1
|
Sivakumar M, Dhinakarasamy I, Chakraborty S, Clements C, Thirumurugan NK, Chandrasekar A, Vinayagam J, Kumar C, Thirugnanasambandam R, Kumar V R, Chandrasekaran VN. Effects of titanium oxide nanoparticles on growth, biochemical composition, and photosystem mechanism of marine microalgae Isochrysis galbana COR-A3. Nanotoxicology 2025; 19:156-179. [PMID: 39885705 DOI: 10.1080/17435390.2025.2454267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on Isochrysis galbana COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function. Cells were exposed to TiONPs concentration of 10-50 mg/L and assessments were conducted over 96 h to evaluate cell viability, biochemical composition, photo-physiology, oxidative stress and morphological deformations. At 50 mg/L concentration, cell viability was significantly reduced by 73.42 ± 3.46% and subsequent decrease of 42.8%, 29.2%, 44.2% in carbohydrate, protein and lipid content were observed. TiONPs exposure elevates the reactive oxygen species production and thereby impairing the photosystem II efficiency and disrupting the cellular metabolism. Morphological analysis revealed significant cell membrane disruption and plasmolysis. These cascading effects reveal TiONPs ability to interfere with algal physiological process, potentially affecting the primary productivity in marine ecosystem. Our findings highlight the ecological risk associated with the TiONPs, emphasizing the need for regulatory measures to mitigate the nanoparticle pollution in aquatic environment. This study provides more insights on the TiONPs induced toxicity in marine microalgae by altering the photosynthetic performance and biochemical integrity.
Collapse
Affiliation(s)
- Manikandan Sivakumar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Inbakandan Dhinakarasamy
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subham Chakraborty
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Clarita Clements
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Naren Kumar Thirumurugan
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anu Chandrasekar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jeevitha Vinayagam
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Chandrasekar Kumar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajendar Thirugnanasambandam
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ramesh Kumar V
- Department of Biotechnology, Sathyabama Institute of Science and technology, Chennai, Tamil Nadu, India
| | | |
Collapse
|
2
|
Zhang Y, Li Y, Wang N, Ma X, Sun J, Wang X, Wang J. Joint action of six-component mixtures based on concentration response curves morphological parameter in acute and long-term toxicity assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104595. [PMID: 39613123 DOI: 10.1016/j.etap.2024.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Previous studies found that the multi-component mixtures with hormesis concentration-response curves (CRCs) were divided into three types according to the combined toxicity analysis of the segment-based method and σ2(k∙ECx) (the variance of k∙ECx). In this study, the acute and long-term toxicity of six pollutants and 12 six-component mixtures were assessed using microplate toxicity analyses (MTA). The functional relationship between σ2(k·ECx) and effect ratio (ERx) was determined by means of the independent action (IA) and the ER model to systematically investigate the correlation between mixture types in acute and long-term toxicity. The results indicated that across the entire concentration range, the mixture type of acute toxicity was consistent with short time exposure (0.25 h) measured in the long-term toxicity experiment. In the inhibition effect range, the types of mixtures of acute toxicity remained consistent with the chronic toxicity (exposure for 24 h) in 11 of the 12 mixtures. This study clarified the changes in the joint action of multi-component mixtures on Aliivibrio fischeri in terms of acute and long-term toxicity. The chronic toxicity of the mixtures can be predicted from the acute toxicity results, which provides a theoretical basis for the biological toxicity evaluation of multi-component mixtures.
Collapse
Affiliation(s)
- Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Yajiao Li
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Na Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China.
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
3
|
You X, Cao X, Zhang X, Liu Y, Sun W. Differential toxicity of various mineral nanoparticles to Synechocystis sp.: With and without ciprofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132319. [PMID: 37611388 DOI: 10.1016/j.jhazmat.2023.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Mineral nanoparticles (M-NPs) are ubiquitous in aquatic environments, but their potential harms to primary producers and impacts on the toxicity of coexisting pollutants are largely unknown. Herein, the toxicity mechanisms of various M-NPs (i.e., SiO2, Fe2O3, Al2O3, and TiO2 NPs) to Synechocystis sp. in absence and presence of ciprofloxacin (CIP) were comprehensively investigated. The heteroaggregation of cells and M-NPs can hinder substrate transfer or light acquisition. The attraction between Synechocystis sp. and M-NPs increased in the order of SiO2 < Fe2O3 < Al2O3 ≈ TiO2 NPs. Therefore, SiO2 and Fe2O3 NPs exerted slight effects on physiology and proteome of Synechocystis sp.. Al2O3 NPs with the rod-like shape caused physical damage to cells. Differently, TiO2 NPs with photocatalytic activities provided photogenerated electrons for Synechocystis sp., promoting photosynthesis and the Calvin cycle for CO2 fixation. SiO2, Fe2O3, and Al2O3 NPs alleviated the toxicity of CIP in an adsorption-depended manner. Conversely, the combination of CIP and TiO2 NPs exerted more pronounced toxic effects compared to their individuals, and CIP disturbed the extracellular electron transfer from TiO2 NPs to cells. The findings highlight the different effects of TiO2 NPs from other M-NPs on cyanobacteria, either alone or in combination with CIP, and improve the understanding of toxic mechanisms of M-NPs.
Collapse
Affiliation(s)
- Xiuqi You
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xuan Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yi Liu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
4
|
Wang N, Sun J, Ma X, Yang X, Wang X, Zhang Y, Zhou J, Wang J, Ge C. A study of long-term toxicity of multiple mixtures with hormetic effects by the characteristic parameter σ 2(k∙ECx) and stepwise method. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104133. [PMID: 37116630 DOI: 10.1016/j.etap.2023.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
A previous study found that the characteristic parameter σ2(k∙ECx) (the concentration ECx and slope k of the concentrationresponse curve (CRC) at the effect x %) can predict the acute combined toxicity of multiple mixtures with S-shaped CRCs. In this paper, the competence of σ2(k∙ECx) to predict the long-term toxicity of multiple mixtures with J-shaped CRCs was explored using the Aliivibrio fischeri as the test organism. The combined toxicity was evaluated by the independent action (IA) model and the effect ratio (ERx) model. The stepwise method was used to divide J-shaped CRC into ML and MR (SL and SR). The results showed that the σ2(k∙ECx) and ERx of each segment was in good agreement with the exponential function. A new type of mixture was added to the original type A and type B, whose rules of interaction were opposite to those of type B (named opposite B, OB). This paper improves the understanding and analysis of the J-shaped CRCs in environmental risk assessment.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinyue Yang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
5
|
Xu L, Yang X, He Y, Hu Q, Fu Z. Combined exposure to titanium dioxide and tetracycline induces neurotoxicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109562. [PMID: 36764589 DOI: 10.1016/j.cbpc.2023.109562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
In aquatic environment, engineered materials may inevitably interact with the coexisted organic pollutants, which affect their bioavailability and toxicity. In this contribution, the combined impacts of tetracycline (TC) and titanium dioxide nanoparticles (TiO2 NPs) on the neurodevelopment of zebrafish larvae were investigated, and the underlying mechanisms were further elucidated. Firstly, it was confirmed that the co-existence of TC would increase the size and decrease the zeta potential of TiO2 NPs. Following, developmental indicators and motor behaviors were investigated. Our results indicated that co-exposure to TC and TiO2 NPs exhibited enhanced embryonic malformation rates and abnormal nervous system development in zebrafish embryos. Meanwhile, the locomotor behavior was increased upon treatment of TC and TiO2 NP. Further, pathway enrichment analyses of transcriptomic sequencing provided detailed information that either lipid metabolism or PPAR signaling pathway were significantly affected in the co-exposure group. Also, TC + TiO2 NP exposure significantly changed the mRNA expression of neural development-related genes and up-regulated the expression levels of neurotransmitters like 5-hydroxytryptamine, dopamine, acetylcholinesterase, and γ-aminobutyric acid. Taken together, our results demonstrated that the co-exposure of TC and TiO2 NPs had the potential to cause neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Ying He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| |
Collapse
|
6
|
Chen D, Xu W, Cao S, Xia Y, Du W, Yin Y, Guo H. Divergent responses of earthworms (Eisenia fetida) in sandy loam and clay soils to cerium dioxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5231-5241. [PMID: 35982389 DOI: 10.1007/s11356-022-22448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The reported biological effects of cerium dioxide nanoparticles (nCeO2) in soils range from toxic to protective. However, divergences of nCeO2 toxicity in soils of different textures are not known. In this study, the availability of nCeO2 on earthworms (Eisenia fetida) in sandy loam soils and clay soils was discussed, and the biological effects of nCeO2 (0-1000 mg/kg) on earthworms in two soils were investigated. The results showed the bioaccumulation and biological effects of Ce on earthworms in the two soils were inconsistent. The European Community Bureau of Reference (BCR) sequential extraction revealed that the major portions of Ce in both soils were in the residual form (98-99%), and the acid-soluble Ce fraction was greater in clay soils. However, nCeO2 was more toxic to earthworms in sandy loam soils than that in clay soils as assessed by earthworm biomass, morphology, and antioxidative damage. Thus, the high ecological risk of nCeO2 in sandy loam soils with higher pH and lower clay contents needs to be avoided, being used in agriculture to improve both crop yield and quality.
Collapse
Affiliation(s)
- Dun Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenxuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shenglai Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Ningxia Hui Autonomous Region Coal Geology Bureau, Yinchuan, 750004, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
- Joint International Research Centre for Critical Zone Science - University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Joint International Research Centre for Critical Zone Science - University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Karmous I, Tlahig S, Loumerem M, Lachiheb B, Bouhamda T, Mabrouk M, Debouba M, Chaoui A. Assessment of the risks of copper- and zinc oxide-based nanoparticles used in Vigna radiata L. culture on food quality, human nutrition and health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4045-4061. [PMID: 34850307 DOI: 10.1007/s10653-021-01162-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The present article aims to assess the phytotoxic effects of copper and zinc oxide nanoparticles (Cu NPs, ZnO NPs) on mung bean (Vigna radiata L.) and their possible risk on food quality and safety. We also study the molecular mechanisms underlying the toxicity of nanosized Cu and ZnO. Seeds of mung bean were germinated under increasing concentrations of Cu NPs and ZnO NPs (10, 100, 1000, 2000 mg/L). We analyzed levels of free amino acids, total soluble sugars, minerals, polyphenols and antioxidant capacity. Our results showed that depending on the concentrations used of Cu NPs and ZnO NPs, the physiology of seed germination and embryo growth were modified. Both free metal ions and nanoparticles themselves may impact plant cellular and physiological processes. At 10 mg/L, an improvement of the nutritive properties, in terms of content in free amino acids, total soluble sugars, essential minerals, antioxidant polyphenols and flavonoids, was shown. However, higher concentrations (100-2000 mg/L) caused an alteration in the nutritional balance, which was revealed by the decrease in contents and quality of phenolic compounds, macronutrients (Na, Mg, Ca) and micronutrients (Cu, Fe, Mn, Zn, K). The overall effects of Cu and ZnO nanoparticles seem to interfere with the bioavailability of mineral and organic nutrients and alter the beneficial properties of the antioxidant phytochemicals, mineral compounds, phenolic acids and flavonoids. This may result in a potential hazard to human food and health, at some critical doses of nanofertilizers. This study may contribute in the guidelines to the safe use of nanofertilizers or nanosafety, for more health benefit and less potential risks.
Collapse
Affiliation(s)
- Inès Karmous
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia.
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia.
| | - Samir Tlahig
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mohamed Loumerem
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Belgacem Lachiheb
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Talel Bouhamda
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mahmoud Mabrouk
- Dry Land and Oases Cropping Laboratory, Arid Land Institute of Medenine (IRA), Medenine, Tunisia
| | - Mohamed Debouba
- Biology and Environmental Department, Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| |
Collapse
|
8
|
Eslami-Farsani R, Farhadian S, Shareghi B, Momeni L. Structural insights into the binding behavior of NiO with myoglobin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Trinh TX, Seo M, Yoon TH, Kim J. Developing random forest based QSAR models for predicting the mixture toxicity of TiO 2 based nano-mixtures to Daphnia magna. NANOIMPACT 2022; 25:100383. [PMID: 35559889 DOI: 10.1016/j.impact.2022.100383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/20/2021] [Accepted: 01/14/2022] [Indexed: 05/24/2023]
Abstract
During emission, TiO2 nanoparticles (NPs) might meet various chemicals, including metal ions and organic compounds in aquatic environments (e.g., surface water, sediments). At environmentally safe concentrations, combinations of both TiO2 NPs and those chemicals might cause cocktail effects (i.e., mixture toxicity) to aquatic organisms. Previous models such as concentration addition and independent action require dose-response curves of single components in the mixtures to predict the mixture toxicity. Structure-activity relationship (QSAR) models might predict the toxicity of nano-mixtures without dose-response curves of single components in the mixtures. However, current quantitative structure-activity relationship (QSAR) models are mainly focused on predicting cytotoxicity (i.e., cell viability) of heterogeneous metallic TiO2 nanoparticles (NPs) or mixtures of TiO2 NPs and four metal ions (Cu2+, Cd2+, Ni2+, and Zn2+). To minimize the experimental cost of nano-mixture risk assessment, in this study, we developed novel nano-mixture QSAR models to predict i) EC50 of 76 nano-mixtures containing TiO2 NPs and one of eight inorganic/organic compounds (i.e., AgNO3, Cd(NO3)2, Cu(NO3)2, CuSO4, Na2HAsO4, NaAsO2, Benzylparaben and Benzophenone-3), to Daphnia magna(D. magna), and ii) immobilization of D. magna exposed to one of 98 mixtures containing TiO2 NPs and one of eleven inorganic/organic compounds (i.e., AgNO3, Cd(NO3)2, Cu(NO3)2, CuSO4, Na2HAsO4, NaAsO2, Benzylparaben Benzophenone-3, Pirimicarb, Pentabromodiphenyl Ether and Triton X-100). The nano-mixture QSAR models were developed with mixture descriptors (Dmix) combing quantum descriptors of mixture components (e.g., TiO2 NPs and its partners) by using different machine learning techniques (i.e., random forest, neural network, support vector machine, and multiple linear regression). Nano-mixture QSAR models built with the random forest algorithm and proposed mixture descriptors exhibited good performance for predicting logEC50 (Adj.R2test = 0.955 ± 0.003, RMSEtest = 0.016 ± 0.002, and MAEtest = 0.008 ± 0.001) and immobilization (Adj.R2test = 0.888 ± 0.011, RMSEtest = 11.327 ± 0.730, and MAEtest = 5.933 ± 0.442). The models developed in this study were implemented in a user-friendly application for assessing the aquatic toxicity of TiO2 based nano-mixtures.
Collapse
Affiliation(s)
- Tung X Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myungwon Seo
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
10
|
Cheng R, Liu YP, Chen YH, Shen LJ, Wu JJ, Shi L, Zheng X. Combined effect of nanoscale zero-valent iron and linear alkylbenzene sulfonate (LAS) to the freshwater algae Scenedesmus obliquus. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1366-1375. [PMID: 33131022 DOI: 10.1007/s10646-020-02294-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
With wide use of nanoparticles, co-exposure of aquatic organisms to nanoparticles and organic pollutants often takes place in the environment. However, the combined effects are still rarely understood. In this study, in order to study the interaction and biological effects of nanoscale zero-valent iron (nZVI) and linear alkylbenzene sulfonate (LAS), which acts as a typical surfactant, the freshwater algae Scenedesmus obliquus was exposed to nZVI and LAS individually and in combination for 96 h. According to the inhibition rate of the algae, the toxic effects were investigated by dose-response analysis. Then the combined effect of nZVI and LAS was evaluated using three evaluation models including toxicity unit (TU), additional index (AI), and mixture toxicity index (MTI). The results showed that the 96 h IC50 of nZVI and LAS to Scenedesmus obliquus was 2.464 mmol L-1 and 0.332 mmol L-1, respectively. When nZVI coexisted with LAS at toxic ratio 1:1, the 96 h IC50 value was 1.658 mmol L-1 (shown with nZVI), and the partly additive effect of nZVI mixed with LAS was confirmed. However, when the toxic ratio of nZVI:LAS was 4:1, it showed synergistic effect. In addition, when nZVI mixed with LAS at toxic ratio 1:4, the joint effect is antagonistic effect. In addition, the content of chorophyll in Scenedesmus obliquus, especially the content of chlorophyll a, was decreased with the increase of mixture dose. However, the protein levels did not show significant changes at different mixture doses.
Collapse
Affiliation(s)
- Rong Cheng
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Ya-Ping Liu
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Yi-Hui Chen
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Liang-Jie Shen
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Jiao-Jiao Wu
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Lei Shi
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China.
| |
Collapse
|
11
|
Xin X, Huang G, Zhang B. Review of aquatic toxicity of pharmaceuticals and personal care products to algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124619. [PMID: 33248823 DOI: 10.1016/j.jhazmat.2020.124619] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) have been frequently detected in the environment around the world. Algae play a significant role in aquatic ecosystem, thus the influence on algae may affect the life of higher trophic organisms. This review provides a state-of-the-art overview of current research on the toxicity of PPCPs to algae. Nanoparticles, contained in personal care products, also have been considered as the ingredients of PPCPs. PPCPs could cause unexpected effects on algae and their communities. Chlorophyta and diatoms are more accessible and sensitive to PPCPs. Multiple algal endpoints should be considered to provide a complete evaluation on PPCPs toxicity. The toxicity of organic ingredients in PPCPs could be predicted through quantitative structure-activity relationship model, whereas the toxicity of nanoparticles could be predicted with limitations. Light irradiation can change the toxicity through affecting algae and PPCPs. pH and natural organic matter can affect the toxicity through changing the existence of PPCPs. For joint and tertiary toxicity, experiments could be conducted to reveal the toxic mechanism. For multiple compound mixture toxicity, concentration addition and independent addition models are preferred. However, there has no empirical models to study nanoparticle-contained mixture toxicity. Algae-based remediation is an emerging technology to prevent the release of PPCPs from water treatment plants. Although many individual algal species are identified for removing a few compounds from PPCPs, algal-bacterial photobioreactor is a preferable alternative, with higher chances for industrial applications.
Collapse
Affiliation(s)
- Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada.
| |
Collapse
|
12
|
Roy B, Suresh PK, Chandrasekaran N, Mukherjee A. Antibiotic tetracycline enhanced the toxic potential of photo catalytically active P25 titanium dioxide nanoparticles towards freshwater algae Scenedesmus obliquus. CHEMOSPHERE 2021; 267:128923. [PMID: 33190912 DOI: 10.1016/j.chemosphere.2020.128923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) often co-exist with the other co-contaminants like antibiotics. The antibiotics can potentially modify the toxic effects of the co-contaminants like the NPs in the environment. Hence, the present study aims to understand the toxic potential of a binary mixture of tetracycline (TC) and TiO2 NPs to a model freshwater alga - Scenedesmus obliquus. Since, TiO2 NPs are known to be photo-catalytically active, non-irradiated (NI-TiO2 NPs), UVA pre-irradiated (UVA-TiO2 NPs), and UVB pre-irradiated (UVB-TiO2 NPs) TiO2 NPs was mixed separately with TC and their toxicity evaluated. It was observed that the cell viability for the three experimental groups decreased significantly (p < 0.001) with respect to the individual NPs-treated algae. Abbott's model suggested that the interaction between TC and Ni-TiO2 NPs was additive for all the concentrations of NI-TiO2 NPs tested. However, in the case of both the UV pre-irradiated NPs, the interaction was additive for the lower concentration (1.56 μM) and synergistic for both the higher concentrations (3.13, and 6.26 μM). At the concentrations tested the cell membrane damage and intracellular uptake of NPs increased significantly (p < 0.05) for the mixture in comparison with the individual NPs treated algae. This study suggested that even a non-lethal concentration of TC (EC10 = 0.135 μM) increased the toxic potential of the TiO2 NPs significantly and when this antibiotic was used in combination with the UV pre-irradiated NPs, toxicity even increased to a higher level.
Collapse
Affiliation(s)
- Barsha Roy
- School of Biosciences and Technology, VIT, Vellore, 632014, India
| | - P K Suresh
- School of Biosciences and Technology, VIT, Vellore, 632014, India
| | | | | |
Collapse
|
13
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
14
|
Xin X, Huang G, An C, Lu C, Xiong W. Exploring the biophysicochemical alteration of green alga Asterococcus superbus interactively affected by nanoparticles, triclosan and illumination. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122855. [PMID: 32473326 DOI: 10.1016/j.jhazmat.2020.122855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/07/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Toxic effects on Asterococcus superbus were studied based on different combinations of P25-TiO2, nano-ZnO and triclosan under multiple illumination conditions. A full factorial design (2 × 2×2 × 3) was implemented to explore interactive effects, and to identify significant factors. The results showed illumination is the most important factor with significance and becomes one of the main reasons to affect chlorophyll pigments, photosynthesis activity, unsaturated fatty acids, mitochondria function, and cause oxidative stress. Triclosan considerably affects cell viability, photosynthesis activity, lipid peroxidation and protein structure, for which triclosan is more significant than nano-ZnO. P25 is significant for oxidative stress, antioxidant enzyme, and lipid peroxidation. P25 * nano-ZnO is the only significant interaction of pollutants, affecting macromolecules, lipid peroxidation, and photosynthesis activity. High-order interactions play significant roles in affecting multiple molecular components. Two groups of endpoints are best to reflect alga responses to interactively effects from P25, nano-ZnO, and triclosan. One is ROS, chlorophyll pigments, TBARS, area, MTT, and MMP, and the other one is chlorophyll pigments, ROS, TBARS, CAT, MTT and SOD. Our findings can be instructive for a comprehensive comparison among interactions of multiple pollutants and environmental factors in natural waters, such that more robust environmental toxicity analyses can be performed.
Collapse
Affiliation(s)
- Xiaying Xin
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, A1C 5S7, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chen Lu
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Wenhui Xiong
- Stantec Consulting Ltd., Saskatoon, S7K 0K3, Canada
| |
Collapse
|
15
|
Xiong JQ, Ru S, Zhang Q, Jang M, Kurade MB, Kim SH, Jeon BH. Insights into the effect of cerium oxide nanoparticle on microalgal degradation of sulfonamides. BIORESOURCE TECHNOLOGY 2020; 309:123452. [PMID: 32371321 DOI: 10.1016/j.biortech.2020.123452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Nanoparticles have been commercially used worldwide; however, there is a lack of information of their environmental impacts and ecotoxicity. In this study, the effect of cerium oxide nanoparticle (CeO2NP) on a green microalga Scenedesmus obliquus, and microalgal biodegradation of four sulfonamides (sulfamethazine, sulfamethoxazole, sulfadiazine, and sulfamethoxazole) was investigated. There is insignificant inhibition of microalgal growth induced by CeO2NP; however, it substantially influenced the expression of genes involved in key cellular metabolic activities of S. obliquus. For example, genes involved in photosynthetic activity (psbA) and energy production (ATPF0C) were downregulated with exposure to CeO2NP. The low concentrations of CeO2NP improved microalgal degradation of sulfonamides. This may be because of the upregulated genes encoding hydrogenase and oxidoreductase. The exploration of this study has provided a new understanding of the environmental impacts of CeO2NP on microalgae-based biotechnologies for treatment of wastewater containing emerging organic contaminants.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Qing Zhang
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
16
|
Zhang W, Liu CP, Chen SQ, Liu MJ, Zhang L, Lin SY, Shu G, Yuan ZX, Lin JC, Peng GN, Zhong ZJ, Yin LZ, Zhao L, Fu HL. Poloxamer modified florfenicol instant microparticles for improved oral bioavailability. Colloids Surf B Biointerfaces 2020; 193:111078. [PMID: 32422561 DOI: 10.1016/j.colsurfb.2020.111078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
Surfactants can improve the hydrophobicity of poorly water-soluble drugs and increase the stability of microparticles by reducing surface tension. This study describes that surfactant-engineered florfenicol instant microparticles (FIMs) increase bioavailability through a micellar solubilization mechanism. The FIMs were prepared by a modified emulsification method, and the optimal prescription was obtained by a combination of single factor investigation and response surface methodology. The microparticles prepared in this study reduce the polymer materials while increasing the drug content. FIM has a smaller particle size and modification of poloxamer, resulting in better solubility and higher bioavailability. The in vitro solubility of FIM is 1.43 times higher than that of the bulk drug, and the dissolution equilibrium can be achieved in 10 minutes. Compared with florfenicol, FIM showed a decrease in Tmax in the plasma concentration curve, with a peak concentration of 1.43 times and an area of 1.41 times. Considering the advantages of in vitro/in vivo performance and ease of preparation, FIMs may have great application prospects in pharmacy research.
Collapse
Affiliation(s)
- Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chun-Ping Liu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shi-Qi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Meng-Jiao Liu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shi-Yu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhi-Xiang Yuan
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ju-Chun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guang-Neng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhi-Jun Zhong
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li-Zi Yin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lin Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua-Lin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
17
|
Sun H, Pan Y, Chen X, Jiang W, Lin Z, Yin C. Regular time-dependent cross-phenomena induced by hormesis: A case study of binary antibacterial mixtures to Aliivibrio fischeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109823. [PMID: 31639641 DOI: 10.1016/j.ecoenv.2019.109823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Time-dependent cross-phenomenon in which the cross between the actual concentration-response curve (CRC) for mixture crosses the CRCs for reference model varies with time has been frequently reported in previous studies, expressed as a heterogeneous pattern of joint toxic action. However, the variation tendency of time-dependent cross-phenomenon is rarely addressed. In this study, the joint toxic actions of binary antibacterial mixtures (i.e., two quorum sensing inhibitors, tetracycline hydrochloride, erythromycin, and chloramphenicol with sulfonamides) were judged using independent action (IA) model to find the variation tendency of time-dependent cross-phenomenon. The results show that the time-dependent cross-phenomena of the test binary antibacterial mixtures follow a unified variation tendency and the corresponding joint toxic actions change regularly with an increase of both concentration and time. Through investigating the relationship between the stimulatory and inhibitory modes of action for the single agents and the time-dependent cross-phenomena of binary mixtures, the regular time-dependent cross-phenomena is speculated to be derived from the hormetic effects of the components in the mixtures. This study offers an advance for the variation tendency and mechanistic explanation of time-dependent cross-phenomenon, which will provide a support for the future development in the exploration of time-dependent cross-phenomenon and environmental risk assessment of pollutant mixtures.
Collapse
Affiliation(s)
- Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China
| | - Yongzheng Pan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Chen
- Shanghai Customs Inspection Center of Industrial Products & Raw Material, Shanghai, 200135, China
| | - Wei Jiang
- Shanghai Customs Inspection Center of Industrial Products & Raw Material, Shanghai, 200135, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Chunsheng Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
18
|
Thiagarajan V, Natarajan L, Seenivasan R, Chandrasekaran N, Mukherjee A. Tetracycline affects the toxicity of P25 n-TiO 2 towards marine microalgae Chlorella sp. ENVIRONMENTAL RESEARCH 2019; 179:108808. [PMID: 31606618 DOI: 10.1016/j.envres.2019.108808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Pollutants such as n-TiO2 and tetracycline enter the marine environment through various sources starting from their production until disposal. Hence, it is vital to determine the interactive effect of one pollutant with the other when they coexist in the environment. In the present study, the effect of antibiotic - tetracycline (TC) on the toxicity of P25 n-TiO2 was studied with marine microalgae, Chlorella sp. The impact of TC (1 mg L-1) on five different concentrations of n-TiO2 (0.25, 0.5, 1, 2 and 4 mg L-1) under both visible and UV-A illuminations was evaluated. Effective diameter of n-TiO2 in ASW at 0th h increased from 690.69 ± 19.55 nm (0.25 mg L-1) to 1183.04 ± 37.10 nm (0.25 mg L-1 + 1 mg L-1) and 971.51 ± 14.61 nm (4 mg L-1) to 1324.12 ± 11.59 nm (4 mg L-1 + 1 mg L-1) in presence of TC. A significant increase in the toxicity of 4 mg L-1 n-TiO2 upon the addition of TC (68.16 ± 0.37% under visible and 80.21 ± 0.3% under UV-A condition) was observed. No significant difference in toxicity was observed between visible and UV-A illuminations. Further the toxicity data was corroborated through the measurement of oxidative stress and antioxidant enzyme activities. Independent action model showed antagonistic effect for lower concentrations of n-TiO2 and additive effect for higher concentrations of n-TiO2 when present in mixture with TC under both illuminations. For the higher mixture concentration of 4 mg L-1 n-TiO2 and 1 mg L-1 TC, the percentage TC removal was about 55.29% and 30% and the corresponding TOC removal was found to be 54.29% and 31.04% under visible and UV-A illuminations respectively. The site of ROS generation in Chlorella sp. was identified with electron transfer chain inhibitors. Both mitochondria and chloroplast acted as the site for the ROS generation in Chlorella sp. The SEM images of the algal cells upon exposure to n-TiO2 and mixture revealed the aggregation of cells and distortion of cell membrane.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Lokeshwari Natarajan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - R Seenivasan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
19
|
Xin X, Huang G, An C, Feng R. Interactive Toxicity of Triclosan and Nano-TiO 2 to Green Alga Eremosphaera viridis in Lake Erie: A New Perspective Based on Fourier Transform Infrared Spectromicroscopy and Synchrotron-Based X-ray Fluorescence Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9884-9894. [PMID: 31322895 DOI: 10.1021/acs.est.9b03117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study explored the toxicity of triclosan in the presence of TiO2 P25 to the green alga Eremosphaera viridis in Lake Erie. Multiple physicochemical end points were conducted to perform a comprehensive analysis of the toxic effects of individual and combined pollutants. Fourier transform infrared spectromicroscopy and synchrotron-based X-ray fluorescence imaging were first documented to be applied to explore the distribution variation of macromolecules and microelements in single algal cells in interactive toxicity studies. The results were different based on different triclosan concentrations and measurement end points. Comparing with individual pollutants, the toxicity intensified in lipids, proteins, and oxidative stress at 1000 and 4000 μg/L triclosan in the presence of P25. There were increases in dry weight, chlorophyll content, lipids, and catalase content when cells were exposed to P25 and 15.625 μg/L triclosan. The toxicity alleviated when P25 interacted with 62.5 and 250 μg/L triclosan compared with triclosan-only exposure. The reasons could be attributed to the combination of adsorption, biodegradation, and photocatalysis of triclosan by algae and P25, triclosan dispersion by increased biomass, triclosan adherency on algal exudates, and triclosan adsorption site reduction on algae surface owing to P25's taking over. This work provides new insights into the interactive toxicity of nanoparticles and personal care products to freshwater photosynthetic organisms. The findings can help with risk evaluation for predicting outcomes of exposure to mixtures and with prioritizing further studies on joint toxicity.
Collapse
Affiliation(s)
- Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina S4S 0A2 , Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities , University of Regina , Regina S4S 0A2 , Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering , Concordia University , Montreal H3G 1M8 , Canada
| | - Renfei Feng
- Canadian Light Source , Saskatoon S7N 2 V3 , Saskatchewan , Canada
| |
Collapse
|
20
|
Miazek K, Brozek-Pluska B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int J Mol Sci 2019; 20:ijms20102492. [PMID: 31137560 PMCID: PMC6567089 DOI: 10.3390/ijms20102492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, the effect of pharmaceuticals (PHRs) and personal care products (PCPs) on microalgal growth and metabolism is reported. Concentrations of various PHRs and PCPs that cause inhibition and toxicity to growths of different microalgal strains are summarized and compared. The effect of PHRs and PCPs on microalgal metabolism (oxidative stress, enzyme activity, pigments, proteins, lipids, carbohydrates, toxins), as well as on the cellular morphology, is discussed. Literature data concerning the removal of PHRs and PCPs from wastewaters by living microalgal cultures, with the emphasis on microalgal growth, are gathered and discussed. The potential of simultaneously bioremediating PHRs/PCPs-containing wastewaters and cultivating microalgae for biomass production in a single process is considered. In the light of reviewed data, the feasibility of post-bioremediation microalgal biomass is discussed in terms of its contamination, biosafety and further usage for production of value-added biomolecules (pigments, lipids, proteins) and biomass as a whole.
Collapse
Affiliation(s)
- Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Beata Brozek-Pluska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
21
|
Sendra M, Moreno-Garrido I, Blasco J, Araújo CVM. Effect of erythromycin and modulating effect of CeO 2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:357-366. [PMID: 29990943 DOI: 10.1016/j.envpol.2018.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Erythromycin is an antibiotic employed in the treatment of infections caused by Gram positive microorganisms and the increasing use has made it a contaminant of emerging concern in aqueous ecosystems. Cerium oxide nanoparticles (CeO2 NPs), which are known to have catalytic and antioxidant properties, have also become contaminants of emerging concern. Due to the high reactivity of CeO2 NPs, they can interact with erythromycin magnifying their effects or on the other hand, considering the redox potential of CeO2 NPs, it can alleviate the toxicity of erythromycin. The present study was carried out to assess the toxicity of both single compounds as well as mixed on Chlamydomonas reinhardtii and Phaeodactylum tricornutum (freshwater and marine microalgae respectively) employed as target species in ecotoxicological tests. Mechanisms of oxidative damage and those harmful to the photosynthetic apparatus were studied in order to know the toxic mechanisms of erythromycin and the joint effects with CeO2 NPs. Results showed that erythromycin inhibited the microalgae population growth and effective quantum yield of PSII (E.Q.Y.) in both microalgae. However, the freshwater microalgae Chlamydomonas reinhardtii was more sensitive than the marine diatom Phaeodactylum tricornutum. Responses related to the photosynthetic apparatus such as E.Q.Y. was affected by the exposure to erythromycin of both microalgae, as chloroplasts are target organelle for this antibiotic. Mixed experiments (CeO2 NPs + erythromycin) showed the protective role of CeO2 NPs in both microalgae preventing erythromycin toxicity in toxicological responses such as the growth of the microalgae population and E.Q.Y.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Ignacio Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
22
|
Chen H, Cheng Y, Meng D, Xue G, Jiang M, Li X. Joint effect of triclosan and copper nanoparticles on wastewater biological nutrient removal. ENVIRONMENTAL TECHNOLOGY 2018; 39:2447-2456. [PMID: 28707517 DOI: 10.1080/09593330.2017.1355937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is widely used in household and personal care products, and its release into wastewater might have impact on wastewater biological treatment for its antibacterial property. Besides, emerging pollutant such as copper nanoparticles (CuNPs) will also release from nanoparticle-containing products, showing a joint effect with TCS on biological nutrient removal. The TCS of 1 and 10 mg/L inhibited the nitrosification and nitrification stage, and the first step of denitrification was suppressed as well, causing a decline in final TN removal efficiency. Additionally, the phosphorus uptake was inhibited seriously, leading to a remarkable decrease in phosphorus removal efficiency. When they were co-existed, the TCS concentration decreased due to the absorption by CuNPs, and the released Cu2+ from CuNPs increased. Further investigation revealed that when 5 mg/L CuNPs and 1 mg/L TCS were immediately added to the activated sludge, the final joint toxicity was similar to the individual effect of 1 mg/L TCS, while 10 mg/L CuNPs contributed to the final stronger toxicity. When TCS was sufficiently reacted with CuNPs in wastewater, their final toxicity to activated sludge was enhanced because the extent of toxicity relief caused by decrease in TCS concentration was less than the degree of deteriorating effect due to the promotion of Cu2+ release from CuNPs.
Collapse
Affiliation(s)
- Hong Chen
- a School of Environmental Science and Engineering , Donghua University , Shanghai , People's Republic of China
- b Jiangsu Tongyan Environmental Production Science and Technology Co. Ltd. , Yancheng , People's Republic of China
| | - Yuying Cheng
- a School of Environmental Science and Engineering , Donghua University , Shanghai , People's Republic of China
| | - Di Meng
- a School of Environmental Science and Engineering , Donghua University , Shanghai , People's Republic of China
| | - Gang Xue
- a School of Environmental Science and Engineering , Donghua University , Shanghai , People's Republic of China
| | - Mingji Jiang
- a School of Environmental Science and Engineering , Donghua University , Shanghai , People's Republic of China
| | - Xiang Li
- b Jiangsu Tongyan Environmental Production Science and Technology Co. Ltd. , Yancheng , People's Republic of China
| |
Collapse
|
23
|
Eskandari N, Nejadi Babadaei MM, Nikpur S, Ghasrahmad G, Attar F, Heshmati M, Akhtari K, Rezayat Sorkhabadi SM, Mousavi SE, Falahati M. Biophysical, docking, and cellular studies on the effects of cerium oxide nanoparticles on blood components: in vitro. Int J Nanomedicine 2018; 13:4575-4589. [PMID: 30127607 PMCID: PMC6091479 DOI: 10.2147/ijn.s172162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction The application of nanoparticles (NPs) in medicine and biology has received great interest due to their novel features. However, their adverse effects on the biological system are not well understood. Materials and methods This study aims to evaluate the effect of cerium oxide nanoparticles (CNPs) on conformational changes of human hemoglobin (HHb) and lymphocytes by different spectroscopic (intrinsic and synchronous fluorescence spectroscopy and far and near circular dichroism [CD] spectroscopy), docking and cellular (MTT and flow cytometry) investigations. Results and discussion Transmission electron microscopy (TEM) showed that CNP diameter is ~30 nm. The infrared spectrum demonstrated a strong band around 783 cm−1 corresponding to the CNP stretching bond. Fluorescence data revealed that the CNP is able to quench the intrinsic fluorescence of HHb through both dynamic and static quenching mechanisms. The binding constant (Kb), number of binding sites (n), and thermodynamic parameters over three different temperatures indicated that hydrophobic interactions might play a considerable role in the interaction of CNPs with HHb. Synchronous fluorescence spectroscopy indicated that microenvironmental changes around Trp and Tyr residues remain almost unchanged. CD studies displayed that the regular secondary structure of HHb had no significant changes; however, the quaternary structure of protein is subjected to marginal structural changes. Docking studies showed the larger CNP cluster is more oriented toward experimental data, compared with smaller counterparts. Cellular assays revealed that CNP, at high concentrations (>50 µg/mL), initiated an antiproliferative response through apoptosis induction on lymphocytes. Conclusion The findings may exhibit that, although CNPs did not significantly perturb the native conformation of HHb, they can stimulate some cellular adverse effects at high concentrations that may limit the medicinal and biological application of CNPs. In other words, CNP application in biological systems should be done at low concentrations.
Collapse
Affiliation(s)
- Neda Eskandari
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Sanaz Nikpur
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Ghazal Ghasrahmad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | | | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| |
Collapse
|
24
|
Zhang C, Chen X, Tan L, Wang J. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13127-13133. [PMID: 29488203 DOI: 10.1007/s11356-018-1580-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
To investigate the combined toxicities of copper nanoparticles (nano-Cu) with carbon nanotubes (CNTs) on marine microalgae Skeletonema costatum, algal growth inhibition tests were carried out. Toxicities of nano-Cu with CNTs and without CNTs on microalgae were determined, respectively. Chlorophyll content and photosynthetic efficiency (ΦPSII) were determined to compare negative effects of nano-Cu with CNTs and without CNTs on photosynthesis. The concentration of Cu2+ released by nano-Cu into the medium was determined, and interactions between nano-Cu and CNTs were analyzed to study toxic mechanisms of combined toxicities of nano-Cu with CNTs. It was found that both nano-Cu and CNTs could inhibit the growth of the microalgae; however, the toxicity of CNTs on the microalgae was far lower than that of nano-Cu. The maximum growth inhibition ratio (IR) of nano-Cu on the microalgae was 86% appearing at 96 h under 1.0 mg/L nano-Cu treatment, while the maximum IR of CNTs on the microalgae was 58% at 96 h under 200 mg/L CNT treatment. CNTs could reduce the toxicity of nano-Cu on the microalgae in processes of growth and photosynthesis. Adsorption of Cu2+ on CNTs and aggregate between Cu and CNTs in the medium were main reasons for attenuation of toxicity of nano-Cu with adding CNTs.
Collapse
Affiliation(s)
- Cai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Xiaohua Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jinagtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
25
|
Iswarya V, Sharma V, Chandrasekaran N, Mukherjee A. Impact of tetracycline on the toxic effects of titanium dioxide (TiO 2) nanoparticles towards the freshwater algal species, Scenedesmus obliquus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:168-177. [PMID: 29096090 DOI: 10.1016/j.aquatox.2017.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are the most risk assessed nanoparticles in the aquatic environment due to their increased usage in the various sectors from electronics to consumer products. The natural aquatic system also comprises of numerous toxicants like antibiotics, whose impact on the toxicity of nanoparticles are less assessed. Hence, it is essential to determine the effect of other toxicants on the TiO2 NP toxicity. In the current study, the impact of antibiotic (tetracycline, TC) on the toxic effect of TiO2 NPs was studied on a freshwater alga, Scenedesmus obliquus. The median effective concentrations (EC50) of TiO2 NPs and TC were noted to be 136.88±2.30μM and 0.63±0.02μM, respectively. Based on the EC50 obtained, three different concentrations of TC, such as 0.34, 0.68, and 1.36μM have been selected to evaluate their effect on the toxicity of 18.75, 37.5, and 75μM of TiO2 NPs. Existence of TC provoked the growth inhibition of TiO2 NPs at their lower concentrations. In contrast, a reduction in the growth inhibition was noted as the concentrations of TC and TiO2 NPs were increased. Abbott modeling confirmed the additive and antagonistic effects noted. The stability profile of TiO2 NPs elucidated the aggregation of NPs with an increase in time. Even though a similar trend has been followed for TiO2 NPs+TC, a significant difference in the aggregation has not been observed in most cases when compared with TiO2 NPs alone. The presence of TC lowered the Ti uptake by the algal cells, which portrayed the dominance of TC in the toxic effect of TiO2 NPs to be either additive or antagonistic. The SEM images of the algal cells upon exposure to TiO2 NPs, TC, and their mixture elucidated the aggregation of algal cells, cellular deformations like compromised cell membrane, and vacuole formation, etc. In addition, the release of algal exudates was also noticed as a protective layer over the cells to counteract the stress. EPS secretion in response to TiO2 NPs along with TC is found to be in corroboration with the toxicity patterns observed.
Collapse
Affiliation(s)
- V Iswarya
- Centre for Nanobiotechnology, VIT University, Vellore, 632014, India
| | - Vineet Sharma
- Centre for Nanobiotechnology, VIT University, Vellore, 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, VIT University, Vellore, 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, 632014, India.
| |
Collapse
|
26
|
Zhang S, Deng R, Lin D, Wu F. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae. Nanotoxicology 2017; 11:1115-1126. [DOI: 10.1080/17435390.2017.1398358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shuai Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, China
- College of Environment, Hohai University, Nanjing, China
| | - Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
27
|
Wang S, Wang Z, Chen M, Fang H, Wang D. Co-exposure of Freshwater Microalgae to Tetrabromobisphenol A and Sulfadiazine: Oxidative Stress Biomarker Responses and Joint Toxicity Prediction. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:438-444. [PMID: 28791442 DOI: 10.1007/s00128-017-2153-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Combined toxicity and oxidative stress biomarker responses were determined for tetrabromobisphenol A (TBBPA) and sulfadiazine (SDZ) to the unicellular green alga Scenedesmus obliquus. Concentration-response analyses were performed for single toxicants and for mixtures containing TBBPA and SDZ with two different mixture ratios. The effect concentrations and the observed effects of the mixtures were compared to the predictions of the joint toxicity by the concentration addition (CA) model and independent action (IA) model. Results showed that the observed joint toxicity was within the scope of the highest (TBBPA) and lowest (SDZ) toxicity observed for the individual components. Furthermore, co-exposure of S. obliquus to TBBPA and SDZ provided preliminary evidence that the mixtures induced oxidative stress leading to cell damage. The CA and IA models proved to be valid for the prediction of the joint toxicity of TBBPA and SDZ. This study highlights a combined environmental risk assessment for two emerging pollutants.
Collapse
Affiliation(s)
- Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Degao Wang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian, 116023, China
| |
Collapse
|
28
|
Wang Z, Zhang F, Wang S, Peijnenburg WJGM. Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids. CHEMOSPHERE 2017; 185:681-689. [PMID: 28728125 DOI: 10.1016/j.chemosphere.2017.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Graphene and ionic liquids (ILs) released into the environment will interact with each other. So far however, the risks associated with the concurrent exposure of biota to graphene and ILs in the environment have received little attention. The research reported here focused on observing and predicting the joint toxicity effects in the green alga Scenedesmus obliquus exposed to binary mixtures of intrinsic graphene (iG)/graphene oxide (GO) and five ILs of varying anionic and cationic types. The isolated ILs in the binary mixtures were the main contributors to toxicity. The binary GO-IL mixtures resulted in more severe joint toxicity than the binary iG-IL mixtures, irrespective of mixture ratios. The mechanism of the joint toxicity may be associated with the adsorption capability of the graphenes for the ILs, the dispersion stability of the graphenes in aquatic media, and modulation of the binary mixtures-induced oxidative stress. A toxic unit assessment showed that the graphene and IL toxicities were additive at low concentration of the mixtures but antagonistic at high concentration of the mixtures. Predictions made using the concentration addition and independent action models were close to the observed joint toxicities regardless of mixture types and mixture ratios. These findings provide new insights that are of use in the risk assessment of mixtures of engineered nanoparticles and other environmentally relevant contaminants.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 210044 Nanjing, China.
| | - Fan Zhang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 210044 Nanjing, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 210044 Nanjing, China
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
29
|
Ye N, Wang Z, Fang H, Wang S, Zhang F. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:555-560. [PMID: 28276882 DOI: 10.1080/10934529.2017.1284434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A combined ecotoxicity study was carried out with nano-zinc oxide (nZnO) and nano-copper oxide (nCuO) to freshwater algae Scenedesmus obliquus. Concentration-response analysis indicated that the dissolved metal fraction was not the major source of individual and combined toxicity of the metal-oxide nanoparticles (MONPs). Moreover, the contribution of the nCuO (based on metallic mass) to the combined toxicity was greater than that of the nZnO. The observed combined toxicity can be predicted by the pharmacological concepts of concentration addition (CA) and independent action (IA). Combined toxicity prediction (in terms of median effect concentration) based on both concepts tends to overestimate the overall observed toxicity of the MONP mixtures. CA was more accurate for predicting the combined toxicity than IA. It may be concluded that CA gives a valid estimation of the overall ecotoxicity for mixtures comprising of similar acting MONPs.
Collapse
Affiliation(s)
- Nan Ye
- a School of Environmental Science and Engineering , Nanjing University of Information Science and Technology , Nanjing , China
| | - Zhuang Wang
- a School of Environmental Science and Engineering , Nanjing University of Information Science and Technology , Nanjing , China
| | - Hao Fang
- a School of Environmental Science and Engineering , Nanjing University of Information Science and Technology , Nanjing , China
| | - Se Wang
- a School of Environmental Science and Engineering , Nanjing University of Information Science and Technology , Nanjing , China
| | - Fan Zhang
- a School of Environmental Science and Engineering , Nanjing University of Information Science and Technology , Nanjing , China
| |
Collapse
|
30
|
Ding K, Lu L, Wang J, Wang J, Zhou M, Zheng C, Liu J, Zhang C, Zhuang S. In vitro and in silico investigations of the binary-mixture toxicity of phthalate esters and cadmium (II) to Vibrio qinghaiensis sp.-Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1078-1084. [PMID: 27993475 DOI: 10.1016/j.scitotenv.2016.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and have become one of the emerging contaminants with an increasing public concern. The residues of PAEs frequently co-exist with heavy metals such as cadmium (Cd) in waters; however, their joint ecotoxicity remains largely unknown. We herein investigated the single and joint toxicity of commonly used PAEs and Cd using freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67. The median effective concentration (EC50) of benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), diisooctyl phthalate (DIOP) and di-n-octyl phthalate (DOP) were determined to be in the range from 134.4mg/L to as high as 1000mg/L, indicating very weak toxicity to Vibrio qinghaiensis sp.-Q67. The toxicity of single PAEs showed a significant linear relationship with Log Kow, indicating the dependence of the elevated toxicity on the increasing hydrophilicity. The toxicity of binary mixture of PAEs was further evaluated in silico using the independent action (IA) model and concentration addition (CA) model. DMP-DEP, DEP-DBP or DMP-DBP exhibited antagonistic effects with the toxic unit value higher than 1.2. The CA and IA models poorly predicted the joint toxicity of DMP-DEP, DEP-DBP or DMP-DBP. The joint toxicity of the binary mixtures of DMP, DEP or DBP with Cd was simple additive as predicted by the CA and IA models. Our results indicated the potentially higher risk of PAEs in the presence of Cd, emphasizing the importance of determining the impact of their joint effects on aquatic organisms. The integrated in vitro and in silico methods employed in this study will be beneficial to study the joint toxicity and better assess the aquatic ecological risk of PAEs.
Collapse
Affiliation(s)
- Keke Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Jiaying Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingpeng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minqiang Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cunwu Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Liu
- Zhejiang Province Environmental Monitoring Center, Hangzhou 310005, China
| | - Chunlong Zhang
- Department of Biological and Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| |
Collapse
|