1
|
Stankevičius V, Gasiulė L, Vilkaitis G, Klimašauskas S. Selective chemical tracking of DNA methylomes in live cells. Epigenomics 2025:1-3. [PMID: 40327528 DOI: 10.1080/17501911.2025.2500914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Affiliation(s)
- Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Huang C, Harris KS, Siddiqui G, Jörg M. Recommended Tool Compounds: Thienotriazolodiazepines-Derivatized Chemical Probes to Target BET Bromodomains. ACS Pharmacol Transl Sci 2025; 8:978-1012. [PMID: 40242580 PMCID: PMC11997894 DOI: 10.1021/acsptsci.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Thienotriazolodiazepines, including (+)-JQ1 (4), are well-known inhibitors of the bromodomain (BD) and extra-terminal domain (BET) family of proteins. Despite the suboptimal physicochemical properties as a drug candidate, such as poor solubility and half-life, (+)-JQ1 (4) has proven as an effective chemical probe with high target potency and selectivity. (+)-JQ1 (4) and (+)-JQ1-derived chemical probes have played a vital role in chemical biology and drug discovery over the past decade, which is demonstrated by the high number of impactful research studies published since the disclosure of (+)-JQ1 (4) in 2010. In this review, we discuss the development of (+)-JQ1-derivatized chemical probes over the past decade and their significant contribution to scientific research. Specifically, we will summarize the development of innovative label-free and labeled (+)-JQ1-derivatized chemical probes, such as bivalent, covalent, and photoaffinity probes as well as protein degraders, with a focus on the design of these chemical probes.
Collapse
Affiliation(s)
- Chuhui Huang
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Drug
Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical
Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kate S. Harris
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
Upon Tyne NE1 7RU, United Kingdom
| | - Ghizal Siddiqui
- Drug
Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical
Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Manuela Jörg
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
Upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
3
|
Farhi J, Emenike B, Lee RS, Sad K, Fawwal DV, Beusch CM, Jones RB, Verma AK, Jones CY, Foroozani M, Reeves M, Parwani KK, Bagchi P, Deal RB, Katz DJ, Corbett AH, Gordon DE, Raj M, Spangle JM. Dynamic In Vivo Mapping of the Methylproteome Using a Chemoenzymatic Approach. J Am Chem Soc 2025; 147:7214-7230. [PMID: 39996454 PMCID: PMC11887452 DOI: 10.1021/jacs.4c08175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Dynamic protein post-translational methylation is essential for cellular function, highlighted by the essential role of methylation in transcriptional regulation and its aberrant dysregulation in diseases, including cancer. This underscores the importance of cataloging the cellular methylproteome. However, comprehensive analysis of the methylproteome remains elusive due to limitations in current enrichment and analysis pipelines. Here, we employ an l-methionine analogue, ProSeMet, that is chemoenzymatically converted to the SAM analogue ProSeAM in cells and in vivo to tag proteins with a biorthogonal alkyne that can be directly detected via liquid chromatography and tandem mass spectrometry (LC-MS/MS), or functionalized for subsequent selective enrichment and LC-MS/MS identification. Without enrichment, we identify known and novel lysine mono-, di-, and tripargylation, histidine propargylation, and arginine propargylation with site-specific resolution on proteins including heat shock protein HSPA8, the translational elongation factor eEF1A1, and the metabolic enzyme phosphoglycerate mutase 1, or PGAM1, for which methylation has been implicated in human disease. With enrichment, we identify 486 proteins known to be methylated and 221 proteins with novel propargylation sites encompassing diverse cellular functions. Systemic ProSeMet delivery in mice propargylates proteins across organ systems with blood-brain barrier penetrance and identifies site-specific propargylation in vivo with LC-MS/MS. Leveraging these pipelines to define the cellular methylproteome may have broad applications for understanding the methylproteome in the context of disease.
Collapse
Affiliation(s)
- Jonathan Farhi
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Cancer
Biology Program, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Benjamin Emenike
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Richard S. Lee
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kirti Sad
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Dorelle V. Fawwal
- Biochemistry,
Cell, and Developmental Biology Program, Emory University, Atlanta, Georgia 30322, United States
| | - Christian M. Beusch
- Department
of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Robert B. Jones
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ashish K. Verma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Celina Y. Jones
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Maryam Foroozani
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Monica Reeves
- Department
of Cell Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Kiran K. Parwani
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Cancer
Biology Program, Emory University, Atlanta, Georgia 30322, United States
| | - Pritha Bagchi
- Emory Integrated
Proteomics Core, Emory University, Atlanta, Georgia 30322, United States
| | - Roger B. Deal
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - David J. Katz
- Department
of Cell Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Anita H. Corbett
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - David E. Gordon
- Department
of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Spangle
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Kuwik J, Scott V, Chedid S, Stransky S, Hinkelman K, Kavoosi S, Calderon M, Watkins S, Sidoli S, Islam K. Analogue-Sensitive Inhibition of Histone Demethylases Uncovers Member-Specific Function in Ribosomal Protein Synthesis. J Am Chem Soc 2025; 147:3341-3352. [PMID: 39808475 PMCID: PMC11783601 DOI: 10.1021/jacs.4c13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting. Herein, we identify analogue-sensitive (as) mutants of the KDM4 subfamily to elucidate member-specific biological functions in a temporally defined manner. By replacing the highly conserved phenylalanine residue in the active site of KDM4 members with alanine, we develop mutants with intact catalytic activity and substrate specificity indistinguishable from those of the wild type congener. Unlike the wild type demethylases, mutants were sensitized toward cofactor-competitive N-oxalyl glycine (NOG) analogues carrying complementary steric appendage. Particularly notable is N-oxalyl leucine (NOL) which inhibited the KDM4 mutants reversibly with submicromolar efficacy. Cell-permeable NOL prodrugs inhibited as enzymes in cultured human cells to modulate lysine methylation on nucleosomal histones. Through conditional perturbation of the orthogonal enzymes, we uncover a KDM4A-specific role in ribosomal protein synthesis and map a remarkably dynamic signaling cascade involving locus-specific histone demethylation leading to fast rRNA expression, enhanced ribosome assembly, and protein synthesis. The results provide a mechanistic clue into KDM4A's role in cancers that rely on heightened ribosomal activity to support uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Jordan Kuwik
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Valerie Scott
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sara Chedid
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephanie Stransky
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Kathryn Hinkelman
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sam Kavoosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Calderon
- Department
of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simon Watkins
- Department
of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simone Sidoli
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Kabirul Islam
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Moss BL. AuxSynBio: synthetic biology tools to understand and engineer auxin. Curr Opin Biotechnol 2024; 90:103194. [PMID: 39255527 DOI: 10.1016/j.copbio.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The plant hormone auxin is a crucial coordinator of nearly all plant growth and development processes. Because of its centrality to plant physiology and the modular nature of the signaling pathway, auxin has played a critical role at the forefront of plant synthetic biology. This review will highlight how auxin is both a subject and an object of synthetic biology. Engineering biology approaches are deepening our understanding of how auxin pathways are wired and tuned, particularly through the creative use of signaling pathway recapitulation in yeast and engineered orthogonal auxin-receptor pairs. Auxin biology has also been mined for parts by synthetic biologists, with components being used for inducible protein degradation systems (auxin-inducible degron), auxin biosensors, synthetic cell-cell communication, and plant engineering.
Collapse
Affiliation(s)
- Britney L Moss
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| |
Collapse
|
6
|
Liu Y, Bineva-Todd G, Meek RW, Mazo L, Piniello B, Moroz O, Burnap SA, Begum N, Ohara A, Roustan C, Tomita S, Kjaer S, Polizzi K, Struwe WB, Rovira C, Davies GJ, Schumann B. A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V. J Am Chem Soc 2024; 146:26707-26718. [PMID: 39287665 PMCID: PMC11450819 DOI: 10.1021/jacs.4c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme-substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
Collapse
Affiliation(s)
- Yu Liu
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Richard W. Meek
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Laura Mazo
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Beatriz Piniello
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Olga Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Sean A. Burnap
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Nadima Begum
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - André Ohara
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Chloe Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Sara Tomita
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Svend Kjaer
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Karen Polizzi
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Weston B. Struwe
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Benjamin Schumann
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| |
Collapse
|
7
|
Ocasio CA, Baggelaar MP, Sipthorp J, Losada de la Lastra A, Tavares M, Volarić J, Soudy C, Storck EM, Houghton JW, Palma-Duran SA, MacRae JI, Tomić G, Carr L, Downward J, Eggert US, Tate EW. A palmitoyl transferase chemical-genetic system to map ZDHHC-specific S-acylation. Nat Biotechnol 2024; 42:1548-1558. [PMID: 38191663 PMCID: PMC11471619 DOI: 10.1038/s41587-023-02030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/13/2023] [Indexed: 01/10/2024]
Abstract
The 23 human zinc finger Asp-His-His-Cys motif-containing (ZDHHC) S-acyltransferases catalyze long-chain S-acylation at cysteine residues across an extensive network of hundreds of proteins important for normal physiology or dysregulated in disease. Here we present a technology to directly map the protein substrates of a specific ZDHHC at the whole-proteome level, in intact cells. Structure-guided engineering of paired ZDHHC 'hole' mutants and 'bumped' chemically tagged fatty acid probes enabled probe transfer to specific protein substrates with excellent selectivity over wild-type ZDHHCs. Chemical-genetic systems were exemplified for five human ZDHHCs (3, 7, 11, 15 and 20) and applied to generate de novo ZDHHC substrate profiles, identifying >300 substrates and S-acylation sites for new functionally diverse proteins across multiple cell lines. We expect that this platform will elucidate S-acylation biology for a wide range of models and organisms.
Collapse
Affiliation(s)
| | - Marc P Baggelaar
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
- Utrecht University, Biomolecular Mass Spectrometry & Proteomics Group, Utrecht, The Netherlands
| | - James Sipthorp
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Ana Losada de la Lastra
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Manuel Tavares
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Jana Volarić
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | | | - Elisabeth M Storck
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | | | - Susana A Palma-Duran
- The Francis Crick Institute, London, UK
- Department of Food Science, Research Center in Food and Development A.C., Hermosillo, Mexico
| | | | | | | | | | - Ulrike S Eggert
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | - Edward W Tate
- The Francis Crick Institute, London, UK.
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK.
| |
Collapse
|
8
|
Gasiulė L, Stankevičius V, Kvederavičiu Tė K, Rimšelis JM, Klimkevičius V, Petraitytė G, Rukšėnaitė A, Masevičius V, Klimašauskas S. Engineered Methionine Adenosyltransferase Cascades for Metabolic Labeling of Individual DNA Methylomes in Live Cells. J Am Chem Soc 2024; 146:18722-18729. [PMID: 38943667 PMCID: PMC11240257 DOI: 10.1021/jacs.4c06529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Methylation, a widely occurring natural modification serving diverse regulatory and structural functions, is carried out by a myriad of S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). The AdoMet cofactor is produced from l-methionine (Met) and ATP by a family of multimeric methionine adenosyltransferases (MAT). To advance mechanistic and functional studies, strategies for repurposing the MAT and MTase reactions to accept extended versions of the transferable group from the corresponding precursors have been exploited. Here, we used structure-guided engineering of mouse MAT2A to enable biocatalytic production of an extended AdoMet analogue, Ado-6-azide, from a synthetic methionine analogue, S-(6-azidohex-2-ynyl)-l-homocysteine (N3-Met). Three engineered MAT2A variants showed catalytic proficiency with the extended analogues and supported DNA derivatization in cascade reactions with M.TaqI and an engineered variant of mouse DNMT1 both in the absence and presence of competing Met. We then installed two of the engineered variants as MAT2A-DNMT1 cascades in mouse embryonic stem cells by using CRISPR-Cas genome editing. The resulting cell lines maintained normal viability and DNA methylation levels and showed Dnmt1-dependent DNA modification with extended azide tags upon exposure to N3-Met in the presence of physiological levels of Met. This for the first time demonstrates a genetically stable system for biosynthetic production of an extended AdoMet analogue, which enables mild metabolic labeling of a DNMT-specific methylome in live mammalian cells.
Collapse
Affiliation(s)
- Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Kotryna Kvederavičiu Tė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Jonas Mindaugas Rimšelis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vaidas Klimkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Gražina Petraitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Audronė Rukšėnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Brennan PJ, Saunders RE, Spanou M, Serafini M, Sun L, Heger GP, Konopacka A, Beveridge RD, Gordon L, Bunally SB, Saudemont A, Benowitz AB, Martinez-Fleites C, Queisser MA, An H, Deane CM, Hann MM, Brayshaw LL, Conway SJ. Orthogonal IMiD-Degron Pairs Induce Selective Protein Degradation in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585309. [PMID: 38559242 PMCID: PMC10979945 DOI: 10.1101/2024.03.15.585309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.
Collapse
Affiliation(s)
- Patrick J. Brennan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
- Department of Chemistry & Biochemistry, University of California, Los Angeles; Los Angeles, USA
| | | | | | - Marta Serafini
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
| | - Liang Sun
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | | | | | - Ryan D. Beveridge
- Virus Screening Facility, Weatherall Institute of Molecular Medicine, University of Oxford; Oxford, UK
| | | | | | | | | | | | | | - Heeseon An
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | | | | | | | - Stuart J. Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
- Department of Chemistry & Biochemistry, University of California, Los Angeles; Los Angeles, USA
| |
Collapse
|
10
|
Carey SM, Kearns SP, Millington ME, Buechner GS, Alvarez BE, Daneshian L, Abiskaroon B, Chruszcz M, D'Antonio EL. At the outer part of the active site in Trypanosoma cruzi glucokinase: The role of phenylalanine 337. Biochimie 2024; 218:8-19. [PMID: 37741546 DOI: 10.1016/j.biochi.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
The hole mutagenesis approach was used to interrogate the importance of F337 in Trypanosoma cruzi glucokinase (TcGlcK) in order to understand the complete set of binding interactions that are made by d-glucosamine analogue inhibitors containing aromatic tail groups that can extend to the outer part of the active site. An interesting inhibitor of this analogue class includes 2-N-carboxybenzyl-2-deoxy-d-glucosamine (CBZ-GlcN), which exhibits strong TcGlcK binding with a Ki of 710 nM. The residue F337 is found at the outer part of the active site that stems from the second protein subunit of the homodimeric assembly. In this study, F337 was changed to leucine and alanine so as to diminish phenylalanine's side chain size and attenuate intermolecular interactions in this region of the binding cavity. Results from enzyme - inhibitor assays revealed that the phenyl group of F337 made dominant hydrophobic interactions with the phenyl group of CBZ-GlcN as opposed to π - π stacking interactions. Moreover, enzymatic activity assays and X-ray crystallographic experiments indicated that each of these site-directed mutants primarily retained their activity and had high structural similarity of their protein fold. A computed structure model of T. cruzi hexokinase (TcHxK), which was produced by the artificial intelligence system AlphaFold, was compared to an X-ray crystal structure of TcGlcK. Our structural analysis revealed that TcHxK lacked an F337 counterpart residue and probably exists in the monomeric form. We proposed that the d-glucosamine analogue inhibitors that are structurally similar to CBZ-GlcN may not bind as strongly in TcHxK as they do in TcGlcK because of absent van der Waals contact from residue side chains.
Collapse
Affiliation(s)
- Shane M Carey
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Sean P Kearns
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Matthew E Millington
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Gregory S Buechner
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Beda E Alvarez
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brendan Abiskaroon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA.
| |
Collapse
|
11
|
Rajkumar S, Dixon D, Lipchik AM, Gruber JJ. An Acetyl-Click Chemistry Assay to Measure Histone Acetyltransferase 1 Acetylation. J Vis Exp 2024:10.3791/66054. [PMID: 38345235 PMCID: PMC11103210 DOI: 10.3791/66054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
HAT1, also known as Histone acetyltransferase 1, plays a crucial role in chromatin synthesis by stabilizing and acetylating nascent H4 before nucleosome assembly. It is required for tumor growth in various systems, making it a potential target for cancer treatment. To facilitate the identification of compounds that can inhibit HAT1 enzymatic activity, we have devised an acetyl-click assay for rapid screening. In this simple assay, we employ recombinant HAT1/Rbap46, which is purified from activated human cells. The method utilizes the acetyl-CoA analog 4-pentynoyl-CoA (4P) in a click-chemistry approach. This involves the enzymatic transfer of an alkyne handle through a HAT1-dependent acylation reaction to a biotinylated H4 N-terminal peptide. The captured peptide is then immobilized on neutravidin plates, followed by click-chemistry functionalization with biotin-azide. Subsequently, streptavidin-peroxidase recruitment is employed to oxidize amplex red, resulting in a quantitative fluorescent output. By introducing chemical inhibitors during the acylation reaction, we can quantify enzymatic inhibition based on a reduction of the fluorescence signal. Importantly, this reaction is scalable, allowing for high throughput screening of potential inhibitors for HAT1 enzymatic activity.
Collapse
Affiliation(s)
- Shreenidhi Rajkumar
- Departments of Internal Medicine and the Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center
| | - Danielle Dixon
- Departments of Internal Medicine and the Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center
| | - Andrew M Lipchik
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
| | - Joshua J Gruber
- Departments of Internal Medicine and the Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center;
| |
Collapse
|
12
|
Gan ZY, Callegari S, Nguyen TN, Kirk NS, Leis A, Lazarou M, Dewson G, Komander D. Interaction of PINK1 with nucleotides and kinetin. SCIENCE ADVANCES 2024; 10:eadj7408. [PMID: 38241364 PMCID: PMC10798554 DOI: 10.1126/sciadv.adj7408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The ubiquitin kinase PINK1 accumulates on damaged mitochondria to trigger mitophagy, and PINK1 loss-of-function mutations cause early onset Parkinson's disease. Nucleotide analogs such as kinetin triphosphate (KTP) were reported to enhance PINK1 activity and may represent a therapeutic strategy for the treatment of Parkinson's disease. Here, we investigate the interaction of PINK1 with nucleotides, including KTP. We establish a cryo-EM platform exploiting the dodecamer assembly of Pediculus humanus corporis (Ph) PINK1 and determine PINK1 structures bound to AMP-PNP and ADP, revealing conformational changes in the kinase N-lobe that help establish PINK1's ubiquitin binding site. Notably, we find that KTP is unable to bind PhPINK1 or human (Hs) PINK1 due to a steric clash with the kinase "gatekeeper" methionine residue, and mutation to Ala or Gly is required for PINK1 to bind and use KTP as a phosphate donor in ubiquitin phosphorylation and mitophagy. HsPINK1 M318G can be used to conditionally uncouple PINK1 stabilization and activity on mitochondria.
Collapse
Affiliation(s)
- Zhong Yan Gan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sylvie Callegari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Thanh N. Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nicholas S. Kirk
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Leis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Thomas AM, Serafini M, Grant EK, Coombs EAJ, Bluck JP, Schiedel M, McDonough MA, Reynolds JK, Lee B, Platt M, Sharlandjieva V, Biggin PC, Duarte F, Milne TA, Bush JT, Conway SJ. Mutate and Conjugate: A Method to Enable Rapid In-Cell Target Validation. ACS Chem Biol 2023; 18:2405-2417. [PMID: 37874862 PMCID: PMC10660337 DOI: 10.1021/acschembio.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Target validation remains a challenge in drug discovery, which leads to a high attrition rate in the drug discovery process, particularly in Phase II clinical trials. Consequently, new approaches to enhance target validation are valuable tools to improve the drug discovery process. Here, we report the combination of site-directed mutagenesis and electrophilic fragments to enable the rapid identification of small molecules that selectively inhibit the mutant protein. Using the bromodomain-containing protein BRD4 as an example, we employed a structure-based approach to identify the L94C mutation in the first bromodomain of BRD4 [BRD4(1)] as having a minimal effect on BRD4(1) function. We then screened a focused, KAc mimic-containing fragment set and a diverse fragment library against the mutant and wild-type proteins and identified a series of fragments that showed high selectivity for the mutant protein. These compounds were elaborated to include an alkyne click tag to enable the attachment of a fluorescent dye. These clickable compounds were then assessed in HEK293T cells, transiently expressing BRD4(1)WT or BRD4(1)L94C, to determine their selectivity for BRD4(1)L94C over other possible cellular targets. One compound was identified that shows very high selectivity for BRD4(1)L94C over all other proteins. This work provides a proof-of-concept that the combination of site-directed mutagenesis and electrophilic fragments, in a mutate and conjugate approach, can enable rapid identification of small molecule inhibitors for an appropriately mutated protein of interest. This technology can be used to assess the cellular phenotype of inhibiting the protein of interest, and the electrophilic ligand provides a starting point for noncovalent ligand development.
Collapse
Affiliation(s)
- Adam M. Thomas
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marta Serafini
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emma K. Grant
- Department
of Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Edward A. J. Coombs
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph P. Bluck
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jessica K. Reynolds
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bernadette Lee
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael Platt
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Vassilena Sharlandjieva
- MRC
Molecular Haematology Unit, MRC Weatherall Institute of Molecular
Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United
Kingdom
| | - Philip C. Biggin
- Department
of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Fernanda Duarte
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Thomas A. Milne
- MRC
Molecular Haematology Unit, MRC Weatherall Institute of Molecular
Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United
Kingdom
| | - Jacob T. Bush
- Department
of Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|
14
|
Suzuki T, Utsugi Y, Yamanaka S, Takahashi H, Sato Y, Sawasaki T, Miyamae Y. A strategy for orthogonal deubiquitination using a bump-and-hole approach. RSC Chem Biol 2023; 4:879-883. [PMID: 37920396 PMCID: PMC10619139 DOI: 10.1039/d3cb00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
We have successfully applied a bump-and-hole approach to establish orthogonal deubiquitination in which a ubiquitin substrate variant is specifically targeted by an engineered deubiquitinating enzyme (DUB). This makes it possibe to selectively observe and measure a single type of DUB activity in living cells.
Collapse
Affiliation(s)
- Takumi Suzuki
- Master's/Doctoral Program in Life Science Innovation, Graduate School of Comprehensive Human Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| | - Yuki Utsugi
- Master's/Doctoral Program in Life Science Innovation, Graduate School of Comprehensive Human Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| | - Satoshi Yamanaka
- Division of Cell-Free Science, Proteo-Science Center, Ehime University Matsuyama Ehime 790-8577 Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Science, Proteo-Science Center, Ehime University Matsuyama Ehime 790-8577 Japan
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Tottori University Tottori 680-8552 Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University Tottori 680-8552 Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Science, Proteo-Science Center, Ehime University Matsuyama Ehime 790-8577 Japan
| | - Yusaku Miyamae
- Institute of Life and Environmental Sciences, University of Tsukuba Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
15
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
16
|
Jones NH, Kapoor TM. Achieving the promise and avoiding the peril of chemical probes using genetics. Curr Opin Struct Biol 2023; 81:102628. [PMID: 37364429 PMCID: PMC10561518 DOI: 10.1016/j.sbi.2023.102628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Chemical probes can be valuable tools for studying protein targets, but addressing concerns about a probe's cellular target or its specificity can be challenging. A reliable strategy is to use a mutation that does not alter a target's function but confers resistance (or sensitizes) to the inhibitor in both cellular and biochemical assays. However, challenges remain in finding such mutations. Here, we discuss structure- and cell-based approaches to identify resistance- and sensitivity-conferring mutations. Further, we describe how resistance-conferring mutations can help with compound design, and the use of saturation mutagenesis to characterize a compound binding site. We highlight how genetic approaches can ensure the proper use of chemical inhibitors to pursue mechanistic studies and test therapeutic hypotheses.
Collapse
Affiliation(s)
- Natalie H Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Dasovich M, Leung AKL. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools. Mol Cell 2023; 83:1552-1572. [PMID: 37119811 PMCID: PMC10202152 DOI: 10.1016/j.molcel.2023.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
PARPs catalyze ADP-ribosylation-a post-translational modification that plays crucial roles in biological processes, including DNA repair, transcription, immune regulation, and condensate formation. ADP-ribosylation can be added to a wide range of amino acids with varying lengths and chemical structures, making it a complex and diverse modification. Despite this complexity, significant progress has been made in developing chemical biology methods to analyze ADP-ribosylated molecules and their binding proteins on a proteome-wide scale. Additionally, high-throughput assays have been developed to measure the activity of enzymes that add or remove ADP-ribosylation, leading to the development of inhibitors and new avenues for therapy. Real-time monitoring of ADP-ribosylation dynamics can be achieved using genetically encoded reporters, and next-generation detection reagents have improved the precision of immunoassays for specific forms of ADP-ribosylation. Further development and refinement of these tools will continue to advance our understanding of the functions and mechanisms of ADP-ribosylation in health and disease.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Franciosa G, Locard-Paulet M, Jensen LJ, Olsen JV. Recent advances in kinase signaling network profiling by mass spectrometry. Curr Opin Chem Biol 2023; 73:102260. [PMID: 36657259 DOI: 10.1016/j.cbpa.2022.102260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Mass spectrometry-based phosphoproteomics is currently the leading methodology for the study of global kinase signaling. The scientific community is continuously releasing technological improvements for sensitive and fast identification of phosphopeptides, and their accurate quantification. To interpret large-scale phosphoproteomics data, numerous bioinformatic resources are available that help understanding kinase network functional role in biological systems upon perturbation. Some of these resources are databases of phosphorylation sites, protein kinases and phosphatases; others are bioinformatic algorithms to infer kinase activity, predict phosphosite functional relevance and visualize kinase signaling networks. In this review, we present the latest experimental and bioinformatic tools to profile protein kinase signaling networks and provide examples of their application in biomedicine.
Collapse
Affiliation(s)
- Giulia Franciosa
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Locard-Paulet
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Chen J, Huang Y, Gan WB, Tsai YH. Selective Inhibition of Kinase Activity in Mammalian Cells by Bioorthogonal Ligand Tethering. Methods Mol Biol 2023; 2676:215-232. [PMID: 37277636 DOI: 10.1007/978-1-0716-3251-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzymes are critical for cellular functions, and malfunction of enzymes is closely related to many human diseases. Inhibition studies can help in deciphering the physiological roles of enzymes and guide conventional drug development programs. In particular, chemogenetic approaches enabling rapid and selective inhibition of enzymes in mammalian cells have unique advantages. Here, we describe the procedure for rapid and selective inhibition of a kinase in mammalian cells by bioorthogonal ligand tethering (iBOLT). Briefly, a non-canonical amino acid bearing a bioorthogonal group is genetically incorporated into the target kinase by genetic code expansion. The sensitized kinase can react with a conjugate containing a complementary biorthogonal group linked with a known inhibitory ligand. As a result, tethering of the conjugate to the target kinase allows selective inhibition of protein function. Here, we demonstrate this method by using cAMP-dependent protein kinase catalytic subunit alpha (PKA-Cα) as the model enzyme. The method should be applicable to other kinases, enabling their rapid and selective inhibition.
Collapse
Affiliation(s)
- Jinghao Chen
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yang Huang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen-Biao Gan
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
20
|
Scott V, Dey D, Kuwik J, Hinkelman K, Waldman M, Islam K. Allele-Specific Chemical Rescue of Histone Demethylases Using Abiotic Cofactors. ACS Chem Biol 2022; 17:3321-3330. [PMID: 34496208 DOI: 10.1021/acschembio.1c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Closely related protein families evolved from common ancestral genes present a significant hurdle in developing member- and isoform-specific chemical probes, owing to their similarity in fold and function. In this piece of work, we explore an allele-specific chemical rescue strategy to activate a "dead" variant of a wildtype protein using synthetic cofactors and demonstrate its successful application to the members of the alpha-ketoglutarate (αKG)-dependent histone demethylase 4 (KDM4) family. We show that a mutation at a specific residue in the catalytic site renders the variant inactive toward the natural cosubstrate. In contrast, αKG derivatives bearing appropriate stereoelectronic features endowed the mutant with native-like demethylase activity while remaining refractory to a set of wild type dioxygenases. The orthogonal enzyme-cofactor pairs demonstrated site- and degree-specific lysine demethylation on a full-length chromosomal histone in the cellular milieu. Our work offers a strategy to modulate a specific histone demethylase by identifying and engineering a conserved phenylalanine residue, which acts as a gatekeeper in the KDM4 subfamily, to sensitize the enzyme toward a novel set of αKG derivatives. The orthogonal pairs developed herein will serve as probes to study the role of degree-specific lysine demethylation in mammalian gene expression. Furthermore, this approach to overcome active site degeneracy is expected to have general application among all human αKG-dependent dioxygenases.
Collapse
Affiliation(s)
- Valerie Scott
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Debasis Dey
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan Kuwik
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kathryn Hinkelman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Megan Waldman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Burns MWN, Kohler JJ. Engineering Glyco‐Enzymes for Substrate Identification and Targeting. Isr J Chem 2022. [DOI: 10.1002/ijch.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mary W. N. Burns
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| | - Jennifer J. Kohler
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| |
Collapse
|
22
|
Fets L, Bevan N, Nunes PM, Campos S, Dos Santos MS, Sherriff E, MacRae JI, House D, Anastasiou D. MOG analogues to explore the MCT2 pharmacophore, α-ketoglutarate biology and cellular effects of N-oxalylglycine. Commun Biol 2022; 5:877. [PMID: 36028752 PMCID: PMC9418262 DOI: 10.1038/s42003-022-03805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.
Collapse
Affiliation(s)
- Louise Fets
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
- Drug Transport and Tumour Metabolism Lab, MRC London Institute of Medical Sciences, London, UK
| | - Natalie Bevan
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Patrícia M Nunes
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | | | | | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | |
Collapse
|
23
|
Song J, Han Z, Zheng YG. Identification and Profiling of Histone Acetyltransferase Substrates by Bioorthogonal Labeling. Curr Protoc 2022; 2:e497. [PMID: 35849593 DOI: 10.1002/cpz1.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Histone acetyltransferases (HATs, also known as lysine acetyltransferases, KATs) catalyze acetylation of their cognate protein substrates using acetyl-CoA (Ac-CoA) as a cofactor and are involved in various physiological and pathological processes. Advances in mass spectrometry-based proteomics have allowed the discovery of thousands of acetylated proteins and the specific acetylated lysine sites. However, due to the rapid dynamics and functional redundancy of HAT activities, and the limitation of using antibodies to capture acetylated lysines, it is challenging to systematically and precisely define both the substrates and sites directly acetylated by a given HAT. Here, we describe a chemoproteomic approach to identify and profile protein substrates of individual HAT enzymes on the proteomic scale. The approach involves protein engineering to enlarge the Ac-CoA binding pocket of the HAT of interest, such that a mutant form is generated that can use functionalized acyl-CoAs as a cofactor surrogate to bioorthogonally label its protein substrates. The acylated protein substrates can then be chemoselectively conjugated either with a fluorescent probe (for imaging detection) or with a biotin handle (for streptavidin pulldown and chemoproteomic identification). This modular chemical biology approach has been successfully implemented to identify protein substrates of p300, GCN5, and HAT1, and it is expected that this method can be applied to profile and identify the sub-acetylomes of many other HAT enzymes. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Labeling HAT protein substrates with azide/alkyne-biotin Alternate Protocol: Labeling protein substrates of HATs with azide/alkyne-TAMRA for in-gel visualization Support Protocol 1: Expression and purification of HAT mutants Support Protocol 2: Synthesis of Ac-CoA surrogates Basic Protocol 2: Streptavidin enrichment of biotinylated HAT substrates Basic Protocol 3: Chemoproteomic identification of HAT substrates Basic Protocol 4: Validation of specific HAT substrates with western blotting.
Collapse
Affiliation(s)
- Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| |
Collapse
|
24
|
Song J, Ngo L, Bell K, Zheng YG. Chemoproteomic Profiling of Protein Substrates of a Major Lysine Acetyltransferase in the Native Cellular Context. ACS Chem Biol 2022; 17:1092-1102. [PMID: 35417122 DOI: 10.1021/acschembio.1c00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The family of lysine acetyltransferases (KATs) regulates epigenetics and signaling pathways in eukaryotic cells. So far, knowledge of different KAT members contributing to the cellular acetylome is limited, which limits our understanding of biological functions of KATs in physiology and disease. Here, we found that a clickable acyl-CoA reporter, 3-azidopropanoyl CoA (3AZ-CoA), presented remarkable cell permeability and effectively acylated proteins in cells. We rationally engineered the major KAT member, histone acetyltransferase 1 (HAT1), to generate its mutant forms that displayed excellent bio-orthogonal activity for 3AZ-CoA in substrate labeling. We were able to apply the bio-orthogonal enzyme-cofactor pair combined with SILAC proteomics to achieve HAT1 substrate targeting, enrichment, and proteomic profiling in living cells. A total of 123 protein substrates of HAT1 were disclosed, underlining the multifactorial functions of this important enzyme than hitherto known. This study demonstrates the first example of utilizing bio-orthogonal reporters as a chemoproteomic strategy for substrate mapping of individual KAT isoforms in the native biological contexts.
Collapse
Affiliation(s)
- Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Liza Ngo
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Kaylyn Bell
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Webb T, Craigon C, Ciulli A. Targeting epigenetic modulators using PROTAC degraders: Current status and future perspective. Bioorg Med Chem Lett 2022; 63:128653. [PMID: 35257896 DOI: 10.1016/j.bmcl.2022.128653] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023]
Abstract
Epigenetic modulators perform critical functions in gene expression for rapid adaption to external stimuli and are prevalent in all higher-order organisms. The establishment of a link between dysregulation of epigenetic processes and disease pathogenesis, particularly in cancer, has led to much interest in identifying drug targets. This prompted the development of small molecule inhibitors, primarily in haematological malignancies. While there have been epigenetic-targeting drugs to receive FDA approval for the treatment of cancers, many suffer from limited applicability, toxicity and the onset of drug resistance, as our understanding of the biology remains incomplete. The recent advent of genome-wide RNAi and CRISPR screens has shed new light on loss of specific proteins causing vulnerabilities of specific cancer types, highlighting the potential for exploiting synthetic lethality as a therapeutic approach. However, small molecule inhibitors have largely been unable to recapitulate phenotypic effects observed using genome-wide knockdown approaches. This mechanistic disconnect and gap are set to be addressed by targeted protein degradation. Degraders such as PROTACs targeting epigenetic proteins recapitulate CRISPR mediated genetic knockdown at the post-translational level and therefore can better exploit target druggability. Here, we review the current landscape of epigenetic drug discovery, the rationale behind and progress made in the development of PROTAC degraders, and look at future perspectives for the field.
Collapse
Affiliation(s)
- Thomas Webb
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Conner Craigon
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
26
|
Spear LA, Huang Y, Chen J, Nödling AR, Virdee S, Tsai YH. Selective Inhibition of Cysteine-Dependent Enzymes by Bioorthogonal Tethering. J Mol Biol 2022; 434:167524. [PMID: 35248542 DOI: 10.1016/j.jmb.2022.167524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
A general approach for the rapid and selective inhibition of enzymes in cells using a common tool compound would be of great value for research and therapeutic development. We previously reported a chemogenetic strategy that addresses this challenge for kinases, relying on bioorthogonal tethering of a pan inhibitor to a target kinase through a genetically encoded non-canonical amino acid. However, pan inhibitors are not available for many enzyme classes. Here, we expand the scope of the chemogenetic strategy to cysteine-dependent enzymes by bioorthogonal tethering of electrophilic warheads. For proof of concept, selective inhibition of two E2 ubiquitin-conjugating enzymes, UBE2L3 and UBE2D1, was demonstrated in biochemical assays. Further development and optimization of this approach should enable its use in cells as well as with other cysteine-dependent enzymes, facilitating the investigation of their cellular function and validation as therapeutic targets.
Collapse
Affiliation(s)
- Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Yang Huang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinghao Chen
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, United Kingdom; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
27
|
Kumar P, Lavis LD. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annu Rev Neurosci 2022; 45:131-150. [PMID: 35226826 DOI: 10.1146/annurev-neuro-110520-030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
28
|
Zhang W, Zhao S, Lu L, Fan Z, Ye S. Activation of neurotrophin signalling with light‑inducible receptor tyrosine kinases. Mol Med Rep 2022; 25:70. [PMID: 35014690 PMCID: PMC8767455 DOI: 10.3892/mmr.2022.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/17/2020] [Indexed: 11/05/2022] Open
Abstract
Optogenetics combined with protein engineering based on natural light-sensitive dimerizing proteins has evolved as a powerful strategy to study cellular functions. The present study focused on tropomyosin kinase receptors (Trks) that have been engineered to be light-sensitive. Trk belongs to the superfamily of receptor tyrosine kinases (RTKs), which are single-pass transmembrane receptors that are activated by natural ligands and serve crucial roles in cellular growth, differentiation, metabolism and motility. However, functional variations exist among receptors fused with light-sensitive proteins. The present study proposed a signal transduction model for light-induced receptor activation. This model is based on analysis of previous light-induced Trk receptors reported to date and comparisons to the activation mechanism of natural receptors. In this model, quantitative differences on the dimerization induced from either top-to-bottom or bottom-to-up may lead to the varying amplitude of intracellular signals. We hypothesize that the top-to-bottom propagation is more favourable for activation and yields better results compared with the bottom-to-top direction. The careful delineation of the dimerization mechanisms fine-tuning activation will guide future design for an optimum cellular output with the precision of light.
Collapse
Affiliation(s)
- Wei Zhang
- Anesthesiology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shu Zhao
- School of Life Science, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Linjie Lu
- Institute of Genetics, Molecular and Cellular Biology, University of Strasbourg, Illkirch 67400, France
| | - Zhimin Fan
- Anesthesiology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shixin Ye
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1195, Bicetre Hospital, Paris‑Saclay University, Le Kremlin-Bicêtre 94276, France
| |
Collapse
|
29
|
Gisriel CJ, Shen G, Ho MY, Kurashov V, Flesher DA, Wang J, Armstrong WH, Golbeck JH, Gunner MR, Vinyard DJ, Debus RJ, Brudvig GW, Bryant DA. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. J Biol Chem 2022; 298:101424. [PMID: 34801554 PMCID: PMC8689208 DOI: 10.1016/j.jbc.2021.101424] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022] Open
Abstract
Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marilyn R Gunner
- Department of Physics, City College of New York, New York, New York, USA
| | - David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
30
|
Guo Z, Smutok O, Johnston WA, Ayva CE, Walden P, McWhinney B, Ungerer JPJ, Melman A, Katz E, Alexandrov K. Circular Permutated PQQ‐Glucose Dehydrogenase as an Ultrasensitive Electrochemical Biosensor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Cagla Ergun Ayva
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Brett McWhinney
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
| | - Jacobus P. J. Ungerer
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
- Faculty of Health and Behavioural Sciences University of Queensland Brisbane QLD 4072 Australia
| | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
31
|
Xiao R, Zhao L, Ma H, Liu Q, Qin H, Luo X, Xuan W. Toward an Orthogonal Protein Lysine Acylation and Deacylation System. Chembiochem 2021; 23:e202100551. [PMID: 34904351 DOI: 10.1002/cbic.202100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Lysine acetylation is one of the most basic molecular mechanisms to mediate protein functions in living organisms, and its abnormal regulation has been linked to many diseases. The drug development associated to this process is of great significance but severely hindered by the complex interplay of lysine acetylation and deacetylation in thousands of proteins, and we reasoned that targeting a specific protein acetylation or deacetylation event instead of the related enzymes should be a feasible solution to this issue. Toward this goal, we devised an orthogonal lysine acylation and deacylation (OKAD) system, which potentially could precisely dissect the biological consequence of an individual acetylation or deacetylation event in living cells. The system includes a genetically encoded acylated lysine (PhOAcK) that is not a substrate of endogenous deacetylases, and an evolved sirtuin (CobB2/CobB3) that displays PhOAcK deacylase activities as well as reduced deacetylase activities. We believe the strategy introduced here holds potential for future in-depth biological applications.
Collapse
Affiliation(s)
- Ruotong Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hongpeng Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qiaoli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Xiaozhou Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
32
|
Freedy AM, Liau BB. Discovering new biology with drug-resistance alleles. Nat Chem Biol 2021; 17:1219-1229. [PMID: 34799733 PMCID: PMC9530778 DOI: 10.1038/s41589-021-00865-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Small molecule drugs form the backbone of modern medicine's therapeutic arsenal. Often less appreciated is the role that small molecules have had in advancing basic biology. In this Review, we highlight how resistance mutations have unlocked the potential of small molecule chemical probes to discover new biology. We describe key instances in which resistance mutations and related genetic variants yielded foundational biological insight and categorize these examples on the basis of their role in the discovery of novel molecular mechanisms, protein allostery, physiology and cell signaling. Next, we suggest ways in which emerging technologies can be leveraged to systematically introduce and characterize resistance mutations to catalyze basic biology research and drug discovery. By recognizing how resistance mutations have propelled biological discovery, we can better harness new technologies and maximize the potential of small molecules to advance our understanding of biology and improve human health.
Collapse
Affiliation(s)
- Allyson M. Freedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Brian B. Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Correspondence should be addressed to Brian B. Liau,
| |
Collapse
|
33
|
Alexandrov K, Guo Z, Smutok O, Wayne A Johnston WAJ, Ergun Ayva C, Walden PM, McWhinney B, Ungerer J, Melman A, Katz E. Circular permutated PQQ-glucose dehydrogenase as an ultrasensitive electrochemical biosensor. Angew Chem Int Ed Engl 2021; 61:e202109005. [PMID: 34633119 DOI: 10.1002/anie.202109005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/08/2022]
Abstract
Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10 fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain:ligand complexes. The developed biosensors demonstrated sub-nanomolar affinities for small molecules and proteins in colorimetric and electrochemical assays. For instance, the concentration of Cyclosporine A could be measured in 1 ml of undiluted blood with the same accuracy as the leading diagnostic technique that uses 50 times more sample. We further used this biosensor to construct highly porous gold bioelectrodes capable of robustly detecting concentrations of Cyclosporine A as low as 20 pM and retained functionality in samples containing at least 60% human serum. These experiments suggest that the developed biosensor platform is generalizable and may be suitable for Point-of-Care diagnostics.
Collapse
Affiliation(s)
- Kirill Alexandrov
- Queensland University of Technology, Centre for Tropical Crops and Biocommodities, 2 george st, 4100, Brisbane, AUSTRALIA
| | - Zhong Guo
- Queensland University of Technology Institute of Health and Biomedical Innovation Research Methods Group: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Oleh Smutok
- Clarkson University, electrochemistry, UNITED STATES
| | - Wayne A Johnston Wayne A Johnston
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Cagla Ergun Ayva
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT Synthetic Biology Alliance, AUSTRALIA
| | - Patricia M Walden
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic biology alliance, AUSTRALIA
| | - Brett McWhinney
- Central Laboratory: Health Support Queensland Pathology Queensland, chemical pathology, AUSTRALIA
| | - Jacobus Ungerer
- Health Support Queensland Pathology Queensland, Chemical Pathology, AUSTRALIA
| | | | - Evgeny Katz
- Clarkson University, electrochemistry, AUSTRALIA
| |
Collapse
|
34
|
Hassell DS, Steingesser MG, Denney AS, Johnson CR, McMurray MA. Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules. G3-GENES GENOMES GENETICS 2021; 11:6323229. [PMID: 34544143 PMCID: PMC8496222 DOI: 10.1093/g3journal/jkab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of "chemical rescue" by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from "off-target" effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Collapse
Affiliation(s)
- Daniel S Hassell
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
35
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Nowak RP, Xiong Y, Kirmani N, Kalabathula J, Donovan KA, Eleuteri NA, Yuan JC, Fischer ES. Structure-Guided Design of a "Bump-and-Hole" Bromodomain-Based Degradation Tag. J Med Chem 2021; 64:11637-11650. [PMID: 34279939 DOI: 10.1021/acs.jmedchem.1c00958] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical biology tools to modulate protein levels in cells are critical to decipher complex biology. Targeted protein degradation offers the potential for rapid and dose-dependent protein depletion through the use of protein fusion tags toward which protein degraders have been established. Here, we present a newly developed protein degradation tag BRD4BD1L94V along with the corresponding cereblon (CRBN)-based heterobifunctional degrader based on a "bump-and-hole" approach. The resulting compound XY-06-007 shows a half-degradation concentration (DC50, 6 h) of 10 nM against BRD4BD1L94V with no degradation of off-targets, as assessed by whole proteome mass spectrometry, and demonstrates suitable pharmacokinetics for in vivo studies. We demonstrate that BRD4BD1L94V can be combined with the dTAG approach to achieve simultaneous degrader-mediated depletion of their respective protein fusions. This orthogonal system complements currently available protein degradation tags and enables investigation into the consequences resulting from rapid degradation of previously undruggable disease codependencies.
Collapse
Affiliation(s)
- Radosław P Nowak
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nadia Kirmani
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Joann Kalabathula
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Katherine A Donovan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nicholas A Eleuteri
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - J Christine Yuan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
37
|
Tsai YH, Doura T, Kiyonaka S. Tethering-based chemogenetic approaches for the modulation of protein function in live cells. Chem Soc Rev 2021; 50:7909-7923. [PMID: 34114579 DOI: 10.1039/d1cs00059d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteins are the workhorse molecules performing various tasks to sustain life. To investigate the roles of a protein under physiological conditions, the rapid modulation of the protein with high specificity in a living system would be ideal, but achieving this is often challenging. To address this challenge, researchers have developed chemogenetic strategies for the rapid and selective modulation of protein function in live cells. Here, the target protein is modified genetically to become sensitive to a designer molecule that otherwise has no effect on other cellular biomolecules. One powerful chemogenetic strategy is to introduce a tethering point into the target protein, allowing covalent or non-covalent attachment of the designer molecule. In this tutorial review, we focus on tethering-based chemogenetic approaches for modulating protein function in live cells. We first describe genetic, optogenetic and chemical means to study protein function. These means lay the basis for the chemogenetic concept, which is explained in detail. The next section gives an overview, including advantages and limitations, of tethering tactics that have been employed for modulating cellular protein function. The third section provides examples of the modulation of cell-surface proteins using tethering-based chemogenetics through non-covalent tethering and covalent tethering for irreversible modulation or functional switching. The fourth section presents intracellular examples. The last section summarizes key considerations in implementing tethering-based chemogenetics and shows perspectives highlighting future directions and other applications of this burgeoning research field.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | | | | |
Collapse
|
38
|
Huxley KE, Willems LI. Chemical reporters to study mammalian O-glycosylation. Biochem Soc Trans 2021; 49:903-913. [PMID: 33860782 PMCID: PMC8106504 DOI: 10.1042/bst20200839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.
Collapse
Affiliation(s)
- Kathryn E. Huxley
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| |
Collapse
|
39
|
Heineike BM, El-Samad H. Paralogs in the PKA Regulon Traveled Different Evolutionary Routes to Divergent Expression in Budding Yeast. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:642336. [PMID: 37744115 PMCID: PMC10512328 DOI: 10.3389/ffunb.2021.642336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 09/26/2023]
Abstract
Functional divergence of duplicate genes, or paralogs, is an important driver of novelty in evolution. In the model yeast Saccharomyces cerevisiae, there are 547 paralog gene pairs that survive from an interspecies Whole Genome Hybridization (WGH) that occurred ~100MYA. In this work, we report that ~1/6th (110) of these WGH paralogs pairs (or ohnologs) are differentially expressed with a striking pattern upon Protein Kinase A (PKA) inhibition. One member of each pair in this group has low basal expression that increases upon PKA inhibition, while the other has moderate and unchanging expression. For these genes, expression of orthologs upon PKA inhibition in the non-WGH species Kluyveromyces lactis and for PKA-related stresses in other budding yeasts shows unchanging expression, suggesting that lack of responsiveness to PKA was likely the typical ancestral phenotype prior to duplication. Promoter sequence analysis across related budding yeast species further revealed that the subsequent emergence of PKA-dependence took different evolutionary routes. In some examples, regulation by PKA and differential expression appears to have arisen following the WGH, while in others, regulation by PKA appears to have arisen in one of the two parental lineages prior to the WGH. More broadly, our results illustrate the unique opportunities presented by a WGH event for generating functional divergence by bringing together two parental lineages with separately evolved regulation into one species. We propose that functional divergence of two ohnologs can be facilitated through such regulatory divergence.
Collapse
Affiliation(s)
- Benjamin M. Heineike
- Bioinformatics Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
40
|
Tiwari AD, Guan Y, Grabowski DR, Maciejewski JP, Jha BK, Phillips JG. SAR insights into TET2 catalytic domain inhibition: Synthesis of 2-Hydroxy-4-Methylene-pentanedicarboxylates. Bioorg Med Chem 2021; 39:116141. [PMID: 33894507 DOI: 10.1016/j.bmc.2021.116141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022]
Abstract
The TET (Ten-Eleven Translocation) dioxygenase enzyme family comprising 3 members, TET1-3, play key roles in DNA demethylation. These processes regulate transcription programs that determine cell lineage, survival, proliferation, and differentiation. The impetus for our investigations described here is derived from the need to develop illuminating small molecule probes for TET enzymes with cellular activity and specificity. The studies were done so in the context of the importance of TET2 in the hematopoietic system and the preponderance of loss of function somatic TET2 mutations in myeloid diseases. We have identified that 2-hydroxy-4-methylene-pentanedicarboxylic acid 2a reversibly competes with the co-substrate α-KG in the TET2 catalytic domain and inhibits the dioxygenase activity with an IC50 = 11.0 ± 0.9 μM at 10 μM α-KG in a cell free system and binds in the TET2 catalytic domain with Kd = 0.3 ± 0.12 μM.
Collapse
Affiliation(s)
- Anand D Tiwari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195, USA.
| | - Yihong Guan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195, USA
| | - Dale R Grabowski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Babal K Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James G Phillips
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Jaeger MG, Winter GE. Fast-acting chemical tools to delineate causality in transcriptional control. Mol Cell 2021; 81:1617-1630. [PMID: 33689749 DOI: 10.1016/j.molcel.2021.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.
Collapse
Affiliation(s)
- Martin G Jaeger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
42
|
Cupido T, Jones NH, Grasso MJ, Pisa R, Kapoor TM. A chemical genetics approach to examine the functions of AAA proteins. Nat Struct Mol Biol 2021; 28:388-397. [PMID: 33782614 DOI: 10.1038/s41594-021-00575-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The structural conservation across the AAA (ATPases associated with diverse cellular activities) protein family makes designing selective chemical inhibitors challenging. Here, we identify a triazolopyridine-based fragment that binds the AAA domain of human katanin, a microtubule-severing protein. We have developed a model for compound binding and designed ASPIR-1 (allele-specific, proximity-induced reactivity-based inhibitor-1), a cell-permeable compound that selectively inhibits katanin with an engineered cysteine mutation. Only in cells expressing mutant katanin does ASPIR-1 treatment increase the accumulation of CAMSAP2 at microtubule minus ends, confirming specific on-target cellular activity. Importantly, ASPIR-1 also selectively inhibits engineered cysteine mutants of human VPS4B and FIGL1-AAA proteins, involved in organelle dynamics and genome stability, respectively. Structural studies confirm our model for compound binding at the AAA ATPase site and the proximity-induced reactivity-based inhibition. Together, our findings suggest a chemical genetics approach to decipher AAA protein functions across essential cellular processes and to test hypotheses for developing therapeutics.
Collapse
Affiliation(s)
- Tommaso Cupido
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Natalie H Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Michael J Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Rudolf Pisa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
43
|
Di Blasi R, Blyuss O, Timms JF, Conole D, Ceroni F, Whitwell HJ. Non-Histone Protein Methylation: Biological Significance and Bioengineering Potential. ACS Chem Biol 2021; 16:238-250. [PMID: 33411495 DOI: 10.1021/acschembio.0c00771] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein methylation is a key post-translational modification whose effects on gene expression have been intensively studied over the last two decades. Recently, renewed interest in non-histone protein methylation has gained momentum for its role in regulating important cellular processes and the activity of many proteins, including transcription factors, enzymes, and structural complexes. The extensive and dynamic role that protein methylation plays within the cell also highlights its potential for bioengineering applications. Indeed, while synthetic histone protein methylation has been extensively used to engineer gene expression, engineering of non-histone protein methylation has not been fully explored yet. Here, we report the latest findings, highlighting how non-histone protein methylation is fundamental for certain cellular functions and is implicated in disease, and review recent efforts in the engineering of protein methylation.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London, U.K
| | - Oleg Blyuss
- School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, U.K
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - John F Timms
- Department of Women's Cancer, EGA Institute for Women's Health, University College London, London, U.K
| | - Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, U.K
| | - Francesca Ceroni
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London, U.K
| | - Harry J Whitwell
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, Hammersmith Campus, London, W12 0NN, U.K
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Sir Alexander Fleming Building, Imperial College London, Hammersmith Campus, London, SW7 2AZ, U.K
| |
Collapse
|
44
|
Adamson C, Kanai M. Integrating abiotic chemical catalysis and enzymatic catalysis in living cells. Org Biomol Chem 2021; 19:37-45. [DOI: 10.1039/d0ob01898h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review hybrid systems of abiotic catalysis and enzymatic catalysis, which function in living cells. This research direction will stimulate multidisciplinary fields, including complex molecule synthesis, energy production, and life science.
Collapse
Affiliation(s)
- Christopher Adamson
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| |
Collapse
|
45
|
Nguyen K, Kubota M, Arco JD, Feng C, Singha M, Beasley S, Sakr J, Gandhi SP, Blurton-Jones M, Fernández Lucas J, Spitale RC. A Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA. ACS Chem Biol 2020; 15:3099-3105. [PMID: 33222436 DOI: 10.1021/acschembio.0c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jon del Arco
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Samantha Beasley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jasmine Sakr
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Sunil P. Gandhi
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Matthew Blurton-Jones
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Jesus Fernández Lucas
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine. Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
46
|
Gilles P, Kashyap RS, Freitas MJ, Ceusters S, Van Asch K, Janssens A, De Jonghe S, Persoons L, Cobbaut M, Daelemans D, Van Lint J, Voet AR, De Borggraeve WM. Design, synthesis and biological evaluation of pyrazolo[3,4-d]pyrimidine-based protein kinase D inhibitors. Eur J Med Chem 2020; 205:112638. [DOI: 10.1016/j.ejmech.2020.112638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
|
47
|
Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome. Int J Mol Sci 2020; 21:ijms21207637. [PMID: 33076458 PMCID: PMC7588962 DOI: 10.3390/ijms21207637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinases are important enzymes involved in the regulation of various cellular processes. To function properly, each protein kinase phosphorylates only a limited number of proteins among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism that controls biological functions of the proteins. Despite the importance of protein kinases, most of their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of protein kinases. Among the various methods in protein kinase specific substrate identification, genetically engineered protein kinases and quantitative phosphoproteomics have become promising tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and studying the dynamic nature of protein phosphorylation.
Collapse
|
48
|
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4:674-695. [PMID: 37127974 DOI: 10.1038/s41570-020-00223-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
Collapse
|
49
|
Schumann B, Malaker SA, Wisnovsky SP, Debets MF, Agbay AJ, Fernandez D, Wagner LJS, Lin L, Li Z, Choi J, Fox DM, Peh J, Gray MA, Pedram K, Kohler JJ, Mrksich M, Bertozzi CR. Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells. Mol Cell 2020. [PMID: 32325029 DOI: 10.1016/jmolcel.2020.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes.
Collapse
Affiliation(s)
- Benjamin Schumann
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom.
| | | | | | | | | | - Daniel Fernandez
- Stanford ChEM-H Macromolecular Structure Knowledge Center, Stanford, CA 94305, USA
| | | | - Liang Lin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhen Li
- Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Junwon Choi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Jessie Peh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Melissa Anne Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Jean Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Carolyn Ruth Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Schumann B, Malaker SA, Wisnovsky SP, Debets MF, Agbay AJ, Fernandez D, Wagner LJS, Lin L, Li Z, Choi J, Fox DM, Peh J, Gray MA, Pedram K, Kohler JJ, Mrksich M, Bertozzi CR. Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells. Mol Cell 2020; 78:824-834.e15. [PMID: 32325029 PMCID: PMC7276986 DOI: 10.1016/j.molcel.2020.03.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes.
Collapse
Affiliation(s)
- Benjamin Schumann
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom.
| | | | | | | | | | - Daniel Fernandez
- Stanford ChEM-H Macromolecular Structure Knowledge Center, Stanford, CA 94305, USA
| | | | - Liang Lin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhen Li
- Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Junwon Choi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Jessie Peh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Melissa Anne Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Jean Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Carolyn Ruth Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|