1
|
Lin B, Zhang D, Wang J, Qiao Y, Wang J, Deng Z, Kong L, You D. O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis. ENGINEERING MICROBIOLOGY 2024; 4:100150. [PMID: 39629324 PMCID: PMC11610953 DOI: 10.1016/j.engmic.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 12/07/2024]
Abstract
Carbazomycins (1-8) are a subgroup of carbazole derivatives that contain oxygen at the C3 and C4 positions and an unusual asymmetric substitution pattern. Several of these compounds exhibit antifungal and antioxidant activities. To date, no systematic biosynthetic studies have been conducted on carbazomycins. In this study, carbazomycins A and B (1 and 2) were isolated from Streptomyces luteosporeus NRRL 2401 using a one-strain-many-compound (OSMAC)-guided natural product mining screen. A biosynthetic gene cluster (BGC) was identified, and possible biosynthetic pathways for 1 and 2 were proposed. The in vivo genetic manipulation of the O-methyltransferase-encoding gene cbzMT proved indispensable for 1 and 2 biosynthesis. Size exclusion chromatography indicated that CbzMT was active as a dimer. In vitro biochemical assays confirmed that CbzMT could repeatedly act on the hydroxyl groups at C3 and C4, producing monomethylated 2 and dimethylated 1. Monomethylated carbazomycin B (2) is not easily methylated; however, CbzMT seemingly prefers the dimethylation of the dihydroxyl substrate (12) to 1, even with a low conversion efficiency. These findings not only improve the understanding of carbazomycin biosynthesis but also expand the inventory of OMT-catalyzing iterative methylations on different acceptor sites, paving the way for engineering biocatalysts to synthesize new active carbazomycin derivatives.
Collapse
Affiliation(s)
- Baixin Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dashan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junbo Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongjian Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinjin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Maglangit F, Deng H. Preparation, assay, and application of 4-fluorothreonine transaldolase from Streptomyces sp. MA37 for β-hydroxyl amino acid derivatives. Methods Enzymol 2024; 696:179-199. [PMID: 38658079 DOI: 10.1016/bs.mie.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
β-Hydroxy-α-amino acids (βHAAs) are an essential class of building blocks of therapeutically important compounds and complex natural products. They contain two chiral centers at Cα and Cβ positions, resulting in four possible diastereoisomers. Many innovative asymmetric syntheses have been developed to access structurally diverse βHAAs. The main challenge, however, is the control of the relative and absolute stereochemistry of the asymmetric carbons in a sustainable way. In this respect, there has been considerable attention focused on the chemoenzymatic synthesis of βHAAs via a one-step process. Nature has evolved different enzymatic routes to produce these valuable βHAAs. Among these naturally occurring transformations, L-threonine transaldolases present potential biocatalysts to generate βHAAs in situ. 4-Fluorothreonine transaldolase from Streptomyces sp. MA37 (FTaseMA) catalyzes the cross-over transaldolation reaction between L-Thr and fluoroacetaldehyde to give 4-fluorothreonine and acetaldehyde (Ad). It has been demonstrated that FTaseMA displays considerable substrate plasticity toward structurally diverse aldehyde acceptors, leading to the production of various βHAAs. In this chapter, we describe methods for the preparation of FTaseMA, and the chemoenzymatic synthesis of βHAAs from various aldehydes and L-Thr using FTaseMA.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City, Philippines.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
3
|
Adhikari A, Shakya S, Shrestha S, Aryal D, Timalsina KP, Dhakal D, Khatri Y, Parajuli N. Biocatalytic role of cytochrome P450s to produce antibiotics: A review. Biotechnol Bioeng 2023; 120:3465-3492. [PMID: 37691185 DOI: 10.1002/bit.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sajan Shakya
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shreesti Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Dipa Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kavi Prasad Timalsina
- Department of Biotechnology, National College, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, USA
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
4
|
Deletti G, Green SD, Weber C, Patterson KN, Joshi SS, Khopade TM, Coban M, Veek-Wilson J, Caulfield TR, Viswanathan R, Lane AL. Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase. Nat Commun 2023; 14:2558. [PMID: 37137876 PMCID: PMC10156859 DOI: 10.1038/s41467-023-38168-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and C-methylation, prenylation, and diannulation. Here we identify and characterize the nocardioazine B biosynthetic pathway from marine Nocardiopsis sp. CMB-M0232 by using heterologous biotransformations, in vitro biochemical assays, and macromolecular modeling. Assembly of the cyclo-L-Trp-L-Trp diketopiperazine precursor is catalyzed by a cyclodipeptide synthase. A separate genomic locus encodes tailoring of this precursor and includes an aspartate/glutamate racemase homolog as an unusual D/L isomerase acting upon diketopiperazine substrates, a phytoene synthase-like prenyltransferase as the catalyst of indole alkaloid diketopiperazine prenylation, and a rare dual function methyltransferase as the catalyst of both N- and C-methylation as the final steps of nocardioazine B biosynthesis. The biosynthetic paradigms revealed herein showcase Nature's molecular ingenuity and lay the foundation for diketopiperazine diversification via biocatalytic approaches.
Collapse
Affiliation(s)
- Garrett Deletti
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Sajan D Green
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Caleb Weber
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Kristen N Patterson
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Swapnil S Joshi
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| | - Tushar M Khopade
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - James Veek-Wilson
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rajesh Viswanathan
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA.
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India.
| | - Amy L Lane
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Tenebro CP, Trono DJVL, Balida LAP, Bayog LKA, Bruna JR, Sabido EM, Caspe DPC, de Los Santos ELC, Saludes JP, Dalisay DS. Synergy between Genome Mining, Metabolomics, and Bioinformatics Uncovers Antibacterial Chlorinated Carbazole Alkaloids and Their Biosynthetic Gene Cluster from Streptomyces tubbatahanensis sp. nov., a Novel Actinomycete Isolated from Sulu Sea, Philippines. Microbiol Spectr 2023; 11:e0366122. [PMID: 36809153 PMCID: PMC10100901 DOI: 10.1128/spectrum.03661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
In this study, a novel actinomycete strain, DSD3025T, isolated from the underexplored marine sediments in Tubbataha Reefs Natural Park, Sulu Sea, Philippines, with the proposed name Streptomyces tubbatahanensis sp. nov., was described using polyphasic approaches and characterized using whole-genome sequencing. Its specialized metabolites were profiled using mass spectrometry and nuclear magnetic resonance analyses, followed by antibacterial, anticancer, and toxicity screening. The S. tubbatahanensis DSD3025T genome was comprised of 7.76 Mbp with a 72.3% G+C content. The average nucleotide identity and digital DNA-DNA hybridization values were 96.5% and 64.1%, respectively, compared with its closest related species, thus delineating the novelty of Streptomyces species. The genome encoded 29 putative biosynthetic gene clusters (BGCs), including a BGC region containing tryptophan halogenase and its associated flavin reductase, which were not found in its close Streptomyces relatives. The metabolite profiling unfolded six rare halogenated carbazole alkaloids, with chlocarbazomycin A as the major compound. A biosynthetic pathway for chlocarbazomycin A was proposed using genome mining, metabolomics, and bioinformatics platforms. Chlocarbazomycin A produced by S. tubbatahanensis DSD3025T has antibacterial activities against Staphylococcus aureus ATCC BAA-44 and Streptococcus pyogenes and showed antiproliferative activity against colon (HCT-116) and ovarian (A2780) human cancer cell lines. Chlocarbazomycin A exhibited no toxicity to liver cells but moderate and high toxicity to kidney and cardiac cell lines, respectively. IMPORTANCE Streptomyces tubbatahanensis DSD3025T is a novel actinomycete with antibiotic and anticancer activities from Tubbataha Reefs Natural Park, a United Nations Educational, Scientific and Cultural Organization World Heritage Site in Sulu Sea and considered one of the Philippines' oldest and most-well-protected marine ecosystems. In silico genome mining tools were used to identify putative BGCs that led to the discovery of genes involved in the production of halogenated carbazole alkaloids and new natural products. By integrating bioinformatics-driven genome mining and metabolomics, we unearthed the hidden biosynthetic richness and mined the associated chemical entities from the novel Streptomyces species. The bioprospecting of novel Streptomyces species from marine sediments of underexplored ecological niches serves as an important source of antibiotic and anticancer drug leads with unique chemical scaffolds.
Collapse
Affiliation(s)
- Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Dana Joanne V. L. Trono
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Lex Aliko P. Balida
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Leah Katrine A. Bayog
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Julyanna R. Bruna
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Dion Paul C. Caspe
- Center for Natural Drug Discovery and Development, University of San Agustin, Iloilo City, Philippines
| | - Emmanuel Lorenzo C. de Los Santos
- Research Analytics, Early Solutions Data & Translational Services, UCB Celltech, Slough, Berkshire, United Kingdom
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City, Philippines
| | - Jonel P. Saludes
- Center for Natural Drug Discovery and Development, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City, Philippines
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City, Philippines
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
6
|
Shen Y, Zhang L, Yang M, Shi T, Li Y, Li L, Yu Y, Deng H, Lin HW, Zhou Y. Switching Prenyl Donor Specificities in Squalene Synthase-Like Aromatic Prenyltransferases from Bacterial Carbazole Alkaloid Biosynthesis. ACS Chem Biol 2023; 18:123-133. [PMID: 36608315 DOI: 10.1021/acschembio.2c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lavanduquinocin (LDQ) is a potent neuroprotective carbazole alkaloid from Streptomyces species that features a rare cyclic monoterpene/cyclolavandulyl moiety attached to the tricyclic carbazole nucleus. We elucidated the biosynthetic logic of LDQ by enzymatically reconstituting the total biosynthetic pathway and identified the genes required for generating the cyclolavandulyl moiety in LDQ based on mutagenetic analysis, including a cyclolavandulyl diphosphate synthase gene ldqA and a squalene synthase-like aromatic prenyltransferase gene ldqG. LdqG is homologous to carbazole prenyltransferases, NzsG and CqsB4, discovered from the biosynthetic pathways of two bacterial carbazoles, neocarazostatin and carquinostatin. Based on analysis of the sequences and modeled protein structures, further in vitro and in vivo site-directed mutagenetic analyses led to identification of two residue sites, F53 and C57 in NzsG vs I54 and A58 in LdqG, which play crucial roles in governing the prenyl donor specificities toward cyclolavandulyl, dimethylallyl, and geranyl diphosphates. By applying this knowledge in strain engineering, prenyl donor delivery was rationally switched to produce the desired prenylated carbazoles. The study provides an opportunity to rationally manipulate the prenylation modification to carbazole alkaloids, which could influence the biological activities by increasing the affinity for membranes as well as the interactions with cellular targets.
Collapse
Affiliation(s)
- Yaoyao Shen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liu Zhang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongzhen Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Yu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
7
|
Chemoenzymatic Synthesis of Indole-Containing Acyloin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010354. [PMID: 36615552 PMCID: PMC9822442 DOI: 10.3390/molecules28010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Indole-containing acyloins are either key intermediates of many antimicrobial/antiviral natural products or building blocks in the synthesis of biologically active molecules. As such, access to structurally diverse indole-containing acyloins has attracted considerable attention. In this report, we present a pilot study of using biotransformation to provide acyloins that contain various indole substituents. The biotransformation system contains the tryptophan synthase standalone β-subunit variant, PfTrpB6, generated from directed evolution in the literature; a commercially available L-amino acid oxidase (LAAO); and the thiamine-diphosphate (ThDP)-dependent enzyme NzsH, encoded in the biosynthetic gene cluster (nzs) of the bacterial carbazole alkaloid natural product named neocarazostatin A. The utilization of the first two enzymes, the PfTrpB variant and LAAO, is designed to provide structurally diverse indole 3-pyruvate derivatives as donor substrates for NzsH-catalysed biotransformation to provide acyloin derivatives. Our results demonstrate that NzsH displays a considerable substrate profile toward donor substrates for production of acyloins with different indole ring systems, suggesting that NzsH could be further explored as a potential biocatalyst via directed evolution to improve the catalytic efficiency in the future.
Collapse
|
8
|
Tang C, Wang W, Luo G, Song C, Bao Z, Li P, Hao G, Chi YR, Jin Z. Carbene‐Catalyzed Activation of C−Si Bonds for Chemo‐ and Enantioselective Cross Brook–Benzoin Reaction. Angew Chem Int Ed Engl 2022; 61:e202206961. [DOI: 10.1002/anie.202206961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Chenghao Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
- School of Life and Health Science Kaili University Kaili 556011 China
| | - Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Guoyong Luo
- School of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Chaoyang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Zhaowei Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Pei Li
- School of Life and Health Science Kaili University Kaili 556011 China
| | - Gefei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| |
Collapse
|
9
|
Tang C, Wang W, Luo G, Song C, Bao Z, Li P, Hao G, Chi YR, Jin Z. Carbene‐Catalyzed Activation of C‐Si Bonds for Chemo‐ and Enantioselective Cross Brook‐Benzoin Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Wei Wang
- Guizhou University Chemistry CHINA
| | - Guoyong Luo
- Guizhou University Of Traditional Chinese Medicine Chemistry CHINA
| | | | | | - Pei Li
- Kaili University Chemistry CHINA
| | | | - Yonggui Robin Chi
- Nanyang Technological University Division of Chemistry and Biological Chemistry SINGAPORE
| | - Zhichao Jin
- Guizhou University Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Huaxi District 550025 Guiyang CHINA
| |
Collapse
|
10
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022; 61:e202117430. [DOI: 10.1002/anie.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
11
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
12
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
13
|
Deciphering a Cyclodipeptide Synthase Pathway Encoding Prenylated Indole Alkaloids in Streptomyces leeuwenhoekii. Appl Environ Microbiol 2021; 87:AEM.02525-20. [PMID: 33741615 DOI: 10.1128/aem.02525-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) catalyze the formation of cyclodipeptides using aminoacylated tRNAs as the substrates and have great potential in the production of diverse 2,5-diketopiperazines (2,5-DKPs). Genome mining of Streptomyces leeuwenhoekii NRRL B-24963 revealed a two-gene locus, saz, encoding CDPS SazA and a unique fused enzyme (SazB) harboring two domains: phytoene synthase-like prenyltransferase (PT) and methyltransferase (MT). Heterologous expression of the saz gene(s) in Streptomyces albus J1074 led to the production of four prenylated indole alkaloids, among which streptoazines A to C (compounds 3 to 5) are new compounds. Expression of different gene combinations showed that the SazA catalyzes the formation of cyclo(l-Trp-l-Trp) (cWW; compound 1), followed by consecutive prenylation and methylation by SazB. Biochemical assays demonstrated that SazB is a bifunctional enzyme, catalyzing sequential C-3/C-3' prenylation(s) by SazB-PT and N-1/N-1' methylation(s) by SazB-MT. Of note, the substrate selectivity of SazB-PT and SazB-MT was probed, revealing the stringent specificity of SazB-PT but relative flexibility of SazB-MT.IMPORTANCE Natural products with a 2,5-diketopiperazine (2,5-DKP) skeleton have long sparked interest in drug discovery and development. Recent advances in microbial genome sequencing have revealed that the potential of cyclodipeptide synthase (CDPS)-dependent pathways encoding new 2,5-DKPs are underexplored. In this study, we report the genome mining of a new CDPS-encoding two-gene operon and activation of this cryptic gene cluster through heterologous expression, leading to the discovery of four indole 2,5-DKP alkaloids. The cyclo(l-Trp-l-Trp) (cWW)-synthesizing CDPS SazA and the unusual prenyltransferase (PT)-methyltransferase (MT) fused enzyme SazB were characterized. Our results expand the repertoire of CDPSs and associated tailoring enzymes, setting the stage for accessing diverse prenylated alkaloids using synthetic biology strategies.
Collapse
|
14
|
Fang Q, Wu L, Urwald C, Mugat M, Wang S, Kyeremeh K, Philips C, Law S, Zhou Y, Deng H. Genomic scanning enabling discovery of a new antibacterial bicyclic carbamate-containing alkaloid. Synth Syst Biotechnol 2021; 6:12-19. [PMID: 33553705 PMCID: PMC7820566 DOI: 10.1016/j.synbio.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 01/13/2023] Open
Abstract
Non-ribosomal peptides are a group of structurally diverse natural products with various important therapeutic and agrochemical applications. Bacterial pyrrolizidine alkaloids (PAs), containing a scaffold of two fused five-membered ring system with a nitrogen atom at the bridgehead, have been found to originate from a multidomain non-ribosomal peptide synthetase to generate indolizidine intermediates, followed by multistep oxidation, catalysed by single Bayer-Villiger (BV) enzymes, to yield PA scaffolds. Although bacterial PAs are rare in natural product inventory, bioinformatics analysis suggested that the biosynthetic gene clusters (BGCs) that are likely to be responsible for the production of PA-like metabolites are widely distributed in bacterial genomes. However, most of the strains containing PA-like BGCs are not deposited in the public domain, therefore preventing further assessment of the chemical spaces of this group of bioactive metabolites. Here, we report a genomic scanning strategy to assess the potential of PA metabolites production in our culture collection without prior knowledge of genome information. Among the strains tested, we found fifteen contain the key BV enzymes that are likely to be involved in the last step of PA ring formation. Subsequently one-strain-many-compound (OSMAC) method, supported by a combination of HR-MS, NMR, SMART 2.0 technology, and GNPS analysis, allowed identification and characterization of a new [5 + 7] heterobicyclic carbamate, legoncarbamate, together with five known PAs, bohemamine derivatives, from Streptomyces sp. CT37, a Ghanaian soil isolate. The absolute stereochemistry of legoncarbamate was determined by comparison of measured and calculated ECD spectra. Legoncarbamate displays antibacterial activity against E. coli ATCC 25922 with an MIC value of 3.1 μg/mL. Finally, a biosynthetic model of legoncarbamate and other bohemamines was proposed based on the knowledge we have gained so far.
Collapse
Affiliation(s)
- Qing Fang
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
| | - Linrui Wu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
| | - Caroline Urwald
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
- ENSAIA, 2 avenue de la forêt de Haye, 54505 vandœuvre lès Nancy, France
| | - Morgane Mugat
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
- ENSAIA, 2 avenue de la forêt de Haye, 54505 vandœuvre lès Nancy, France
| | - Shan Wang
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon-Accra, Ghana
| | - Carol Philips
- NCIMB Ltd, Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen, AB21 9YA, Scotland, UK
| | - Samantha Law
- NCIMB Ltd, Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen, AB21 9YA, Scotland, UK
| | - Yongjun Zhou
- Research Centre for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
| |
Collapse
|
15
|
Discovery of New Antibacterial Accramycins from a Genetic Variant of the Soil Bacterium, Streptomyces sp. MA37. Biomolecules 2020; 10:biom10101464. [PMID: 33092156 PMCID: PMC7590149 DOI: 10.3390/biom10101464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 12/29/2022] Open
Abstract
Continued mining of natural products from the strain Streptomyces sp. MA37 in our laboratory led to the discovery of a minor specialized metabolite (SM) called accramycin A. Owing to its low yield (0.2 mg/L) in the wild type strain, we investigated the roles of regulatory genes in the corresponding biosynthetic gene cluster (acc BGC) through gene inactivation with the aim of improving the titer of this compound. One of the resulting mutants (∆accJ) dramatically upregulated the production of accramycin A 1 by 330-fold (66 mg/L). Furthermore, ten new metabolites, accramycins B-K 2-11, were discovered, together with two known compounds, naphthacemycin B112 and fasamycin C 13 from the mutant extract. This suggested that accJ, annotated as multiple antibiotic resistance regulator (MarR), is a negative regulator gene in the accramycin biosynthesis. Compounds 1-13 inhibited the Gram-positive pathogens (Staphylococcus aureus, Enterococcus faecalis) and clinical isolates Enterococcus faecium (K59-68 and K60-39) and Staphylococcus haemolyticus with minimal inhibitory concentration (MIC) values in the range of 1.5-12.5 µg/mL. Remarkably, compounds 1-13 displayed superior activity against K60-39 (MIC = 3.1-6.3 µg/mL) compared to ampicillin (MIC = 25 µg/mL), and offered promising potential for the development of accramycin-based antibiotics that target multidrug-resistant Enterococcus clinical isolates. Our results highlight the importance of identifying the roles of regulatory genes in natural product discovery.
Collapse
|
16
|
Kobayashi M, Kuzuyama T. Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes. Biomolecules 2020; 10:biom10081147. [PMID: 32764478 PMCID: PMC7466098 DOI: 10.3390/biom10081147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Structurally diverse carbazole alkaloids are valuable due to their pharmaceutical properties and have been isolated from nature. Experimental knowledge on carbazole biosynthesis is limited. The latest development of in silico analysis of the biosynthetic gene clusters for bacterial carbazoles has allowed studies on the biosynthesis of a carbazole skeleton, which was established by sequential enzyme-coupling reactions associated with an unprecedented carbazole synthase, a thiamine-dependent enzyme, and a ketosynthase-like enzyme. This review describes the carbazole biosynthetic mechanism, which includes a key step in enzymatic formation of a tricyclic carbazole skeleton, followed by modifications such as prenylation and hydroxylation in the skeleton.
Collapse
Affiliation(s)
- Masaya Kobayashi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: ; Fax: +81-3-5841-3080
| |
Collapse
|
17
|
Wu L, Tong MH, Kyeremeh K, Deng H. Identification of 5-Fluoro-5-Deoxy-Ribulose as a Shunt Fluorometabolite in Streptomyces sp. MA37. Biomolecules 2020; 10:biom10071023. [PMID: 32664266 PMCID: PMC7408626 DOI: 10.3390/biom10071023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
A fluorometabolite, 5-fluoro-5-deoxy-D-ribulose (5-FDRul), from the culture broth of the soil bacterium Streptomyces sp. MA37, was identified through a combination of genetic manipulation, chemo-enzymatic synthesis and NMR comparison. Although 5-FDRul has been chemically synthesized before, it was not an intermediate or a shunt product in previous studies of fluorometalism in S. cattleya. Our study of MA37 demonstrates that 5-FDRul is a naturally occurring fluorometabolite, rendering it a new addition to this rare collection of natural products. The genetic inactivation of key biosynthetic genes involved in the fluorometabolisms in MA37 resulted in the increased accumulation of unidentified fluorometabolites as observed from 19F-NMR spectral comparison among the wild type (WT) of MA37 and the mutated variants, providing evidence of the presence of other new biosynthetic enzymes involved in the fluorometabolite pathway in MA37.
Collapse
Affiliation(s)
- Linrui Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
| | - Ming Him Tong
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56 Legon-Accra, Ghana;
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
- Correspondence:
| |
Collapse
|
18
|
Zhang SY, Zhan ZJ, Zhang H, Qi H, Zhang LQ, Chen SX, Gan LS, Wang JD, Ma LF. Morindolestatin, Naturally Occurring Dehydromorpholinocarbazole Alkaloid from Soil-Derived Bacterium of the Genus Streptomyces. Org Lett 2020; 22:1113-1116. [PMID: 31977234 DOI: 10.1021/acs.orglett.9b04609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel antilipid peroxidative carbazole alkaloids, antiostatin A5 (1), antiostatin A6 (2), and (±)-morindolestatin (3), were isolated from a new soil-derived Streptomyces sp. Compound 2 possesses an unusual cyclohexene side chain. Compound 3 was a pair of enantiomers featuring an unprecedented [1,4]oxazino[2,3-c]carbazole ring system. The absolute configuration of 3 was determined by online HPLC-ECD and ECD calculation. A racemization mechanism and putative biosynthetic pathway are discussed.
Collapse
Affiliation(s)
- Shao-Yong Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Hui Zhang
- Zhejiang Key Laboratory of Antifungal Drugs , Zhejiang Hisun Pharmaceutical Co., Ltd. , Taizhou 318000 , P.R. China
| | - Huan Qi
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Li-Qin Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Shi-Xin Chen
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Li-She Gan
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Ji-Dong Wang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Lie-Feng Ma
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P.R. China.,Zhejiang Xinguang Pharmaceutical Limited Liability Company , Shaoxing , 312400 , P.R. China
| |
Collapse
|
19
|
A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules 2020; 25:molecules25020256. [PMID: 31936318 PMCID: PMC7024260 DOI: 10.3390/molecules25020256] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Whole-genome sequence data of the genus Streptomyces have shown a far greater chemical diversity of metabolites than what have been discovered under typical laboratory fermentation conditions. In our previous natural product discovery efforts on Streptomyces sp. MA37, a bacterium isolated from the rhizosphere soil sample in Legon, Ghana, we discovered a handful of specialised metabolites from this talented strain. However, analysis of the draft genome of MA37 suggested that most of the encoded biosynthetic gene clusters (BGCs) remained cryptic or silent, and only a small fraction of BGCs for the production of specialised metabolites were expressed when cultured in our laboratory conditions. In order to induce the expression of the seemingly silent BGCs, we have carried out a co-culture experiment by growing the MA37 strain with the Gram-negative bacterium Pseudomonas sp. in a co-culture chamber that allows co-fermentation of two microorganisms with no direct contact but allows exchange of nutrients, metabolites, and other chemical cues. This co-culture approach led to the upregulation of several metabolites that were not previously observed in the monocultures of each strain. Moreover, the co-culture induced the expression of the cryptic indole alkaloid BGC in MA37 and led to the characterization of the known indolocarbazole alkaloid, BE-13793C 1. Neither bacterium produced compound 1 when cultured alone. The structure of 1 was elucidated by Nuclear Magnetic Resonance (NMR), mass spectrometry analyses and comparison of experimental with literature data. A putative biosynthetic pathway of 1 was proposed. Furthermore, BE-13793C 1 showed strong anti-proliferative activity against HT-29 (ATCC HTB-38) cells but no toxic effect to normal lung (ATCC CCL-171) cells. To the best of our knowledge, this is the first report for the activity of 1 against HT-29. No significant antimicrobial and anti-trypanosomal activities for 1 were observed. This research provides a solid foundation for the fact that a co-culture approach paves the way for increasing the chemical diversity of strain MA37. Further characterization of other upregulated metabolites in this strain is currently ongoing in our laboratory.
Collapse
|
20
|
Liu Y, Su L, Fang Q, Tabudravu J, Yang X, Rickaby K, Trembleau L, Kyeremeh K, Deng Z, Deng H, Yu Y. Enzymatic Reconstitution and Biosynthetic Investigation of the Bacterial Carbazole Neocarazostatin A. J Org Chem 2019; 84:16323-16328. [PMID: 31729221 DOI: 10.1021/acs.joc.9b02688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tricyclic carbazole is an important scaffold in many naturally occurring metabolites, as well as valuable building blocks. Here we report the reconstitution of the ring A formation of the bacterial neocarazostatin A carbazole metabolite. We provide evidence of the involvement of two unusual aromatic polyketide proteins. This finding suggests how new enzymatic activities can be recruited to specific pathways to expand biosynthetic capacities. Finally, we leveraged our bioinformatics survey to identify the untapped capacity of carbazole biosynthesis.
Collapse
Affiliation(s)
- Yating Liu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| | - Li Su
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| | - Qing Fang
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Jioji Tabudravu
- School of Forensic & Applied Sciences, Faculty of Science & Technology , University of Central Lancashire , Preston , Lancashire , England PR1 2HE , United Kingdom
| | - Xiaohui Yang
- School of Chemistry , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Kirstie Rickaby
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Laurent Trembleau
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Kwaku Kyeremeh
- Department of Chemistry , University of Ghana , P.O. Box LG56, Legon-Accra , Ghana
| | - Zixin Deng
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Yi Yu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| |
Collapse
|
21
|
Maglangit F, Fang Q, Leman V, Soldatou S, Ebel R, Kyeremeh K, Deng H. Accramycin A, a New Aromatic Polyketide, from the Soil Bacterium, Streptomyces sp. MA37. Molecules 2019; 24:molecules24183384. [PMID: 31533358 PMCID: PMC6767120 DOI: 10.3390/molecules24183384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 11/17/2022] Open
Abstract
Drug-like molecules are known to contain many different building blocks with great potential as pharmacophores for drug discovery. The continued search for unique scaffolds in our laboratory led to the isolation of a novel Ghanaian soil bacterium, Streptomyces sp. MA37. This strain produces many bioactive molecules, most of which belong to carbazoles, pyrrolizidines, and fluorinated metabolites. Further probing of the metabolites of MA37 has led to the discovery of a new naphthacene-type aromatic natural product, which we have named accramycin A 1. This molecule was isolated using an HPLC-photodiode array (PDA) guided isolation process and MS/MS molecular networking. The structure of 1 was characterized by detailed analysis of LC-MS, UV, 1D, and 2D NMR data. Preliminary studies on the antibacterial properties of 1 using Group B Streptococcus (GBS) produced a minimum inhibitory concentration (MIC) of 27 µg/mL. This represents the first report of such bioactivity amongst the naphthacene-type aromatic polyketides, and also suggests the possibility for the further development of potent molecules against GBS based on the accramycin scaffold. A putative acc biosynthetic pathway for accramycin, featuring a tridecaketide-specific type II polyketide synthase, was proposed.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK.
- College of Science, University of the Philippines Cebu, Lahug, Cebu City 6000, Philippines.
| | - Qing Fang
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK.
| | - Valentin Leman
- Organic Chemistry Division, SIGMA Clermont, 27, Rue Roche Genes, 63170 Aubiere, France.
| | - Sylvia Soldatou
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK.
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK.
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon-Accra, Ghana.
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK.
| |
Collapse
|
22
|
Kobayashi M, Tomita T, Shin‐ya K, Nishiyama M, Kuzuyama T. An Unprecedented Cyclization Mechanism in the Biosynthesis of Carbazole Alkaloids in
Streptomyces. Angew Chem Int Ed Engl 2019; 58:13349-13353. [DOI: 10.1002/anie.201906864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Masaya Kobayashi
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Takeo Tomita
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kazuo Shin‐ya
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Graduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
23
|
Kobayashi M, Tomita T, Shin‐ya K, Nishiyama M, Kuzuyama T. An Unprecedented Cyclization Mechanism in the Biosynthesis of Carbazole Alkaloids in
Streptomyces. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masaya Kobayashi
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Takeo Tomita
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kazuo Shin‐ya
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Graduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
24
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Feng Z, Chen G, Zhang J, Zhu H, Yu X, Yin Y, Zhang X. Characterization and Complete Genome Analysis of the Carbazomycin B-Producing Strain Streptomyces luteoverticillatus SZJ61. Curr Microbiol 2019; 76:982-987. [DOI: 10.1007/s00284-019-01711-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 02/02/2023]
|
26
|
Nofiani R, Philmus B, Nindita Y, Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. MEDCHEMCOMM 2019; 10:1517-1530. [PMID: 31673313 DOI: 10.1039/c9md00162j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
Abstract
The 3-ketoacyl-ACP synthase (KAS) III proteins are one of the most abundant enzymes in nature, as they are involved in the biosynthesis of fatty acids and natural products. KAS III enzymes catalyse a carbon-carbon bond formation reaction that involves the α-carbon of a thioester and the carbonyl carbon of another thioester. In addition to the typical KAS III enzymes involved in fatty acid and polyketide biosynthesis, there are proteins homologous to KAS III enzymes that catalyse reactions that are different from that of the traditional KAS III enzymes. Those include enzymes that are responsible for a head-to-head condensation reaction, the formation of acetoacetyl-CoA in mevalonate biosynthesis, tailoring processes via C-O bond formation or esterification, as well as amide formation. This review article highlights the diverse reactions catalysed by this class of enzymes and their role in natural product biosynthesis.
Collapse
Affiliation(s)
- Risa Nofiani
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA . .,Department of Chemistry , Universitas Tanjungpura , Pontianak , Indonesia
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Yosi Nindita
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| |
Collapse
|
27
|
Maglangit F, Tong MH, Jaspars M, Kyeremeh K, Deng H. Legonoxamines A-B, two new hydroxamate siderophores from the soil bacterium, Streptomyces sp. MA37. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Ma XL, Li J, Zheng J, Gu XP, Ferreira D, Zjawiony JK, Zhao MB, Guo XY, Tu PF, Jiang Y. LC-MS-Guided Isolation of Insulin-Secretion-Promoting Monoterpenoid Carbazole Alkaloids from Murraya microphylla. JOURNAL OF NATURAL PRODUCTS 2018; 81:2371-2380. [PMID: 30381950 DOI: 10.1021/acs.jnatprod.8b00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fifteen new structurally unique monoterpenoid carbazole alkaloids, including two pairs of epimers (1/2 and 3/4), three pairs of enantiomers (6a/6b, 7a/7b, and 8a/8b), and five optically pure analogues (5, 9-12), were obtained from a 95% aqueous EtOH extract of Murraya microphylla by a combination of bioassay- and LC-MS-guided fractionation procedures. Their structures were established based on NMR and HRESIMS data interpretation. The absolute configuration of compound 1 was determined via X-ray crystallographic data analysis and for all compounds by comparison of experimental and calculated ECD data. Compounds 1-5 were assigned as five new thujane-carbazole alkaloids, and compounds 6-12 as 10 new menthene-carbazole alkaloids linked through an ether or carbon-carbon bond. Compounds 1-12 promoted insulin secretion in the HIT-T15 cell line, 1.9-3.1-fold higher than the gliclazide control at 100 μM.
Collapse
Affiliation(s)
- Xiao-Li Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing 100029 , People's Republic of China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing 100029 , People's Republic of China
| | - Xiao-Pan Gu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing 100029 , People's Republic of China
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677-1848 , United States
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677-1848 , United States
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Xiao-Yu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , People's Republic of China
| |
Collapse
|
29
|
Yang C, Li W, Li C, Zhou Z, Xiao Y, Yan X. Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. PHYTOCHEMISTRY 2018; 155:83-92. [PMID: 30077898 DOI: 10.1016/j.phytochem.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Ganoderic acids, a group of oxygenated lanostane-type triterpenoids, are the major bioactive compounds produced by the well-known medicinal macro fungus Ganoderma lucidum. More than 150 ganoderic acids have been identified, and the genome of G. lucidum has been sequenced recently. However, the biosynthetic pathways of ganoderic acids have not yet been elucidated. Here, we report the functional characterization of a cytochrome P450 gene CYP512U6 from G. lucidum, which is involved in the ganoderic acid biosynthesis. CYP512U6 hydroxylates the ganoderic acids DM and TR at the C-23 position to produce hainanic acid A and ganoderic acid Jc, respectively. In addition, CYP512U6 can also hydroxylate a modified ganoderic acid DM in which the C-3 ketone has been reduced to hydroxyl by the sterol reductase ERG27 from Saccharomyces cerevisiae. An NADPH-dependent cytochrome P450 reductase from G. lucidum was also isolated and characterized. These results will help elucidate the biosynthetic pathways of ganoderic acids.
Collapse
Affiliation(s)
- Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weichao Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Chen Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Youli Xiao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China.
| |
Collapse
|
30
|
Yao T, Liu J, Liu Z, Li T, Li H, Che Q, Zhu T, Li D, Gu Q, Li W. Genome mining of cyclodipeptide synthases unravels unusual tRNA-dependent diketopiperazine-terpene biosynthetic machinery. Nat Commun 2018; 9:4091. [PMID: 30291234 PMCID: PMC6173783 DOI: 10.1038/s41467-018-06411-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) can catalyze the formation of two successive peptide bonds by hijacking aminoacyl-tRNAs from the ribosomal machinery resulting in diketopiperazines (DKPs). Here, three CDPS-containing loci (dmt1–3) are discovered by genome mining and comparative genome analysis of Streptomyces strains. Among them, CDPS DmtB1, encoded by the gene of dmt1 locus, can synthesize cyclo(L-Trp-L-Xaa) (with Xaa being Val, Pro, Leu, Ile, or Ala). Systematic mutagenesis experiments demonstrate the importance of the residues constituting substrate-binding pocket P1 for the incorporation of the second aa-tRNA in DmtB1. Characterization of dmt1–3 unravels that CDPS-dependent machinery is involved in CDPS-synthesized DKP formation followed by tailoring steps of prenylation and cyclization to afford terpenylated DKP compounds drimentines. A phytoene-synthase-like family prenyltransferase (DmtC1) and a membrane terpene cyclase (DmtA1) are required for drimentines biosynthesis. These results set the foundation for further increasing the natural diversity of complex DKP derivatives. Diketopiperazine derivatives are bioactive molecules with scaffold formed by the condensation of two amino acids. Here, Yao et al. mine the genomes of Streptomyces strains and identify new biosynthetic machinery for drimentines biosynthesis, which includes cyclodipeptide synthase, prenyltransferase, and terpene cyclase.
Collapse
Affiliation(s)
- Tingting Yao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Jing Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Tong Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China.
| |
Collapse
|
31
|
Su L, Zhang R, Kyeremeh K, Deng Z, Deng H, Yu Y. Dissection of the neocarazostatin: a C 4 alkyl side chain biosynthesis by in vitro reconstitution. Org Biomol Chem 2018; 15:3843-3848. [PMID: 28406521 DOI: 10.1039/c7ob00617a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neocarazostatin A (1) is a potent free radical scavenger possessing an intriguing tricyclic carbazole nucleus with a C4 alkyl side chain attached to ring "A". Although the biosynthetic gene cluster of 1 (nzs) has been identified, and several key steps of the pathway have been well characterized, the enzyme(s) involved in the biosynthesis of the C4 unit still remains obscure. In this work, we demonstrate that three enzymes, including one (MA37-FabG) from primary fatty acid metabolism and two pathway-specific ones (NzsE and NzsF), are responsible for the formation of the side chain precursor. We show that NzsE is a free-standing acyl carrier protein (ACP), and NzsF, which is a homolog of β-ketoacyl-acyl carrier protein synthase III (KAS III, also called FabH), catalyzes a decarboxylative condensation between an acetyl-CoA and the NzsE bound malonyl thioester to generate acetoacetyl-NzsE. We also show that NzsF can only accept NzsE as its cognate ACP substrate, suggesting that NzsE and NzsF constitute pathway-specific KAS III enzyme pairs for the assembly line of 1. Furthermore, we have identified two FabG (the NADPH-dependent reductase) homologs from the fatty acid biosynthesis pathway that can reduce the 3-keto group of acetoacetyl-NzsE to generate a 3-hydroxybutyl-NzsE product, which is the putative intermediate for the following incorporation into 1. Therefore, our work successfully reconstitutes the biosynthetic pathway of the C4 alkyl side chain of 1in vitro, and sheds light on the potential of engineering NzsE/F for producing novel neocarazostatin analogues in the host strain.
Collapse
Affiliation(s)
- Li Su
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Su L, Lv M, Kyeremeh K, Deng Z, Deng H, Yu Y. A ThDP-dependent enzymatic carboligation reaction involved in Neocarazostatin A tricyclic carbazole formation. Org Biomol Chem 2018; 14:8679-8684. [PMID: 27714211 DOI: 10.1039/c6ob01651k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the biosynthetic pathway of Neocarazostatin A (1) has been identified, the detailed enzymatic reactions underlying the assembly of the carbazole ring still remain largely unknown. We demonstrate here that NzsH, a putative thiamine diphosphate dependent enzyme, can catalyze an acyloin coupling reaction between indole-3-pyruvate and pyruvate to generate a β-ketoacid intermediate. Our findings thus shed light on further characterization of the unusual biosynthetic pathway of the bacterial tricyclic carbazole alkaloids.
Collapse
Affiliation(s)
- Li Su
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| | - Meinan Lv
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon-Accra, Ghana
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P.R. China.
| |
Collapse
|
33
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
34
|
New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydr Res 2016; 434:83-93. [PMID: 27623438 PMCID: PMC5080398 DOI: 10.1016/j.carres.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Abstract
Soil-dwelling, nitrogen-fixing rhizobia signal their presence to legume hosts by secreting lipo-chitooligomers (LCOs) that are decorated with a variety of chemical substituents. It has long been assumed, but never empirically shown, that the LCO backbone is synthesized first by NodC, NodB, and NodA, followed by addition of one or more substituents by other Nod proteins. By analyzing a collection of in-frame deletion mutants of key nod genes in the bacterium Rhizobium sp. IRBG74 by mass spectrometry, we were able to shed light on the possible substitution order of LCO decorations, and we discovered that the prevailing view is probably erroneous. We found that most substituents could be transferred to a short chitin backbone prior to acylation by NodA, which is probably one of the last steps in LCO biosynthesis. The existence of substituted, short chitin oligomers offers new insights into symbiotic plant–microbe signaling. Rhizobia produce chemically substituted, short chitooligomers (COs). Deacetylation of the non-reducing GlcNAc is necessary for most substitutions. Acylation may be one of the last steps in the biosynthesis of rhizobial lipo-chitooligosaccharides (LCOs).
Collapse
|