1
|
Süssmuth RD, Kulike‐Koczula M, Gao P, Kosol S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew Chem Int Ed Engl 2025; 64:e202414325. [PMID: 39611429 PMCID: PMC11878372 DOI: 10.1002/anie.202414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
In the fight against bacterial infections, particularly those caused by multi-resistant pathogens known as "superbugs", the need for new antibacterials is undoubted in scientific communities and is by now also widely perceived by the general population. However, the antibacterial research landscape has changed considerably over the past years. With few exceptions, the majority of big pharma companies has left the field and thus, the decline in R&D on antibacterials severely impacts the drug pipeline. In recent years, antibacterial research has increasingly relied on smaller companies or academic research institutions, which mostly have only limited financial resources, to carry a drug discovery and development process from the beginning and through to the beginning of clinical phases. This review formulates the requirements for an antibacterial in regard of targeted pathogens, resistance mechanisms and drug discovery. Strategies are shown for the discovery of new antibacterial structures originating from natural sources, by chemical synthesis and more recently from artificial intelligence approaches. This is complemented by principles for the computer-aided design of antibacterials and the refinement of a lead structure. The second part of the article comprises a compilation of antibacterial molecules classified according to bacterial target structures, e.g. cell wall synthesis, protein synthesis, as well as more recently emerging target classes, e.g. fatty acid synthesis, proteases and membrane proteins. Aspects of the origin, the antibacterial spectrum, resistance and the current development status of the presented drug molecules are highlighted.
Collapse
Affiliation(s)
- Roderich D. Süssmuth
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Marcel Kulike‐Koczula
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Peng Gao
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Simone Kosol
- Medical School BerlinDepartment Human MedicineRüdesheimer Strasse 5014195BerlinGermany
| |
Collapse
|
2
|
Joseph T, Smith L. Approach advancements for engineering novel peptide analogs of existing lantibiotics: where are we today? Expert Opin Drug Discov 2025; 20:17-30. [PMID: 39667922 DOI: 10.1080/17460441.2024.2441351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION The emergence of antibiotic resistance among the clinically important bacterial pathogens has increased healthcare costs and reduced patient safety and quality of life. Lantibiotics is a large class of ribosomally synthesized, and posttranslationally modified peptides have been the primary focus of numerous research aimed at discovering compounds for treating bacterial infections. AREAS COVERED The article explains the most up to date hierarchy of methods followed in the field for high throughput screening of lantibiotics/analogs with improved therapeutic properties. Herein, we explain how the structure and the biosynthesis of lantibiotics can be manipulated for the expansion of the horizon of lantibiotic potency. Furthermore, we discuss the lantibiotic analogs that have demonstrated the efficacy against bacterial pathogens of interest in animal models. EXPERT OPINION In this current age of rapidly advancing antimicrobial resistance, there is a dire need for the development of therapeutic agents that possess distinct mechanisms of action to existing modes of treatment. Recent advances in the understanding of many of the lantibiotic biosynthesis systems and the discovery of new analogs with superior properties to the native compound may have paved the way for the development of a much-needed novel potent class of antibiotic.
Collapse
Affiliation(s)
- Thushinari Joseph
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX, United States
- Antimicrobial Division, Sano Chemicals Inc, Bryan, TX, United States
| |
Collapse
|
3
|
Wan H, Zhong X, Yang S, Deng J, Song X, Liu Y, Li Y, Yin Z, Zhao X. Enhancing the Therapeutic Potential of Peptide Antibiotics Using Bacteriophage Mimicry Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411753. [PMID: 39587836 PMCID: PMC11744576 DOI: 10.1002/advs.202411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Indexed: 11/27/2024]
Abstract
The rise of antibiotic resistance, coupled with a dwindling antibiotic pipeline, presents a significant threat to public health. Consequently, there is an urgent need for novel therapeutics targeting antibiotic-resistant pathogens. Nisin, a promising peptide antibiotic, exhibits potent bactericidal activity through a mechanism distinct from that of clinically used antibiotics. However, its cationic nature leads to hemolysis and cytotoxicity, which has limited its clinical application. Here, nanodelivery systems have been developed by mimicking the mechanisms bacteriophages use to deliver their genomes to host bacteria. These systems utilize bacteriophage receptor-binding proteins conjugated to loading modules, enabling efficient targeting of bacterial pathogens. Peptide antibiotics are loaded via dynamic covalent bonds, allowing for infection microenvironment-responsive payload release. These nanodelivery systems demonstrate remarkable specificity against target pathogens and effectively localize to bacteria-infected lungs in vivo. Notably, they significantly reduce the acute toxicity of nisin, rendering it suitable for intravenous administration. Additionally, these bacteriophage-mimicking nanomedicines exhibit excellent therapeutic efficacy in a mouse model of MRSA-induced pneumonia. The facile synthesis, potent antimicrobial performance, and favorable biocompatibility of these nanomedicines highlight their potential as alternative therapeutics for combating antibiotic-resistant pathogens. This study underscores the effectiveness of bacteriophage mimicry as a strategy for transforming peptide antibiotics into viable therapeutics.
Collapse
Affiliation(s)
- Hongping Wan
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xinyi Zhong
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Shinong Yang
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Jiarong Deng
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xu Song
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Yuanfeng Li
- Translational Medicine LaboratoryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Zhongqiong Yin
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Xinghong Zhao
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
4
|
Roblero-Mejía DO, García-Ausencio C, Rodríguez-Sanoja R, Guzmán-Chávez F, Sánchez S. Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria Embleya sp. NF3. Antibiotics (Basel) 2024; 13:1179. [PMID: 39766569 PMCID: PMC11672506 DOI: 10.3390/antibiotics13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of Streptomyces, are notable examples of peptide producers, as specific biosynthetic clusters encode them. To uncover the genetic potential of these organisms, we analyzed the genome of the endophytic actinobacterium Embleya sp. NF3 using genome mining and bioinformatics tools. Our analysis led to the identification of a putative class I lanthipeptide. We cloned the core biosynthetic genes of this putative lanthipeptide, named embleporicin, and expressed them in vitro using a cell-free protein system (CFPS). The resulting product demonstrated antimicrobial activity against Micrococcus luteus ATCC 9341. This represents the first RiPP reported in the genus Embleya and the first actinobacterial lanthipeptide produced through cell-free technology.
Collapse
Affiliation(s)
- Dora Onely Roblero-Mejía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Fernando Guzmán-Chávez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| |
Collapse
|
5
|
Xie H, Xie QY, Ma QY, Yang L, Dai HF, Zhao YX, Hao YE. Microbispora maris sp. nov., a novel actinobacterium isolated from the gill of the leopard coral grouper ( Plectropomus leopardus). Int J Syst Evol Microbiol 2024; 74. [PMID: 39514405 DOI: 10.1099/ijsem.0.006568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
A novel actinomycete, designated strain ZYX-F-249T, was isolated from the gill of a leopard coral grouper in Yongxing Island, Hainan Province, China. Based on 16S rRNA gene sequence analysis, strain ZYX-F-249T belonged to the genus Microbispora, with high similarities to Microbispora rosea ATCC 12950T (98.7 %), Microbispora hainanensis 211020T (98.5 %), Microbispora clausenae CLES2T (98.4 %), Microbispora bryophytorum NEAU-TX2-2T (98.1 %) and Microbispora oryzaeRL4-1ST (98.0 %). Phylogenetic analysis of the 16S rRNA gene sequence of strain ZYX-F-249T showed that the strain formed a stable subclade with Microbispora rosea ATCC 12950T in the genus Microbispora. The cell wall of the novel isolate contained meso-diaminopimelic acid, while whole-cell sugars were madurose, glucose and ribose. The predominant menaquinones were MK-9(H6), MK-9(H4), MK-9(H2) and MK-9(H0). The characteristic phospholipids (PLs) were phosphatidylethanolamine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol mannoside, glycophospholipids and an unknown PL. The major cellular fatty acids (>10%) were iso-C16 : 0 and iso-C18 : 0. Genome sequencing showed a DNA G+C content of 71.6%. The low average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values demonstrated that strain ZYX-F-249T could be readily distinguished from closely related species. Based on data from these phylogenetic, chemotaxonomic and physiological characteristics, strain ZYX-F-249T represents a novel species of the genus Microbispora, for which the name Microbispora maris sp. nov. is proposed. The type strain is ZYX-F-249T (=CCTCC AA 2023030T =JCM 36778T).
Collapse
Affiliation(s)
- Huan Xie
- Department of Public Health Laboratory Sciences, School of Public Health, Heng-yang Medical School, University of South China, Hengyang, Hunan 421001, PR China
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bio-science and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Qing-Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bio-science and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Qing-Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bio-science and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bio-science and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Hao-Fu Dai
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bio-science and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - You-Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bio-science and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Yu-E Hao
- Department of Public Health Laboratory Sciences, School of Public Health, Heng-yang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
6
|
Murphy MM, Culligan EP, Murphy CP. Investigating the antimicrobial and antibiofilm properties of marine halophilic Bacillus species against ESKAPE pathogens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70027. [PMID: 39446085 PMCID: PMC11500616 DOI: 10.1111/1758-2229.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Antimicrobial resistance (AMR), known as the "silent pandemic," is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as Bacillus subtilis MTUA2 and Bacillus velezensis MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, Staphylococcus aureus, Acinetobacter baumannii and Escherichia coli. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both Bacillus species exhibited unique antimicrobial effects, reducing MRSA and S. aureus planktonic cell growth by 50% and sessile cell growth for S. aureus and E. coli by 50% and 90%, respectively. No effect was observed against A. baumannii. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and S. aureus biofilms. Additionally, 90% and 50% inhibition was observed in E. coli and A. baumannii biofilms, respectively, with a 50% reduction in E. coli biofilm. These findings suggest that the mode of action employed by B. subtilis MTUA2 and B. velezensis MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.
Collapse
Affiliation(s)
- Monica M. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| |
Collapse
|
7
|
Montua N, Sewald N. Perfect Partners: Biocatalytic Halogenation and Metal Catalysis for Protein Bioconjugation. Chembiochem 2024:e202400496. [PMID: 39225774 DOI: 10.1002/cbic.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Flavin-dependent halogenases (FDHs) are the most extensively researched halogenases and show great potential for biotransformation applications. These enzymes use chloride, bromide, or iodide ions as halogen donors to catalyze the oxygen-dependent halogenation of electron-rich aryl moieties, requiring stochiometric amounts of FADH2 in the process. This makes FDH-catalyzed aryl halogenation a highly selective and environmentally friendly tool for the synthesis of aryl halides. The latter in turn serve as valuable intermediates for transition metal catalyzed cross coupling reactions for C-C bond formation. Previous research made extensive use of this approach to halogenate small molecules as building blocks for late-stage functionalization by transition-metal catalyzed cross-coupling reactions. Based on these results, several groups have managed to expand this research to protein targets over the past two years. Their work indicates an emerging methodology for bioconjugation using late-stage biocatalytic halogenation in conjunction with biorthogonal Suzuki-Miyaura cross-coupling. This strategy could present an attractive alternative to existing approaches due to the stability of the C-C bond bridging the generated biaryl moiety and the ease of late-stage enzymatic modification while maintaining excellent selectivity under mild conditions.
Collapse
Affiliation(s)
- Nicolai Montua
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
8
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
9
|
Cheng Z, He BB, Lei K, Gao Y, Shi Y, Zhong Z, Liu H, Liu R, Zhang H, Wu S, Zhang W, Tang X, Li YX. Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates. Nat Commun 2024; 15:4901. [PMID: 38851779 PMCID: PMC11162475 DOI: 10.1038/s41467-024-49215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 μg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuqi Shi
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China.
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
10
|
Wang M, Li WW, Cao Z, Sun J, Xiong J, Tao SQ, Lv T, Gao K, Luo S, Dong SH. Genome mining of sulfonated lanthipeptides reveals unique cyclic peptide sulfotransferases. Acta Pharm Sin B 2024; 14:2773-2785. [PMID: 38828142 PMCID: PMC11143521 DOI: 10.1016/j.apsb.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 06/05/2024] Open
Abstract
Although sulfonation plays crucial roles in various biological processes and is frequently utilized in medicinal chemistry to improve water solubility and chemical diversity of drug leads, it is rare and underexplored in ribosomally synthesized and post-translationally modified peptides (RiPPs). Biosynthesis of RiPPs typically entails modification of hydrophilic residues, which substantially increases their chemical stability and bioactivity, albeit at the expense of reducing water solubility. To explore sulfonated RiPPs that may have improved solubility, we conducted co-occurrence analysis of RiPP class-defining enzymes and sulfotransferase (ST), and discovered two distinctive biosynthetic gene clusters (BGCs) encoding both lanthipeptide synthetase (LanM) and ST. Upon expressing these BGCs, we characterized the structures of novel sulfonated lanthipeptides and determined the catalytic details of LanM and ST. We demonstrate that SslST-catalyzed sulfonation is leader-independent but relies on the presence of A ring formed by LanM. Both LanM and ST are promiscuous towards residues in the A ring, but ST displays strict regioselectivity toward Tyr5. The recognition of cyclic peptide by ST was further discussed. Bioactivity evaluation underscores the significance of the ST-catalyzed sulfonation. This study sets up the starting point to engineering the novel lanthipeptide STs as biocatalysts for hydrophobic lanthipeptides improvement.
Collapse
Affiliation(s)
| | | | - Zhe Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Si-Qin Tao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Hofkens N, Gestels Z, Abdellati S, Gabant P, Rodriguez-Villalobos H, Martin A, Kenyon C, Manoharan-Basil SS. Protective effect of microbisporicin (NAI-107) against vancomycin resistant Enterococcus faecium infection in a Galleria mellonella model. Sci Rep 2024; 14:4786. [PMID: 38413672 PMCID: PMC10899196 DOI: 10.1038/s41598-024-55262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Increasing antimicrobial resistance in Enterococcus faecium necessitates the search for novel treatment agents, such as bacteriocins. In this study, we conducted an in vivo assessment of five bacteriocins, namely Lacticin Z, Lacticin Q, Garvicin KS (ABC), Aureocin A53 and Microbisporicin (NAI-107), against vanB-resistant Enterococcus faecium using a Galleria mellonella model. Our in vitro experiments demonstrated the efficacy of all five bacteriocins against vanB-resistant E. faecium with only NAI-107 demonstrating in vivo efficacy. Notably, NAI-107 exhibited efficacy across a range of tested doses, with the highest efficacy observed at a concentration of 16 µg/mL. Mortality rates in the group treated with 16 µg/mL NAI-107 were lower than those observed in the linezolid-treated group. These findings strongly suggest that NAI-107 holds promise as a potential alternative therapeutic agent for treating infections caused by resistant E. faecium and warrants further investigation.
Collapse
Affiliation(s)
- Nele Hofkens
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000, Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000, Antwerp, Belgium
| | - Saïd Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | | | | | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | | |
Collapse
|
13
|
Hofkens N, Gestels Z, Abdellati S, De Baetselier I, Gabant P, Martin A, Kenyon C, Manoharan-Basil SS. Microbisporicin (NAI-107) protects Galleria mellonella from infection with Neisseria gonorrhoeae. Microbiol Spectr 2023; 11:e0282523. [PMID: 37823634 PMCID: PMC10715042 DOI: 10.1128/spectrum.02825-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE We screened 66 bacteriocins to see if they exhibited anti-gonococcal activity. We found 12 bacteriocins with anti-gonococcal effects, and 4 bacteriocins showed higher anti-gonococcal activity. Three bacteriocins, lacticin Z, lacticin Q, and Garvicin KS (ABC), showed in vitro anti-gonococcal activity but no in vivo inhibitory effects against the Neisseria gonorrhoeae (WHO-P) isolate. On the other hand, NAI-107 showed in vivo anti-gonococcal activity. The findings suggest that NAI-107 is a promising alternative to treat gonorrhea infections.
Collapse
Affiliation(s)
- Nele Hofkens
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Said Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | | | - Christopher Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
14
|
Ramírez-Rendón D, Guzmán-Chávez F, García-Ausencio C, Rodríguez-Sanoja R, Sánchez S. The untapped potential of actinobacterial lanthipeptides as therapeutic agents. Mol Biol Rep 2023; 50:10605-10616. [PMID: 37934370 PMCID: PMC10676316 DOI: 10.1007/s11033-023-08880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The increase in bacterial resistance generated by the indiscriminate use of antibiotics in medical practice set new challenges for discovering bioactive natural products as alternatives for therapeutics. Lanthipeptides are an attractive natural product group that has been only partially explored and shows engaging biological activities. These molecules are small peptides with potential application as therapeutic agents. Some members show antibiotic activity against problematic drug-resistant pathogens and against a wide variety of viruses. Nevertheless, their biological activities are not restricted to antimicrobials, as their contribution to the treatment of cystic fibrosis, cancer, pain symptoms, control of inflammation, and blood pressure has been demonstrated. The study of biosynthetic gene clusters through genome mining has contributed to accelerating the discovery, enlargement, and diversification of this group of natural products. In this review, we provide insight into the recent advances in the development and research of actinobacterial lanthipeptides that hold great potential as therapeutics.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendón
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Fernando Guzmán-Chávez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México.
| |
Collapse
|
15
|
Choeisoongnern T, Chaiyasut C, Sivamaruthi BS, Makhamrueang N, Peerajan S, Sirilun S, Sittiprapaporn P. Bacteriocin-Producing Enterococcus faecium OV3-6 as a Bio-Preservative Agent to Produce Fermented Houttuynia cordata Thunb. Beverages: A Preliminary Study. Foods 2023; 12:3520. [PMID: 37835173 PMCID: PMC10572304 DOI: 10.3390/foods12193520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Microbial contamination affects the quality of the fermented Houttuynia cordata Thunb. (H. cordata) beverage (FHB). The present study aimed to assess the bio-preservative property of Enterococcus faecium OV3-6 (E. faecium OV3-6) during the production of FHB. The antimicrobial activity against Escherichia coli, Salmonella, Bacillus cereus, and Staphylococcus aureus and the survival of E. faecium OV3-6 were studied. Then, FHB fermentation was performed with different preservatives (non-preservative, E. faecium OV3-6, cell-free supernatant of E. faecium OV3-6, and nisin) with and without representative pathogens. The maximum antimicrobial activity against S. aureus and B. cereus was observed after 18 h of cultivation in an MRS medium. E. faecium OV3-6 was used as a starter to produce the FHB, and the strain survived up to 48 h in the fermented beverage. E. faecium OV3-6 and its cell-free supernatant inhibited the growth of E. coli, Salmonella, B. cereus, and S. aureus in the stimulated FHB. The non-preservatives and nisin-containing FHB showed inhibition against Gram-positive pathogens. The FHB treated with E. faecium OV3-6 was rich in lactic acid bacteria, and the product was at an acceptable level of pH (less than 4.3). Certain limitations were identified in the study, such as lack of nutritional, metabolomics analysis, and safety and consumer acceptability of FHB. The results suggested that E. faecium OV3-6 could be used as a bio-preservative to produce fermented plant beverages (FPBs).
Collapse
Affiliation(s)
- Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Netnapa Makhamrueang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| |
Collapse
|
16
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
17
|
Saito K, Mukai K, Kaweewan I, Nakagawa H, Hosaka T, Kodani S. Heterologous Production and Structure Determination of a New Lanthipeptide Sinosporapeptin Using a Cryptic Gene Cluster in an Actinobacterium Sinosporangium siamense. J Microbiol 2023; 61:641-648. [PMID: 37306831 DOI: 10.1007/s12275-023-00059-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Lipolanthine is a subclass of lanthipeptide that has the modification of lipid moiety at the N-terminus. A cryptic biosynthetic gene cluster comprising four genes (sinA, sinKC, sinD, and sinE) involved in the biosynthesis of lipolanthine was identified in the genome of an actinobacterium Sinosporangium siamense. Heterologous coexpression of a precursor peptide coding gene sinA and lanthipeptide synthetase coding gene sinKC in the host Escherichia coli strain BL21(DE3) resulted in the synthesis of a new lanthipeptide, sinosporapeptin. It contained unusual amino acids, including one labionin and two dehydrobutyrine residues, as determined using NMR and MS analyses. Another coexpression experiment with two additional genes of decarboxylase (sinD) and N-acetyl transferase (sinE) resulted in the production of a lipolanthine-like modified sinosporapeptin.
Collapse
Affiliation(s)
- Keita Saito
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Keiichiro Mukai
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Ibaraki, 305-8642, Japan
| | - Takeshi Hosaka
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
18
|
Gago F. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Mar Drugs 2023; 21:100. [PMID: 36827141 PMCID: PMC9961086 DOI: 10.3390/md21020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805 Madrid, Alcalá de Henares, Spain
| |
Collapse
|
19
|
Knospe CV, Kamel M, Spitz O, Hoeppner A, Galle S, Reiners J, Kedrov A, Smits SHJ, Schmitt L. The structure of MadC from Clostridium maddingley reveals new insights into class I lanthipeptide cyclases. Front Microbiol 2023; 13:1057217. [PMID: 36741885 PMCID: PMC9889658 DOI: 10.3389/fmicb.2022.1057217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
The rapid emergence of microbial multi-resistance against antibiotics has led to intense search for alternatives. One of these alternatives are ribosomally synthesized and post-translationally modified peptides (RiPPs), especially lantibiotics. They are active in a low nanomolar range and their high stability is due to the presence of characteristic (methyl-) lanthionine rings, which makes them promising candidates as bacteriocides. However, innate resistance against lantibiotics exists in nature, emphasizing the need for artificial or tailor-made lantibiotics. Obviously, such an approach requires an in-depth mechanistic understanding of the modification enzymes, which catalyze the formation of (methyl-)lanthionine rings. Here, we determined the structure of a class I cyclase (MadC), involved in the modification of maddinglicin (MadA) via X-ray crystallography at a resolution of 1.7 Å, revealing new insights about the structural composition of the catalytical site. These structural features and substrate binding were analyzed by mutational analyses of the leader peptide as well as of the cyclase, shedding light into the mode of action of MadC.
Collapse
Affiliation(s)
- C. Vivien Knospe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Kamel
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Galle
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,*Correspondence: Lutz Schmitt, ✉
| |
Collapse
|
20
|
Poosarla VG, Shivshetty N, Nagarajan S, Rajagopalan G. Development of recombinant lantibiotics and their potent uses. LANTIBIOTICS AS ALTERNATIVE THERAPEUTICS 2023:65-83. [DOI: 10.1016/b978-0-323-99141-4.00021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Flynn J, Culebras M, Collins MN, Hudson SP. The impact of varying dextran oxidation levels on the inhibitory activity of a bacteriocin loaded injectable hydrogel. Drug Deliv Transl Res 2023; 13:308-319. [PMID: 35851672 PMCID: PMC9726672 DOI: 10.1007/s13346-022-01201-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
In the design of injectable antimicrobial dextran-alginate hydrogels, the impact of dextran oxidation and its subsequent changes in molecular weight and the incorporation of glycol chitosan on (i) gel mechanical strength and (ii) the inhibitory profile of an encapsulated bacteriocin, nisin A, are explored. As the degree of oxidation increases, the weight average molecular mass of the dextran decreases, resulting in a reduction in elastic modulus of the gels made. Upon encapsulation of the bacteriocin nisin into the gels, varying the dextran mass/oxidation level allowed the antimicrobial activity against S. aureus to be controlled. Gels made with a higher molecular weight (less oxidised) dextran show a higher initial degree of inhibition while those made with a lower molecular weight (more oxidised) dextran exhibit a more sustained inhibition. Incorporating glycol chitosan into gels composed of dextran with higher masses significantly increased their storage modulus and the gels' initial degree of inhibition.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemical Sciences, Bernal Institute, SSPC – The SFI Pharmaceutical Research Centre, University of Limerick, Limerick, Ireland
| | - Mario Culebras
- School of Engineering, Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Maurice N. Collins
- School of Engineering, Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, Ireland ,Health Research Institute and AMBER, University of Limerick, Limerick, Ireland
| | - Sarah P. Hudson
- Department of Chemical Sciences, Bernal Institute, SSPC – The SFI Pharmaceutical Research Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
22
|
Kaweewan I, Ijichi S, Nakagawa H, Kodani S. Heterologous production of new lanthipeptides hazakensins A and B using a cryptic gene cluster of the thermophilic bacterium Thermosporothrix hazakensis. World J Microbiol Biotechnol 2022; 39:30. [PMID: 36445498 DOI: 10.1007/s11274-022-03463-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
The thermophilic bacterium Thermosporothrix hazakensis belongs to a class of Ktedonobacteria in the phylum Chloroflexota. Lanthipeptides are a naturally occurring peptide group that contains antibacterial compounds such as nisin. To find a new lanthipeptide that is a possible candidate for an antibacterial reagent, we performed genome-mining of T. hazakensis and heterologous expression experiments. Based on genome-mining, the presence of a total of ten putative biosynthetic gene clusters for class I and class II lanthipeptides was indicated from the genome sequence of T. hazakensis. New lanthipeptides named hazakensins A and B were produced by heterologous expression of a class I lanthipeptide biosynthetic gene cluster in the expression host Escherichia coli. Co-expression of the biosynthetic gene cluster with tRNA-Glu and glutamyl-tRNA synthetase coding genes derived from T. hazakensis increased the production yield of both lanthipeptides by about 4-6 times. The chemical structures of hazakensins A and B including the bridging pattern of lanthionine/methyllanthionine rings were determined by NMR and MS experiments. Since production of hazakensins A and B was not observed in the native strain T. hazakensis, heterologous production was an effective method to obtain the lanthipeptides derived from the biosynthetic gene cluster. This is the first report of heterologous production of class I lanthipeptides originating from the filamentous green non-sulfur bacteria, to the best of our knowledge. The success of heterologous production of hazakensins may lead to the discovery and development of new lanthipeptides derived from the origins of bacteria in the phylum Chloroflexota.
Collapse
Affiliation(s)
- Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Shinta Ijichi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, 305-8642, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan. .,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, 422-8529, Japan. .,College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
23
|
Feng Z, Xu M, Yang J, Zhang R, Geng Z, Mao T, Sheng Y, Wang L, Zhang J, Zhang H. Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. FRONTIERS IN PLANT SCIENCE 2022; 13:1019512. [PMID: 36325560 PMCID: PMC9618607 DOI: 10.3389/fpls.2022.1019512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Rhizoctonia solani Kühn naturally infects and causes Sheath blight disease in cereal crops such as wheat, rice and maize, leading to severe reduction in grain yield and quality. In this work, a new bacterial strain Bacillus halotolerans LDFZ001 showing efficient antagonistic activity against the pathogenic strain Rhizoctonia solani Kühn sh-1 was isolated. Antagonistic, phylogenetic and whole genome sequencing analyses demonstrate that Bacillus halotolerans LDFZ001 strongly suppressed the growth of Rhizoctonia solani Kühn sh-1, showed a close evolutionary relationship with B. halotolerans F41-3, and possessed a 3,965,118 bp circular chromosome. Bioinformatic analysis demonstrated that the genome of Bacillus halotolerans LDFZ001 contained ten secondary metabolite biosynthetic gene clusters (BGCs) encoding five non-ribosomal peptide synthases, two polyketide synthase, two terpene synthases and one bacteriocin synthase, and a new kijanimicin biosynthetic gene cluster which might be responsible for the biosynthesis of novel compounds. Gene-editing experiments revealed that functional expression of phosphopantetheinyl transferase (SFP) and major facilitator superfamily (MFS) transporter genes in Bacillus halotolerans LDFZ001 was essential for its antifungal activity against R. solani Kühn sh-1. Moreover, the existence of two identical chitosanases may also make contribution to the antipathogen activity of Bacillus halotolerans LDFZ001. Our findings will provide fundamental information for the identification and isolation of new sheath blight resistant genes and bacterial strains which have a great potential to be used for the production of bacterial control agents. IMPORTANCE A new Bacillus halotolerans strain Bacillus halotolerans LDFZ001 resistant to sheath blight in wheat is isolated. Bacillus halotolerans LDFZ001 harbors a new kijanimicin biosynthetic gene cluster, and the functional expression of SFP and MFS contribute to its antipathogen ability.
Collapse
Affiliation(s)
- Zhibin Feng
- College of Life Science, Ludong University, Yantai, China
| | - Mingzhi Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Renhong Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
24
|
Banerji R, Karkee A, Saroj SD. Bacteriocins against Foodborne Pathogens (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Sedeek AM, Ismail MM, Elsayed TR, Ramadan MA. Recent methods for discovering novel bioactive metabolites, specifically antimicrobial agents, from marine-associated microorganisms. Lett Appl Microbiol 2022; 75:511-525. [PMID: 35485872 DOI: 10.1111/lam.13728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
Marine microorganisms are a promising source for novel natural compounds with many medical and biotechnological applications. Here we demonstrate limitations and recent strategies for investigating the marine microbial community for novel bioactive metabolites, specifically those of antimicrobial potential. These strategies include culture-dependent methods such as modifying the standard culture media, including changing the gelling agent, dissolving vehicle, media supplementation, and preparation to access a broader range of bacterial diversity from marine samples. Furthermore, we discuss strategies like in situ cultivation, dilution-to-extinction cultivation, and long-term incubation. We are presenting recent applications of culture-independent methods such as genome mining, proteomics profiling, and the application of metagenomics as a novel strategy for structure confirmation in the discovery of the marine microorganism for novel antimicrobial metabolites. We present this review as a simple guide and a helpful resource for those who seek to enter the challenging field of applied marine microbiology.
Collapse
Affiliation(s)
- Abdelrahman M Sedeek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismaillia, 41522, Egypt
| | - Maha M Ismail
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Egypt, Giza, 12613, Egypt
| | - Mohamed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
27
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
28
|
Grant-Mackie E, Williams ET, Harris PWR, Brimble MA. Aminovinyl Cysteine Containing Peptides: A Unique Motif That Imparts Key Biological Activity. JACS AU 2021; 1:1527-1540. [PMID: 34723257 PMCID: PMC8549060 DOI: 10.1021/jacsau.1c00308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Natural products that contain distinctive chemical functionality can serve as useful starting points to develop Nature's compounds into viable therapeutics. Peptide natural products, an under-represented class of medicines, such as ribosomally synthesized and post-translationally modified peptides (RiPPs), often contain noncanonical amino acids and structural motifs that give rise to potent biological activity. However, these motifs can be difficult to obtain synthetically, thereby limiting the transition of RiPPs to the clinic. Aminovinyl cysteine containing peptides, which display potent antimicrobial or anticancer activity, possess an intricate C-terminal ring that is critical for bioactivity. To date, successful methods for the total chemical synthesis of such peptides are yet to be realized, although several advancements have been achieved. In this perspective, we review this burgeoning class of aminovinyl cysteine peptides and critically evaluate the chemical strategies to install the distinct aminovinyl cysteine motif.
Collapse
Affiliation(s)
- Emily
S. Grant-Mackie
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Elyse T. Williams
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Paul W. R. Harris
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| | - Margaret A. Brimble
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| |
Collapse
|
29
|
Fathizadeh H, Pakdel F, Saffari M, Esmaeili DD, Momen-Heravi M, Dao S, Ganbarov K, Kafil HS. Bacteriocins: Recent advances in application as an antimicrobial alternative. Curr Pharm Biotechnol 2021; 23:1028-1040. [PMID: 34493194 DOI: 10.2174/1389201022666210907121254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
Due to the emergence and development of antibiotic resistance in the treatment of bacterial infections, efforts to discover new antimicrobial agents have increased. One of these antimicrobial agents is a compound produced by a large number of bacteria called bacteriocin. Bacteriocins are small ribosomal polypeptides that can exert their antibacterial effects against bacteria close to their producer strain or even non-closely strains. Adequate knowledge of the structure and functional mechanisms of bacteriocins and their spectrum of activity, as well as knowledge of the mechanisms of possible resistance to these compounds will lead to further development of their use as an alternative to antibiotics. Furthermore, most bacteria that live in the gastrointestinal tract (GIT) have the ability to produce bacteriocins, which spread throughout the GIT. Despite antimicrobial studies in vitro, our knowledge of bacteriocins in the GIT and the migration of these bacteriocins from the epithelial barrier is low. Hence, in this study, we reviewed general information about bacteriocins, such as classification, mechanism of action and resistance, emphasizing their presence, stability, and spectrum of activity in the GIT.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan. Iran
| | - Farzaneh Pakdel
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan. Iran
| | - Davoud Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran. Iran
| | - Mansooreh Momen-Heravi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan. Iran
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS), University of Bamako, Bamako. Mali
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, IR. Iran
| |
Collapse
|
30
|
O'Reilly C, O'Connor PM, O'Sullivan Ó, Rea MC, Hill C, Ross RP. Impact of nisin on Clostridioides difficile and microbiota composition in a faecal fermentation model of the human colon. J Appl Microbiol 2021; 132:1397-1408. [PMID: 34370377 DOI: 10.1111/jam.15250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
AIMS Nisin is a bacteriocin with a broad spectrum of activity against Gram-positive bacteria. The aims were to assess nisin activity against Clostridioides difficile in a complex microbial environment and determine the minimum inhibitory concentration at which C. difficile growth is suppressed whilst having minimal impact on the faecal microbiota. METHODS AND RESULTS Faecal slurries were prepared from fresh faecal samples and spiked with C. difficile (106 CFU per ml). Nisin was added to each fermentation at a range of concentrations from 0 to 500 µM. Following 24 h, 16S rRNA gene sequencing was performed, and the presence of viable C. difficile was assessed. There was no viable C. difficile detected in the presence of 50-500 µM nisin. There was a decrease in the diversity of the microbiota in a nisin dose-dependent manner. Nisin predominantly depleted the relative abundance of the Gram-positive bacteria whilst the relative abundance of Gram-negative bacteria such as Escherichia Shigella and Bacteroides increased. CONCLUSIONS Using an ex vivo model of the colon, this study demonstrates the ability of purified nisin to selectively deplete C. difficile in a faecal microbial environment and establishes the minimum concentration at which this occurs whilst having a minimal impact on the composition of the microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study opens up the potential to use nisin as a therapeutic for clostridial gut infections.
Collapse
Affiliation(s)
- Catherine O'Reilly
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Órla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 2021; 26:4032. [PMID: 34279372 PMCID: PMC8272150 DOI: 10.3390/molecules26134032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
34
|
Flynn J, Ryan A, Hudson SP. Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. Eur J Pharm Biopharm 2021; 165:149-163. [PMID: 34020021 DOI: 10.1016/j.ejpb.2021.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Bacteriocins, a class of antimicrobial peptide produced by bacteria, may offer a potential alternative to traditional antibiotics, an important step towards mitigating the ever-increasing antimicrobial resistance crisis. They are active against a range of clinically relevant Gram-positive and Gram-negative bacteria. Bacteriocins have been discussed in the literature for over a century. Although they are used as preservatives in food, no medicine based on their antimicrobial activity exists on the market today. In order to formulate them into clinical antibiotics, pre-formulation studies on their biophysical and physicochemical properties that will influence their activity in vivo and their stability during manufacture must be elucidated. Thermal, pH and enzymatic stability of bacteriocins are commonly studied and regularly reported in the literature. Solubility, permeability and aggregation properties on the other hand are less frequently reported for many bacteriocins, which may contribute to their poor clinical progression. Promising cytotoxicity studies report that bacteriocins exhibit few cytotoxic effects on a variety of mammalian cell lines, at active concentrations. This review highlights the lack of quantitative data and in many cases even qualitative data, on bacteriocins' solubility, stability, aggregation, permeability and cytotoxicity. The formulation strategies that have been explored to date, proposed routes of administration, trends in in vitro/in vivo behaviour and efforts in clinical development are discussed. The future promise of bacteriocins as a new generation of antibiotics may require tailored local delivery strategies to fulfil their potential as a force to combat antimicrobial-resistant bacterial infections.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Aoibhín Ryan
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
35
|
Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, Zhang J, Zhong J. Bacteriocins: Potential for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5518825. [PMID: 33936381 PMCID: PMC8055394 DOI: 10.1155/2021/5518825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yanhong Cao
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
36
|
Sibinelli-Sousa S, Hespanhol JT, Bayer-Santos E. Targeting the Achilles' Heel of Bacteria: Different Mechanisms To Break Down the Peptidoglycan Cell Wall during Bacterial Warfare. J Bacteriol 2021; 203:e00478-20. [PMID: 33139480 PMCID: PMC8088523 DOI: 10.1128/jb.00478-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria commonly live in dense polymicrobial communities and compete for scarce resources. Consequently, they employ a diverse array of mechanisms to harm, inhibit, and kill their competitors. The cell wall is essential for bacterial survival by providing mechanical strength to resist osmotic stress. Because peptidoglycan is the major component of the cell wall and its synthesis is a complex multistep pathway that requires the coordinate action of several enzymes, it provides a target for rival bacteria, which have developed a large arsenal of antibacterial molecules to attack the peptidoglycan of competitors. These molecules include antibiotics, bacteriocins, and contact-dependent effectors that are either secreted into the medium or directly translocated into a target cell. In this minireview, we summarize the diversity of these molecules and highlight distinct mechanisms to disrupt the peptidoglycan, giving special attention to molecules that are known or have the potential to be used during interbacterial competitions.
Collapse
Affiliation(s)
- Stephanie Sibinelli-Sousa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Moyer TB, Parsley NC, Sadecki PW, Schug WJ, Hicks LM. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep 2021; 38:489-509. [PMID: 32929442 PMCID: PMC7956910 DOI: 10.1039/d0np00046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: Up to July 2020Ribosomal antimicrobial peptide (AMP) natural products, also known as ribosomally synthesized and post-translationally modified peptides (RiPPs) or host defense peptides, demonstrate potent bioactivities and impressive complexity that complicate molecular and biological characterization. Tandem mass spectrometry (MS) has rapidly accelerated bioactive peptide sequencing efforts, yet standard workflows insufficiently address intrinsic AMP diversity. Herein, orthogonal approaches to accelerate comprehensive and accurate molecular characterization without the need for prior isolation are reviewed. Chemical derivatization, proteolysis (enzymatic and chemical cleavage), multistage MS fragmentation, and separation (liquid chromatography and ion mobility) strategies can provide complementary amino acid composition and post-translational modification data to constrain sequence solutions. Examination of two complex case studies, gomesin and styelin D, highlights the practical implementation of the proposed approaches. Finally, we emphasize the importance of heterogeneous AMP peptidoforms that confer varying biological function, an area that warrants significant further development.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
38
|
Afchangi A, Latifi T, Jalilvand S, Marashi SM, Shoja Z. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch Virol 2021; 166:995-1006. [PMID: 33533975 DOI: 10.1007/s00705-021-04964-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Due to the lower efficacy of currently approved live attenuated rotavirus (RV) vaccines in developing countries, a new approach to the development of safe mucosally administered live bacterial vectors is being considered, using probiotic bacteria as an efficient delivery platform for heterologous RV antigens. Lactic acid bacteria (LAB), which are considered food-grade bacteria and normal microbiota, have been utilized throughout history as probiotics and developed since the 1990s as a delivery system for recombinant heterologous proteins. Over the last decade, LAB have frequently been used as a platform for the delivery of various RV antigens to the mucosa. Given the appropriate safety profile for neonates and providing the benefits of probiotics, recombinant LAB-based vaccines could potentially address the need for a subunit RV vaccine. The present review focuses mainly on different recombinant LAB vaccine constructs for RV and their potential as an alternative recombinant vaccine against RV disease.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
39
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
40
|
Pipiya SO, Terekhov SS, Mokrushina YA, Knorre VD, Smirnov IV, Gabibov AG. Engineering Artificial Biodiversity of Lantibiotics to Expand Chemical Space of DNA-Encoded Antibiotics. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1319-1334. [PMID: 33280576 DOI: 10.1134/s0006297920110048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of antibiotics was one of the fundamental stages in the development of humanity, leading to a dramatic increase in the life expectancy of millions of people all over the world. The uncontrolled use of antibiotics resulted in the selection of resistant strains of bacteria, limiting the effectiveness of antimicrobial therapy nowadays. Antimicrobial peptides (AMPs) were considered promising candidates for next-generation antibiotics for a long time. However, the practical application of AMPs is restricted by their low therapeutic indices, impaired pharmacokinetics, and pharmacodynamics, which is predetermined by their peptide structure. Nevertheless, the DNA-encoded nature of AMPs enables creating broad repertoires of artificial biodiversity of antibiotics, making them versatile templates for the directed evolution of antibiotic activity. Lantibiotics are a unique class of AMPs with an expanded chemical space. A variety of post-translational modifications, mechanisms of action on bacterial membranes, and DNA-encoded nature make them a convenient molecular template for creating highly representative libraries of antimicrobial compounds. Isolation of new drug candidates from this synthetic biodiversity is extremely attractive but requires high-throughput screening of antibiotic activity. The combination of synthetic biology and ultrahigh-throughput microfluidics allows implementing the concept of directed evolution of lantibiotics for accelerated creation of new promising drug candidates.
Collapse
Affiliation(s)
- S O Pipiya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S S Terekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yu A Mokrushina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V D Knorre
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I V Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
41
|
Patrulea V, Borchard G, Jordan O. An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections. Pharmaceutics 2020; 12:E840. [PMID: 32887353 PMCID: PMC7560145 DOI: 10.3390/pharmaceutics12090840] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infections occur when wound healing fails to reach the final stage of healing, which is usually hindered by the presence of different pathogens. Different topical antimicrobial agents are used to inhibit bacterial growth due to antibiotic failure in reaching the infected site, which is accompanied very often by increased drug resistance and other side effects. In this review, we focus on antimicrobial peptides (AMPs), especially those with a high potential of efficacy against multidrug-resistant and biofilm-forming bacteria and fungi present in wound infections. Currently, different AMPs undergo preclinical and clinical phase to combat infection-related diseases. AMP dendrimers (AMPDs) have been mentioned as potent microbial agents. Various AMP delivery strategies that are used to combat infection and modulate the healing rate-such as polymers, scaffolds, films and wound dressings, and organic and inorganic nanoparticles-have been discussed as well. New technologies such as Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated protein (CRISPR-Cas) are taken into consideration as potential future tools for AMP delivery in skin therapy.
Collapse
Affiliation(s)
- Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
42
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
43
|
Lagedroste M, Reiners J, Knospe CV, Smits SHJ, Schmitt L. A Structural View on the Maturation of Lanthipeptides. Front Microbiol 2020; 11:1183. [PMID: 32582108 PMCID: PMC7296275 DOI: 10.3389/fmicb.2020.01183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 01/16/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, which display diverse bioactivities (e.g., antifungal, antimicrobial, and antiviral). One characteristic of these lanthipeptides is the presence of thioether bonds, which are termed (methyl-) lanthionine rings. These modifications are installed by corresponding modification enzymes in a two-step modality. First, serine and threonine residues are dehydrated followed by a subsequent catalyzed cyclization reaction, in which the dehydrated serine and threonine residues are undergoing a Michael-type addition with cysteine residues. The dedicated enzymes are encoded by one or two genes and the classification of lanthipeptides is pending on this. The modification steps form the basis of distinguishing the different classes of lanthipeptides and furthermore reflect also important mechanistic differences. Here, we will summarize recent insights into the mechanisms and the structures of the participating enzymes, focusing on the two core modification steps - dehydration and cyclization.
Collapse
Affiliation(s)
- Marcel Lagedroste
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Reiners
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - C Vivien Knospe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
44
|
Navarro SA, Lanza L, Acuña L, Bellomio A, Chalón MC. Features and applications of Ent35-MccV hybrid bacteriocin: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:6067-6077. [PMID: 32418126 DOI: 10.1007/s00253-020-10650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Bacteriocins are peptides of ribosomal synthesis that are active against bacteria related to the producing strain. They have been widely used in the food industry as biopreservatives. The generation of hybrid peptides by combining the genes that encode two different bacteriocins has made it possible to study the mechanisms of action of the bacteriocins that compose them and also develop new peptides with improved biotechnological applications. Hybrid bacteriocins may be obtained in several ways. In our laboratory, by combining enterocin CRL35 and microcin V (Ent35-MccV), we obtained a broad-spectrum peptide that is active against both Gram-positive and Gram-negative bacteria. Ent35-MccV is sensitive to the action of intestinal proteases and is heat resistant, which makes it a good candidate for use as a biopreservative. For this reason, the peptide was tested in skim milk and beef burgers as food models. We also obtained more potent variants of the hybrid by modifying the central amino acid of the hinge region that connects the two bacteriocins. This review also discusses future applications and perspectives regarding the Ent35-MccV and other hybrid peptides.Key Points• Ent35-MccV is a new broad-spectrum bacteriocin.• The mechanism of action of bacteriocins can be studied using hybrid peptides.• Genetic engineering allows obtaining improved bacteriocin derivatives.• Hybrid peptides can be used in the food, pharmaceutical, and veterinary applications.
Collapse
Affiliation(s)
- S A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Acuña
- Instituto de Patología Experimental (IPE, CONICET-UNSa), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, Argentina
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
45
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
46
|
Unsleber S, Wohlleben W, Stegmann E. Diversity of peptidoglycan structure—Modifications and their physiological role in resistance in antibiotic producers. Int J Med Microbiol 2019; 309:151332. [DOI: 10.1016/j.ijmm.2019.151332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
|
47
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
48
|
Sandiford SK. Current developments in lantibiotic discovery for treating Clostridium difficile infection. Expert Opin Drug Discov 2018; 14:71-79. [PMID: 30479173 DOI: 10.1080/17460441.2019.1549032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Clostridium difficile is a major cause of healthcare-associated diarrhea linked to the misuse of antimicrobials and the corresponding deleterious impact they have on the protective microbiota of the gut. Resistance to agents used to treat C. difficile including metronizadole and vancomycin has been reported highlighting the need for novel agents. Lantibiotics represent a novel class of agents that many studies have highlighted as effective against C. difficile. Areas covered: In this review lantibiotics including nisin, actagardine, mersacidin, NAI-107 and MU-1140 that exhibit good activity against C.difficile, all of which are currently in the preclinical phase of investigation are discussed. The lantibiotic NVB302, which has completed phase I clinical trials for the treatment of C. difficile, is also described. Expert opinion: Lantibiotics represent promising candidates for the treatment of C. difficile infections due to their novel mode of action, which is thought to decrease the potential of resistance developing and the fact they often possess a less deleterious effect on the protective gut microbiota when compared to traditional agents. They are also extremely amenable to bioengineering approaches and the incorporation of synthetic biology to produce more potent variants.
Collapse
|
49
|
Efficacious Analogs of the Lantibiotic Mutacin 1140 against a Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antimicrob Agents Chemother 2018; 62:AAC.01626-18. [PMID: 30275083 DOI: 10.1128/aac.01626-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
Abstract
Mutacin 1140, a member of the epidermin family of type AI lantibiotics, has a broad spectrum of activity against Gram-positive bacteria. It blocks cell wall synthesis by binding to lipid II. Although it has rapid bactericidal effects and potent activity against Gram-positive pathogens, its rapid clearance and short half-life in vivo limit its development in the clinic. In this study, we evaluated the effect of charged and dehydrated residues on the pharmacokinetics of mutacin 1140. The dehydrated residues were determined to contribute to the stability of mutacin 1140, while alanine substitutions for the lysine or arginine residues improved the pharmacological properties of the antibiotic. Analogs K2A and R13A had significantly lower clearances, leading to higher plasma concentrations over time. They also had improved bioactivities against several pathogenic bacteria. In a murine systemic methicillin-resistant Staphylococcus aureus (MRSA) infection model, a 10-mg/kg single intravenous bolus injection of the K2A and R13A analogs (1:1 ratio) protected 100% of the infected mice, while a 2.5-mg/kg dose resulted in 50% survival. The 10-mg/kg treatment group had a significant reduction in bacteria load in the livers and kidneys compared to that in the vehicle control group. The study provides lead compounds for the future development of antibiotics used to treat systemic Gram-positive infections.
Collapse
|
50
|
Li L, Wang J, Zhou YJ, Lin HW, Lu YH. Streptomyces reniochalinae sp. nov. and Streptomyces diacarni sp. nov., from marine sponges. Int J Syst Evol Microbiol 2018; 69:99-104. [PMID: 30427301 DOI: 10.1099/ijsem.0.003109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two marine actinomycete strains, LHW50302T and LHW51701T, were isolated from marine sponges collected in Sansha, Hainan Province, China. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with their classification in the genus Streptomyces. The strains formed hooked and looped chains of arthrospores with smooth surfaces. The cell-wall hydrolysates of the strains contained ll-diaminopimelic acid as the diagnostic diamino acid. MK-9(H8) was the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Major fatty acids of the strains were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The 16S rRNA gene sequences indicated that the strains clustered together with Streptomyces albus CGMCC 4.1640T and Streptomyces qinglanensis CGMCC 4.6825T. Multilocus sequence analysis (MLSA) confirmed their relationship. Genome relatedness in forms of average nucleotide identity, digital DNA-DNA hybridization value and MLSA evolutionary distance between each of the strains and its closest relatives showed that they belonged to distinct species. On the basis of these results, strains LHW50302T and LHW51701T belong to two novel species in the genus Streptomyces, for which the names Streptomyces reniochalinae sp. nov. (type strain LHW50302T=CCTCC AA 2018013T=DSM 106194T) and Streptomyces diacarni sp. nov. (type strain LHW51701T=CCTCC AA 2018017T=DSM 106126T) are proposed, respectively.
Collapse
Affiliation(s)
- Lei Li
- 1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,2Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jie Wang
- 2Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Yong-Jun Zhou
- 2Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Hou-Wen Lin
- 2Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Yan-Hua Lu
- 1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|