1
|
Marques Dos Santos M, Li C, Jia S, Thomas M, Gallard H, Croué JP, Carato P, Snyder SA. Formation of halogenated forms of bisphenol A (BPA) in water: Resolving isomers with ion mobility - mass spectrometry and the role of halogenation position in cellular toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133229. [PMID: 38232544 DOI: 10.1016/j.jhazmat.2023.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Halogenated BPA (XBPA) forms resulting from water chlorination can lead to increased toxicity and different biological effects. While previous studies have reported the occurrence of different XBPAs, analytical limitation have hindered the analysis and differentiation of the many potential isomeric forms. Using online solid-phase extraction - liquid chromatography - ion-mobility - high-resolution mass spectrometry (OSPE-LC-IM-HRMS), we demonstrated a rapid analysis method for the analysis of XBPA forms after water chlorination, with a total analysis time of less than 10 min including extraction and concentration and low detection limits (∼5-80 ng/L range). A multi in-vitro bioassay testing approach for the identified products revealed that cytotoxicity and bioenergetics impacts were largely associated with the presence of halogen atoms at positions 2 or 2' and the overall number of halogens incorporated into the BPA molecule. Different XBPA also showed distinct impacts on oxidative stress, peroxisome proliferator-activated receptor gamma - PPARγ, and inflammatory response. While increased DNA damage was observed for chlorinated water samples (4.14 ± 1.21-fold change), the additive effect of the selected 20 XBPA studied could not explain the increased DNA damage observed, indicating that additional species or synergistic effects might be at play.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Mikael Thomas
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Pascal Carato
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France; INSERM CIC1402, Université de Poitiers, IHES Research Group, Poitiers, France
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
2
|
Kharel S, Tentscher PR, Bester K. Further transformation of the primary ozonation products of tramadol- and venlafaxine N-oxide: Mechanistic and structural considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157259. [PMID: 35817117 DOI: 10.1016/j.scitotenv.2022.157259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Ozonation has been used to effectively remove micropollutants from the secondary effluent in several wastewater treatment plants. It is known that ozonation transforms tertiary amine compounds into their respective N-oxides, however in an earlier study a mass balance could not be closed at elevated ozone concentrations, leading to the assumption that more ozonation products are possible. This study was conducted to elucidate which (hitherto unknown) ozonation products can be formed from venlafaxine and tramadol when ozonating wastewater. Ozonation experiments were performed with tramadol and venlafaxine N-oxide in two different set-ups. Both tramadol- and venlafaxine N-oxide degraded during ozonation in pure (deionized) water in both semi-continuous and batch mode ozonation set-ups. 13 and 17 new transformation products were detected from tramadol- and venlafaxine N-oxide respectively, using high resolution mass spectrometry with ESI(+) ionization. Empirical chemical formulas were proposed based on the determination of the exact masses and interpretation of the product ion spectra. These transformation products result from the addition of one to three oxygen atoms and removal of C, -CH2, C2H2, C3H6, etc., from the parent molecule, respectively. Quenching experiments suggested that most of the transformation products originated from the direct reaction with ozone (eight for tramadol N-oxide and ten for venlafaxine N-oxide), whereas fewer products originated from the reaction with OH radicals (three for tramadol N-oxide and three for venlafaxine N-oxide). Reaction mechanisms and chemical structures of products are proposed, based on the available active sites and past literature on ozone reaction mechanisms. The experimental results are compared to theory and literature on ozone reactive sites and ozone reaction mechanisms. All in all this shows that there can be multiple ozonation products, and ozonation pathways can be complex, even if initially only one ozonation product is formed.
Collapse
Affiliation(s)
- Suman Kharel
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter R Tentscher
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Kai Bester
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Zhang Z, Prasse C. Chlorination of para-substituted phenols: Formation of α, β-unsaturated C 4-dialdehydes and C 4-dicarboxylic acids. J Environ Sci (China) 2022; 117:197-208. [PMID: 35725071 DOI: 10.1016/j.jes.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Despite the widespread occurrence of phenols in anthropogenic and natural compounds, their fate in reactions with hypochlorous acid (HOCl), one of the most common water treatment disinfectants, remains incompletely understood. To close this knowledge gap, this study investigated the formation of disinfection by-products (DBPs) in the reaction of free chlorine with seven para-substituted phenols. Based on the chemical structures of the DBPs and the reaction mechanisms leading to their formation, the DBPs were categorized into four groups: chlorophenols, coupling products, substituent reaction products, and ring cleavage products. In contrast to previous studies that investigated the formation of early-stage chlorophenols, the primary focus of this study was on the elucidation of novel ring cleavage products, in particular α, β-unsaturated C4-dialdehydes, and C4-dicarboxylic acids, which, for the first time, were identified and quantified in this study. The molar yields of 2-butene-1,4-dial (BDA), one of the identified α, β-unsaturated C4-dialdehydes, varied among the different phenolic compounds, reaching a maximum value of 10.4% for bisphenol S. Molar yields of 2-chloromaleic acid (Cl-MA), one of the identified C4-dicarboxylic acids, reached a maximum value of 30.5% for 4-hydroxy-phenylacetic acid under given conditions. 2,4,6-trichlorophenol (TCP) was shown to be an important intermediate of the parent phenols and the C4-ring cleavage products. Based on the temporal trends of α, β-unsaturated C4-dialdehydes and C4-dicarboxylic acids, their formation is likely attributable to two separate ring cleavage pathways. Based on the obtained results, an overall transformation pathway for the reaction of para-substituted phenols with free chlorine leading to the formation of novel C4 ring cleavage products was proposed.
Collapse
Affiliation(s)
- Zhuoyue Zhang
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Robitaille J, Denslow ND, Escher BI, Kurita-Oyamada HG, Marlatt V, Martyniuk CJ, Navarro-Martín L, Prosser R, Sanderson T, Yargeau V, Langlois VS. Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. ENVIRONMENTAL RESEARCH 2022; 205:112483. [PMID: 34863984 DOI: 10.1016/j.envres.2021.112483] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada
| | | | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Vicki Marlatt
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Thomas Sanderson
- Centre Armand-Frappier Santé Biotechnologie, INRS, Laval, QC, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
5
|
Marrakchi F, Fazeli Zafar F, Wei M, yuan C, Cao B, Wang S. N-doped mesoporous H3PO4–pyrocarbon from seaweed and melamine for batch adsorption of the endocrine disruptor bisphenol A. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Plattard N, Dupuis A, Migeot V, Haddad S, Venisse N. An overview of the literature on emerging pollutants: Chlorinated derivatives of Bisphenol A (Cl xBPA). ENVIRONMENT INTERNATIONAL 2021; 153:106547. [PMID: 33831741 DOI: 10.1016/j.envint.2021.106547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Bisphenol A (BPA) is a ubiquitous contaminant with endocrine-disrupting effects in mammals. During chlorination treatment of drinking water, aqueous BPA can react with chlorine to form chlorinated derivatives of BPA (mono, di, tri and tetra-chlorinated derivatives) or ClxBPA. OBJECTIVE The aim of this study is to summarize and present the state of knowledge on human toxicological risk assessment of ClxBPA. MATERIALS AND METHODS A search on ClxBPA in the PubMed database was performed based on studies published between 2002 and 2021. Forty-nine studies on chlorinated derivatives of BPA were found. Available information on their sources and levels of exposure, their effects, their possible mechanisms of action and their toxicokinetics data was extracted and presented. RESULTS ClxBPA have been essentially detected in environmental aqueous media. There is evidence in toxicological and epidemiological studies that ClxBPA also have endocrine-disrupting capabilities. These emerging pollutants have been found in human urine, serum, breast milk, adipose and placental tissue and can constitute a risk to human health. However, in vitro and in vivo toxicokinetic data on ClxBPA are scarce and do not allow characterization of the disposition kinetics of these compounds. CONCLUSION More research to assess their health risks, specifically in vulnerable populations, is needed. Some water chlorination processes are particularly hazardous, and it is important to evaluate their chlorination by-products from a public health perspective.
Collapse
Affiliation(s)
- N Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada; INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - A Dupuis
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France
| | - V Migeot
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - S Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - N Venisse
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France.
| |
Collapse
|
7
|
Can OT, Tutun MM, Keyikoglu R. Anodic oxidation of bisphenol A by different dimensionally stable electrodes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1907-1919. [PMID: 33905361 DOI: 10.2166/wst.2021.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disrupter and was detected in surface waters. We investigated the mineralization of BPA by electrochemical oxidation. Six different types of electrodes, including the boron-doped diamond (BDD), platinum (Pt), and mixed metal oxide (MMO) electrodes; RuO2-IrO2, RuO2-TiO2, IrO2-Ta2O5, and Pt-IrO2, were compared as the anode material. Total organic carbon (TOC) was analyzed to monitor the mineralization efficiency of BPA. BDD achieved 100% BPA mineralization efficiency in 180 min and at a current density of 125 mA/cm2, whereas the TOC removal efficiency of Pt was 60.9% and the efficiency of MMO electrodes ranged between 48 and 54%. BDD exhibited much lower specific energy consumption, which corresponds to a lower energy cost (USD63.4 /kg TOC). The effect of operational parameters showed that the BDD anode was much more affected by the current density, initial BPA concentration, and electrolyte concentration than the other parameters such as the stirring speed and interelectrode distance.
Collapse
Affiliation(s)
- Orhan T Can
- Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey E-mail: ;
| | - Muhammed M Tutun
- Department of Environmental Engineering, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Ramazan Keyikoglu
- Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey E-mail: ; ; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
8
|
Park M, Snyder SA. Statistical profiling for identifying transformation products in an engineered treatment process. CHEMOSPHERE 2020; 251:126401. [PMID: 32146183 DOI: 10.1016/j.chemosphere.2020.126401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
This study demonstrated statistical profiling consisting of the analysis of variance (ANOVA) and fold change to efficiently identify transformation products of an organic model compound (i.e., carbamazepine, CBZ) in ozonation. To this end, liquid chromatography (LC)-quadrupole time-of-flight mass spectrometry (QTOF-MS) was employed to measure the accurate masses of CBZ transformation products. Subsequently, statistical profiling was applied to differentiating features that are uniquely present in the ozonated samples from those in blanks and control (i.e., CBZ sample without ozonation). The identified transformation products had significant statistical power (i.e., power, 1-β > 0.8) in post hoc power analysis, which suggests that the profiling procedure can be an efficient means of reducing false negative in data analysis. 2-quinazolinone was newly reported here as a tentative transformation of CBZ during ozonation. In addition, a transformation product with one less carbon than CBZ, often called "anomalous" transformation product, was also found. While statistical profiling was applied to a model experiment, such an approach can be further utilized to screen many features with a higher data complexity such as non-targeted screening (NTS) and non-target analysis (NTA) for environmental samples.
Collapse
Affiliation(s)
- Minkyu Park
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, USA.
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, USA; Nanyang Technological University, Nanyang Environment & Water Research Institute (NEWRI), 637141, Singapore.
| |
Collapse
|
9
|
Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, Caballero-Casero N, Oberacher H, Lamoree M, Damont A, Fenaille F, Vlaanderen J, Meijer J, Krauss M, Sarigiannis D, Barouki R, Le Bizec B, Antignac JP. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. ENVIRONMENT INTERNATIONAL 2020; 139:105545. [PMID: 32361063 DOI: 10.1016/j.envint.2020.105545] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 05/07/2023]
Abstract
Large-scale suspect and non-targeted screening approaches based on high-resolution mass spectrometry (HRMS) are today available for chemical profiling and holistic characterisation of biological samples. These advanced techniques allow the simultaneous detection of a large number of chemical features, including markers of human chemical exposure. Such markers are of interest for biomonitoring, environmental health studies and support to risk assessment. Furthermore, these screening approaches have the promising capability to detect chemicals of emerging concern (CECs), document the extent of human chemical exposure, generate new research hypotheses and provide early warning support to policy. Whilst of growing importance in the environment and food safety areas, respectively, CECs remain poorly addressed in the field of human biomonitoring. This shortfall is due to several scientific and methodological reasons, including a global lack of harmonisation. In this context, the main aim of this paper is to present an overview of the basic principles, promises and challenges of suspect and non-targeted screening approaches applied to human samples as this specific field introduce major specificities compared to other fields. Focused on liquid chromatography coupled to HRMS-based data acquisition methods, this overview addresses all steps of these new analytical workflows. Beyond this general picture, the main activities carried out on this topic within the particular framework of the European Human Biomonitoring initiative (project HBM4EU, 2017-2021) are described, with an emphasis on harmonisation measures.
Collapse
Affiliation(s)
| | - Laurent Debrauwer
- TOXALIM (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, 31027 Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, F-31027 Toulouse, France
| | - Jana Klanova
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Elliott J Price
- RECETOX Centre, Masaryk University, Brno, Czech Republic; Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | | | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen Meijer
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Greece
| | - Robert Barouki
- Unité UMR-S 1124 Inserm-Université Paris Descartes "Toxicologie Pharmacologie et Signalisation Cellulaire", Paris, France
| | | | | |
Collapse
|
10
|
Leusch FDL, Neale PA, Busetti F, Card M, Humpage A, Orbell JD, Ridgway HF, Stewart MB, van de Merwe JP, Escher BI. Transformation of endocrine disrupting chemicals, pharmaceutical and personal care products during drinking water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1480-1490. [PMID: 30677914 DOI: 10.1016/j.scitotenv.2018.12.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting compounds (EDCs) are frequently detected in drinking water sources. This raises concerns about the formation of potentially more toxic transformation products (TPs) after drinking water disinfection. This study applied a combination of computational and experimental methods to investigate the biological activity of eight EDCs and PPCPs commonly detected in source waters (acetaminophen, bisphenol A, carbamazepine, estrone, 17α-ethinylestradiol, gemfibrozil, naproxen and triclosan) before and after disinfection. Using a Stepped Forced Molecular Dynamics (SFMD) method, we detected 911 unique TPs, 36% of which have been previously reported in the scientific literature. We calculated the likelihood that TPs would cause damage to biomolecules or DNA relative to the parent compound based on lipophilicity and the occurrence of structural alerts, and applied two Quantitative Structure-Activity Relationship (QSAR) tools to predict toxicity via receptor-mediated effects. In parallel, batch experiments were performed with three disinfectants, chlorine, chlorine dioxide and chloramine. After solid-phase extraction, the resulting TP mixtures were analyzed by chemical analysis and a battery of eleven in vitro bioassays covering a variety of endpoints. The laboratory results were in good agreement with the predictions. Overall, the combination of computational and experimental chemistry and toxicity methods used in this study suggest that disinfection of the studied EDCs and PPCPs will produce a large number of TPs, which are unlikely to increase specific toxicity (e.g., endocrine activity), but may result in increased reactive and non-specific toxicity.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Francesco Busetti
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Marcella Card
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba, Qld 4102, Australia
| | - Andrew Humpage
- Australian Water Quality Centre, SA Water, Adelaide, SA, Australia
| | - John D Orbell
- Institute for Sustainable Industries & Livable Cities (ISILC), College of Engineering & Science, Victoria University, Melbourne, Vic, Australia
| | | | - Matthew B Stewart
- Institute for Sustainable Industries & Livable Cities (ISILC), College of Engineering & Science, Victoria University, Melbourne, Vic, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba, Qld 4102, Australia; UFZ - Helmholtz Centre for Environmental Research, Cell Toxicology, 04318 Leipzig, Germany
| |
Collapse
|
11
|
Doumas M, Rouillon S, Venisse N, Nadeau C, Pierre Eugene P, Farce A, Chavatte P, Dupuis A, Migeot V, Carato P. Chlorinated and brominated bisphenol A derivatives: Synthesis, characterization and determination in water samples. CHEMOSPHERE 2018; 213:434-442. [PMID: 30243209 DOI: 10.1016/j.chemosphere.2018.09.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) has been used in the plastics industry for several decades. During the treatment of drinking water with chlorine reagent, the formation of chlorinated derivatives of BPA (ClxBPA) but also bromoBPA and bromochloroBPA is to be expected. Some of these compounds are considered to have an estrogenic effect and could induce major risks for human health by targeting different organs and systems in the body. In this paper, we describe the synthesis of chloro- and bromobisphenol A (ClxBPA, BrxBPA, BrxClxBPA)and their analytical characterization. These derivatives could be used as analytical standards in LC-MS/MS or evaluated in in vitro biological tests for their potential as endocrine disruptors. In this study, we evaluated the presence of BPA, ClxBPA in a pilot study from water samples. Range values found for BPA, ClxBPA were respectively 2.8-4169.3 ng/L and 0.8-11.3 ng/L.
Collapse
Affiliation(s)
- Manon Doumas
- Université de Poitiers, F-86000, Poitiers, France; IC2MP, CNRS, 7285, UFR Médecine Pharmacie, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Steeve Rouillon
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Nicolas Venisse
- CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Toxicologie et Pharmacocinétique, CHU, Poitiers, France.
| | - Cedric Nadeau
- Service de Gynécologie Obstétrique, CHU, Poitiers, France.
| | - Pascale Pierre Eugene
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Amaury Farce
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.
| | - Philippe Chavatte
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.
| | - Antoine Dupuis
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Pharmacie, CHU, Poitiers, France.
| | - Virginie Migeot
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France; Pole Biospharm Service de Santé Publique, CHU, Poitiers, France.
| | - Pascal Carato
- Université de Poitiers, F-86000, Poitiers, France; CIC INSERM, 1402, UFR Médecine Pharmacie, Poitiers, France.
| |
Collapse
|
12
|
Reddy PVL, Kim KH, Kavitha B, Kumar V, Raza N, Kalagara S. Photocatalytic degradation of bisphenol A in aqueous media: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 213:189-205. [PMID: 29499555 DOI: 10.1016/j.jenvman.2018.02.059] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/20/2018] [Accepted: 02/14/2018] [Indexed: 05/09/2023]
Abstract
Bisphenol A (BPA) is known to be an emerging pollutant in various environmental compartments. Human exposure to BPA occurs widely because it is commonly used as the raw material in a variety of industrial processes (e.g., the preparation of epoxy and polycarbonate resins). In this review, a brief survey was carried out to cover a range of photocatalytic materials (e.g., titania, zinc, silver, carbon, and bismuth) and their modified forms as an effective means to treat water systems contaminated with BPA. The overall efficiency and limitations of these catalysts are described for the photocatalytic treatment of BPA.
Collapse
Affiliation(s)
- P Venkata Laxma Reddy
- Program in Environmental Science and Engineering, University of Texas El Paso, El Paso, TX, USA 799038
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Beluri Kavitha
- Department of Pharmacology, Kamineni Institute of Medical Sciences, Dr. NTRUHS, Vijayawada, Andhra Pradesh, 520008, India
| | - Vanish Kumar
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Nadeem Raza
- Govt. Emerson College affiliated with Bahauddin Zakariya University Multan, 60800 Pakistan; Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, United Kingdom
| | - Sudhakar Kalagara
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
13
|
Chibwe L, Titaley IA, Hoh E, Massey Simonich SL. Integrated Framework for Identifying Toxic Transformation Products in Complex Environmental Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2017; 4:32-43. [PMID: 35600207 PMCID: PMC9119311 DOI: 10.1021/acs.estlett.6b00455] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Complex environmental mixtures consist of hundreds to thousands of unknown and unregulated organic compounds that may have toxicological relevance, including transformation products (TPs) of anthropogenic organic pollutants. Non-targeted analysis and suspect screening analysis offer analytical approaches for potentially identifying these toxic transformation products. However, additional tools and strategies are needed in order to reduce the number of chemicals of interest and focus analytical efforts on chemicals that may pose risks to humans and the environment. This brief review highlights recent developments in this field and suggests an integrated framework that incorporates complementary instrumental techniques, computational chemistry, and toxicity analysis, for prioritizing and identifying toxic TPs in the environment.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Ivan A. Titaley
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Kinani A, Kinani S, Bouchonnet S. Formation and determination of organohalogen by-products in water. Part III. Characterization and quantitative approaches. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Cotton J, Leroux F, Broudin S, Poirel M, Corman B, Junot C, Ducruix C. Development and validation of a multiresidue method for the analysis of more than 500 pesticides and drugs in water based on on-line and liquid chromatography coupled to high resolution mass spectrometry. WATER RESEARCH 2016; 104:20-27. [PMID: 27508970 DOI: 10.1016/j.watres.2016.07.075] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
Screening of a large number of emerging pollutants is highly desirable for the control of water quality. In this respect, a novel, fully automated contaminant screening method based on an integrated sample preconcentration and liquid chromatography coupled to high resolution mass spectrometry (SPE-UHPLC-HRMS) has been developed. The optimal chromatographic column and experimental conditions allowing the retention and subsequent elution of the maximum number of analytes were defined. Liquid chromatography and Q-exactive (Orbitrap™) parameters were optimized to obtain the best separation of molecules of interest, and the lowest detection limits. Due to the large amount of data to compare, a script written in R language was developed to evaluate the quality of the data generated by the comparison of 14 experimental conditions. The developed method enables the simultaneous semi quantitative analysis of 539 compounds (pesticides and drug residues), in 36 min with only 5 mL of water. Method validation was achieved through studies of repeatability, selectivity, linearity and matrix effect. Application to 20 tap water samples collected in and around Paris showed the presence of 34 different compounds all with concentrations below 0.1 μg/L, the European Union limit for drinking water. Pesticides and transformation products frequently found in water resources such as atrazine and its metabolites, hexazinone, oxadixyl, propazine and simazine were detected. Drug residues such as valsartan and carbamazepine, usually not monitored, were also found. The next step will be to assess the ability of this method to highlight the presence of unexpected contaminants not present in our database.
Collapse
Affiliation(s)
- Jérôme Cotton
- Profilomic, 31 rue d'Aguesseau, 92100 Boulogne Billancourt, France
| | - Fanny Leroux
- Profilomic, 31 rue d'Aguesseau, 92100 Boulogne Billancourt, France
| | - Simon Broudin
- Profilomic, 31 rue d'Aguesseau, 92100 Boulogne Billancourt, France
| | - Marion Poirel
- Profilomic, 31 rue d'Aguesseau, 92100 Boulogne Billancourt, France
| | - Bruno Corman
- Profilomic, 31 rue d'Aguesseau, 92100 Boulogne Billancourt, France
| | - Christophe Junot
- Laboratoire d'Etude du Métabolisme des Médicaments, CEA-INRA UMR 0496 DRF/iBiTec-S/SPI, Université Paris Saclay, MetaboHUB-Paris, 91191 Gif-sur-Yvette cedex, France
| | - Céline Ducruix
- Profilomic, 31 rue d'Aguesseau, 92100 Boulogne Billancourt, France.
| |
Collapse
|
16
|
Li J, Ma LY, Xu L. Transformation of benzophenone-type UV filters by chlorine: Kinetics, products identification and toxicity assessments. JOURNAL OF HAZARDOUS MATERIALS 2016; 311:263-272. [PMID: 27035274 DOI: 10.1016/j.jhazmat.2016.02.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
The present study focused on the kinetics, transformation pathways and toxicity of several benzophenone-type ultraviolet filters (BPs) during the water chlorination disinfection process. The transformation kinetics of the studied three BPs was found to be second-order reaction, which was dependent on the concentration of BPs and chlorine. The second-order rate constants increased from 86.7 to 975 M(-1) s(-1) for oxybenzone, 49.6-261.7 M(-1) s(-1) for 4-hydroxybenzophenone and 51.7-540 M(-1) s(-1) for 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid with the increasing pH value from 6 to 8 of the chlorination disinfection condition. Then the transformation products (TPs) of these BPs were identified by HPLC-QTof analysis. Several transformation pathways, including electrophilic substitution, methoxyl substitution, ketone groups oxidation, hydrolysis, decarboxylation and ring cleavage reaction, were speculated to participate in the chlorination transformation process. Finally, according to the toxicity experiment on luminescent bacteria, Photobacterium phosphoreum, enhanced toxicity was observed for almost all the TPs of the studied BPs except for 2,2'-dihydroxy-4,4'-dimethoxybenzophenone; it suggested the formation of TPs with more toxic than the parent compounds during the chlorination process. The present study provided a foundation to understand the transformation of BPs during chlorination disinfection process, and was of great significance to the drinking water safety.
Collapse
Affiliation(s)
- Jian Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-yun Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Caballero-Casero N, Lunar L, Rubio S. Analytical methods for the determination of mixtures of bisphenols and derivatives in human and environmental exposure sources and biological fluids. A review. Anal Chim Acta 2016; 908:22-53. [DOI: 10.1016/j.aca.2015.12.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 11/29/2022]
|
18
|
Zhang Y, Shao Y, Gao N, Chu W, Chen J, Li S, Wang Y, Xu S. Chlorination of florfenicol (FF): reaction kinetics, influencing factors and by-products formation. RSC Adv 2016. [DOI: 10.1039/c6ra23342b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Florfenicol (FF) is a widely used antibiotic, which is commonly found in natural waters.
Collapse
Affiliation(s)
- Yansen Zhang
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
| | - Yisheng Shao
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
- China Academy of Urban Planning and Design
| | - Naiyun Gao
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
| | - Juxiang Chen
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
| | - Shuo Li
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
| | - Yue Wang
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
| | - Shuaixian Xu
- State Key Laboratory of Pollution Control Reuse
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
19
|
Ayanda OS, Olutona GO, Olumayede EG, Akintayo CO, Ximba BJ. Phenols, flame retardants and phthalates in water and wastewater - a global problem. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1025-1038. [PMID: 27642822 DOI: 10.2166/wst.2016.314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic pollutants in water and wastewater have been causing serious environmental problems. The arbitrary discharge of wastewater by industries, and handling, use, and disposal constitute a means by which phenols, flame retardants (FRs), phthalates (PAEs) and other toxic organic pollutants enter the ecosystem. Moreover, these organic pollutants are not completely removed during treatment processes and might be degraded into highly toxic derivatives, which has led to their occurrence in the environment. Phenols, FRs and PAEs are thus highly toxic, carcinogenic and mutagenic, and are capable of disrupting the endocrine system. Therefore, investigation to understand the sources, pathways, behavior, toxicity and exposure to phenols, FRs and PAEs in the environment is necessary. Formation of different by-products makes it difficult to compare the efficacy of the treatment processes, most especially when other organic matters are present. Hence, high levels of phenols, FRs and PAEs removal could be attained with in-line combined treatment processes.
Collapse
Affiliation(s)
- Olushola Sunday Ayanda
- Environmental and Nanoscience Research Group, Department of Industrial Chemistry, Federal University OyeEkiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria E-mail:
| | - Godwin Oladele Olutona
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria
| | - Emmanuel G Olumayede
- Environmental and Nanoscience Research Group, Department of Industrial Chemistry, Federal University OyeEkiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria E-mail:
| | - Cecilia O Akintayo
- Environmental and Nanoscience Research Group, Department of Industrial Chemistry, Federal University OyeEkiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria E-mail:
| | - Bhekumusa J Ximba
- Department of Chemistry, Cape Peninsula University of Technology, P.O. Box 962, Cape Town, South Africa
| |
Collapse
|
20
|
Andra SS, Charisiadis P, Arora M, van Vliet-Ostaptchouk JV, Makris KC. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A. ENVIRONMENT INTERNATIONAL 2015; 85:352-79. [PMID: 26521216 PMCID: PMC6415542 DOI: 10.1016/j.envint.2015.09.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 05/02/2023]
Abstract
The high reactivity of bisphenol A (BPA) with disinfectant chlorine is evident in the instantaneous formation of chlorinated BPA derivatives (ClxBPA) in various environmental media that show increased estrogen-activity when compared with that of BPA. The documented health risks associated with BPA exposures have led to the gradual market entry of BPA structural analogs, such as bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), etc. A suite of exposure sources to ClxBPA and BPA analogs in the domestic environment is anticipated to drive the nature and range of halogenated BPA derivatives that can form when residual BPA comes in contact with disinfectant in tap water and/or consumer products. The primary objective of this review was to survey all available studies reporting biomonitoring protocols of ClxBPA and structural BPA analogs (BPS, BPF, BPB, etc.) in human matrices. Focus was paid on describing the analytical methodologies practiced for the analysis of ClxBPA and BPA analogs using hyphenated chromatography and mass spectrometry techniques, because current methodologies for human matrices are complex. During the last decade, an increasing number of ecotoxicological, cell-culture and animal-based and human studies dealing with ClxBPA exposure sources and routes of exposure, metabolism and toxicity have been published. Up to date findings indicated the association of ClxBPA with metabolic conditions, such as obesity, lipid accumulation, and type 2 diabetes mellitus, particularly in in-vitro and in-vivo studies. We critically discuss the limitations, research needs and future opportunities linked with the inclusion of ClxBPA and BPA analogs into exposure assessment protocols of relevant epidemiological studies.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Lautenberg Environmental Health Sciences Laboratory, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Pantelis Charisiadis
- Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Manish Arora
- Exposure Biology, Lautenberg Environmental Health Sciences Laboratory, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700, RB, The Netherlands
| | - Konstantinos C Makris
- Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus; Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
21
|
Negreira N, Regueiro J, López de Alda M, Barceló D. Degradation of the anticancer drug erlotinib during water chlorination: Non-targeted approach for the identification of transformation products. WATER RESEARCH 2015; 85:103-13. [PMID: 26311272 DOI: 10.1016/j.watres.2015.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/26/2015] [Accepted: 08/01/2015] [Indexed: 05/04/2023]
Abstract
Erlotinib is a highly potent tyrosine kinase inhibitor used in the treatment of the most common type of lung cancer. Due to its recent introduction, very scarce information is available on its occurrence, environmental fate and toxicological effects on aquatic organisms. During chlorination processes normally carried out in wastewater treatment plants and in the pretreatment of hospital effluents, chlorinated transformation products can be formed with an enhanced toxicity relative to the parent compound. Thus, the reactivity of the cytostatic drug erlotinib in free chlorine-containing water was investigated for the first time in the present work. A non-targeted screening approach based on the use of differential profiling tools was applied in order to reveal its potential transformation products. Structural elucidation of the detected transformation products was performed by ultra-performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. The proposed approach allowed detecting a total of nineteen transformation products, being eighteen of them described for the first time in this work, which demonstrates its potential in environmental analysis. Among them, six compounds presented chlorine atoms in their structures, which may be of major concern. Other transformation products involved hydroxylation and oxidation reactions. Time-course profiles of erlotinib and its transformation products were followed in real wastewater samples under conditions that simulate wastewater disinfection. Although the structures of these transformation products could not be positively confirmed due to lack of standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies.
Collapse
Affiliation(s)
- Noelia Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Jorge Regueiro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004, Ourense, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain
| |
Collapse
|