1
|
Xiong J, Ding S, Zhou J, Cui Y, Chen X, Huang L, Zhang J, Qi W, Liao M. Clade 2.3.4.4b highly pathogenic H5N1 influenza viruses from birds in China replicate effectively in bovine cells and pose potential public health risk. Emerg Microbes Infect 2025; 14:2505649. [PMID: 40353570 DOI: 10.1080/22221751.2025.2505649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
In February 2024, H5N1 highly pathogenic avian influenza viruses (HPAIVs) of clade 2.3.4.4b were first reported in dairy cows in the USA. Subsequent multiple outbreaks on dairy farms and sporadic human infections have raised substantial public health concerns. In the same year, four H5N1 HPAIVs of clade 2.3.4.4b were isolated from ducks and geese in live poultry markets (LPMs) spanning seven provinces in China. Evolutionary analysis demonstrated that these viruses had undergone two genetic reassortments with H5 influenza viruses from wild birds in different countries. Except for 565/H5N1, the other three viruses exhibited over 99% genetic homology with avian-origin H5N1 HPAIVs from South Korea and Japan. Notably, 571/H5N1 demonstrated high replication efficiency in bovine-derived cells, particularly in bovine mammary epithelial (MAC-T) cells, and caused 16.7% (1/6) mortality in mice at a dose of 105 EID50/50 μL, indicating its zoonotic potential. Given the potential cross-species transmission risk of H5N1 HPAIVs to cattle herds, we collected 228 serum samples from 12 cattle farms across five provinces and conducted serological testing to investigate seroprevalence of H5N1 HPAIVs in Chinese cattle herds. All tested samples were negative, indicating no widespread infection in the sampled cattle populations. However, infections in cattle from other regions cannot be ruled out. Nevertheless, due to the high mutability of H5N1 HPAIVs, enhanced surveillance of avian influenza viruses is critical to ensure timely responses to potential outbreaks.
Collapse
Affiliation(s)
- Junlong Xiong
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
| | - Shiping Ding
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
| | - Jiangtao Zhou
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
| | - Yunqi Cui
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
| | - Xiaona Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
| | - Lihong Huang
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, People's Republic of China
| | - Jiahao Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
| | - Wenbao Qi
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China
| | - Ming Liao
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, People's Republic of China
- National Avian Influenza Para-Reference Laboratory, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Hu Z, Ai H, Wang Z, Huang S, Sun H, Xuan X, Chen M, Wang J, Yan W, Sun J, Pu J, Brooke CB, Chang KC, Sun Y, Liu J. Impact of inactivated vaccine on transmission and evolution of H9N2 avian influenza virus in chickens. NPJ Vaccines 2025; 10:67. [PMID: 40185759 PMCID: PMC11971428 DOI: 10.1038/s41541-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
H9N2 avian influenza virus (AIV) is endemic in poultry worldwide and increasingly zoonotic. Despite the long-term widespread use of inactivated vaccines, H9N2 AIVs remain dominant in chicken flocks. We demonstrated that inactivated vaccines did not prevent the replication of H9N2 AIVs in the upper airway of vaccinated chickens. Viral transmission was enhanced during sequential passage in vaccinated chickens, which was attributed to the restricted production of defective interfering particles and the introduction of stable mutations (NP-N417D, M1-V219I, and NS1-R140W) which enhanced viral replication. Notably, the genetic diversity of H9N2 AIVs was greater and included more potential mammal/human-adapted mutations after passage through vaccinated chickens than through naïve chickens, which might facilitate the emergence of mammal-adapted strains. By contrast, vaccines inducing cellular/mucosal immunity in the upper respiratory tract effectively limit H9N2 AIV. These findings highlight the limitations of inactivated vaccines and the need for revised vaccination strategies to control H9N2 AIV.
Collapse
Affiliation(s)
- Zhe Hu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Ai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhen Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shiyue Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinxin Xuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mingyue Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Sanya Institute of China Agricultural University, Hainan, China
| | - Jinxiu Wang
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Wei Yan
- Sanya Institute of China Agricultural University, Hainan, China
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiayi Sun
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China.
- Sanya Institute of China Agricultural University, Hainan, China.
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
3
|
Majumdar A, Potdar V, Vipat V, Pawar S, Jadhav S, Choudhary ML, Gaikwad S, Keng S, Tare D, Chatterjee A, Goswami S, Hazra S, Bhardwaj SD, Vijay N, Mukhopadhyay L, Dutta S, Gupta N. Identification & genetic & virological characterisation of a human case of avian influenza A (H9N2) virus from Eastern India. Indian J Med Res 2025; 161:257-266. [PMID: 40347502 PMCID: PMC12066128 DOI: 10.25259/ijmr_1376_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/13/2025] [Indexed: 05/14/2025] Open
Abstract
Background & objectives A three-year-old male child from West Bengal, India, with severe acute respiratory symptoms, was confirmed in the laboratory with LPAI H9N2 virus infection under the Indian Council of Medical Research (ICMR) - Pan India Acute Respiratory Infections (ARI) / Severe Acute Respiratory Infections (SARI) surveillance through the Virus Research and Diagnostic Laboratories network. Methods Common respiratory viruses were detected by real-time PCR, followed by subtyping of Influenza A for seasonal and avian viruses. The identified H9N2 virus was isolated and further characterised, including whole genome sequencing. Antibody response was performed in serum samples of the case and family members. Results Complete genome sequencing revealed a G1 lineage (Middle East B sub-lineage). Bayesian evolutionary analyses of the HA gene of Indian H9N2 poultry strains showed three clusters of multiple introductions at the estimated node age of 1999 based on the Human strain A/India/NIV/1519/2024(H9N2) and the other poultry viruses from India evolved with 4.49 × 10-3 substitutions per site per year. The isolated H9N2 virus showed a high EID50 titre of 108.25/200 µl with avian-type receptor specificity. The antibodies against the H9N2 virus were only detected in the study case and not in close contacts confirming limited human-to-human transmission. The virus was found to be sensitive to neuraminidase inhibitors oseltamivir and zanamivir. Interpretation & conclusions Systematic avian influenza surveillance in both birds and humans is required for the early detection of newly evolved viruses.
Collapse
Affiliation(s)
- Agniva Majumdar
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, West Bengal, India
| | - Varsha Potdar
- Influenza Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Veena Vipat
- Influenza Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Shailesh Pawar
- Polio Virus Group, ICMR National Institute of Virology, Mumbai Unit, Mumbai, Maharashtra, India
| | - Sheetal Jadhav
- Influenza Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Satish Gaikwad
- Influenza Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Sachin Keng
- Polio Virus Group, ICMR National Institute of Virology, Mumbai Unit, Mumbai, Maharashtra, India
| | - Deeksha Tare
- Polio Virus Group, ICMR National Institute of Virology, Mumbai Unit, Mumbai, Maharashtra, India
| | - Ananya Chatterjee
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, West Bengal, India
| | - Susmita Goswami
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, West Bengal, India
| | - Sutapa Hazra
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, West Bengal, India
| | - Sumit Dutt Bhardwaj
- Influenza Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Neetu Vijay
- Division of Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Labanya Mukhopadhyay
- Division of Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, West Bengal, India
| | - Nivedita Gupta
- Division of Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
4
|
Li L, Xu J, Yuan J, Zhang R, Xu T. TRPM2 deficiency ameliorated H9N2 influenza virus-induced acute lung injury in mice. Microb Pathog 2025; 199:107183. [PMID: 39615704 DOI: 10.1016/j.micpath.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Oxidative stress is involved in lung damage induced by the influenza virus. The transient receptor potential melastatin-2 (TRPM2) cation channel, a Ca2+ permeable non-selective cation channel, is implicated in the mediation of multiple tissue injuries induced by oxidative stress. The role of TRPM2 in several diseases has been widely studied, but there have been few studies on the involvement of TRPM2 in lung injury induced by the H9N2 influenza virus. We investigated the effects of TRPM2 on pathological alterations, oxidative stress, apoptosis, and inflammation in mice infected with H9N2 virus. TRPM2 knockout (TRPM2-/-) mice and wild-type (WT) mice were infected separately with H9N2 influenza virus. Pulmonary oedema, lung permeability, Ca2+ concentration, redox imbalance, apoptosis, and levels of inflammatory factors (IL-1β, IL-6, TNF-α) were increased in WT mice infected with H9N2 virus. However, these effects were diminished by TRPM2 knockout. Our results emphasised the significance of TRPM2 knockdown in mitigating pathological lung alterations, maintaining Ca2+ homeostasis, reducing oxidative damage, preventing apoptosis, and suppressing the production of inflammatory cytokines in H9N2 virus-infected mice. Therefore, inhibition of TRPM2 activation is a potentially important therapeutic strategy for treating lung injury.
Collapse
Affiliation(s)
- Longfei Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Jiupeng Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Jiaxin Yuan
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China.
| |
Collapse
|
5
|
He M, Liu L, Hu J, Wang Z, Guo Z, Wang X, Sun Y, Shi S, Ren W, Wang Y, Nie X, Shang C, Liu Z, Jiang Q, Ren Z, Jin N, Li X, Zhao Z. The H5N6 Virus Containing Internal Genes From H9N2 Exhibits Enhanced Pathogenicity and Transmissibility. Transbound Emerg Dis 2025; 2025:6252849. [PMID: 40302749 PMCID: PMC12017012 DOI: 10.1155/tbed/6252849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 05/02/2025]
Abstract
The H5N6 avian influenza virus (AIV) is constantly undergoing recombination and evolution with other subtypes of AIV, resulting in various types of recombinant H5N6 viruses. However, the risk to human public health of different recombinant types of H5N6 viruses remains unclear. Recently, two types of different recombinant H5N6 viruses were isolated from chickens. One of the viruses possessed six internal genes originating from H9N2, named A/Chicken/Hubei/112/2020 (H5N6) (abbreviated 112); the other virus possessed PB2, PB1, PA, and NP originating from H5N1, while the M and NS genes were derived from H9N2, named A/Chicken/Hubei/125/2020 (H5N6) (abbreviated 125). Here, we investigated the receptor binding properties, pathogenicity, and transmissibility of the two H5N6 AIVs. The results showed that 112 and 125 could bind α-2,3-linked sialic acid receptor (avian-like receptor) and α-2,6-linked sialic acid receptor (human-like receptor). However, 125 and 112 showed different pathogenicity in mice. Mice infected with 125 lost only a slight body weight and all survived, while mice infected with 112 lost weight rapidly and all died within a week of infection. Furthermore, in the transmission experiment, 125 could only transmit through direct contact, while 112 could transmit not only by direct contact but also by aerosol. The above results indicated that 112 exhibited enhanced pathogenicity and transmissibility compared to 125, suggesting that the H5N6 virus, whose internal genes were derived from H9N2, could pose a greater threat to human health. Therefore, continuous monitoring of different recombinant H5N6 viruses in poultry should be carried out to prevent their transmission to humans.
Collapse
Affiliation(s)
- Manlin He
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Lina Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jinglei Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Zhenjun Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Xiaohan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shaowen Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wenhao Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yuxing Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoxuan Nie
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Qiwei Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Xie Z, Chen Y, Xie J, Du S, Chen R, Zheng Y, You B, Feng M, Liao M, Dai M. Construction with recombinant epitope-expressing baculovirus enhances protective effects of inactivated H9N2 vaccine against heterologous virus. Vet Microbiol 2025; 300:110337. [PMID: 39671758 DOI: 10.1016/j.vetmic.2024.110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Although the use of inactivated vaccines has kept avian influenza (AI) outbreaks largely under control, they fail to prevent virus shedding. To enhance the efficacy of inactivated H9N2 AIV vaccines (InV), we constructed a multi-epitope recombinant baculovirus (BV-BNT) containing two B cell epitopes and nine T cell epitopes of H9N2 AIV for combined immunization with InV. The results showed that HI titer, IgG and IgM levels, and the percentage of B cells, CD4+ T cells, CD8+ T cells, and CD4+CD8+ T cells were significantly higher in the InV+BV-BNT immunization group than the InV immunization group. Besides, the expression levels of IL-1β, IFN-γ, IFN-α, IL-4, IL-13, and CXCLi1 were significantly higher in the InV+BV-BNT group than the InV group. Moreover, four conservative peptides (NP182-190, NP455-463, NS198-106, and NP380-393) significantly stimulated splenocytes to express IFN-γ in the InV+BV-BNT group instead of InV group. After heterologous virus challenging, the percentages of CD4+ T and CD8+ T cells were significantly upregulated in the InV+BV-BNT group compared to Inv group at 3 DPI. Viral loads in oropharyngeal of the InV+BV-BNT group was significantly lower than that in the InV group at 3 days post-infection (DPI). Furthermore, compared to the InV group, the virus positivity rate of oropharyngeal and cloacal swabs in the InV+BV-BNT group was lower at 5 DPI, with none positive at 7 DPI. Hence, this study indicated that the combined immunization of InV and BV-BNT could induce stronger humoral and cellular immune responses, shorten the detoxification period and reduce viral load compared to Inv alone, which suggests BV-BNT could act as a supplementary vaccine to potentially address the protection deficiency of the H9N2 inactivated vaccine.
Collapse
Affiliation(s)
- Zimin Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yingyi Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Shanyao Du
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Rongmao Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuqin Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Bowen You
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Min Feng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou 510642, PR China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou 510642, PR China.
| |
Collapse
|
7
|
Zhou Y, Li Y, Chen H, Shu S, Li Z, Sun H, Sun Y, Liu J, Lu L, Pu J. Origin, spread, and interspecies transmission of a dominant genotype of BJ/94 lineage H9N2 avian influenza viruses with increased threat. Virus Evol 2024; 10:veae106. [PMID: 39735714 PMCID: PMC11673197 DOI: 10.1093/ve/veae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/31/2024] Open
Abstract
The H9N2 subtype of avian influenza viruses (AIVs) is widely prevalent in poultry and wild birds globally, with occasional transmission to humans. In comparison to other H9N2 lineages, the BJ/94 lineage has raised more public health concerns; however, its evolutionary dynamics and transmission patterns remain poorly understood. In this study, we demonstrate that over three decades (1994-2023), BJ/94 lineage has undergone substantial expansion in its geographical distribution, interspecies transmission, and viral reassortment with other AIV subtypes, increasing associated public health risks. These changes were primarily driven by the emergence of a dominant genotype G57. In the first decade, G57 emerged in East China and rapidly adapted to chickens and spread across China. Since 2013, the G57 genotype has expanded beyond China into eight other countries and reassorted with various AIV subtypes to form new zoonotic reassortants. Chickens have played a key role in the generation and circulation of the G57 viruses, with ducks and other poultry species likely assuming an increasingly importantly role. Over the past decade, G57 has been more frequently detected in wild birds, mammals, and humans. Additionally, Vietnam has emerged as a new hotspot for the international spread of G57. Our results suggest that the BJ/94 lineage H9N2 virus may continue to overcome geographical and species barriers, with potentially more severe consequences.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yudong Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongzhuang Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, No. 411, Mancheng South Street, Jinfeng District, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan 750011, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Lu Lu
- Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh EH2 59RG, United Kingdom
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
8
|
Chen Y, Yu Q, Fan W, Zeng X, Zhang Z, Tian G, Liu C, Bao H, Wu L, Zhang Y, Liu Y, Wang S, Cui H, Duan Y, Chen H, Gao Y. Recombinant Marek's disease virus type 1 provides full protection against H9N2 influenza A virus in chickens. Vet Microbiol 2024; 298:110242. [PMID: 39243669 DOI: 10.1016/j.vetmic.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The H9N2 subtype of the avian influenza virus (AIV) poses a significant threat to the poultry industry and human health. Recombinant vaccines are the preferred method of controlling H9N2 AIV, and Marek's disease virus (MDV) is the ideal vector for recombinant vaccines. During this study, we constructed two recombinant MDV type 1 strains that carry the hemagglutinin (HA) gene of AIV to provide dual protection against both AIV and MDV. To assess the effects of different MDV insertion sites on the protective efficacy of H9N2 AIV, the HA gene of H9N2 AIV was inserted in UL41 and US2 of the MDV type 1 vector backbone to obtain recombinant viruses rMDV-UL41/HA and rMDV-US2/HA, respectively. An indirect immunofluorescence assay showed sustained expression of HA protein in both recombinant viruses. Additionally, the insertion of the HA gene in UL41 and US2 did not affect MDV replication in cell cultures. After immunization of specific pathogen-free chickens, although both the rMDV-UL41/HA and rMDV-US2/HA groups exhibited similar levels of hemagglutination inhibition antibody titers, only the rMDV-UL41/HA group provided complete protection against the H9N2 AIV challenge, and also offered complete protection against challenge with MDV. These results demonstrated that rMDV-UL41/HA could be used as a promising bivalent vaccine strain against both H9N2 avian influenza and Marek's disease in chickens.
Collapse
Affiliation(s)
- Yuntong Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qingqing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Wenrui Fan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zibo Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Changjun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongmei Bao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Longbo Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongzhen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Suyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulu Duan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Yulong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
9
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Alexakis L, Buczkowski H, Ducatez M, Fusaro A, Gonzales JL, Kuiken T, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Kohnle L. Avian influenza overview June-September 2024. EFSA J 2024; 22:e9057. [PMID: 39434784 PMCID: PMC11492803 DOI: 10.2903/j.efsa.2024.9057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Between 15 June and 20 September 2024, 75 highly pathogenic avian influenza (HPAI) A(H5) and A(H7) virus detections were reported in domestic (16) and wild (59) birds across 11 countries in Europe. Although the overall number of detections in Europe continued to be low compared to previous epidemiological years, an increase in cases along the Atlantic, North Sea and Baltic coasts was notable, particularly an increase in the detection of HPAI viruses in colony-breeding seabirds. Besides EA-2022-BB and other circulating genotypes, these detections also included EA-2023-DT, a new genotype that may transmit more efficiently among gulls. In Germany, HPAI A(H7N5) virus emerged in a poultry establishment near the border with the Netherlands. No new HPAI virus detections in mammals were reported in Europe during this period, but the number of reportedly affected dairy cattle establishments in the United States of America (USA) rose to >230 in 14 states, and HPAI virus was identified in three new mammal species. Between 21 June and 20 September 2024, 19 new human cases with avian influenza virus infection were reported from the USA (six A(H5N1) cases and five A(H5) cases), Cambodia (five A(H5N1) cases, including one fatal), China (one fatal A(H5N6) case and one A(H9N2) case), and Ghana (one A(H9N2) case). Most of the human cases (90%, n = 17/19) had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no evidence of human-to-human transmission has been documented in the reporting period. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the European Union/European Economic Area (EU/EEA). The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
10
|
Huang J, Ma K, Zhang J, Zhou J, Yi J, Qi W, Liao M. Pathogenicity and transmission of novel highly pathogenic H7N2 variants originating from H7N9 avian influenza viruses in chickens. Virology 2024; 597:110121. [PMID: 38917688 DOI: 10.1016/j.virol.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.
Collapse
Affiliation(s)
- Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Kaixiong Ma
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiahao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiahui Yi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| | - Ming Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
11
|
Wu J, Wan Z, Qian K, Shao H, Ye J, Qin A. The amino acid variation at hemagglutinin sites 145, 153, 164 and 200 modulate antigenicity andreplication of H9N2 avian influenza virus. Vet Microbiol 2024; 296:110188. [PMID: 39018942 DOI: 10.1016/j.vetmic.2024.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
H9N2 avian influenza virus (AIV), one of the predominant subtypes circulating in the poultry industry, inflicts substantial economic damage. Mutations in the hemagglutinin (HA) and neuraminidase (NA) proteins of H9N2 frequently alter viral antigenicity and replication. In this paper, we analyzed the HA genetic sequences and antigenic properties of 26 H9N2 isolates obtained from chickens in China between 2012 and 2019. The results showed that these H9N2 viruses all belonged to h9.4.2.5, and were divided into two clades. We assessed the impact of amino acid substitutions at HA sites 145, 149, 153, 164, 167, 168, and 200 on antigenicity, and found that a mutation at site 164 significantly modified antigenic characteristics. Amino acid variations at sites 145, 153, 164 and 200 affected virus's hemagglutination and the growth kinetics in mammalian cells. These results underscore the critical need for ongoing surveillance of the H9N2 virus and provide valuable insights for vaccine development.
Collapse
Affiliation(s)
- Jinsen Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Zhimin Wan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
12
|
Ding S, Zhou J, Xiong J, Du X, Yang W, Huang J, Liu Y, Huang L, Liao M, Zhang J, Qi W. Continued evolution of H10N3 influenza virus with adaptive mutations poses an increased threat to mammals. Virol Sin 2024; 39:546-555. [PMID: 38871182 PMCID: PMC11401466 DOI: 10.1016/j.virs.2024.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
The H10 subtype avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 viruses (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China. Genome analysis revealed that these viruses were genetically associated with human-origin H10N3 virus, with internal genes originating from local H9N2 viruses. Compared to the H10N8 virus (A/chicken/Jiangxi/102/2013), the H10N3 viruses exhibited enhanced thermostability, increased viral release from erythrocytes, and accumulation of hemagglutinin (HA) protein. Additionally, we evaluated the pathogenicity of both H10N3 and H10N8 viruses in mice. We found that viral titers could be detected in the lungs and nasal turbinates of mice infected with the two H10N3 viruses, whereas H10N8 virus titers were detectable in the lungs and brains of mice. Notably, the proportion of double HA Q222R and G228S mutations in H10N3 viruses has increased since 2019. However, the functional roles of the Q222R and G228S double mutations in the HA gene of H10N3 viruses remain unknown and warrant further investigation. Our study highlights the potential public health risk posed by the H10N3 virus. A spillover event of AIV to humans could be a foretaste of a looming pandemic. Therefore, it is imperative to continuously monitor the evolution of the H10N3 influenza virus to ensure targeted prevention and control measures against influenza outbreaks.
Collapse
Affiliation(s)
- Shiping Ding
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Junlong Xiong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Xiaowen Du
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Wenzhuo Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Yi Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Jiahao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Li X, Xie Z, Wei Y, Li M, Zhang M, Luo S, Xie L. Recombinant Hemagglutinin Protein from H9N2 Avian Influenza Virus Exerts Good Immune Effects in Mice. Microorganisms 2024; 12:1552. [PMID: 39203394 PMCID: PMC11356462 DOI: 10.3390/microorganisms12081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
The H9N2 subtype of avian influenza virus (AIV) causes enormous economic losses and poses a significant threat to public health; the development of vaccines against avian influenza is ongoing. To study the immunogenicity of hemagglutinin (HA) protein, we constructed a recombinant pET-32a-HA plasmid, induced HA protein expression with isopropyl β-D-1-thiogalactopyranoside (IPTG), verified it by SDS-PAGE and Western blotting, and determined the sensitivity of the recombinant protein to acid and heat. Subsequently, mice were immunized with the purified HA protein, and the immunization effect was evaluated according to the hemagglutination inhibition (HI) titer, serum IgG antibody titer, and cytokine secretion level of the mice. The results showed that the molecular weight of the HA protein was approximately 84 kDa, and the protein existed in both soluble and insoluble forms; in addition, the HA protein exhibited good acid and thermal stability, the HI antibody titer reached 6 log2-8 log2, and the IgG-binding antibody titer was 1:1,000,000. Moreover, the levels of IL-2, IL-4, and IL-5 in the immunized mouse spleen cells were significantly increased compared with those in the control group. However, the levels of IL-1β, IL-6, IL-13, IFN-γ, IL-18, TNF-α, and GM-CSF were decreased in the immunized group. The recombinant HA protein utilized in this study exhibited good stability and exerted beneficial immune effects, providing a theoretical basis for further research on influenza vaccines.
Collapse
Affiliation(s)
- Xiaofeng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhixun Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Liji Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
14
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Alexakis L, Fusaro A, Kuiken T, Mirinavičiūtė G, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Goudjihounde SM, Grant M, Tampach S, Kohnle L. Avian influenza overview March-June 2024. EFSA J 2024; 22:e8930. [PMID: 39036773 PMCID: PMC11258884 DOI: 10.2903/j.efsa.2024.8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
15
|
Yang Q, Ji J, Yang J, Zhang Y, Yin H, Dai H, Wang W, Li S. Diversity of genotypes and pathogenicity of H9N2 avian influenza virus derived from wild bird and domestic poultry. Front Microbiol 2024; 15:1402235. [PMID: 38974026 PMCID: PMC11225357 DOI: 10.3389/fmicb.2024.1402235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction The H9N2 subtype is a predominant avian influenza virus (AIV) circulating in Chinese poultry, forming various genotypes (A-W) based on gene segment origins. This study aims to investigate the genotypic distribution and pathogenic characteristics of H9N2 isolates from wild birds and domestic poultry in Yunnan Province, China. Methods Eleven H9N2 strains were isolated from fecal samples of overwintering wild birds and proximate domestic poultry in Yunnan, including four from common cranes (Grus grus), two from bar-headed geese (Anser indicus), and five from domestic poultry (Gallus gallus). Phylogenetic analysis was conducted to determine the genotypes, and representative strains were inoculated into Yunnan mallard ducks to assess pathogenicity. Results Phylogenetic analysis revealed that five isolates from domestic birds and one from a bar-headed goose belong to genotype S, while the remaining five isolates from wild birds belong to genotype A. These bird-derived strains possess deletions in the stalk domain of NA protein and the N166D mutation of HA protein, typical of poultry strains. Genotype S H9N2 demonstrated oropharyngeal shedding, while genotype A H9N2 exhibited cloacal shedding and high viral loads in the duodenum. Both strains caused significant pathological injuries, with genotype S inducing more severe damage to the thymus and spleen, while genotype A caused duodenal muscle layer rupture. Discussion These findings suggest that at least two genotypes of H9N2 are currently circulating in Yunnan, and Yunnan mallard ducks potentially act as intermediaries in interspecies transmission. These insights highlight the importance of analyzing the current epidemiological transmission characteristics of H9N2 among wild and domestic birds in China.
Collapse
Affiliation(s)
- Qinhong Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Ji
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Yongxian Zhang
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongbin Yin
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongyang Dai
- The Management Bureau of Huize Black Necked Crane National Nature Reserve, Qujing, China
| | - Wei Wang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
16
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Baldinelli F, Delacourt R, Georganas A, Kohnle L. Avian influenza overview December 2023-March 2024. EFSA J 2024; 22:e8754. [PMID: 38550271 PMCID: PMC10977096 DOI: 10.2903/j.efsa.2024.8754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Between 2 December 2023 and 15 March 2024, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (227) and wild (414) birds across 26 countries in Europe. Compared to previous years, although still widespread, the overall number of HPAI virus detections in birds was significantly lower, among other reasons, possibly due to some level of flock immunity in previously affected wild bird species, resulting in reduced contamination of the environment, and a different composition of circulating A(H5N1) genotypes. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds. Outside Europe, the majority of outbreaks in poultry were still clustered in North America, while the spread of A(H5) to more naïve wild bird populations on mainland Antarctica is of particular concern. For mammals, A(H5N5) was reported for the first time in Europe, while goat kids in the United States of America represented the first natural A(H5N1) infection in ruminants. Since the last report and as of 12 March 2024, five human avian influenza A(H5N1) infections, including one death, three of which were clade 2.3.2.1c viruses, have been reported by Cambodia. China has reported two human infections, including one fatal case, with avian influenza A(H5N6), four human infections with avian influenza A(H9N2) and one fatal case with co-infection of seasonal influenza A(H3N2) and avian influenza A(H10N5). The latter case was the first documented human infection with avian influenza A(H10N5). Human infections with avian influenza remain rare and no sustained human-to-human infection has been observed. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for those occupationally or otherwise exposed to infected animals.
Collapse
|