicating its potential as a therapeutic drug for ischemic stroke.
Collapse
Affiliation(s)
- Shanchun Ge
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Wang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Jin
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Haifeng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Guoping Zheng
- Nanjing Hospital of Chinese Medicine Affiliated of Nanjing University of Chinese Medicine, Nanjing, 21000, China
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
13
|
Gong X, Liu Y, Zhang Q, Liang K, Wei J, Du H. LHFPL2 Serves as a Potential Biomarker for M2 Polarization of Macrophages in Renal Cell Carcinoma. Int J Mol Sci 2024; 25:6707. [PMID: 38928412 PMCID: PMC11204190 DOI: 10.3390/ijms25126707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors of the kidney, presenting significant challenges for clinical diagnosis and treatment. Macrophages play crucial roles in RCC, promoting tumor progression and warranting further investigation. Previous studies have identified LHFPL2 as a transmembrane protein associated with reproduction, but its relationship with tumors or macrophages has not been discussed. This study utilized transcriptomic sequencing data from 609 KIRC patients in the TCGA database and single-cell sequencing data from 34,326 renal carcinoma cells for subsequent analysis. We comprehensively evaluated the expression of LHFPL2 and its relationship with clinical features, tumor prognosis, immune infiltration, and mutations. Additionally, we further assessed the correlation between LHFPL2 and macrophage M2 polarization using single-cell data and explored its potential as a cancer therapeutic target through molecular docking. The results demonstrated that LHFPL2 is upregulated in RCC and associated with poor survival rates. In clinical staging, the proportion of malignant and high-metastasis patients was higher in the high-LHFPL2 group than in the low-LHFPL2 group. Furthermore, we found that LHFPL2 influences RCC immune infiltration, with its expression positively correlated with various immune checkpoint and M2-related gene expressions, positively associated with M2 macrophage infiltration, and negatively correlated with activated NK cells. Moreover, LHFPL2 showed specific expression in macrophages, with the high-expression subgroup exhibiting higher M2 polarization, hypoxia, immune evasion, and angiogenesis scores, promoting tumor progression. Finally, we predicted several potential drugs targeting LHFPL2, such as conivaptan and nilotinib. Our analysis elaborately delineates the immune characteristics of LHFPL2 in the tumor microenvironment and its positive correlation with macrophage M2 polarization, providing new insights into tumor immunotherapy. We also propose potential FDA-approved drugs targeting this gene, which should be tested for their binding effects with LHFPL2 in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (X.G.); (Y.L.); (Q.Z.); (K.L.); (J.W.)
| |
Collapse
|
14
|
Garofoli M, Maiorano BA, Bruno G, Giordano G, Di Tullio P, Maselli FM, Landriscina M, Conteduca V. Androgen receptor, PARP signaling, and tumor microenvironment: the 'perfect triad' in prostate cancer? Ther Adv Med Oncol 2024; 16:17588359241258443. [PMID: 38887656 PMCID: PMC11181896 DOI: 10.1177/17588359241258443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aberrations in the homologous recombination repair (HRR) pathway in prostate cancer (PCa) provide a unique opportunity to develop therapeutic strategies that take advantage of the reduced tumor ability to repair DNA damage. Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have been shown to prolong the survival of PCa patients with HRR defects, particularly in those with Breast Cancer type 1 susceptibility protein/Breast Cancer type 2 susceptibility protein alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple preclinical and clinical studies are addressing potential synergies between PARPi and androgen receptor signaling inhibitors, and these strategies are also being evaluated in combination with other drugs such as immune checkpoint inhibitors. However, the effectiveness of these combining therapies could be hindered by multiple mechanisms of resistance, including also the role played by the immunosuppressive tumor microenvironment. In this review, we summarize the use of PARPi in PCa and the potential synergies with different molecular pathways. However, numerous unanswered questions remain, including the identification of the patient population that could benefit most from PARPi, determining whether to use PARPi as monotherapy or in combination, and finding the optimal timing of PARPi, expanding the use of genomic tests, and optimizing combination therapies.
Collapse
Affiliation(s)
- Marianna Garofoli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | | | - Giuseppina Bruno
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Piergiorgio Di Tullio
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Felicia Maria Maselli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| |
Collapse
|
15
|
Li S, Sheng J, Zhang D, Qin H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024; 16:10165-10196. [PMID: 38787372 PMCID: PMC11210230 DOI: 10.18632/aging.205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
Collapse
Affiliation(s)
- Sheng Li
- The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
17
|
Duncan KD, Pětrošová H, Lum JJ, Goodlett DR. Mass spectrometry imaging methods for visualizing tumor heterogeneity. Curr Opin Biotechnol 2024; 86:103068. [PMID: 38310648 PMCID: PMC11520788 DOI: 10.1016/j.copbio.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
Collapse
Affiliation(s)
- Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
| | - Helena Pětrošová
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - David R Goodlett
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
18
|
Sturniolo I, Váróczy C, Regdon Z, Mázló A, Muzsai S, Bácsi A, Intili G, Hegedűs C, Boothby MR, Holechek J, Ferraris D, Schüler H, Virág L. PARP14 Contributes to the Development of the Tumor-Associated Macrophage Phenotype. Int J Mol Sci 2024; 25:3601. [PMID: 38612413 PMCID: PMC11011797 DOI: 10.3390/ijms25073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.
Collapse
Affiliation(s)
- Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csongor Váróczy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- National Academy of Scientist Education, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
| | - Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- HUN-REN-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Giorgia Intili
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Mark R. Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA;
| | | | - Dana Ferraris
- Department of Chemistry, McDaniel College, Westminster, MD 21157, USA;
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Szentmartoni G, Mühl D, Csanda R, Szasz AM, Herold Z, Dank M. Predictive Value and Therapeutic Significance of Somatic BRCA Mutation in Solid Tumors. Biomedicines 2024; 12:593. [PMID: 38540206 PMCID: PMC10967875 DOI: 10.3390/biomedicines12030593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/11/2025] Open
Abstract
Ten percent of patients with breast cancer, and probably somewhat more in patients with ovarian cancer, have inherited germline DNA mutations in the breast and ovarian cancer genes BRCA1 and BRCA2. In the remaining cases, the disease is caused by acquired somatic genetic and epigenetic alterations. Targeted therapeutic agents, such as poly ADP-ribose polymerases (PARP) inhibitors (PARPi), have emerged in treating cancers associated with germline BRCA mutations since 2014. The first PARPi was FDA-approved initially for ovarian cancer patients with germline BRCA mutations. Deleterious variants in the BRCA1/BRCA2 genes and homologous recombination deficiency status have been strong predictors of response to PARPi in a few solid tumors since then. However, the relevance of somatic BRCA mutations is less clear. Somatic BRCA-mutated tumors might also respond to this new class of therapeutics. Although the related literature is often controversial, recently published case reports and/or randomized studies demonstrated the effectiveness of PARPi in treating patients with somatic BRCA mutations. The aim of this review is to summarize the predictive role of somatic BRCA mutations and to provide further assistance for clinicians with the identification of patients who could potentially benefit from PARPi.
Collapse
Affiliation(s)
- Gyongyver Szentmartoni
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
20
|
Gay MD, Drda JC, Chen W, Huang Y, Yassin AA, Duka T, Fang H, Shivapurkar N, Smith JP. Implicating the cholecystokinin B receptor in liver stem cell oncogenesis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G291-G309. [PMID: 38252699 PMCID: PMC11211039 DOI: 10.1152/ajpgi.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.
Collapse
Affiliation(s)
- Martha D Gay
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jack C Drda
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Yimeng Huang
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Amal A Yassin
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Tetyana Duka
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Hongbin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, District of Columbia, United States
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
21
|
Yndestad S, Engebrethsen C, Herencia-Ropero A, Nikolaienko O, Vintermyr OK, Lillestøl RK, Minsaas L, Leirvaag B, Iversen GT, Gilje B, Blix ES, Espelid H, Lundgren S, Geisler J, Aase HS, Aas T, Gudlaugsson EG, Llop-Guevara A, Serra V, Janssen EAM, Lønning PE, Knappskog S, Eikesdal HP. Homologous Recombination Deficiency Across Subtypes of Primary Breast Cancer. JCO Precis Oncol 2023; 7:e2300338. [PMID: 38039432 DOI: 10.1200/po.23.00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 12/03/2023] Open
Abstract
PURPOSE Homologous recombination deficiency (HRD) is highly prevalent in triple-negative breast cancer (TNBC) and associated with response to PARP inhibition (PARPi). Here, we studied the prevalence of HRD in non-TNBC to assess the potential for PARPi in a wider group of patients with breast cancer. METHODS HRD status was established using targeted gene panel sequencing (360 genes) and BRCA1 methylation analysis of pretreatment biopsies from 201 patients with primary breast cancer in the phase II PETREMAC trial (ClinicalTrials.gov identifier: NCT02624973). HRD was defined as mutations in BRCA1, BRCA2, BRIP1, BARD1, or PALB2 and/or promoter methylation of BRCA1 (strict definition; HRD-S). In secondary analyses, a wider definition (HRD-W) was used, examining mutations in 20 additional genes. Furthermore, tumor BRCAness (multiplex ligation-dependent probe amplification), PAM50 subtyping, RAD51 nuclear foci to test functional HRD, tumor-infiltrating lymphocyte (TIL), and PD-L1 analyses were performed. RESULTS HRD-S was present in 5% of non-TNBC cases (n = 9 of 169), contrasting 47% of the TNBC tumors (n = 15 of 32). HRD-W was observed in 23% of non-TNBC (n = 39 of 169) and 59% of TNBC cases (n = 19 of 32). Of 58 non-TNBC and 30 TNBC biopsies examined for RAD51 foci, 4 of 4 (100%) non-TNBC and 13 of 14 (93%) TNBC cases classified as HRD-S had RAD51 low scores. In contrast, 4 of 17 (24%) non-TNBC and 15 of 19 (79%) TNBC biopsies classified as HRD-W exhibited RAD51 low scores. Of nine non-TNBC tumors with HRD-S status, only one had a basal-like PAM50 signature. There was a high concordance between HRD-S and either BRCAness, high TIL density, or high PD-L1 expression (each P < .001). CONCLUSION The prevalence of HRD in non-TNBC suggests that therapy targeting HRD should be evaluated in a wider breast cancer patient population. Strict HRD criteria should be implemented to increase diagnostic precision with respect to functional HRD.
Collapse
Affiliation(s)
- Synnøve Yndestad
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christina Engebrethsen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Oleksii Nikolaienko
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Reidun K Lillestøl
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Minsaas
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Beryl Leirvaag
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gjertrud T Iversen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Egil S Blix
- Immunology Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Helge Espelid
- Department of Surgery, Haugesund Hospital, Haugesund, Norway
| | - Steinar Lundgren
- Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hildegunn S Aase
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | | | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, Stavanger University, Stavanger, Norway
| | - Per E Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans P Eikesdal
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Deceased
| |
Collapse
|
22
|
Batalini F, Madison RW, Sokol ES, Jin DX, Chen KT, Decker B, Pavlick DC, Frampton GM, Wulf GM, Garber JE, Oxnard G, Schrock AB, Tung NM. Homologous Recombination Deficiency Landscape of Breast Cancers and Real-World Effectiveness of Poly ADP-Ribose Polymerase Inhibitors in Patients With Somatic BRCA1/ 2, Germline PALB2, or Homologous Recombination Deficiency Signature. JCO Precis Oncol 2023; 7:e2300091. [PMID: 37992259 PMCID: PMC10681426 DOI: 10.1200/po.23.00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE Poly ADP-ribose polymerase inhibitors (PARPi) are approved for patients with human epidermal growth factor receptor 2-negative metastatic breast cancer (mBC) and germline pathogenic/likely pathogenic variant (hereafter mutation) in the BRCA1/2 genes (gBRCA); however, clinical benefit has also been demonstrated in mBC with somatic BRCA1/2 mutations (sBRCA) or germline PALB2 mutations (gPALB2). This study aims to describe the genomic landscape of homologous recombination repair (HRR) gene alterations in mBC and assess PARPi treatment outcomes for patients with gBRCA compared with other HRR genes and by status of a novel homologous recombination deficiency signature (HRDsig). METHODS A real-world (RW) clinico-genomic database (CGDB) of comprehensive genomic profiling (CGP) linked to deidentified, electronic health record-derived clinical data was used. CGP was analyzed for HRR genes and HRDsig. The CGDB enabled cohort characterization and outcomes analyses of 177 patients exposed to PARPi. RW progression-free survival (rwPFS) and RW overall survival (rwOS) were compared. RESULTS Of 28,920 patients with mBC, gBRCA was detected in 3.4%, whereas the population with any BRCA alteration or gPALB2 increased to 9.5%. HRDsig+ represented 21% of patients with mBC. BRCA and gPALB2 had higher levels of biallelic loss and HRDsig+ than other HRR alterations. Outcomes on PARPi were assessed for 177 patients, and gBRCA and sBRCA/gPALB2 cohorts were similar: gBRCA versus sBRCA/gPALB2 rwPFS was 6.3 versus 5.4 months (hazard ratio [HR], 1.37 [0.77-2.43]); rwOS was 16.2 versus 21.2 months (HR, 1.45 [0.74-2.86]). Additionally, patients with HRDsig+ versus HRDsig- had longer rwPFS (6.3 v 2.8 months; HR, 0.62 [0.42-0.92]) and numerically longer rwOS (17.8 v 13.0 months; HR, 0.72 [0.46-1.14]). CONCLUSION Patients with sBRCA and gPALB2 derive similar benefit from PARPi as those with gBRCA alterations. In combination, HRDsig+, sBRCA, and gPALB2 represent an additional 19% of mBC that can potentially benefit from PARPi. Randomized trials exploring a more inclusive biomarker such as HRDsig are warranted.
Collapse
|
23
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
24
|
Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Pathogens 2023; 12:964. [PMID: 37513811 PMCID: PMC10386340 DOI: 10.3390/pathogens12070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant adenosine diphosphate-ribose (ADP)-ribosylation of proteins and nucleic acids is associated with multiple disease processes such as infections and chronic inflammatory diseases. The poly(ADP-ribose) polymerase (PARP)/ADP-ribosyltransferase (ART) family members promote mono- or poly-ADP-ribosylation. Although evidence has linked PARPs/ARTs and macrophages in the context of chronic inflammation, the underlying mechanisms remain incompletely understood. This review provides an overview of literature focusing on the roles of PARP1/ARTD1, PARP7/ARTD14, PARP9/ARTD9, and PARP14/ARTD8 in macrophages. PARPs/ARTs regulate changes in macrophages during chronic inflammatory processes not only via catalytic modifications but also via non-catalytic mechanisms. Untangling complex mechanisms, by which PARPs/ARTs modulate macrophage phenotype, and providing molecular bases for the development of new therapeutics require the development and implementation of innovative technologies.
Collapse
Affiliation(s)
- Diego V. Santinelli-Pestana
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Liu Y, Xue R, Duan X, Shang X, Wang M, Wang F, Zhu L, Zhang L, Ge X, Zhao X, Guo H, Wang Z, Zhang L, Gao X, Shen A, Sheng Y, Qin Z. PARP inhibition synergizes with CD47 blockade to promote phagocytosis by tumor-associated macrophages in homologous recombination-proficient tumors. Life Sci 2023; 326:121790. [PMID: 37211345 DOI: 10.1016/j.lfs.2023.121790] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
AIMS PARP inhibitors (PARPi) are known to exert anti-tumor effects in patients with BRCA-mutated (BRCAmut) or homologous recombination (HR)-deficient cancer, but recent clinical investigations have suggested that this treatment may also be beneficial in patients with HR-proficient tumors. In this study, we aimed to investigate how PARPi exerts anti-tumor effects in non-BRCAmut tumors. MAIN METHODS BRCA wild-type, HR-deficient-negative ID8 and E0771 murine tumor cells were treated in vitro and in vivo with olaparib, a clinically approved PARPi. The effects on tumor growth in vivo were determined in immune-proficient and -deficient mice and alterations of immune cell infiltrations were analyzed with flow cytometry. Tumor-associated macrophages (TAMs) were further investigated with RNA-seq and flow cytometry. In addition, we confirmed olaparib's effect on human TAMs. KEY FINDINGS Olaparib did not affect HR-proficient tumor cell proliferation and survival in vitro. However, olaparib significantly decreased tumor growth in C57BL/6 and SCID-beige mice (defective in lymphoid development and NK cell activity). Olaparib increased macrophage numbers in the tumor microenvironment, and their depletion diminished the anti-tumor effects of olaparib in vivo. Further analysis revealed that olaparib improved TAM-associated phagocytosis of cancer cells. Notably, this enhancement was not solely reliant on the "Don't Eat Me" CD47/SIRPα signal. In addition, compared to monotherapy, the concomitant administration of αCD47 antibodies with olaparib improved tumor control. SIGNIFICANCE Our work provides evidence for broadening the application of PARPi in HR-proficient cancer patients and paves the way for developing novel combined immunotherapy to upgrade the anti-tumor effects of macrophages.
Collapse
Affiliation(s)
- Yangyang Liu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoping Shang
- Department of Medical Records, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linyu Zhu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijing Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongjun Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihong Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lindong Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Gao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Airong Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqiao Sheng
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Shapiro GI, Barry SM. Combining PARP Inhibition and Immunotherapy in BRCA-Associated Cancers. Cancer Treat Res 2023; 186:207-221. [PMID: 37978138 DOI: 10.1007/978-3-031-30065-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have significantly improved treatment outcomes of homologous recombination (HR) repair-deficient cancers. While the activity of these agents is largely linked to multiple mechanisms underlying the synthetic lethality of PARP inhibition and HR deficiency, emerging data suggest that their efficacy is also tied to their effects on the immune microenvironment and dependent upon cytotoxic T-cell activation. Effects observed in preclinical models are currently being validated in on-treatment biopsy samples procured from patients enrolled in clinical trials. Although this work has stimulated the development of combinations of PARP inhibitors with immunomodulatory agents, results to date have not demonstrated the superiority of combined PARP inhibition and immune checkpoint blockade compared with PARP inhibition alone. These results have stimulated a more comprehensive assessment of the immunosuppressive components of the tumor microenvironment that must be addressed so that the efficacy of PARP inhibitor agents can be maximized.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA.
| | - Suzanne M Barry
- Department of Medical Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| |
Collapse
|