1
|
Jia YW, Jian X, Guo W, Li G, Leermakers M, Elskens M, Baeyens W, Gao Y. Time evolution of estrogen contamination in the Scheldt estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177432. [PMID: 39532177 DOI: 10.1016/j.scitotenv.2024.177432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Estrogens are contaminants in the Scheldt estuary due to a dense population and intense industrial and anthropogenic activities, but their levels and evolution in this estuary are not well studied. Here we investigated estrogenic activity (EA) in the dissolved, particulate and sediment compartments of the estuary using the Estrogen Receptor (ER)-Chemical Activated Luciferase Gene Expression (CALUX) bioassay, in recent and historical samples. EA ranges between 7-168, 2.16-22.5 and 1.8-38.2 pg E2-equivalents g-1 in the dissolved, particulate and sediment phases of the Scheldt, respectively. The partitioning coefficient (Kd) between the particulate and dissolved phases is about 2000 L kg-1. EA levels in the estuarine sediments decreased during the last 40 years, but the strongest decrease, from 112 to 28 pg E2-equivalents g-1, is observed in the upper estuary. The mass loadings of dissolved and particulate estrogens discharged into the North Sea amount to 7.5 and 1.6 μg s-1, respectively. Future monitoring of the estrogen levels in various compartments of the Scheldt is necessary considering its strong environmental impact on living organisms and human beings.
Collapse
Affiliation(s)
- Yu-Wei Jia
- Archaeology, Environmental Changes & Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Xiao Jian
- Archaeology, Environmental Changes & Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium; Department of Clinical Nutrition, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, 116023 Dalian, Liaoning Province, China
| | - Wei Guo
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology (BJUT), Pingle Park 100, Chaoyang District, 100124 Beijing, PR China
| | - Guanlei Li
- Archaeology, Environmental Changes & Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Martine Leermakers
- Archaeology, Environmental Changes & Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Marc Elskens
- Archaeology, Environmental Changes & Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Willy Baeyens
- Archaeology, Environmental Changes & Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Yue Gao
- Archaeology, Environmental Changes & Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium.
| |
Collapse
|
2
|
Cui D, He H, Xie W, Yang S, Guo Z, Liao Z, Liu F, Lai C, Ren X, Huang B, Pan X. Occurrence and cycle of dissolved iron mediated by humic acids resulting in continuous natural photodegradation of 17α-ethinylestradiol. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133155. [PMID: 38091802 DOI: 10.1016/j.jhazmat.2023.133155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
17α-ethinylestradiol (EE2), a synthetic endocrine-disrupting chemical, can degrade in natural waters where humic acids (HA) and dissolved iron (DFe) are present. The iron is mostly bound in Fe(III)-HA complexes, the formation process of Fe(III)-HA complexes and their effect on EE2 degradation were explored in laboratory experiments. The mechanism of ferrihydrite facilitated by HA was explored with results indicating that HA facilitated the dissolution of ferrihydrite and the generation of Fe(III)-HA complexes with the stable chemical bonds such as C-O, CO in neutral, alkaline media with a suitable Fe/C ratio. 1O2, •OH, and 3HA* were all found to be important in the photodegradation of EE2 mediated by Fe(III)-HA complexes. Fe(III)-HA complexes could produce Fe(II) and hydrogen peroxide (H2O2) to create conditions suitable for photo-Fenton reactions at neutral pH. HA helped to maintain higher dissolved iron concentrations and alter the Fe(III)/Fe(II) cycling. The natural EE2 photodegradation pathway elucidated here provides a theoretical foundation for investigating the natural transformation of other trace organic contaminants in aquatic environments.
Collapse
Affiliation(s)
- Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Wenxiao Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shanshan Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Feng Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
3
|
Hidayati NV, Asia L, Lebarillier S, Widowati I, Sabdono A, Piram A, Hidayat RR, Fitriyah D, Almanar IP, Doumenq P, Syakti AD. Environmental Sample Stability for Pharmaceutical Compound Analysis: Handling and Preservation Recommendations. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:5526429. [PMID: 37901345 PMCID: PMC10602706 DOI: 10.1155/2023/5526429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/09/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Efficient and resilient techniques for handling samples are essential for detecting pharmaceutical compounds in the environment. This study explores a method for preserving water samples during transport before quantitative analysis. The study investigates the stability of 17α-ethynylestradiol (EE2), acetaminophen (ACM), oxytetracycline (OTC), sulfamethoxazole (SMX), and trimethoprim (TMP) after preconcentration within solid-phase extraction (SPE) cartridges. Through various experiments involving different holding times and storage temperatures, it was determined that four pharmaceutical compounds remained stable when stored for a month at 4°C and for six months when stored at -18°C in darkness. Storing these compounds in SPE cartridges at -18°C seemed effective in preserving them for extended periods. In addition, ACM, TMP, OTC, EE2, and SMX remained stable for three days at room temperature. These findings establish guidelines for appropriate storage and handling practices of pharmaceutical compounds preconcentrated from aqueous environmental samples using SPE.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Laurence Asia
- Aix Marseille University, CNRS, LCE, Marseille, France
| | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille University, CNRS, LCE, Marseille, France
| | - Rizqi Rizaldi Hidayat
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Dina Fitriyah
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | - Indra Putra Almanar
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | | | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Marine Sciences and Fisheries Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| |
Collapse
|
4
|
Shams M, Guiney LM, Ramesh M, Hersam MC, Chowdhury I. Effects of sunlight on the fate of graphene oxide and reduced graphene oxide nanomaterials in the natural surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162427. [PMID: 36841399 DOI: 10.1016/j.scitotenv.2023.162427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Graphene nanomaterials have been commercialized for use in the electronic and biomedical industries, increasing their dissemination into surface waters and subsequent transformation in natural aquatic environment. While the photodegradation of graphene oxide nanomaterials has been investigated in the past, previous research did not consider actual natural aquatic environment and also focused on primarily graphene oxide nanomaterials. In this study, photodegradation of graphene nanomaterials with varying oxidation levels, including graphene oxide (GO) and partially reduced graphene oxide (rGO-2 h) are evaluated in Columbia River Water and compared with each other. Our results indicate that both direct and indirect photolysis of graphene-based nanomaterials will occur simultaneously in natural surface water. However, environmentally relevant concentrations of photosensitizers in surface water are not capable of producing sufficient ·OH to initiate degradation of GO via indirect photolysis. For all conditions tested, GO showed more rapid photodegradation compared to rGO. Overall, direct and indirect photodegradation of graphene oxide nanomaterials in natural surface water is minimal and slow indicating that phototransformation of graphene-based nanomaterials will be insignificant in natural surface water.
Collapse
Affiliation(s)
- Mehnaz Shams
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA
| | - Linda M Guiney
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Mani Ramesh
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Mark C Hersam
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Indranil Chowdhury
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
5
|
López-Velázquez K, Guzmán-Mar JL, Saldarriaga-Noreña HA, Murillo-Tovar MA, Villanueva-Rodríguez M. Ecological risk assessment associated with five endocrine-disrupting compounds in wastewater treatment plants of Northeast Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30714-30726. [PMID: 36441306 DOI: 10.1007/s11356-022-24322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The ecological risk associated with five endocrine-disrupting compounds (EDCs) was studied in four wastewater treatment plants (WWTPs) in Monterrey, Mexico. The EDCs, 17β-estradiol (E2), 17α-ethinylestradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) were determined by SPE/GC-MS method, where EE2 and 4TOP were the most abundant in effluents at levels from 1.6 - 26.8 ng/L (EE2) and < LOD - 5.0 ng/L (4TOP), which corroborate that the wastewater discharges represent critical sources of EDCs to the aquatic environments. In this study, the potential risk associated with selected EDCs was assessed through the risk quotients (RQs) and by estimating the estrogenic activity (expressed as EEQ). This study also constitutes the first approach for the ecological risk assessment in effluents of WWTPs in Northeast Mexico. The results demonstrated that the effluents of the WWTPs represent a high risk for the organisms living in the receiving water bodies because the residual estrogens effect E2 and EE2 with RQ values up to 49.1 and 1165.2. EEQ values between 6.3 and 24.6 ngEE2/L were considered the most hazardous compounds among the target EDCs, capable of causing some alterations in the endocrine system of aquatic and terrestrial organisms due to chronic exposition.
Collapse
Affiliation(s)
- Khirbet López-Velázquez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, Nuevo León, 66455, San Nicolás de los Garza, México
- Universidad Politécnica de Tapachula, Carretera Tapachula - Puerto Madero Km. 24 + 300, Chiapas, 30830, Tapachula, México
| | - Jorge L Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, Nuevo León, 66455, San Nicolás de los Garza, México
| | - Hugo A Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, México
| | - Mario A Murillo-Tovar
- CONACYT-Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, México
| | - Minerva Villanueva-Rodríguez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, Nuevo León, 66455, San Nicolás de los Garza, México.
| |
Collapse
|
6
|
Xu Y, Zhang Y, Wang X, Wang Z, Huang L, Wu H, Ren J, Gu C, Chen Z. Enhanced photodegradation of tylosin in the presence of natural montmorillonite: Synergistic effects of adsorption and surface hydroxyl radicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158750. [PMID: 36108839 DOI: 10.1016/j.scitotenv.2022.158750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Tylosin (TYL) is a ubiquitous macrolide antibiotic which has been frequently detected in natural aqueous environment. Montmorillonite (MMT), a major component of natural suspended particles, plays essential roles in the transportation and transformation processes of various organic contaminants. This study systematically investigated the photodegradation behavior and mechanism of TYL in MMT suspensions under simulated sunlight irradiation. In the existence of 0.1 g L-1 Na-MMT, >80.8 % TYL was degraded after 8 h irradiation, which was significantly higher than that in the absence of MMT (42.5 %). Further mechanistic studies suggested that the synergistic effects including the formation of surface complex and the generation of surface hydroxyl radicals play essential roles in the accelerated TYL phototransformation. Meanwhile, other factors like exchangeable cations of MMTs, pH and ionic strength could also strongly influence the TYL photodegradation. The probable degradation pathways of TYL in MMT suspension was further proposed based on the detected intermediates and DFT calculations. Photobacterium phospherium T3 bioluminescent assay revealed that the photodegradation products of TYL have a lower acute toxicity than bulk TYL, especially in the presence of MMT. This study provides new insights for the photodegradation pathways of organic contaminants in aqueous environments, which is of great importance for assessing the fate and risk of emerging pollutants in natural surface water bodies.
Collapse
Affiliation(s)
- Yichen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Yutong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liuqing Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinghua Ren
- Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Peng A, Wang C, Zhang Z, Jin X, Gu C, Chen Z. Tetracycline photolysis revisited: Overlooked day-night succession of the parent compound and metabolites in natural surface waters and associated ecotoxicity. WATER RESEARCH 2022; 225:119197. [PMID: 36215839 DOI: 10.1016/j.watres.2022.119197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Despite the extensive study of tetracycline photolysis in aquatic environments, the phototransformation of tetracycline and its metabolites under natural day-night succession has not been examined. In this study, we investigated tetracycline photolysis and associated ecotoxicity in two natural surface waters and one artificial ultrapure water under simulated day/night cycling over two days. Previously unrecognized and highly pH- and temperature-dependent dark interconversions of tetracycline metabolites were observed. The liquid chromatography-mass spectrometry/mass spectrometry analysis identified a range of isomerized, hydroxylated, demethylated, deaminated, and open-ring photoproducts. The hydrolysis of tetracycline, isotetracycline, and several intermediate products was proposed as the major mechanism for the observed dark transformations. Exposure studies employing Escherichia coli indicated that although the tetracycline degradation products had lower bacterial toxicities than the parent compound, increasing toxicity with irradiation time after the near-complete degradation of the parent compound in natural waters implied that product mixtures retain ecotoxicity. The dark transformations also affected the bacterial toxicity and fluorescence properties of irradiated tetracycline solutions. Overall, this study provides new insights into the photochemical behavior of tetracycline and its associated ecological risk in aquatic environments.
Collapse
Affiliation(s)
- Anping Peng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Zhanhua Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Qin X, Lai KP, Wu RSS, Kong RYC. Continuous 17α-ethinylestradiol exposure impairs the sperm quality of marine medaka (Oryzias melastigma). MARINE POLLUTION BULLETIN 2022; 183:114093. [PMID: 36084614 DOI: 10.1016/j.marpolbul.2022.114093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
17α-ethinylestradiol (EE2) is an anthropogenic estrogen that is widely used for hormone therapy and oral contraceptives. It was reported that EE2 exposure induced reproductive impairments through processes affecting reproduction behavior and inducing ovotestis. However, the effects of continuous EE2 exposure on the reproductive performance remain largely unknown. In this study, adult marine medaka fish (Oryzias melastigma) were exposed to EE2 (85 ng/L) for one (F0) and two (F1) generations. Our results indicate that continuous EE2 exposure reduced fecundity and sperm motility. The testicular transcriptome, followed by bioinformatic analysis revealed the dysregulation of pathways related to steroidogenesis, sperm motility, and reproductive system development. Collectively, our findings indicate that continuous EE2 exposure directly affected sperm quality via the alteration of steroidogenesis and dysregulation of reproductive system development. The identified key factors including DNM1, PINK1, PDE7B, and SLC12A7 can serve as biomarkers to assess EE2-reduced sperm motility.
Collapse
Affiliation(s)
- Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Silva MG, Esteves VI, Meucci V, Battaglia F, Soares AM, Pretti C, Freitas R. Metabolic and oxidative status alterations induced in Ruditapes philippinarum exposed chronically to estrogen 17α-ethinylestradiol under a warming scenario. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106078. [PMID: 35074615 DOI: 10.1016/j.aquatox.2022.106078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment is an ongoing concern. However, the information regarding their effects under different climate change scenarios is still scarce. 17α-ethinylestradiol (EE2) is widely present in different aquatic systems showing negative impacts on aquatic organisms even when present at trace concentrations (≈1 ng/L). Nevertheless, its impact on bivalves is poorly understood, especially considering the influence of climate change factors. This study aimed to assess the toxicological impacts of EE2 under current and predicted warming scenarios, in the edible clam Ruditapes philippinarum. For this, clams were exposed for 28 days to different EE2 concentrations (5, 25, 125, 625 ng/L), under two temperatures (17 °C (control) and 21 °C). Drug concentrations, bioconcentration factors and biochemical parameters, related to oxidative stress and energy metabolism, were evaluated. Results showed that under actual and predicted temperature scenarios EE2 concentrations led to a disturbance in redox homeostasis of the clams, characterized by an increase in oxidized glutathione in contaminated organisms compared to control ones. Nevertheless, clams were capable to cope with the stressful conditions, activating their defence mechanisms (especially at the highest exposure concentration and in particular at increased temperature), and no oxidative damage occured. Although limited effects were observed, the present findings indicate that under both temperatures contaminated clams altered their biochemical performance, which can impair their sensitivity and protection capacity to respond to other environmental changes and/or affect their capacity to grow and reproduce. The results presented here highlight the need for further research on this thematic, considering that climate change is an ongoing problem, and the levels of some pharmaceutical drugs will continue to increase in marine/estuarine environments.
Collapse
Affiliation(s)
- Mónica G Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy
| | - Amadeu Mvm Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI) 56122, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", Livorno 57128, Italy
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
10
|
Wang M, Shi H, Shao S, Lu K, Wang H, Yang Y, Gong Z, Zuo Y, Gao S. Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes. CHEMOSPHERE 2022; 286:131641. [PMID: 34325263 DOI: 10.1016/j.chemosphere.2021.131641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The photolysis of amlodipine (AML) as a ubiquitous pollutant in natural water has been extensively studied. Montmorillonite (MMT), a major component of suspended particles in surface aquifers, plays key roles in the natural transportation and transformation of organic contaminants in the environment. However, literature has scarcely focused on whether and how suspended particles affect the phototransformation of AML. This study systematically investigated the phototransformation behavior of AML in MMT suspensions under simulated sunlight. The results obtained showed that MMT significantly enhanced the photolysis of AML. The photodegradation of AML in 0.05 g/L MMT suspension reached 92.2 % after 3 h irradiation under the simulated sunlight. The photodecomposition followed the pseudo-first-order kinetic with a rate constant of 0.803 h-1 in the presence of 0.05 g/L MMT, which is about 19 times larger than that in the absence of MMT (0.0421 h-1). Further mechanistic investigation suggested that MMT accelerated the photolysis of AML by the formation of surface complexes between cationic amino groups of AML and the negatively charged sites on MMT surface, which greatly facilitated light absorption and electron transfer for the production of cationic radical AML+·. Meanwhile, the hydroxyl radicals generated by irradiated MMT also played an important role in the photocatalytic degradation of AML. The probable photodegradation pathways of AML in MMT suspension further supported the proposed mechanisms. The toxicity evaluation of phototransformation products of AML with ECOSAR program indicated that photolysis could reduce its potential threats. These findings reveal an important and previously overlooked phototransformation mechanisms of AML in the presence of MMT clays, which is of importance in assessing the environmental fate of other similar organic contaminants.
Collapse
Affiliation(s)
- Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yun Yang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA, 02747-2300, USA.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Hong M, Yang X, Zhang X, Ji Y, Zhou L, Xiu G, Ni Z, Richard C. Aqueous photodegradation of the benzophenone fungicide metrafenone: Carbon-bromine bond cleavage mechanism. WATER RESEARCH 2021; 206:117775. [PMID: 34706320 DOI: 10.1016/j.watres.2021.117775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Metrafenone (MF), as a new type of benzophenone fungicide, has been widely used in agriculture and is persistent in the environment. Understanding its photochemical fate is essential for the comprehensive evaluation of its ecological risk. In the present work, we reported a detailed study on the photochemical transformation of MF in aqueous solution under irradiation (at λ > 290 nm using a high pressure mercury lamp). MF was relatively photo-reactive showing a low polychromatic quantum yield of photolysis (1.06 × 10-4, 20 µM) counterbalanced by a significant light absorption above 290 nm. A series of photoproducts were identified by high resolution mass spectrometry (HR-MS) analysis, and three different pathways, including oxidation of the methyl group, debromination and replacement of bromine by hydroxyl group were proposed. Among them, debromination was identified as the dominating process that could be achieved via homolytic C-Br bond cleavage from singlet and triplet MF, as confirmed by laser flash photolysis (LFP) experiments and density functional theory (DFT) calculations. Toxicity assessment revealed that photochemical degradation reduced the ecotoxicity of MF efficiently. Nitrate ions and humic acid promoted the MF photolysis, while bicarbonate exhibited no effect. Results obtained in this work would increase our understanding on the environmental fate of MF in sunlit surface waters.
Collapse
Affiliation(s)
- Minghui Hong
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuerui Yang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuewei Zhang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Claire Richard
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, Aubière F-63178, France
| |
Collapse
|
12
|
Tang Z, Liu ZH, Wang H, Dang Z, Liu Y. A review of 17α-ethynylestradiol (EE2) in surface water across 32 countries: Sources, concentrations, and potential estrogenic effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112804. [PMID: 34023789 DOI: 10.1016/j.jenvman.2021.112804] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
17α-ethynylestradiol (EE2) is a synthetic estrogen with very strong estrogenic potency. Due to its wide usage in human and livestock as well as its high recalcitration to biodegradation, it was ubiquitous in different environment. This review summarized EE2 concentration levels in surface waters among 32 countries across seven continents. EE2 concentrations varied greatly in different surface waters, which ranged from not detected to 17,112 ng/L. The top 10 countries ranked in the order of high to low average EE2 concentration in surface water, were Vietnam, Cambodia, China, Laos, Brazil, Argentina, Kuwait, Thailand, Indonesia and Portugal, with the respective mean concentrations of 27.7, 22.1, 21.5, 21.1, 13.6, 9.6, 9.5, 8.8, 7.6 and 6.6 ng/L. Generally speaking, the EE2 concentration levels in surface waters in developing countries were much higher than those in developed countries. EE2 in effluent of municipal wastewater treatment plant (WWTP) was the dominant source to most countries, which suggested that improving the EE2 removal performance of municipal WWTP is the key to mitigate EE2 contamination to surface water body. Livestock, hospital, pharmacy factory and aquaculture wastewaters were also the important sources, but further work should be performed to elucidate their contribution. Evaluation based on estrogenic effects, the EE2-derived estrogen equivalence in surface waters ranged from 0 to 33 ng E2/L, among which about 65% of surface waters among 32 countries were at risk or high risk, indicating global serious EE2 contamination. MAIN FINDING: EE2 concentration in surface waters across 32 countries were summarized, along which its potential estrogenic effects were evaluated.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
13
|
Rodrigues S, Silva AM, Antunes SC. Assessment of 17α-ethinylestradiol effects in Daphnia magna: life-history traits, biochemical and genotoxic parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23160-23173. [PMID: 33442804 DOI: 10.1007/s11356-020-12323-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of pharmaceuticals in aquatic ecosystems and the need to study them have increased over the years since they enter continuously the environment. Besides, these compounds are not intended for applications with environmental purposes, and therefore, little is known about their ecological effects, particularly in non-target organisms, as invertebrate species. Inside these substances, endocrine disrupting compounds (EDCs) have recently come into the limelight, due to environmental concentrations and consequently their detrimental effects on different organisms. 17α-ethinylestradiol (EE2) has been detected in the aquatic environment in various locations around the globe since it is the main synthetic hormone used as a female oral contraceptive and is also applied in veterinary medicine and animal production. The present study was intended to assess the chronic effects of EE2, in the non-target organism as Daphnia magna. Thus, to analyze the individual and subindividual impact, this aquatic organism was chronically exposed (21 days) to 0.00 (control group), 0.10, 1.00, 10.0, and 100 μg/L of EE2. Results here obtained demonstrated that D. magna exposed to the EE2 concentrations had significant effects in individual (life-history) and sub-individual (biochemical levels) parameters. Alterations as anticipation in the age at first reproduction, a decrease of the growth rate, oxidative stress, and lipid peroxidation were detected, as well as genotoxic damage. Therefore, it was possible to infer that EE2 can disrupt several metabolic pathways and physiological functions of D. magna, since EE2 demonstrated ecotoxicity, at environmentally relevant concentrations. This work reinforces the importance of examining the effects of more relevant exposures (more prolonged and with ecologically pertinent concentrations) of potential endocrine disruptors like EE2, to the freshwater organisms and ecosystem.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.
| | - Ana Marta Silva
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Sara Cristina Antunes
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
14
|
Lian L, Miao C, Hao Z, Liu Q, Liu Y, Song W, Yan S. Reevaluation of the contributions of reactive intermediates to the photochemical transformation of 17β-estradiol in sewage effluent. WATER RESEARCH 2021; 189:116633. [PMID: 33221582 DOI: 10.1016/j.watres.2020.116633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Photodegradation of the natural steroid 17β-estradiol (E2), an endocrine-disrupting hormone that has been widely detected in aquatic environments, was investigated in wastewater effluents at various pH ranges under simulated solar irradiation. The rate of E2 degradation in the sewage effluents was stable at pH 6.0-7.0 but suddenly increased from pH 8.0-10.0. The second-order reaction rate constants of E2 with 3EfOM* and CO3•- were measured to increase 11.0-fold and 18.0-fold from pH 6.0 to 10.0, respectively. Two main reasons are proposed for this sharp increase. First, the change in the ionization state of E2 made it susceptible to oxidation by triplet-state effluent organic matter (3EfOM*) and carbonate radicals (CO3•-). Second, the steady-state concentration of CO3•- increased with increasing pH. Indirect photolysis was suggested to be the main degradation pathway in the sewage effluents, and 3EfOM* was proposed to play a major role at pH 8.0-9.0, while CO3•- played a significant role at pH 10.0. In this study, EfOM was shown for the first time to inhibit the oxidation of E2 initiated by 3EfOM* and CO3•-. Thus, we suggest that EfOM plays a dual role in the photodegradation of E2: EfOM can not only be activated as 3EfOM* to degrade E2 but also can inhibit the degradation of E2 by reducing the E2 oxidation intermediate back to E2. The estrogenic activity of the photodegradation products was also studied. The in vitro estrogenic activity of E2 solutions decreased approximately as fast as the E2 photodegradation occurred in the effluent water at various pH values, suggesting that solar photodegradation in sewage effluents reduces the risk of endocrine disruption in waters impacted by E2 and subject to continuing inputs. The results of this study are important for predicting the environmental fate of endocrine-disrupting chemicals and developing methods for their removal from aquatic environments.
Collapse
Affiliation(s)
- Lushi Lian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Chenyong Miao
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Zhenyu Hao
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Qian Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yingjie Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
15
|
Almeida Â, Silva MG, Soares AMVM, Freitas R. Concentrations levels and effects of 17alpha-Ethinylestradiol in freshwater and marine waters and bivalves: A review. ENVIRONMENTAL RESEARCH 2020; 185:109316. [PMID: 32222627 DOI: 10.1016/j.envres.2020.109316] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceutical drugs are contaminants of emerging concern and are amongst the most frequent in the aquatic environment. Even though a vast literature indicate that pharmaceuticals exert negative impacts towards aquatic organisms, mainly in vertebrates, there is still limited information regarding the effects of these drugs in freshwater and marine bivalves. Marine bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Furthermore, another lacking point on these studies is the absence of bioconcentration data, with no clear relationship between the concentration of drugs on tissue and the biological effects. 17alpha-ethinylestradiol (EE2) is a synthetic hormone with high estrogenic potency that was added to the Watch List adopted by the European Commission stating the priority substances to be monitored. Thus, this review summarizes the current knowledge on the concentration levels and effects of EE2 on freshwater and marine bivalves. The inclusion in the Watch List, the presence in freshwater and marine systems, and the impact exerted on aquatic biota, even at trace concentrations, justify the review devoted to this pharmaceutical drug. Globally the available studies found that EE2 induces individual and sub-individual (e.g. tissue, cellular, biochemical and molecular levels of biological organization) impacts in bivalves. Essentially, this estrogenic compound, even in trace concentrations, was found to have accumulated in wild and laboratory exposed bivalves. The most common effects reported were changes on the reproductive function and energy metabolism. The studies used in this review support keeping the EE2 on the Watch List and highlight the need to increase the number of monitorization studies since clear negative effects were exerted on bivalves by this drug.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica G Silva
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
Zhang Z, Wang J, Pan Z, Zhang Y, Zhang X, Tian H, Wang W, Ru S. Distribution of vitellogenin in Japanese flounder (Paralichthys olivaceus) for biomarker analysis of marine environmental estrogens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105321. [PMID: 31586886 DOI: 10.1016/j.aquatox.2019.105321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Estrogen pollution in marine environments has become a research hotspot due to its adverse effects on the reproduction of wild organisms. To early detection of estrogen pollution, this study developed two methods for detecting Japanese flounder vitellogenin (Vtg), a sensitive biomarker for environmental estrogens. Firstly, monoclonal antibodies (mAb) specific to Vtg were prepared using purified lipovitellin (Lv), a main Vtg-derived yolk protein. Anti-Lv mAb (C1F1) had the highest titer (1:256,000) and was labeled with fluorescein isothiocyanate to establish a direct immunofluorescence (DIF) method for histological detection of Vtg in tissues. Additionally, using the purified Lv and mAb, an enzyme-linked immunosorbent assay (ELISA) was developed and this assay had a detection limit of 0.75 ng/mL and a working range of 1.95-250 ng/mL. Furthermore, Vtg induction in the plasma of Japanese flounder exposed to 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and bisphenol A (BPA) were quantified by ELISA, and Vtg induction in the liver of EE2-exposed Japanese flounder were measured by DIF. Finally, the distribution of Vtg in Japanese flounder was detected using these two methods. The results revealed that Vtg mainly appeared in the terminal tail fin, liver, kidney, intestine, and spleen. Considering the high concentration of Vtg and easy sample collection, the terminal tail fin could be a new alternative to plasma for Vtg quantification, while kidney and liver are suitable for histological detection of Vtg.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zongbao Pan
- Zhejiang Institute of Hydraulics & Estuary, Hangzhou, 310020, China
| | - Yabin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
17
|
He H, Huang B, Zhu X, Luo N, Sun S, Deng H, Pan X, Dionysiou DD. Dissolved organic matter mediates in the anaerobic degradation of 17α-ethinylestradiol in a coupled electrochemical and biological system. BIORESOURCE TECHNOLOGY 2019; 292:121924. [PMID: 31386945 DOI: 10.1016/j.biortech.2019.121924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) can act as an electron shuttle in biogeochemical redox reactions to affect the fate of contaminants. Herein DOMs were tested for their ability to mediate in the degradation of 17α-ethinylestradiol (EE2) in a coupled electrochemical and biological system. Fulvic acid (FA) and Sigma humic acid (SHA) were found to promote degradation by the electro-domesticated micro-organisms in the coupled system. Analyses of superoxide dismutase levels, microbial community and clusters of orthologous groups of proteins showed that electrical stimulation promoted their growth and metabolism. It was confirmed that electron transfer in the coupled system was promoted in the presence of DOM as their protein-like components were converted into aromatic substances. The electrical stimulation improved the microorganisms' effectiveness in subsequent biodegradation under anaerobic condition. Stimulated micro-organisms seemed to increase their environmental tolerance and degrade EE2 effectively. These findings provide evidence about the fate of estrogens in bioelectrochemical water treatment.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Xintong Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Nao Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shijie Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongyu Deng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
18
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
19
|
Gu L, Huang B, Han F, Pan B, Xu Z, Gu X, Xu H, Pan X, Dionysiou DD. Spontaneous changes in dissolved organic matter affect the bio-removal of steroid estrogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:616-624. [PMID: 31279207 DOI: 10.1016/j.scitotenv.2019.06.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Microbial action is the main pathway removing steroid estrogens (SEs) from both aerobic and anaerobic natural waters. The rate is influenced by other active substances present, particularly dissolved organic matter (DOM). DOM in natural surface waters has unstable components which undergo spontaneous photochemical oxidation, biological oxidation, chemical oxidation changes. How these changes influence the biosorption and bio-removal of SEs was the subject of this research. Photo oxidation-induced DOM increased the proportion of the fluorescence in area V, but biological oxidation and chemical oxidation caused fluorescence area V to decrease. All three oxidation processes can reduce the proportions of molecular weight (MW) > 5 kg·mol-1 and increase the proportions of MW < 5 kg·mol-1. Both the electron transfer capacity decreased monotonically with photo oxidation and chemical oxidation ageing, but biological oxidation ageing increased them. 17β-estradiol (E2) was the SEs used in the experiments. In aerobic conditions, fresh river humic acids (RHA) and aged RHA had the stronger mediating effect on the rate of E2 bio-removal under aerobic conditions. Its greater effectiveness was probably related to its binding with E2. Binding, biosorption of E2 and bio-removal of E2 were strongly positively correlated with the elemental C (R > 0.8, p ≤ 0.01) and SUVA254 (R > 0.8, p ≤ 0.01) by correlation matrix. Besides, fresh river fulvic acids (RFA) and aged RFA had the bigger mediating effect on E2 bio-removal under anaerobic conditions, and this imply that changes in aged DOM affected by other electron transfer groups in an anaerobic water environment. In anaerobic conditions, biosorption of E2 and binding action could cluster together with SUVA254, p(v), and 1 kg·mol-1 < MW < 5 kg·mol-1 by redundancy analysis, and but bio-removal of E2 could be well polymerized with EAC, EDC, p(iv), and MW > 5 kg·mol-1.
Collapse
Affiliation(s)
- Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China.
| | - Fengxia Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Huayu Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
20
|
Assress HA, Nyoni H, Mamba BB, Msagati TAM. Target quantification of azole antifungals and retrospective screening of other emerging pollutants in wastewater effluent using UHPLC -QTOF-MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:655-666. [PMID: 31330357 DOI: 10.1016/j.envpol.2019.07.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The information acquired by high resolution quadrupole-time of flight mass spectrometry (QTOF-MS) allows target analysis as well as retrospective screening for the presence of suspect or unknown emerging pollutants which were not included in the target analysis. Targeted quantification of eight azole antifungal drugs in wastewater effluent as well as new and relatively simple retrospective suspect and non-target screening strategy for emerging pollutants using UHPLC-QTOF-MS is described in this work. More than 300 (parent compounds and transformation products) and 150 accurate masses were included in the retrospective suspect and non-target screening, respectively. Tentative identification of suspects and unknowns was based on accurate masses, peak intensity, blank subtraction, isotopic pattern (mSigma value), compound annotation using data bases such as KEGG and CHEBI, and fragmentation pattern interpretation. In the targeted analysis, clotrimazole, fluconazole, itraconazole, ketoconazole and posaconazole were detected in the effluent wastewater sample, fluconazole being with highest average concentration (302.38 ng L-1). The retrospective screening resulted in the detection of 27 compounds that had not been included in the target analysis. The suspect compounds tentatively identified included atazanavir, citalopram, climbazole, bezafibrate estradiol, desmethylvenlafaxine, losartan carboxylic acid and cetirizine, of which citalopram, estradiol and cetirizine were confirmed using a standard. Carbamazepine, atrazine, efavirenz, lopinavir, fexofenadine and 5-methylbenzotriazole were among the compounds detected following the non-targeted screening approach, of which carbamazepine was confirmed using a standard. Given the detection of the target antifungals in the effluent, the findings are a call for a wide assessment of their occurrence in aquatic environments and their role in ecotoxicology as well as in selection of drug resistant fungi. The findings of this work further highlights the practical benefits obtained for the identification of a broader range of emerging pollutants in the environment when retrospective screening is applied to high resolution and high accuracy mass spectrometric data.
Collapse
Affiliation(s)
- Hailemariam Abrha Assress
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392, UNISA 0003, Florida, 1709 Johannesburg, South Africa
| | - Hlengilizwe Nyoni
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392, UNISA 0003, Florida, 1709 Johannesburg, South Africa
| | - Bhekie B Mamba
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392, UNISA 0003, Florida, 1709 Johannesburg, South Africa
| | - Titus A M Msagati
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392, UNISA 0003, Florida, 1709 Johannesburg, South Africa.
| |
Collapse
|
21
|
Xie P, Zou Y, Jiang S, Wang J, Zhang L, Wang Z, Yue S, Feng X. Degradation of imipramine by vacuum ultraviolet (VUV) system: Influencing parameters, mechanisms, and variation of acute toxicity. CHEMOSPHERE 2019; 233:282-291. [PMID: 31176129 DOI: 10.1016/j.chemosphere.2019.05.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Degradation of imipramine (IMI) in the VUV system (VUV185 + UV254) was firstly evaluated in this study. Both HO• oxidation and UV254 direct photolysis accounted for IMI degradation. The quantum yields of UV254 direct photolysis of deprotonated and protonated IMI were 1.31×10-2 and 3.31×10-3, respectively, resulting in the higher degradation efficiency of IMI at basic condition. Increasing the initial IMI concentration lowered the degradation efficiency of IMI. While elevating reaction temperature significantly improved IMI degradation efficiency through the promotion of both the quantum yields of HO• and the UV254 direct photolysis rate. The apparent activation energy was calculated to be about 26.6 kJ mol-1. Negative-linear relationships between the kobs of IMI degradation and the concentrations of HCO3-/CO32-, NOM and Cl- were obtained. The degradation pathways were proposed that cleavage of side chain and hydroxylation of iminodibenzyl and methyl groups were considered as the initial steps for IMI degradation in the VUV system. Although some high toxic intermediate products would be produced, they can be further transformed to other lower toxic products. The good degradation efficiency of IMI under realistic water matrices further suggests that the VUV system would be a good method to degrade IMI in aquatic environment.
Collapse
Affiliation(s)
- Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China; Center for the Environmental Implications of Nanotechnology (CEINT), Durham, 27708-0287, USA
| | - Yujia Zou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Shan Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jingwen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Li Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Siyang Yue
- School of Architecture & Urban Planning, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaonan Feng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
22
|
Zhao X, Grimes KL, Colosi LM, Lung WS. Attenuation, transport, and management of estrogens: A review. CHEMOSPHERE 2019; 230:462-478. [PMID: 31121510 DOI: 10.1016/j.chemosphere.2019.05.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/04/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Overabundance of endocrine disruptors (EDs), such as steroid estrogens, in the natural environment disrupts hormone synthesis in aquatic organisms. Livestock and wastewater outflows contribute measurable quantities of steroid estrogens into the environment where they are picked up and transported via surface runoff and feedlot effluents into water matrices. E1, E2β, E2α, E3 and EE2 are the most prevalent estrogens in these environmental systems. Estrogens in soils and water undergo several concurrent attenuation processes including sorption to particles, biotransformation, photo-transformation, and plant uptake. This review summarizes current studies on the attenuation and transport of steroid estrogens with a focus on estrogen attenuation and transport modeling. The authors use this information to synthesize appropriate strategies for reducing estrogenicity in the environment.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Kassandra L Grimes
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Colosi
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
| | - Wu-Seng Lung
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
23
|
Huang B, Lai C, Dai H, Mu K, Xu Z, Gu L, Pan X. Microbially reduced humic acid promotes the anaerobic photodegradation of 17α--ethinylestradiol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:313-320. [PMID: 30612019 DOI: 10.1016/j.ecoenv.2018.12.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/07/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Photolysis and microbial activity are relatively obvious in shallow, eutrophic waters with low dissolved oxygen content. Ubiquitous humic acid (HA) can act as electron acceptor and be reduced by bacterial under such conditions, and the reduced form of humic acid (RHA) plays an important role in the photolysis contaminants. In this study, anaerobic 17α-ethinylestradiol (EE2) photodegradation was performed along with biodegradation by Shewanella putrefaciens mediated by HA. The mechanism of such coupled photolysis and biodegradation of EE2 was thus elucidated. The removal rate in such coupled degradation in the presence of 10 mgC L-1 of HA at pH 8.0 was greater than that of either photolysis or biodegradation alone. HA which had been reduced in a double-chamber microbial fuel cell showed better promotion to EE2 photodegradation than fresh HA. Reactive species scavenging experiments indicated that hydroxyl radical and excited triplet states of HA were primary contributors to EE2 photodegradation in anaerobic conditions. More of them were produced from RHA than from pristine HA. Besides, the degraded EE2 solutions inhibited the proliferation of MCF-7 human cancer Cells. These findings improve our understanding of the environmental transformation of EE2 in the shallow, anoxic waters.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Han Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kailin Mu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
24
|
Kohli HP, Gupta S, Chakraborty M. Extraction of Ethylparaben by emulsion liquid membrane: Statistical analysis of operating parameters. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Nejedly T, Klimes J. A model of natural degradation of 17-α-ethinylestradiol in surface water and identification of degradation products by GC-MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23196-23206. [PMID: 28831755 DOI: 10.1007/s11356-017-9743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Over the past decade, the environment has been polluted by a wide spectrum of exogenous chemicals and environmental analysis has become one of the most progressive parts of analytical research. The aim of this work was to determine the kinetics of natural degradation, and to identify the degradation products of the massively used estrogenic drug, 17-α-ethinylestradiol. The photodegradation, oxidation and thermostability conditions were selected according to ICH requirements for pharmaceutical stability testing. A simple 72-h photodegradation study in purified water exhibited significant first-order kinetics with the kinetic constant k = 0.0303 h-1, and degradation halftime 22.8 h. The basic halftime could be reduced to 17.1 h by the addition of sea salt, and increase in temperature. Monohydroxy, dihydroxy and dehydrogenated derivatives of ethinylestradiol with intact steroidal structure were identified as major degradation products resulting from simple photodegradation. The addition of an oxidative agent significantly accelerated the degradation rate; combined with higher temperature, the degradation halftime was reduced to 1.1 h with the first-order kinetic constant k = 0.632 h-1. TOC analysis showed a notable decrease of organic mass (18% in 3 days) during oxidation experiments, and confirmed the degradation of steroidal structure.
Collapse
Affiliation(s)
- Tomas Nejedly
- Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Jiri Klimes
- Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Mukherjee I, Mishrra A, Saha R, Chatterjee S. Efficient Degradation of Endocrine Disruptors Using 1D and 3D Copper (I) Oxide Nanostructures. ChemistrySelect 2017. [DOI: 10.1002/slct.201701181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Indrani Mukherjee
- Colloids and Materials Chemistry Department; CSIR-Institute of Minerals and Materials Technology; Bhubaneswar- 751 013 India
- Department of Chemistry; National institute of Technology; Durgapur- 713 209 India
| | - Anushka Mishrra
- Department of Chemical Engineering; National Institute of Technology; Tiruchirapalli- 620015 India
| | - Rajnarayan Saha
- Department of Chemistry; National institute of Technology; Durgapur- 713 209 India
| | - Sriparna Chatterjee
- Colloids and Materials Chemistry Department; CSIR-Institute of Minerals and Materials Technology; Bhubaneswar- 751 013 India
| |
Collapse
|
27
|
Ren D, Huang B, Xiong D, He H, Meng X, Pan X. Photodegradation of 17α-ethynylestradiol in dissolved humic substances solution: Kinetics, mechanism and estrogenicity variation. J Environ Sci (China) 2017; 54:196-205. [PMID: 28391929 DOI: 10.1016/j.jes.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 06/07/2023]
Abstract
17α-Ethynylestradiol (EE2) in natural waters may cause adverse effects on organisms due to its high estrogenic potency. Laboratory studies were performed to study the effects of a local humic acid (LHA), fulvic acid (LFA) and Aldrich humic acid (AHA) on the photochemical behavior and estrogenic potency of EE2. Here photolytic experiments demonstrated that pure aqueous EE2 could undergo direct and self-sensitized photodegradation at a global rate of 0.0068hr-1. Photodegradation rate of EE2 in 5.0mg/L dissolved humic substances (DHS) was determined to be 0.0274, 0.0296 and 0.0254hr-1 for LHA, LFA and AHA, respectively. Reactive oxygen species (ROS) and triplet dissolved humic substances (3DHS*) scavenging experiments indicated that the promotion effect of DHS on EE2 photodegradation was mainly aroused by the reactions of HO (35%-50%), 1O2 (<10%) and 3DHS* (22%-34%). However, the photodegradation of EE2 could also be inhibited when DHS exceeded the threshold of 10mg/L. Three hydroxylation products of EE2 were identified using GC-MS and their formation pathways were also proposed. In vitro estrogenicity tests showed that EE2 was transformed into chemicals without estrogenic potency. These findings could extend our knowledge on the photochemical behaviors of steroid estrogens in sunlit natural waters.
Collapse
Affiliation(s)
- Dong Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Dan Xiong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiangqi Meng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
28
|
Cristale J, Dantas RF, De Luca A, Sans C, Esplugas S, Lacorte S. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:242-249. [PMID: 27217300 DOI: 10.1016/j.jhazmat.2016.05.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
The wide use of organophosphorous flame retardants (OPFR) and plasticizers causes a continuous release of large quantities into natural waters. One of the main contributors to micropollutants depletion in surface water is sunlight induced phototransformations. This study aims to elucidate whether alkyl, chloroalkyl and aryl organophosphorus flame retardants undergo phototransformations in river water. To perform the experiments, nine OPFR were subjected to natural sunlight, Xe lamp (simulated sunlight) and UV-C irradiations in ultra-pure Milli-Q water, Milli-Q water with humic acid and river water. Experiments demonstrated that OPFR achieve an important degree of photodegradation noticeable at long irradiation time, although direct photolysis did not account as the main photodegration mechanism. Results indicated that sunlight absorbing OPFR exhibited photosensitizing activity. The presence of azide in ultra- pure water inhibited some OPFR photodegration by singlet oxygen (1O2) scavenging, and the absence of dissolved oxygen significantly depleted most of OPFR removal. In the conditions studied, humic acid inhibited OPFR phototransformations, while river water enhanced their removal. Results from this study point out the need to further investigate the role of some OPFR as photosensitizers, which are important for fate and ecological risk assessment of flame retardants and other micropollutants in water.
Collapse
Affiliation(s)
- Joyce Cristale
- Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Renato F Dantas
- Department of Chemical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Antonella De Luca
- Department of Chemical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Carmen Sans
- Department of Chemical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Santiago Esplugas
- Department of Chemical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
29
|
Ren D, Huang B, Yang B, Chen F, Pan X, Dionysiou DD. Photobleaching alters the photochemical and biological reactivity of humic acid towards 17α-ethynylestradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1386-1393. [PMID: 27825843 DOI: 10.1016/j.envpol.2016.10.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Dissolved humic acid (HA) is ubiquitous in natural waters. Its presence significantly changes the photo-and bio-degradation of some organic pollutants in natural waters. The effects of photobleaching on the composition, photosensitizing property and bioavailability of HA were investigated here along with the subsequent influence on its photochemical and biological reactivity in mediating 17α-ethynylestradiol (EE2) degradation. Photobleaching transformed the refractory HA into some small molecules, including organic acids and aliphatics. Along with composition alteration, the photochemical reactivity of HA towards EE2 was slightly depressed, with 9% of the removal rate inhibited by a 70-h photobleaching. Contrarily, the reactivity of HA in mediating EE2 biodegradation by E. coli was significantly promoted by a short-term photobleaching. Compared to the biodegradation of EE2 in the pristine HA, the 10-h photobleached HA increased the biodegradation removal rate of EE2 by 25%, reaching its peak value of about 60%. However, the EE2 biodegradation was inhibited by further irradiation, and the removal rate of EE2 decreased to that in the pristine HA systems. Because no substrate competition was found between EE2 and formate or glucose, EE2 biodegradation mediated by HA in natural waters may not be affected by coexistent organics. Photodegradation and biodegradation of EE2 mediated by HA thus can be combined together by photobleaching to remove pollutants from natural waters. The results reported here could assist environmental risk assessment with respect to EE2 in natural aquatic systems.
Collapse
Affiliation(s)
- Dong Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Benqin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Dionysios D Dionysiou
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
30
|
Łukaszewicz P, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Caban M. Impact of Veterinary Pharmaceuticals on the Agricultural Environment: A Re-inspection. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 243:89-148. [PMID: 28005213 DOI: 10.1007/398_2016_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of veterinary pharmaceuticals (VPs) is a result of growing animal production. Manure, a great crop fertilizer, contains a significant amount of VPs. The investigation of VPs in manure is prevalent, because of the potential risk for environmental organisms, as well as human health. A re-evaluation of the impact of veterinary pharmaceuticals on the agricultural environment is needed, even though several publications appear every year. The aim of this review was to collate the data from fields investigated for the presence of VPs as an inevitable component of manure. Data on VP concentrations in manure, soils, groundwater and plants were collected from the literature. All of this was connected with biotic and abiotic degradation, leaching and plant uptake. The data showed that the sorption of VPs into soil particles is a process which decreases the negative impact of VPs on the microbial community, the pollution of groundwater, and plant uptake. What was evident was that most of the data came from experiments conducted under conditions different from those in the environment, resulting in an overestimation of data (especially in the case of leaching). The general conclusion is that the application of manure on crop fields leads to a negligible risk for plants, bacteria, and finally humans, but in future every group of compounds needs to be investigated separately, because of the high divergence of properties.
Collapse
Affiliation(s)
- Paulina Łukaszewicz
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Joanna Maszkowska
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Ewa Mulkiewicz
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Jolanta Kumirska
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Piotr Stepnowski
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Magda Caban
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland.
| |
Collapse
|
31
|
Nazari E, Suja F. Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:465-491. [PMID: 27883330 DOI: 10.1515/reveh-2016-0040] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/13/2016] [Indexed: 05/18/2023]
Abstract
Natural estrogens, estrone (E1), 17β-estradiol (E2) and estriol (E3) are endocrine disrupting chemicals (EDCs) that are discharged consistently and directly into surface waters with wastewater treatment plants (WWPTs) effluents, disposal sludges and in storm-water runoff. The most common and highest potential natural estrogen that causes estrogen activity in wastewater influent is E2. This review describes and attempts to summarize the main problems involved in the removal of E2 from WWTP by traditional processes, which fundamentally rely on activated sludge and provide an insufficient treatment for E2, as well as advanced oxidation processes (AOPs) that are applied in tertiary section treatment works. Biological processes affect and play an important role in the degradation of E2. However, some investigations have reported that operations that rely on high retention times have low efficiencies. Although advanced treatment technologies are available, their cost and operational considerations do not make them sustainable solutions. Therefore, E2 is still being released into aqueous areas, as shown in this study that investigates results from different countries. E2 is present on the watch list of substances in the Water Framework Directive (WFD) of the European Union since 2013 and the minimum acceptable concentration of it is 0.4 ng/L.
Collapse
|
32
|
Oliveira C, Lima DLD, Silva CP, Otero M, Esteves VI. Photodegradation behaviour of estriol: An insight on natural aquatic organic matter influence. CHEMOSPHERE 2016; 159:545-551. [PMID: 27341158 DOI: 10.1016/j.chemosphere.2016.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
Estriol (E3) is one of the steroidal estrogens ubiquitously found in the aquatic environment, photodegradation being an important pathway for the elimination of such endocrine disrupting compounds. However, it is important to understand how environmentally important components present in aquatic matrices, such as organic matter, may affect their photodegradation. The main objective of this work was to investigate the photodegradation of E3 in water, under simulated solar radiation, as well as the effect of humic substances (HS - humic acids (HA), fulvic acids (FA) and XAD-4 fraction) in E3 photodegradation. Moreover, the photodegradation behaviour of E3 when present in different environmental aquatic matrices (fresh, estuarine and waste water samples) was also assessed. Results showed a completely different E3 degradation rate depending on the aquatic matrix. In ultrapure water the half-life obtained was about 50 h, while in presence of HS it varied between 5 and 10 h. Then, half-life times between 1.6 and 9.5 h were determined in environmental samples, in which it was observed that the matrix composition contributed up to 97% for the overall E3 photodegradation. Therefore, E3 photodegradation in the considered aquatic matrices was mostly caused by photosensitizing reactions (indirect photodegradation).
Collapse
Affiliation(s)
- Cindy Oliveira
- Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Complementary Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal.
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Otero
- Department of Applied Chemistry and Physics, IMARENABIO, University of León, Campus de Vegazana, 24071 León, Spain
| | - Valdemar I Esteves
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
King OC, van de Merwe JP, McDonald JA, Leusch FDL. Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: Is the progestin also cause for concern? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1378-85. [PMID: 26554634 DOI: 10.1002/etc.3304] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 05/15/2023]
Abstract
Synthetic hormones have been widely reported in treated sewage effluents, and consequently receiving aquatic environments. Ethinylestradiol (EE2) is a potent synthetic estrogen commonly used in conjunction with levonorgestrel in oral contraceptive pills. Both EE2 and levonorgestrel have been identified in the aquatic environment, but although there is a significant amount of literature on EE2, there is much less information on levonorgestrel. Using Australian prescription data as well as excretion and predicted wastewater removal rates, the concentrations of EE2 and levonorgestrel in Australian wastewater were calculated at 0.1 ng/L to 0.5 ng/L and 0.2 ng/L to 0.6 ng/L, respectively. Both compounds were analyzed in treated wastewater and surface water grab samples from 3 Southeast Queensland, Australia sites. The predicted no-effect concentration (PNEC) for EE2 of 0.1 ng/L was exceeded at most sites, with EE2 concentrations up to 2 ng/L in treated effluent, albeit quickly diluted to 0.1 ng/L to 0.2 ng/L in the receiving environment. A provisional PNEC for levonorgestrel of 0.1 ng/L derived in the present study was slightly lower than predicted effluent concentrations of 0.2 ng/L to 0.6 ng/L, indicating a potential risk of endocrine-related effects in exposed aquatic species. The detection limit for levonorgestrel in the present study was 2.5 ng/L, and all samples were below detection limit. The present study's results suggest that improvements in analytical capabilities for levonorgestrel are warranted to more accurately quantify the risk of this compound in the receiving environment. Environ Toxicol Chem 2016;35:1378-1385. © 2015 SETAC.
Collapse
Affiliation(s)
- Olivia C King
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Jason P van de Merwe
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - James A McDonald
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
34
|
Cotter KA, Nacci D, Champlin D, Yeo AT, Gilmore TD, Callard GV. Adaptive Significance of ERα Splice Variants in Killifish (Fundulus heteroclitus) Resident in an Estrogenic Environment. Endocrinology 2016; 157:2294-308. [PMID: 27070100 DOI: 10.1210/en.2016-1052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The possibility that chronic, multigenerational exposure to environmental estrogens selects for adaptive hormone-response phenotypes is a critical unanswered question. Embryos/larvae of killifish from an estrogenic-polluted environment (New Bedford Harbor, MA [NBH]) compared with those from a reference site overexpress estrogen receptor alpha (ERα) mRNA but are hyporesponsive to estradiol. Analysis of ERα mRNAs in the two populations revealed differences in splicing of the gene encoding ERα (esr1). Here we tested the transactivation functions of four differentially expressed ERα mRNAs and tracked their association with the hyporesponsive phenotype for three generations after transfer of NBH parents to a clean environment. Deletion variants ERαΔ6 and ERαΔ6-8 were specific to NBH killifish, had dominant negative functions in an in vitro reporter assay, and were heritable. Morpholino-mediated induction of ERαΔ6 mRNA in zebrafish embryos verified its role as a dominant negative ER on natural estrogen-responsive promoters. Alternate long (ERαL) and short (ERαS) 5'-variants were similar transcriptionally but differed in estrogen responsiveness (ERαS ≫ ERαL). ERαS accounted for high total ERα expression in first generation (F1) NBH embryos/larvae but this trait was abolished by transfer to clean water. By contrast, the hyporesponsive phenotype of F1 NBH embryos/larvae persisted after long-term laboratory holding but reverted to a normal or hyper-responsive phenotype after two or three generations, suggesting the acquisition of physiological or biochemical traits that compensate for ongoing expression of negative-acting ERαΔ6 and ERαΔ6-8 isoforms. We conclude that a heritable change in the pattern of alternative splicing of ERα pre-mRNA is part of a genetic adaptive response to estrogens in a polluted environment.
Collapse
Affiliation(s)
- Kellie A Cotter
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Diane Nacci
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Denise Champlin
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Alan T Yeo
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Thomas D Gilmore
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Gloria V Callard
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| |
Collapse
|
35
|
Yang L, Cheng Q, Tam NFY, Lin L, Su W, Luan T. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4324-4334. [PMID: 26984110 DOI: 10.1021/acs.est.5b06196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific.
Collapse
Affiliation(s)
- Lihua Yang
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
- State Key Laboratory in Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR China
| | - Qiao Cheng
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| | - Nora F Y Tam
- State Key Laboratory in Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR China
| | - Li Lin
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| | - Weiqi Su
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| |
Collapse
|
36
|
Sornalingam K, McDonagh A, Zhou JL. Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:209-224. [PMID: 26815298 DOI: 10.1016/j.scitotenv.2016.01.086] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 05/24/2023]
Abstract
This article reviews different photodegradation technologies used for the removal of four endocrine disrupting chemicals (EDCs): estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2). The degradation efficiency is greater under UV than visible light; and increases with light intensity up to when mass transfer becomes the rate limiting step. Substantial rates are observed in the environmentally relevant range of pH7-8, though higher rates are obtained for pH above the pKa (~10.4) of the EDCs. The effects of dissolved organic matter (DOM) on EDC photodegradation are complex with both positive and negative impacts being reported. TiO2 remains the best catalyst due to its superior activity, chemical and photo stability, cheap commercial availability, capacity to function at ambient conditions and low toxicity. The optimum TiO2 loading is 0.05-1gl(-1), while higher loadings have negative impact on EDC removal. The suspended catalysts prove to be more efficient in photocatalysis compared to the immobilised catalysts, while the latter are considered more suitable for commercial scale applications. Photodegradation mostly follows 1st or pseudo 1st order kinetics. Photodegradation typically eradicates or moderates estrogenic activity, though some intermediates are found to exhibit higher estrogenicity than the parent EDCs; the persistence of estrogenic activity is mainly attributed to the presence of the phenolic moiety in intermediates.
Collapse
Affiliation(s)
- Kireesan Sornalingam
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Andrew McDonagh
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
37
|
Zhang Y, Li J, Zhou L, Wang G, Feng Y, Wang Z, Yang X. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6982-6989. [PMID: 26705756 DOI: 10.1007/s11356-015-5897-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
The occurrence of antibacterial agents in natural environment was of scientific concern in recent years. As endocrine disrupting chemicals, they had potential risk on ecology system and human beings. In the present study, the photodegradation kinetics and pathways of florfenicol were investigated under solar and xenon lamp irradiation in aquatic systems. Direct photolysis half-lives of florfenicol were determined as 187.29 h under solar irradiation and 22.43 h under xenon lamp irradiation, respectively. Reactive oxygen species (ROS), such as hydroxyl radical (·OH) and singlet oxygen ((1)O2) were found to play an important role in indirect photolysis process. The presence of nitrate and dissolved organic matters (DOMs) could affect photolysis of florfenicol in solutions through light screening effect, quenching effect, and photoinduced oxidization process. Photoproducts of florfenicol in DOMs solutions were identified by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) analysis techniques, and degradation pathways were proposed, including photoinduced hydrolysis, oxidation by (1)O2 and ·OH, dechlorination, and cleavage of the side chain.
Collapse
Affiliation(s)
- Ya Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Chinese Ministry of Environmental Protection, Nanjing, 210042, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jianhua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lei Zhou
- Université Lyon 1, UMR CNRS 5256, Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), 2 Avenue Albert Einstein, F-69626, Villeurbanne, France
| | - Guoqing Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Chinese Ministry of Environmental Protection, Nanjing, 210042, People's Republic of China
| | - Yanhong Feng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Chinese Ministry of Environmental Protection, Nanjing, 210042, People's Republic of China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
38
|
Silva CP, Lima DLD, Otero M, Esteves VI. Photosensitized Degradation of 17β-estradiol and 17α-ethinylestradiol: Role of Humic Substances Fractions. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:693-700. [PMID: 27065417 DOI: 10.2134/jeq2015.07.0396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photodegradation of 17α-ethinylestradiol (EE2) and 17β-estradiol (E2) was investigated under simulated solar radiation. Photodegradation kinetics in the absence and presence of humic substances (HSs) fractions (humic acids [HAs], fulvic acids [FAs], and XAD-4), were compared. Although all three fractions were responsible for a noticeable increase on photodegradation rates, the effects were greater for FA and XAD-4. Half-life time decreased from 46 and 94 h (direct photodegradation) for EE2 and E2, respectively, to 6.4, 2.1, and 2.7 h (for EE2) and 5.7, 2.9, and 3.1 h (for E2) in the presence of HAs, FAs, and XAD-4, respectively. The XAD-4 fraction results were similar to those of FAs, which is considered the most photochemically active fraction of HSs. Studies were also conducted in organic matter-rich environmental water matrices. After 5 h, photodegradation ranged from 44 to 94% for EE2 and from 27 to 95% for E2, compared with 16% for EE2 and 6% for E2 in ultrapure water. The maximum photodegradation was obtained in an estuarine water sample, known to be rich in FAs and XAD-4 fractions and poor in HAs, showing that not only is the presence of organic matter an important factor for the photodegradation increase, as also the type of organic matter is determinant.
Collapse
|
39
|
Li Y, Yang S, Sun C, Wang L, Wang Q. Aqueous photofate of crystal violet under simulated and natural solar irradiation: Kinetics, products, and pathways. WATER RESEARCH 2016; 88:173-183. [PMID: 26497275 DOI: 10.1016/j.watres.2015.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/17/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
In this work photodegradation rates and pathways of an illegal veterinary drug, crystal violet, were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in the aquatic environment. Factors influencing the photodegradation process under simulated sunlight were investigated, including pH, humic acid, Fe(2+), Ca(2+), [Formula: see text] , and [Formula: see text] , of which favorable conditions were optimized by the orthogonal array design. The degradation processes of crystal violet conformed to pseudo first-order kinetics, with different rate constants under different conditions. Reactive oxygen species such as hydroxyl radical, singlet oxygen, and superoxide anion participated in the indirect photolysis process, leading to much higher decolorization efficiencies than those of direct photolysis and hydrolysis. Contrasting to simulated irradiation, solar irradiation led to complete decolorization. Sixty-four products were identified by high resolution liquid chromatography-time-of-flight mass spectrometry and gas chromatography-mass spectrometry, elucidating relatively complete mineralization through photolysis. Based on the analyses of the degradation products and calculations of the frontier electron density, transformation pathways were proposed as singlet oxygen addition, N-demethylation, hydroxyl addition, decomposition of conjugated structure, the removal of benzene ring and the ring-opening reaction. As a result, small products generated as carboxylic acids, alcohols and amines, which were not likely to cause severe hazards to the environment. This study provided both a reference for photodegradation of crystal violet and future safety applications and predictions of decontamination of related triphenylmethane veterinary drug under environmental conditions.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qingeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Ren D, Huang B, Bi T, Xiong D, Pan X. Effects of pH and dissolved oxygen on the photodegradation of 17α-ethynylestradiol in dissolved humic acid solution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:78-86. [PMID: 26611276 DOI: 10.1039/c5em00502g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To probe the mechanisms responsible for pH and dissolved oxygen (DO) affecting the photodegradation of 17α-ethynylestradiol (EE2) in dissolved humic acid (HA) solution, EE2 aqueous solutions with pH values ranging from 3.0 to 11.0 and different DO conditions were irradiated by using a 300 W mercury lamp equipped with 290 nm light cutoff filters. In 5.0 mg L(-1) HA solutions (pH 8.0), EE2 was degraded at a rate of 0.0739 h(-1) which was about 4-fold faster than that in Milli-Q water. The degradation of EE2 was mainly caused by the oxidation of photogenerated reactive species (RS), and the contribution of direct photodegradation to EE2 degradation was always lower than 27%. Both the direct and indirect photodegradation of EE2 were closely dependent on the EE2 initial concentration, pH value and DO concentration. The photodegradation rate of EE2 decreased with increased initial concentration of EE2 due to the limitation of photon flux. With pH and DO increasing, the degradation rate of EE2 increased significantly due to the increase in the yields of excited EE2 and RS. Among the photogenerated RS, HO˙ and (3)HA* were determined to be the key contributors, and their global contribution to EE2 photodegradation was about 50%. Although HA could generate more (1)O2 than HO˙, the contribution of (1)O2 to EE2 degradation was lower than 13% due to its low reactivity towards EE2. This study could enlarge our knowledge on the photochemical behaviors of steroid estrogens in natural sunlit waters.
Collapse
Affiliation(s)
- Dong Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Tingting Bi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Dan Xiong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
41
|
Ribeiro C, Ribeiro AR, Tiritan ME. Priority Substances and Emerging Organic Pollutants in Portuguese Aquatic Environment: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 238:1-44. [PMID: 26718848 DOI: 10.1007/398_2015_5006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aquatic environments are among the most noteworthy ecosystems regarding chemical pollution due to the anthropogenic pressure. In 2000, the European Commission implemented the Water Framework Directive, with the aim of progressively reducing aquatic chemical pollution of the European Union countries. Therefore, the knowledge about the chemical and ecological status is imperative to determine the overall quality of water bodies. Concerning Portugal, some studies have demonstrated the presence of pollutants in the aquatic environment but an overall report is not available yet. The aim of this paper is to provide a comprehensive review about the occurrence of priority substances included in the Water Framework Directive and some classes of emerging organic pollutants that have been found in Portuguese aquatic environment. The most frequently studied compounds comprise industrial compounds, natural and synthetic estrogens, phytoestrogens, phytosterols, pesticides, pharmaceuticals and personal care products. Concentration of these pollutants ranged from few ng L(-1) to higher values such as 30 μg L(-1) for industrial compounds in surface waters and up to 106 μg L(-1) for the pharmaceutical ibuprofen in wastewaters. Compounds already banned in Europe such as atrazine, alkylphenols and alkylphenol polyethoxylates are still found in surface waters, nevertheless their origin is still poorly understood. Beyond the contamination of the Portuguese aquatic environment by priority substances and emerging organic pollutants, this review also highlights the need of more research on other classes of pollutants and emphasizes the importance of extending this research to other locations in Portugal, which have not been investigated yet.
Collapse
Affiliation(s)
- Cláudia Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal.
| | - Ana Rita Ribeiro
- LCM - Laboratory of Catalysis and Materials - Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| |
Collapse
|
42
|
Yong L, Zhanqi G, Yuefei J, Xiaobin H, Cheng S, Shaogui Y, Lianhong W, Qingeng W, Die F. Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:127-136. [PMID: 25497025 DOI: 10.1016/j.jhazmat.2014.11.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/24/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions.
Collapse
Affiliation(s)
- Li Yong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Gao Zhanqi
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing 210036, China
| | - Ji Yuefei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hu Xiaobin
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Sun Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yang Shaogui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wang Lianhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wang Qingeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fang Die
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
43
|
Cotter KA, Nacci D, Champlin D, Chuprin J, Callard GV. Cloning of multiple ERα mRNA variants in killifish (Fundulus heteroclitus), and differential expression by tissue type, stage of reproduction, and estrogen exposure in fish from polluted and unpolluted environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:184-197. [PMID: 25550165 PMCID: PMC4300264 DOI: 10.1016/j.aquatox.2014.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
To test the hypothesis that alternative splicing could be an adaptive mechanism for populations subject to multi-generational estrogenic exposures, we compared estrogen receptor alpha (ERα) splicing variants in two populations of killifish (Fundulus heteroclitus): one resident in an estrogenic polluted environment (New Bedford Harbor, NBH, MA, USA) and one from a relatively uncontaminated reference site (Scorton Creek, SC, MA, USA). In total we identified 19 ERα variants, each with deletions of one or more coding exons. Four of the variants with potential functional relevance were analyzed by qPCR to test for population differences in expression by tissue type, site, sex, seasonal reproductive status and estrogen treatment. Significantly, a 5'-truncated short form variant (ERαS) was highly expressed in liver and ovary, and was associated with seasonal reproductive activity in SC but not NBH fish. Both ERαS and the full-length long variant (ERαL) were estrogen-inducible (ERαS>ERαL) but the induction response was lower in NBH than in SC fish. In contrast, NBH killifish were hyper-responsive to estrogen as measured by expression of two other estrogen responsive genes: vitellogenin (Vtg) and aromatase B (AroB). Most strikingly, two ERα deletion variants (Δ6 and Δ6-8), lacking ligand binding and activation function domains, were identified in a subset of NBH fish, where they were associated with reduced responsiveness to estrogen treatment. Together, these results support the hypothesis that alternative splicing of the esr1 gene of killifish could be an autoregulatory mechanism by which estrogen modulates the differential expression of ERα, and suggests a novel and adaptive mechanistic response to xenoestrogenic exposure.
Collapse
Affiliation(s)
- Kellie A Cotter
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Denise Champlin
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Jane Chuprin
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Gloria V Callard
- Boston University Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Maltais D, Roy RL. Effects of nonylphenol and ethinylestradiol on copper redhorse (Moxostoma hubbsi), an endangered species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:168-178. [PMID: 25063883 DOI: 10.1016/j.ecoenv.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The copper redhorse, Moxostoma hubbsi, is an endangered species endemic to Quebec. The presence of contaminants, in particular endocrine disrupting chemicals (EDCs), in its habitat has been advanced as partly responsible for the reproductive difficulties encountered by the species. In the present study, immature copper redhorse were exposed to the estrogenic surfactant nonylphenol (NP; 1, 10 and 50µg/l) and the synthetic estrogen 17α-ethinylestradiol (EE2; 10ng/l) for 21 days in a flow-through system. The endpoints investigated included general health indicators (hepatosomatic index and hematocrit), thyroid hormones, sex steroids, brain aromatase activity, plasma and mucus vitellogenin (VTG), cytochrome P4501A protein expression and ethoxyresorufin-O-deethylase activity, heat shock protein 70 (HSP70) and muscle acetylcholinesterase. Exposure to 10ng EE2/l significantly increased brain aromatase activity. Exposure to 50µg NP/l resulted in a significant reduction of plasma testosterone concentrations and a significant induction of hepatic HSP70 protein expression. NP at 50µg/l also induced plasma and mucus VTG. The presence of elevated VTG levels in the surface mucus of immature copper redhorse exposed to NP, and its correlation to plasma VTG, supports the use of mucus VTG as a non-invasive biomarker to evaluate copper redhorse exposure to EDCs in the environment and contribute to restoration efforts of the species. The results of the present study indicate that exposure to high environmentally relevant concentrations of NP and EE2 can affect molecular endpoints related to reproduction in the copper redhorse.
Collapse
Affiliation(s)
- Domynick Maltais
- Pêches et Océans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, Mont-Joli, QC, Canada G5H 3Z4.
| | - Robert L Roy
- Pêches et Océans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, Mont-Joli, QC, Canada G5H 3Z4
| |
Collapse
|
45
|
Grzybowski W, Szydłowski J. The impact of chromophoric dissolved organic matter on the photodegradation of 17α-ethinylestradiol (EE2) in natural waters. CHEMOSPHERE 2014; 111:13-17. [PMID: 24997894 DOI: 10.1016/j.chemosphere.2014.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
17α-Ethinylestradiol (EE2), the potent estrogen which forms the basic constituent of the contraceptive pill, can undergo degradation in natural waters by sunlight and via secondary reactions initiated by photo-excited dissolved organic matter. The current paper presents the findings of an investigation into the irradiation process of EE2 when dissolved in natural waters. This investigation was carried out under simulated sunlight in samples of sea, river and distilled water at a 17α-ethinylestradiol concentration of 300ngL(-1). Several notes of significance may be made on the basis of these results. Firstly, an enhancement of the degradation, observed in the presence of co-absorbing dissolved organic matter, was shown to be proportional to the absorbance of the sample. Secondly, the kinetics of the process obtained during this investigation were within the range of previously reported findings, despite the fact that significantly higher concentrations of EE2 were used in earlier studies. Finally, the environmental half-life times for 17α-ethynyloestradiol, calculated from the results of the experiments, were found to be one and two days in the top layer of river and sea water respectively.
Collapse
Affiliation(s)
- Waldemar Grzybowski
- Gdansk University, Institute of Oceanography, Al. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jerzy Szydłowski
- Gdansk University, Institute of Oceanography, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
46
|
Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. ENVIRONMENT INTERNATIONAL 2014; 69:104-19. [PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/06/2014] [Accepted: 04/13/2014] [Indexed: 05/17/2023]
Abstract
17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
Collapse
Affiliation(s)
- Ahmad Zaharin Aris
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Aida Soraya Shamsuddin
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Zuo Y, Zhu Z. Simultaneous identification and quantification of 4-cumylphenol, 2,4-bis-(dimethylbenzyl)phenol and bisphenol A in prawn Macrobrachium rosenbergii. CHEMOSPHERE 2014; 107:447-453. [PMID: 24560775 DOI: 10.1016/j.chemosphere.2014.01.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 05/17/2023]
Abstract
Bisphenol A (BPA), 4-cumylphenol (4-CP) and 2,4-bis-(dimethylbenzyl)phenol (2,4-DCP) are all high production volume chemicals and widely used in plastic and other consumer products. During the past two decades, BPA has attracted a great deal of scientific and public attention due to its presence in the environment and estrogenic property. Although 4-CP and 2,4-DCP are much more estrogenic and toxic than BPA, little information is available about their occurrence and fate in the environment. In this study, a rapid, selective, accurate and reliable analytical method was developed for the simultaneous determination of 4-CP, 2,4-DCP and BPA in prawn Macrobrachium rosenbergii. The method comprises an ultrasound-accelerated extraction followed by capillary gas chromatographic (GC) separation. The detection limits range from 1.50 to 36.4 ng kg(-1) for the three alkylphenols. The calibration curves are linear over the concentration range tested with the coefficients of determination, R(2), greater than 0.994. The developed method was successfully applied to the simultaneous determination of 4-CP, 2,4-DCP and BPA in prawn samples. The peak identification was confirmed using GC-MS. Bisphenol A, 2,4-bis-(dimethylbenzyl)phenol and 4-cumylphenol were found in prawn samples in the concentration ranges of 0.67-5.51, 0.36-1.61, and 0.00-1.96 ng g(-1) (wet weight), respectively. All relative standard deviations are less than 4.8%. At these environmentally relevant concentration levels, 4-CP, 2,4-DCP and BPA may affect the reproduction and development of aquatic organisms, including negative influence on crustaceans' larval survival, molting, metamorphosis and shell hardening. This is the first study reported on the occurrence of 4-CP, 2,4-DCP and BPA in prawn M. rosenbergii.
Collapse
Affiliation(s)
- Yuegang Zuo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; University of Massachusetts Graduate School of Marine Sciences and Technology, 285 Old Westport Road, North Dartmouth, MA 02747, USA.
| | - Zhuo Zhu
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| |
Collapse
|
48
|
Caban M, Mioduszewska K, Łukaszewicz P, Migowska N, Stepnowski P, Kwiatkowski M, Kumirska J. A new silylating reagent – dimethyl(3,3,3-trifluoropropyl)silyldiethylamine – for the derivatisation of non-steroidal anti-inflammatory drugs prior to gas chromatography–mass spectrometry analysis. J Chromatogr A 2014; 1346:107-16. [DOI: 10.1016/j.chroma.2014.04.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022]
|
49
|
Liu Y, Chen S, Liu S, Zhang Y, Yuan C, Wang Z. DNA methylation in the 5' flanking region of cytochrome P450 17 in adult rare minnow Gobiocypris rarus - tissue difference and effects of 17α-ethinylestradiol and 17α-methyltestoterone exposures. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:16-22. [PMID: 24657796 DOI: 10.1016/j.cbpc.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/26/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 17 (CYP17) plays a vital role in hormone production in the body. In our previous study, mRNA expression of cyp17a1 was regulated by endocrine disrupting chemicals in rare minnow Gobiocypris rarus. However, the mechanism underlying the regulation is unclear. In the present study, we aim to explore whether the differential expression of cyp17a1 in distinct tissues and the modulation of its expression upon 17α-ethinylestradiol (EE2) and 17α-methyltestoterone (MT) are related to the DNA methylation status in G. rarus. The 732-bp fragment of 5' flanking region of cyp17a1 gene was isolated in G. rarus. The bisulfite sequencing PCR result showed that DNA methylation levels in 5' flanking of cyp17a1 in the gonads were significantly lower than those in the brains, which is negatively related to its mRNA expression in the 2 tissues in the previous study. The 7-day EE2 exposure of 25 ng/L caused a significant increase of methylation levels of cyp17a1 gene and a significant decrease of its transcript in testis. While 100 ng/L MT exposure for 7 days caused a significant decrease of methylation levels of cyp17a1 gene and a significant increase of its transcript in the ovary. The present findings indicate that the methylation status of cyp17a1 gene is negatively correlated with its mRNA expression in response to EE2 and MT in G. rarus. We hypothesize that the regulation of cyp17a1 expression by EE2 and MT might attribute to the change of its DNA methylation status in G. rarus.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shaozhen Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
50
|
Yan S, Song W. Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:697-720. [PMID: 24608883 DOI: 10.1039/c3em00502j] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the past few years, the fate and transportation of pharmaceutically active compounds (PhACs) in aqueous environments have raised significant concerns among the public, scientists and regulatory groups. Photodegradation is an important removal process in surface waters. This review summarizes the last 10 years (2003-2013) of studies on the solar or solar-simulated photodegradation of PhACs in aqueous environments. The PhACs covered include: beta-blockers, antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), histamine H₂-receptor antagonists, lipid regulators, carbamazepine, steroid hormones, and X-ray contrast media compounds. Kinetic studies, degradation mechanisms and toxicity removal are the three major topics involved in this review. The quantum yield for the direct photolysis of PhACs and the bimolecular reaction rate constants of PhACs with reactive oxygen species (ROS), such as the ˙OH radical and singlet oxygen, are also summarized. This information is not only important to predict the PhAC photodegradation fate, but also is very useful for advanced treatment technologies, such as ozone or advanced oxidation processes.
Collapse
Affiliation(s)
- Shuwen Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, P. R. China.
| | | |
Collapse
|