1
|
Ostrowsky JT, Katzelnick LC, Bourne N, Barrett ADT, Thomas SJ, Diamond MS, Beasley DWC, Harris E, Wilder-Smith A, Leighton T, Mehr AJ, Moua NM, Ulrich AK, Cehovin A, Fay PC, Golding JP, Moore KA, Osterholm MT, Lackritz EM. Zika virus vaccines and monoclonal antibodies: a priority agenda for research and development. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00750-3. [PMID: 40024262 DOI: 10.1016/s1473-3099(24)00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025]
Abstract
The 2015-16 Zika virus epidemic in the Americas drew global attention to Zika virus infection as a cause of microcephaly and Guillain-Barré syndrome. The epidemic highlighted the urgent need for preventive measures, including vaccines and monoclonal antibodies (mAbs). However, nearly 9 years later, no licensed Zika virus vaccines or mAbs are available, leaving the world's populations unprotected from ongoing disease transmission and future epidemics. The current low Zika virus incidence and unpredictability of future outbreaks complicates prospects for evaluation, licensure, and commercial viability of Zika virus vaccines and mAbs. We conducted an extensive review of Zika virus vaccines and mAbs in development, identifying 16 vaccines in phase 1 or phase 2 trials and three mAbs in phase 1 trials, and convened a 2-day meeting of 130 global Zika virus experts to discuss research priorities to advance their development. This Series paper summarises a priority research agenda to address key knowledge gaps and accelerate the licensure of Zika virus vaccines and mAbs for global use.
Collapse
Affiliation(s)
- Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA; Institute for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
| | - Michael S Diamond
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Annelies Wilder-Smith
- Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Ana Cehovin
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | | | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Tong K, Hernandez EM, Basore K, Fremont DH, Lai JR. Chikungunya virus E2 B domain nanoparticle immunogen elicits homotypic neutralizing antibody in mice. Vaccine 2024; 42:126405. [PMID: 39413488 PMCID: PMC11645211 DOI: 10.1016/j.vaccine.2024.126405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Alphaviruses are enveloped, positive-sense single-stranded RNA viruses that cause severe human and animal illness. Arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and Mayaro virus (MAYV), are globally distributed, transmitted by mosquitoes, and can cause rheumatic disease characterized by fever, rash, myalgia, and peripheral polyarthralgia that can persist for years post-infection. These infections can also result in more severe clinical manifestations such as hemorrhage, encephalopathy, and mortality. Several potent monoclonal antibodies (mAbs) with broad neutralizing activity have been shown to bind to the E2 B domain (E2-B) of the alphavirus glycoprotein, suggesting that E2-B epitopes are a site of susceptibility for multiple arthritogenic alphaviruses. However, it is unknown whether E2-B alone can elicit a broadly neutralizing humoral response. Here, we generate and characterize nanoparticle-based immunogens containing CHIKV and MAYV E2-B. Immunization with the CHIKV E2-B nanoparticle elicited sera that were cross-reactive toward CHIKV and MAYV E2-B, but had only homotypic neutralizing activity (serum titer of 1:512) against CHIKV vaccine strain 181/25. Furthermore, immunization with MAYV E2-B nanoparticles elicited non-neutralizing antibody, but sera were cross-reactive for both CHIKV and MAYV E2-B. Our findings suggest that the immunodominant epitopes within CHIKV and MAYV E2-B are bound by cross-reactive, but not cross-neutralizing antibody. Therefore, development of broad E2-B based vaccines that induce broadly neutralizing antibody responses will require engineering to alter the immunodominant landscape.
Collapse
Affiliation(s)
- Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Erica M Hernandez
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Katherine Basore
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
3
|
Liu X, Li Z, Li X, Wu W, Jiang H, Zheng Y, Zhou J, Ye X, Lu J, Wang W, Yu L, Li Y, Qu L, Wang J, Li F, Chen L, Wu L, Feng L. A single-dose circular RNA vaccine prevents Zika virus infection without enhancing dengue severity in mice. Nat Commun 2024; 15:8932. [PMID: 39414822 PMCID: PMC11484855 DOI: 10.1038/s41467-024-53242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Antibody-dependent enhancement (ADE) is a potential concern for the development of Zika virus (ZIKV) vaccines. Cross-reactive but poorly neutralizing antibodies, usually targeting viral pre-membrane or envelope (E) proteins, can potentially enhance dengue virus (DENV) infection. Although E domain III (EDIII) contains ZIKV-specific epitopes, its immunogenicity is poor. Here, we show that dimeric EDIII, fused to human IgG1 Fc fragment (EDIII-Fc) and encoded by circular RNA (circRNA), induces better germinal center reactions and higher neutralizing antibodies compared to circRNAs encoding monomeric or trimeric EDIII. Two doses of circRNAs encoding EDIII-Fc and ZIKV nonstructural protein NS1, another protective antigen, prevent lethal ZIKV infection in neonates born to immunized C57BL/6 mice and in interferon-α/β receptor knockout adult C57BL/6 mice. Importantly, a single-dose optimized circRNA vaccine with improved antigen expression confers potent and durable protection without inducing obvious DENV ADE in mice, laying the groundwork for developing flavivirus vaccines based on circRNAs encoding EDIII-Fc and NS1.
Collapse
Affiliation(s)
- Xinglong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoxia Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixuan Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Jiang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yufen Zheng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zhou
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianmiao Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junnan Lu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, 510005, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yiping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 501180, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Linping Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhou J, Le CQ, Zhang Y, Wells JA. A general approach for selection of epitope-directed binders to proteins. Proc Natl Acad Sci U S A 2024; 121:e2317307121. [PMID: 38683990 PMCID: PMC11087759 DOI: 10.1073/pnas.2317307121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Directing antibodies to a particular epitope among many possible on a target protein is a significant challenge. Here, we present a simple and general method for epitope-directed selection (EDS) using a differential phage selection strategy. This involves engineering the protein of interest (POI) with the epitope of interest (EOI) mutated using a systematic bioinformatics algorithm to guide the local design of an EOI decoy variant. Using several alternating rounds of negative selection with the EOI decoy variant followed by positive selection on the wild-type POI, we were able to identify highly specific and potent antibodies to five different EOI antigens that bind and functionally block known sites of proteolysis. Among these, we developed highly specific antibodies that target the proteolytic site on the CUB domain containing protein 1 (CDCP1) to prevent its proteolysis allowing us to study the cellular maturation of this event that triggers malignancy. We generated antibodies that recognize the junction between the pro- and catalytic domains for three different matrix metalloproteases (MMPs), MMP1, MMP3, and MMP9, that selectively block activation of each of these enzymes and impair cell migration. We targeted a proteolytic epitope on the cell surface receptor, EPH Receptor A2 (EphA2), that is known to transform it from a tumor suppressor to an oncoprotein. We believe that the EDS method greatly facilitates the generation of antibodies to specific EOIs on a wide range of proteins and enzymes for broad therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Chau Q. Le
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
- Chan Zuckerberg Biohub, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
5
|
Li Q, Zhang J, Deng Q, Liao C, Qian J, Chen Z, Lu J. A Divalent Chikungunya and Zika Nanovaccine with Thermostable Self-Assembly Multivalent Scaffold LS-SUMO. Adv Healthc Mater 2024; 13:e2303619. [PMID: 38340040 DOI: 10.1002/adhm.202303619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The convergence strategies of antigenic subunits and synthetic nanoparticle scaffold platform improve the vaccine production efficiency and enhance vaccine-induced immunogenicity. Selecting the appropriate nanoparticle scaffold is crucial to controlling target antigens immunologically. Lumazine synthase (LS) is an attractive candidate for a vaccine display system due to its thermostability, modification tolerance, and morphological plasticity. Here, the first development of a multivalent thermostable scaffold, LS-SUMO (SUMO, small ubiquitin-likemodifier), and a divalent nanovaccine covalently conjugated with Chikungunya virus E2 and Zika virus EDIII antigens, is reported. Compared with antigen monomers, LS-SUMO nanoparticle vaccines elicit a higher humoral response and neutralizing antibodies against both antigen targets in mouse sera. Mice immunized with LS-SUMO conjugates produce CD4+ T cell-mediated Th2-biased responses and promote humoral immunity. Importantly, LS-SUMO conjugates possess equivalent humoral immunogenicity after heat treatment. Taken together, LS-SUMO is a powerful biotargeting nanoplatform with high-yield production, thermal stability and opens a new avenue for multivalent presentation of various antigens.
Collapse
Affiliation(s)
- Qianlin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiang Deng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Conghui Liao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
6
|
Yan H, Peng Y, Zhang J, Peng R, Feng X, Su J, Yi H, Lu Y, Gao S, Liu J, Yang M, Liu X, Gao S, Chen Z. Rapid and highly potent humoral responses to mpox nanovaccine candidates adjuvanted by thermostable scaffolds. Vaccine 2024; 42:2072-2080. [PMID: 38423815 DOI: 10.1016/j.vaccine.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Monkeypox (mpox) is a zoonotic disease caused by monkeypox virus (MPXV) of the orthopoxvirus genus. The emergence and global spread of mpox in 2022 was declared as a public health emergency by World Health Organization. This mpox pandemic alarmed us that mpox still threaten global public health. Live vaccines could be used for immunization for this disease with side effects. New alternative vaccines are urgently needed for this re-emerging disease. Specific antibody responses play key roles for protection against MPXV, therefore, vaccines that induce high humoral immunity will be ideal candidates. In the present study, we developed thermostable nanovaccine candidates for mpox by conjugating MPXV antigens with thermostable nanoscafolds. Three MPXV protective antigens, L1, A29, and A33, and the thermostable Aquafex aeolicus lumazine synthase (AaLS), were expressed in E. coli and purified by Ni-NTA methods. The nanovaccines were generated by conjugation of the antigens with AaLS. Thermal stability test results showed that the nanovaccines remained unchanged after one week storage under 37℃ and only partial degradation under 60℃, indicating high thermostability. Very interesting, one dose immunization with the nanovaccine could induce high potent antibody responses, and two dose induced 2-month high titers of antibodes. In vitro virus neutralization test showed that nanovaccine candidates induced significantly higher levels of neutralization antibodies than monomers. These results indicated that the AaLS conjugation nanovaccines of MPXV antigens are highly thermostable in terms of storage and antigenic, being good alternative vaccine candidates for this re-emerging disease.
Collapse
Affiliation(s)
- Haozhen Yan
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Ruihao Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - XiangNing Feng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - JiaYue Su
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - HuaiMin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Shan Gao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Liu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Mingwei Yang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Xinrui Liu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Shenyang Gao
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University. Jinzhou 121001, China
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University. Jinzhou 121001, China.
| |
Collapse
|
7
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
8
|
Su H, Liu J, Yu J, Qiu Z, Liang W, Wu W, Mo H, Li H, Zhao W, Gu W. EDIII-Fc induces protective immune responses against the Zika virus in mice and rhesus macaque. PLoS Negl Trop Dis 2023; 17:e0011770. [PMID: 37983259 PMCID: PMC10695381 DOI: 10.1371/journal.pntd.0011770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Zika virus can infect the fetus through the placental barrier, causing ZIKV congenital syndrome and even miscarriage, which can cause great harm to pregnant women and infants. Currently, there is no vaccine and drug available to combat the Zika virus. In this study, we designed a fusion protein named EDIII-Fc, including the EDIII region of Zika E protein and human IgG Fc fragment, and obtained 293T cells that stably secreted EDIII-Fc protein using the lentiviral expression system. Mice were immunized with the EDIII-Fc protein, and it was observed that viral replication was significantly inhibited in the immunized mice compared to non-immunized mice. In rhesus macaques, we found that EDIII-Fc effectively induce the secretion of neutralizing antibodies and T cell immunity. These experimental data provide valid data for further use of Zika virus E protein to prepare an effective, safe, affordable Zika vaccine.
Collapse
Affiliation(s)
- Hailong Su
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenzhen Qiu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenhan Liang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wangsheng Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Haifeng Mo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Chen Q, Li R, Wu B, Zhang X, Zhang H, Chen R. A tetravalent nanoparticle vaccine elicits a balanced and potent immune response against dengue viruses without inducing antibody-dependent enhancement. Front Immunol 2023; 14:1193175. [PMID: 37275868 PMCID: PMC10235449 DOI: 10.3389/fimmu.2023.1193175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Dengue fever is a global health threat caused by the dengue virus (DENV), a vector-borne and single-stranded RNA virus. Development of a safe and efficacious vaccine against DENV is a demanding challenge. The greatest pitfall in the development of vaccines is antibody-dependent enhancement (ADE), which is closely associated with disease exacerbation. We displayed the modified envelope proteins from the four serotypes of the DENV on a 24-mer ferritin nanoparticle, respectively. This tetravalent nanoparticle vaccine induced potent humoral and cellular immunity in mice without ADE and conferred efficient protection against the lethal challenge of DENV-2 and DENV-3 in AG6 mice. Further exploration of immunization strategies showed that even single-dose vaccination could reduce pathologic damage in BALB/c mice infected with high doses of DENV-2. Treatment with cyclic-di-guanosine monophosphate facilitated a higher titer of neutralizing antibodies and a stronger type-1 T-helper cell-biased immune response, thereby revealing it to be an effective adjuvant for dengue nanoparticle vaccines. These data suggest that a promising tetravalent nanoparticle vaccine could be produced to prevent DENV infection.
Collapse
Affiliation(s)
- Qier Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bolin Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|