1
|
Gotoh S, Kawabori M, Yamaguchi S, Nakahara Y, Yoshie E, Konno K, Mizuno Y, Fujioka Y, Ohba Y, Kuge Y, Watanabe M, Fujimura M. Intranasal administration of stem cell-derived exosome alleviates cognitive impairment against subarachnoid hemorrhage. Exp Neurol 2025; 386:115143. [PMID: 39800250 DOI: 10.1016/j.expneurol.2025.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain. In this study, we investigate the effects of intranasally administered MSC-derived exosomes in a SAH animal model and elucidate their mode of action. METHODS Exosomes were isolated from the cell supernatants of amnion-derived MSC. SAH was induced in 8-week-old Sprague-Dawley rats using an autologous blood prechiasmatic cistern injection model. A total of 1.2 × 1010 particles of exosomes in 200 μL of PBS or PBS alone were intranasally administered immediately and 24 h post-injury. Neurological function was assessed up to 7 days after injury, and histological analysis was performed to evaluate their anti-apoptotic and anti-inflammatory effects. The biodistribution of exosomes was assessed using PET/CT imaging of 64Cu labeled exosome. In vitro analyses were performed using primary glial cells and cell lines to evaluate the anti-inflammatory effects of the exosomes. RESULTS Animals treated with exosomes exhibited significant improvement in cognitive function compared with PBS treated animal. Apoptotic cells and inflammation were reduced for the exosome group in the hippocampal CA1 area and in cortex, resulting in better neuronal cell survival. Blood brain barrier permeability was also preserved in the exosome group. Nuclear imaging revealed that exosomes were primarily transferred to the olfactory nerve and cerebrum; furthermore, exosomes were also observed in the trigeminal nerve and brainstem, where exosomes were co-localized with microglia and with endothelial cells. In vitro assessment showed that exosome administration ameliorated inflammation and prevented the death of glial cells. CONCLUSIONS MSC-derived exosomes were successfully transferred into the brain through intranasal administration and alleviated brain damage following SAH.
Collapse
Affiliation(s)
- Shuho Gotoh
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Hyogo, Japan
| | - Yo Nakahara
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Yoshie
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuki Mizuno
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Jung YH, Chae CW, Han HJ. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer's disease. Exp Mol Med 2024; 56:1691-1702. [PMID: 39085351 PMCID: PMC11372123 DOI: 10.1038/s12276-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 08/02/2024] Open
Abstract
Although the role of gut microbiota (GMB)-derived metabolites in mitochondrial and endolysosomal dysfunction in Alzheimer's disease (AD) under metabolic syndrome remains unclear, deciphering these host-metabolite interactions represents a major public health challenge. Dysfunction of mitochondria and endolysosomal networks (ELNs) plays a crucial role in metabolic syndrome and can exacerbate AD progression, highlighting the need to study their reciprocal regulation for a better understanding of how AD is linked to metabolic syndrome. Concurrently, metabolic disorders are associated with alterations in the composition of the GMB. Recent evidence suggests that changes in the composition of the GMB and its metabolites may be involved in AD pathology. This review highlights the mechanisms of metabolic syndrome-mediated AD development, focusing on the interconnected roles of mitochondrial dysfunction, ELN abnormalities, and changes in the GMB and its metabolites. We also discuss the pathophysiological role of GMB-derived metabolites, including amino acids, fatty acids, other metabolites, and extracellular vesicles, in mediating their effects on mitochondrial and ELN dysfunction. Finally, this review proposes therapeutic strategies for AD by directly modulating mitochondrial and ELN functions through targeting GMB metabolites under metabolic syndrome.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Gottschalk B, Koshenov Z, Malli R, Graier WF. Implications of mitochondrial membrane potential gradients on signaling and ATP production analyzed by correlative multi-parameter microscopy. Sci Rep 2024; 14:14784. [PMID: 38926476 PMCID: PMC11208492 DOI: 10.1038/s41598-024-65595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The complex architecture and biochemistry of the inner mitochondrial membrane generate ultra-structures with different phospholipid and protein compositions, shapes, characteristics, and functions. The crista junction (CJ) serves as an important barrier separating the cristae (CM) and inner boundary membranes (IBM). Thereby CJ regulates the movement of ions and ensures distinct electrical potentials across the cristae (ΔΨC) and inner boundary (ΔΨIBM) membranes. We have developed a robust and flexible approach to visualize the CJ permeability with super-resolution microscopy as a readout of local mitochondrial membrane potential (ΔΨmito) fluctuations. This method involves analyzing the distribution of TMRM fluorescence intensity in a model that is restricted to the mitochondrial geometry. We show that mitochondrial Ca2+ elevation hyperpolarizes the CM most likely caused by Ca2+ sensitive increase of mitochondrial tricarboxylic acid cycle (TCA) and subsequent oxidative phosphorylation (OXPHOS) activity in the cristae. Dynamic multi-parameter correlation measurements of spatial mitochondrial membrane potential gradients, ATP levels, and mitochondrial morphometrics revealed a CJ-based membrane potential overflow valve mechanism protecting the mitochondrial integrity during excessive cristae hyperpolarization.
Collapse
Affiliation(s)
- Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
4
|
Fan S, Lopez Llorens L, Perona Martinez FP, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Human Keratinocytes during UVB Exposure. ACS Sens 2024; 9:2440-2446. [PMID: 38743437 PMCID: PMC11129351 DOI: 10.1021/acssensors.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet (UV) radiation is known to cause skin issues, such as dryness, aging, and even cancer. Among UV rays, UVB stands out for its ability to trigger problems within cells, including mitochondrial dysfunction, oxidative stress, and DNA damage. Free radicals are implicated in these cellular responses, but they are challenging to measure due to their short lifetime and limited diffusion range. In our study, we used a quantum sensing technique (T1 relaxometry) involving fluorescent nanodiamonds (FNDs) that change their optical properties in response to magnetic noise. This allowed us to monitor the free radical presence in real time. To measure radicals near mitochondria, we coated FNDs with antibodies, targeting mitochondrial protein voltage-dependent anion channel 2 (anti-VDAC2). Our findings revealed a dynamic rise in radical levels on the mitochondrial membrane as cells were exposed to UVB (3 J/cm2), with a significant increase observed after 17 min.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lluna Lopez Llorens
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Felipe P Perona Martinez
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Tsutsumi R, Ueberheide B, Liang FX, Neel BG, Sakai R, Saito Y. Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation. Nat Commun 2024; 15:2843. [PMID: 38565573 PMCID: PMC10987504 DOI: 10.1038/s41467-024-46971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Proteomics Laboratory, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Department of Neurology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Feng-Xia Liang
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Microscopy Laboratory, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Benjamin G Neel
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Ryuichi Sakai
- Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| |
Collapse
|
6
|
Fan S, Gao H, Zhang Y, Nie L, Bártolo R, Bron R, Santos HA, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Single Heart Muscle Cells during Hypoxia and Reoxygenation. ACS NANO 2024; 18:2982-2991. [PMID: 38235677 PMCID: PMC10832053 DOI: 10.1021/acsnano.3c07959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cells are damaged during hypoxia (blood supply deprivation) and reoxygenation (oxygen return). This damage occurs in conditions such as cardiovascular diseases, cancer, and organ transplantation, potentially harming the tissue and organs. The role of free radicals in cellular metabolic reprogramming under hypoxia is under debate, but their measurement is challenging due to their short lifespan and limited diffusion range. In this study, we employed a quantum sensing technique to measure the real-time production of free radicals at the subcellular level. We utilize fluorescent nanodiamonds (FNDs) that exhibit changes in their optical properties based on the surrounding magnetic noise. This way, we were able to detect the presence of free radicals. To specifically monitor radical generation near mitochondria, we coated the FNDs with an antibody targeting voltage-dependent anion channel 2 (anti-VDAC2), which is located in the outer membrane of mitochondria. We observed a significant increase in the radical load on the mitochondrial membrane when cells were exposed to hypoxia. Subsequently, during reoxygenation, the levels of radicals gradually decreased back to the normoxia state. Overall, by applying a quantum sensing technique, the connections among hypoxia, free radicals, and the cellular redox status has been revealed.
Collapse
Affiliation(s)
- Siyu Fan
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Han Gao
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yue Zhang
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Linyan Nie
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Raquel Bártolo
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Reinier Bron
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Hélder A. Santos
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Romana Schirhagl
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Cui M, Yamano K, Yamamoto K, Yamamoto-Imoto H, Minami S, Yamamoto T, Matsui S, Kaminishi T, Shima T, Ogura M, Tsuchiya M, Nishino K, Layden BT, Kato H, Ogawa H, Oki S, Okada Y, Isaka Y, Kosako H, Matsuda N, Yoshimori T, Nakamura S. HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. Proc Natl Acad Sci U S A 2024; 121:e2306454120. [PMID: 38170752 PMCID: PMC10786298 DOI: 10.1073/pnas.2306454120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hitomi Yamamoto-Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Sho Matsui
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
| | - Takayuki Shima
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Megumi Tsuchiya
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois Chicago, Chicago, IL60612
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL60612
| | - Hisakazu Kato
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Bioscience, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidesato Ogawa
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, World Premier International Research Center (WPI-IFReC), Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| |
Collapse
|
8
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Sarhadi TR, Panse JS, Nagotu S. Mind the gap: Methods to study membrane contact sites. Exp Cell Res 2023; 431:113756. [PMID: 37633408 DOI: 10.1016/j.yexcr.2023.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Organelles are dynamic entities whose functions are essential for the optimum functioning of cells. It is now known that the juxtaposition of organellar membranes is essential for the exchange of metabolites and their communication. These functional apposition sites are termed membrane contact sites. Dynamic membrane contact sites between various sub-cellular structures such as mitochondria, endoplasmic reticulum, peroxisomes, Golgi apparatus, lysosomes, lipid droplets, plasma membrane, endosomes, etc. have been reported in various model systems. The burgeoning area of research on membrane contact sites has witnessed several manuscripts in recent years that identified the contact sites and components involved. Several methods have been developed to identify, measure and analyze the membrane contact sites. In this manuscript, we aim to discuss important methods developed to date that are used to study membrane contact sites.
Collapse
Affiliation(s)
- Tanveera Rounaque Sarhadi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Janhavee Shirish Panse
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Tsutsumi R, Ueberheide B, Liang FX, Neel BG, Sakai R, Saito Y. Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550235. [PMID: 37546742 PMCID: PMC10402005 DOI: 10.1101/2023.07.23.550235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Kitasato University School of Medicine; Sagamihara 252-0374, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University; Sendai 980-8578, Miyagi, Japan
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
- Proteomics Laboratory, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology and Department of Neurology, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
| | - Feng-Xia Liang
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
- Microscopy Laboratory, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA.Paste the full affiliation list here
| | - Benjamin G. Neel
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
| | - Ryuichi Sakai
- Kitasato University School of Medicine; Sagamihara 252-0374, Kanagawa, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University; Sendai 980-8578, Miyagi, Japan
| |
Collapse
|