1
|
Fahim F, Imran M, Ramzan M, Nazeer Z, Ali A, Iqbal HMN. Catalytic-assisted remediation and phytotoxicity evaluations of organic pollutants in the presence of metal-doped Bi 2O 3-based NPs catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123968. [PMID: 39765059 DOI: 10.1016/j.jenvman.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
The chemical co-precipitation method was used to synthesize a variety of pure Bi2O3 and substituted Bi2-2xCoxCdxO3 NPs (x = 0.0-0.8) and doping influences were evaluated based on the optical, photocatalytic, morphological, and structural characteristics. Powder X-ray diffraction (PXRD), scanning electron microscope (SEM), Energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), and UV-visible techniques were used to explore the characteristics of the synthesized Bi2O3-based NPs. XRD measurements confirmed the monoclinic structure and a P21/c space group, whereas the particle size was between 22 and 41 nm. The SEM analysis gives the morphology of the synthesized NPs that were diverse and agglomerated platelets, whereas the EDX measurements provide the presence of Co and Cd in Bi2-2xCoxCdxO3 NPs. Additionally, FTIR investigations confirmed the existence of functional groups in Bi2-2xCoxCdxO3 NPs. The ultraviolet-visible absorbance region displaying a considerable red shift allowed for tuning of the band gap from 2.64 to 2.37eV. By analyzing the degradation of Reactive Black 5 (RB-5) dye in the presence of sunlight, pure Bi2O3 NPs showed 65.04% whereas the substituted Bi2-2xCoxCdxO3 NPs demonstrated enhanced photodegradation (86.40%) in 105 min. For the degradation of RB-5 dye, the effects of catalyst dosage, dye concentration, and pH variations were studied as well. The phytotoxicity experiment was also performed by comparing the germination of Triticum aestivum seeds in treated and untreated RB-5 dye. In the untreated dye solution, seed germination was 50% inhibited, and in the treated dye solution, germination was observed to be 80%. Additionally, recycling investigations were used to confirm the stability of these fabricated nanoparticles, and the results showed that nanomaterials exhibited significant stability and reusability. Co and Cd-doped Bi2O3 NPs are promising solar-active photocatalysts for dye removal from wastewater applications because of their improved photocatalytic activity and narrow bandgap.
Collapse
Affiliation(s)
- Farah Fahim
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Ramzan
- Institute of Physics, Baghdad Ul Jadeed Campus, The Islamia University of Bahawlpur, 63100, Pakistan
| | - Zarish Nazeer
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Awais Ali
- Department of Physics, COMSATS University, Park Road, Islamabad, 45550, Pakistan
| | - Hafiz M N Iqbal
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Laboratorio de Ciencias Naturales, General Escobedo, 66050, Nuevo Leon, Mexico.
| |
Collapse
|
2
|
Pandey A, Kumar S, Bithel N, Kumar S, Mir MA. Sustainable biodegradation of malachite green dye by novel non-pathogenic Pseudomonas aeruginosa ED24. World J Microbiol Biotechnol 2025; 41:44. [PMID: 39841300 DOI: 10.1007/s11274-025-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries. The biochemical and molecular characterization of the bacterial strain showed the resemblance of most potent strain ED24 as Pseudomonas aeruginosa, which showed effective bioremediation potential against the MG dye. During response surface analysis (RSM), best MG degradation conditions have been observed at pH 7.0, 37 °C, 48 h, and 200 mg/L dye concentration, with highest degradation efficiency of 96.56 ± 0.8622 percent. Subsequently, supplementing various carbon and nitrogen sources increases MG decolorization by 1 to 2%, with beef extract (97.23%), sodium nitrate (97.46%), and maltose (98.67%). FT-IR results revealed the disappearance of distinct peaks, namely, 3328.275 cm-1, 2102.842 cm-1, 1101.140 cm-1, and 559.04 cm-1 from MG, and the formation of major intermediate compounds like leucomalachite green, benzoic acid, diacetamide, benzeneacetic acid, hexyl ester, ethyl 4-acetoxy butanoate, butanoic acid, and 2-methyl in GC-MS analysis of degraded dye sample confirms the biodegradation by bacterial strain ED24. The phytotoxicity studies on mung bean seeds confirmed MG dye toxicity reduction up to 67.53%, 54.16%, and 67.53% in biomass accumulation, root, and shoot lengths, respectively. Also, the microbial toxicity of MG was completely reduced on soil microflora Bacillus flexus, Stenotrophomonas maltophilia, Escherichia coli, Staphylococcus aureus, and Alternaria spp. The dual mitigation, both in microbial and plant systems, indicates the strong remediation potential of P. aeruginosa ED24 to break down MG dye ecologically sustainably.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Sachin Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Navneet Bithel
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India
| | - Sandeep Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India
| | - M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
| |
Collapse
|
3
|
Pandey A, Pathak VM, Navneet, Rajput M. A feasible approach for azo-dye (methyl orange) degradation by textile effluent isolate Serratia marcescens ED1 strain for water sustainability: AST identification, degradation optimization and pathway hypothesis. Heliyon 2024; 10:e32339. [PMID: 38961949 PMCID: PMC11219335 DOI: 10.1016/j.heliyon.2024.e32339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024] Open
Abstract
Methyl orange (MO) is a dye commonly used in the textile industry that harms aquatic life, soil and human health due to its potential as an environmental pollutant. The present study describes the dye degradation ability of Serratia marcescens strain ED1 isolated from textile effluent and characterized by 16S rRNA gene sequence analysis. The laccase property of bacterial isolate was confirmed qualitatively. The effects of various factors (pH, temperature, incubation time, and dye concentration) were evaluated using Response Surface Methodology (RSM). The maximum dye (MO) degradation was 81.02 % achieved at 37 °C temperature and 7.0 pH with 200 mg/L dye concentration after 48 h of incubation. The beef extract, ammonium nitrate and fructose supplementation showed better response during bioremediation among the different carbon and nitrogen sources. The degree of pathogenicity was confirmed through the simple plate-based method, and an antibiotic resistance profile was used to check the low-risk rate of antibiotic resistance. However, the fate and extinct of degraded MO products were analysed through UV-Vis spectroscopy, FT-IR, and GC-MS analysis to confirm the biodegradation potential of the bacterial strain ED1 and intermediate metabolites were identified to propose metabolic pathway. The phytotoxicity study on Vigna radiata L. seeds confirmed nontoxic effect of degraded MO metabolites and indicates promising degradation potential of S. marcescens strain ED1 to successfully remediate MO dye ecologically sustainably.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Vinay Mohan Pathak
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
- Department of Microbiology, University of Delhi, New Delhi, 110021, India
| | - Navneet
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Minakshi Rajput
- Department of Biotechnology, School of Applied and Life Sciences (SALS) Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
4
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
5
|
Chau TP, Rajkumar R, S Aloufi A, Krishnan R, Tharifkhan SA. Textile effluents decolourization potential of metal tolerant Aspergillus species and optimization of biomass concentration and temperature. ENVIRONMENTAL RESEARCH 2023:116294. [PMID: 37268209 DOI: 10.1016/j.envres.2023.116294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This research was performed to assess the physicochemical properties of textile effluents collected from different sampling points (industrial park, Hosur, Tamil Nadu, India) and also evaluate the multiple metal tolerance efficiency of pre-isolated Aspergillus flavus. Moreover, their textile effluent decolourization potential was investigated and quantity and temperature required for effective bioremediation was optimized. About 5 textile effluent samples (S0, S1, S2, S3, and S4) were collected from various sampling points and noted that certain physicochemical properties (pH: 9.64 ± 0.38, Turbidity: 18.39 ± 1.4 NTU, Cl-: 3185.38 ± 15.8 mg L-1, BOD: 82.52 ± 6.9 mg L-1, COD: 342.28 ± 8.9 mg L-1, Ni: 74.21 ± 4.31 mg L-1, Cr: 48.52 ± 18.34 mg L-1, Cd: 34.85 ± 1.2 mg L-1, Zn: 25.52 ± 2.4 mg L-1, Pb: 11.25 ± 1.5 mg L-1, Hg: 1.8 ± 0.05 mg L-1, and As: 7.1 ± 0.41 mg L-1) were beyond the permissible limits. The A. flavus, showed remarkable metal tolerance to Pb, As, Cr, Ni, Cu, Cd, Hg, and Zn on PDA plates with elevated dosage up to 1000 μg mL-1. The optimal dosage required for effective decolourization was found as 3 g (48.2%) and compare to dead biomass (42.1%) of A. flavus, the viable biomass showed remarkable decolourization activity on textile effluents in a short duration of treatment process. The optimal temperature for effective decolourization by viable biomass was found at 32 ᵒC. The toxic effects of S4 samples treated at 32 ᵒC on O. sativa as well as brine shrimp larvae were significantly reduced. These findings show that pre-isolated A. flavus viable biomass can be used to decolorize metal-enriched textile effluent. Furthermore, the effectiveness of their metals remediation should be investigated using ex-situ and ex-vivo approaches.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - R Rajkumar
- Department of Livestock Products Technology, (Meat Science) Veterinary College and Research Institute, Namakkal, Tamil Nadu, India
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | |
Collapse
|
6
|
Murugadoss G, Rajesh Kumar M, Murugan D, Koutavarapu R, M Al-Ansari M, Aldawsari M. Ultra-fast photocatalytic degradation and seed germination of band gap tunable nickel doping ceria nanoparticles. CHEMOSPHERE 2023; 333:138934. [PMID: 37182707 DOI: 10.1016/j.chemosphere.2023.138934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Doping transition metal ions into cerium oxide (CeO2) results in interesting modifications to the material, including an increase in surface area, a high isoelectric point, biocompatibility, greater ionic conductivity, and catalytic activity. Herein, various concentrations (1-5%, 10% and 20%) of nickel (Ni) doped CeO2 nanoparticle have been made by a facile chemical process. Using a variety of cutting-edge analytical techniques, the structural, optical, and photocatalytic properties of undoped and varied concentrations (1-5%, 10%, and 20%) of Ni doped CeO2 nanoparticles have been investigated. Pure cubic fluorite structure with average crystallite sizes in the region of 12-15 nm was determined by X-ray diffraction (XRD) investigation. High resolution electron microscopy (HR-TEM), which revealed highly homogeneous hexagonal shape of the particles with average size of 15 nm, was also used to determine microstructural information. According to the optical absorption, the band gaps of Ni doped and undoped CeO2 nanoparticles were found to be 2.96 eV and 1.95 eV, respectively. When exposed to sunlight, the narrow band gap Ni doped CeO2 nanoparticles worked as an active visible light catalyst to remove the dyes Rose Bengal (RB) and Direct Yellow (DY). The best photodegradation efficiencies for RB and DY dyes were found about 93% and 97%, respectively, using the 5% Ni-doped CeO2 catalyst. The apparent rate constant values of 0.039 for RB and 0.040 min-1 were attained for DY. As well, the treated, untreated dye solution and control solutions were utilized to assess the toxicity of commercially accessible Vigna Radiata seeds. In this study exhibits percentages of length and germination increased by 30-35% when compared to dye pollutant solution. The Ni doped CeO2 can provide a substantial alternative for current industrial waste management because of its quick photocatalytic activity and remarkable seed germination results.
Collapse
Affiliation(s)
- Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - Manavalan Rajesh Kumar
- Institute of Natural Science and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
| | - Dakshana Murugan
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, Kamyab H, Pham CQ, Vo DVN, Chelliapan S. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J Biotechnol 2023; 369:14-34. [PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood. Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
Collapse
Affiliation(s)
- Bernard Chukwuemeka Ekeoma
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Leonard Nnamdi Ekeoma
- Department of Pharmacy, Nnamdi Azikiwe University, Agulu Campus, Anambra State, Nigeria
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Department of Chemistry, Ahmadu Bello University Zaria-Nigeria
| | | | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Patil DJ, Behera SN. Synthesizing nanoparticles of zinc and copper ferrites and examining their potential to remove various organic dyes through comparative studies of kinetics, isotherms, and thermodynamics. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:591. [PMID: 37079140 DOI: 10.1007/s10661-023-11177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Nanoparticles of zinc ferrite (ZnFe2O4) and copper ferrite (CuFe2O4) were synthesized, and characterized, and these materials were applied for removal of organic dyes of alizarin yellow R (AYR), thiazole yellow G (TYG), Congo red (CR), and methyl orange (MO) from industrial wastewater through adsorption technique. Synthesis of ZnFe2O4 and CuFe2O4 was achieved through chemical co-precipitation method. These nanomaterials were characterized for physicochemical properties using XRD, FTIR, BET, VSM, DLS, Zeta-potential, and FESEM-EDX analytical instruments. BET surface areas of ZnFe2O4 and CuFe2O4 were 85.88 m2/g and 41.81 m2/g, respectively. Adsorption-influencing parameters including effect of solution pH, adsorbent quantity, initial concentration of dye pollutant, and contact time were examined. Acidic medium of the solution favored higher percentage of removal of dyes in wastewater. Out of different isotherms, Langmuir equilibrium isotherm showed the best fit with experimental data, indicating monolayer adsorption in the treatment process. The maximum monolayer adsorption capacities were found as 54.58, 37.01, 29.81, and 26.83 mg/g with ZnFe2O4, and 46.38, 30.06, 21.94, and 20.83 mg/g with CuFe2O4 for AYR, TYG, CR, and MO dyes, respectively. From kinetics analysis of the results, it was inferred that pseudo-second-order kinetics were fitting well with better values of coefficient of determination (R2). The removal of four organic dyes from wastewater through adsorption technique using nanoparticles of ZnFe2O4 and CuFe2O4 was observed to be spontaneous and exothermic. From this experimental investigation, it has been inferred that magnetically separable ZnFe2O4 and CuFe2O4 could be a viable option in removal of organic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Dharmaraj J Patil
- Department of Civil Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sailesh N Behera
- Department of Civil Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India.
| |
Collapse
|
9
|
Biotreatment of azo dye containing textile industry effluent by a developed bacterial consortium immobilised on brick pieces in an indigenously designed packed bed biofilm reactor. World J Microbiol Biotechnol 2023; 39:83. [PMID: 36658257 DOI: 10.1007/s11274-023-03521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
This study highlights the development of a lab-scale, indigenously designed; Packed-Bed Biofilm Reactor (PBBR) packed with brick pieces. The developed biofilm in the reactor was used for the decolourisation and biodegradation of the textile industry effluent. The PBBR was continuously operated for 264 days, during which 301 cycles of batch and continuous treatment were operated. In batch mode under optimised conditions, more than 99% dye decolourisation and ≥ 92% COD reduction were achieved in 6 h of contact time upon supplementation of effluent with 0.25 g L-1 glucose, 0.25 g L-1 urea, and 0.1 g L-1 phosphates. A decolourisation rate of 133.94 ADMI units h-1 was achieved in the process. PBBR, when operated in continuous mode, showed ≥ 95% and ≥ 92% reduction in ADMI and COD values. Subsequent aeration and passage through the charcoal reactor assisted in achieving a ≥ 96% reduction in COD and ADMI values. An overall increase of 81% in dye-laden effluent decolourisation rate, from 62 to 262 mg L-1 h-1, was observed upon increasing the flow rate from 18 to 210 mL h-1. Dye biodegradation was determined by UV-Vis and FTIR spectroscopy and toxicity study. SEM analysis showed the morphology of the attached-growth biofilm.
Collapse
|
10
|
Agrawal S, Tipre D, Dave S. Biodegradation of Sulphonated Triazo Acid Black 210 Dye by Thermohalotolerant Bacillus pumilus SRS83: Kinetic, Metabolite and Toxicity Analysis. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Jayaseelan A, Panchamoorthy GK, Nithianantharaj V. An Eco-friendly and Economical Approach for Removal of Remazol Blue,
Malachite Green and Rhodamine B Dyes from Wastewater using Bio-char
Derived from Chlorella Vulgaris Biomass. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201103230445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Rapid urbanization and industrialization has led to depletion of water resource and generation of enormous amount of wastewater. One among them is textile industry which discharge huge amount of dye wastewater into aquatic environment.
Methods::
This study deals with adsorption of Remazol blue, Malachite green and Rhodamine B dyes into bio-char derived from Chlorella vulgaris biomass cultivated from municipal wastewater. Column studies were performed to depict the industrial usage of bio-char for treatment of large quantity of wastewater. Effect of temperature, time, pH, dye concentration and adsorbent dosage on dye removal was studied in batch process.
Results::
The best batch adsorption conditions are temperature (25⁰C), time (60min), pH (7), dye concentration (100ppm) and adsorbent dosage (1g) with ± 5% for all three dyes. Dye removal percentage of bio-char increased with increased in adsorbent dosage to 94.5%, 88.2% and 90.1% for Remazol blue, Malachite green and Rhodamine B dyes at 1g/L adsorbent dosage. Freundlich isotherm exhibited correlation coefficient (R2) values of 0.99, 0.98 and 0.99 for Remazol blue, Malachite green and Rhodamine B dyes respectively. Kinetic studies revealed that all three dyes followed pseudo first order model. Increase in column bed height resulted in increased dye removal percentage since increase in bed height resulted in increase in bio-char quantity with more number of surface area.
Conclusion::
From the study, it can be concluded that Bio-char was the economical and eco-friendly alternative adsorbent for wastewater treatment process. Bio-char reusability study revealed that it could be used for 3-4 consecutive cycles.
Collapse
Affiliation(s)
- Arun Jayaseelan
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai- 600119, Tamil Nadu,,India
| | | | - Vinitha Nithianantharaj
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam - 603110, Tamil Nadu,,India
| |
Collapse
|
12
|
Saket P, Mittal Y, Bala K, Joshi A, Kumar Yadav A. Innovative constructed wetland coupled with microbial fuel cell for enhancing diazo dye degradation with simultaneous electricity generation. BIORESOURCE TECHNOLOGY 2022; 345:126490. [PMID: 34875373 DOI: 10.1016/j.biortech.2021.126490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
A novel earthen separator-based dual-chambered unplanted core of constructed wetland coupled with microbial fuel cell was developed for studying the microbe-material interaction and their effect on treatment performance and electricity generation. The constructed wetland integrated microbial fuel cell was evaluated for the degradation of high molecular weight diazo Congo red dye as a model pollutant. The system exhibited 89.99 ± 0.04% of dye decolorization and 95.80 ± 0.71% of chemical oxygen demand removal efficiency from an initial concentration of 50 ± 10 mg/L and 750 ± 50 mg/L, respectively. Ultraviolet-Visible spectrophotometric and gas chromatography-mass spectrometric analysis revealed naphthalene and phenol as mineralized products. The developed system achieved high power density and current density generation of 235.94 mW/m3 and 1176.4 mA/m3, respectively. Results manifested that dual-chambered constructed wetland coupled with microbial fuel cell has a high capability of dye decolorization and toxicity abatement with appreciable simultaneous bioelectricity generation owing to the significantly low internal resistance of 100 Ω.
Collapse
Affiliation(s)
- Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Yamini Mittal
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
13
|
Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. BIORESOURCE TECHNOLOGY 2022; 343:126154. [PMID: 34673196 DOI: 10.1016/j.biortech.2021.126154] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The pollution of the environment caused by dyes and heavy metals emitted by industries has become a worldwide problem. The development of efficient, environmentally acceptable, and cost-effective methods of wastewater treatment containing dyes and heavy metals is critical. Biologically based techniques for treating effluents are fascinating since they provide several benefits over standard treatment methods. This review assesses the most recent developments in the use of biological based techniques to remove dyes and heavy metals from wastewater. The remediation of dyes and heavy metals by diverse microorganisms such as algae, bacteria, fungi and enzymes are depicted in detail. Ongoing biological method's advances, scientific prospects, problems, and the future prognosis are all highlighted. This review is useful for gaining a better integrated view of biological based wastewater treatment and for speeding future research on the function of biological methods in water purification applications.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemical Engineering, Birsa Institute of Technology Sindri, Dhanbad 828123, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
14
|
Jain M, Khan SA, Sharma K, Jadhao PR, Pant KK, Ziora ZM, Blaskovich MAT. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater. BIORESOURCE TECHNOLOGY 2022; 344:126305. [PMID: 34752892 DOI: 10.1016/j.biortech.2021.126305] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Organic contaminants in water are a growing environmental threat to sustainable development, with detrimental effects on the biosphere. In recent years, researchers have increasingly focused their attention on the area of bioremediation as an important tool to eliminate harmful pollutants from the environment. This review examines the application of bioremediation technologies to the removal of organic pollutants, with an emphasis on hydrocarbons and textile dyes. It applies a descriptive bibliometric analysis to study statistical practicality-vs-applicability of bioremediation of emerging organic pollutants. The paper identifies efficient pathways for bioremediation of different types of organic pollutants and outlines the potential for an eco-friendly and economical approach for the biological remediation of micropollutants by microalgae. Facts and figures on various hazardous pollutants, constraints in their current removal from water at an industrial level, and promising future solutions are carefully presented here.
Collapse
Affiliation(s)
- Marut Jain
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| | - Sadaf Aiman Khan
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| | - Komal Sharma
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Ram Jadhao
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Kamal Kishore Pant
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Zyta Maria Ziora
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| | - Mark A T Blaskovich
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| |
Collapse
|
15
|
Shahnaz T, Vishnu Priyan V, Jayakumar A, Narayanasamy S. Magnetic nanocellulose from Cyperus rotundas grass in the absorptive removal of rare earth element cerium (III): Toxicity studies and interpretation. CHEMOSPHERE 2022; 287:131912. [PMID: 34507146 DOI: 10.1016/j.chemosphere.2021.131912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
In this study a very common grass named Cyperus rotundas was used to extract cellulose which was converted to magnetic grass nano cellulose (MGNC) to adsorb rare earth element Cerium (Ce (III)). The prepared MGNC was analyzed with sophisticated technique to determine the alteration in physical and chemical properties before and after adsorption with the pollutant Cerium. Parameters like pH, temperature, MGNC dosage and initial concentration of Ce were optimized to check parameters influencing the adsorption of Ce (III). The optimized experimental data were perfectly modelled into Langmuir model with adsorption capacity of 353.04 mg g -1 for Ce (III). For kinetics the data fitted into pseudo second order model. To check the efficacy of MGNC in real scenario, untreated and treated Ce was used for phototoxicity studies with 4 different plant seeds. Apart from this, model fish, Danio rerio was used to check the toxicity level on aquatic organism before and after adsorption of Ce (III) with MGNC. This study showed the efficient use of MGNC and maximum removal of Cerium from wastewater and the magnetic behavior incorporated adds advantage of easy retrieval.
Collapse
Affiliation(s)
- Tasrin Shahnaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - V Vishnu Priyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Anjali Jayakumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
16
|
Green synthesis of biodegradable polyurethane and castor oil-based composite for benign transformation of methylene blue. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Ahsan Z, Kalsoom U, Bhatti HN, Aftab K, Khalid N, Bilal M. Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation. J Basic Microbiol 2021; 61:960-981. [PMID: 34608659 DOI: 10.1002/jobm.202100218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Environmental protection from emerging pollutants has become a significant challenge for mankind as an increasing number of contaminants, including synthetic dyes and polycyclic aromatic hydrocarbons (PAHs), represent a serious risk to ecological and environmental balance. Most synthetic dyes have complex aromatic structures and are resistant to degrade by classical approaches, such as physical and chemical processes, including adsorption, chemical coagulation, flocculation, ion exchange, membrane separation, froth flotation, and reverse osmosis. Enzymes-assisted catalytic transformation of pollutants has become a potential alternative to classical methods because of their ability to react with complex compounds, a quick degradation rate, and producing less harmful by-products. Plant peroxidases, and microbial laccase and lignin-degrading peroxidases (manganese and lignin peroxidase) have gained significant attention for treating aromatic waste due to their capability of oxidizing and detoxifying a wide range of recalcitrant xenobiotics, including PAHs and synthetic dyes. Peroxidases being efficient biocatalysts detoxify an array of toxic compounds by simple free-radical mechanism resulting in the formation of oxidized and depolymerized products of significantly reduced toxicity. Moreover, it is an ecofriendly and economically favorable approach towards the biodegradation of recalcitrant and toxic industrial waste. Among microbial and plant peroxidases, bacterial enzymes have broad substrate specificity and can transform a wide range of recalcitrant substrates. Ligninolytic enzymes oxidize the aromatic ring into quinones and acids by producing free hydroxyl radicals instead of dihydrodiols and mineralize aromatic hydrocarbon in combination with cytochrome P450, monooxygenases, and epoxide hydrolases. In the review, an attempt has been made to provide detailed knowledge about the availability of inexpensive peroxidases sources, their mechanism of action, and degradation potential. The present review summarizes the exploitation of peroxidases from plants, bacteria, and fungus (manganese peroxidase, lignin peroxidase, and laccases) for detoxification and degradation of textile dyes as well as PAHs. Conclusively, peroxidases have great potential to react with almost all classes of synthetic dyes and most PAHs due to broad substrate specificity and transformed them into less harmful metabolites.
Collapse
Affiliation(s)
- Zainab Ahsan
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Haq N Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kiran Aftab
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nasira Khalid
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
18
|
Pandey AK, Gaur VK, Udayan A, Varjani S, Kim SH, Wong JWC. Biocatalytic remediation of industrial pollutants for environmental sustainability: Research needs and opportunities. CHEMOSPHERE 2021; 272:129936. [PMID: 35534980 DOI: 10.1016/j.chemosphere.2021.129936] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
An increasing quantum of pollutants from various industrial sector activities represents a severe menace to environmental & ecological balance. Bioremediation is gaining flow globally due to its cost-effective and environment-friendly nature. Understanding biodegradation mechanisms is of high ecological significance. Application of microbial enzymes has been reported as sustainable approach to mitigate the pollution. Immobilized enzyme catalyzed transformations are getting accelerated attention as potential alternatives to physical and chemical methods. The attention is now also focused on developing novel protein engineering strategies and bioreactor design systems to ameliorate overall biocatalysis and waste treatment further. This paper presents and discusses the most advanced and state of the art scientific & technical developments about biocatalytic remediation of industrial pollutants. It also covers various biocatalysts and the associated sustainable technologies to remediate various pollutants from waste streams. Enzyme production and immobilization in bioreactors have also been discussed. This paper also covers challenges and future research directions in this field.
Collapse
Affiliation(s)
| | - Vivek K Gaur
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Aswathy Udayan
- CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695 019, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
19
|
Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. J Fungi (Basel) 2021; 7:jof7030193. [PMID: 33803129 PMCID: PMC8001397 DOI: 10.3390/jof7030193] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by A. flavus and F. oxysporium separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak (λmax) of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of Vicia faba was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide.
Collapse
|
20
|
Manogaran M, Yasid NA, Othman AR, Gunasekaran B, Halmi MIE, Shukor MYA. Biodecolourisation of Reactive Red 120 as a Sole Carbon Source by a Bacterial Consortium-Toxicity Assessment and Statistical Optimisation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2424. [PMID: 33801387 PMCID: PMC7967567 DOI: 10.3390/ijerph18052424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
The application of microorganisms in azo dye remediation has gained significant attention, leading to various published studies reporting different methods for obtaining the best dye decolouriser. This paper investigates and compares the role of methods and media used in obtaining a bacterial consortium capable of decolourising azo dye as the sole carbon source, which is extremely rare to find. It was demonstrated that a prolonged acclimation under low substrate availability successfully isolated a novel consortium capable of utilising Reactive Red 120 dye as a sole carbon source in aerobic conditions. This consortium, known as JR3, consists of Pseudomonas aeruginosa strain MM01, Enterobacter sp. strain MM05 and Serratia marcescens strain MM06. Decolourised metabolites of consortium JR3 showed an improvement in mung bean's seed germination and shoot and root length. One-factor-at-time optimisation characterisation showed maximal of 82.9% decolourisation at 0.7 g/L ammonium sulphate, pH 8, 35 °C, and RR120 concentrations of 200 ppm. Decolourisation modelling utilising response surface methodology (RSM) successfully improved decolourisation even more. RSM resulted in maximal decolourisation of 92.79% using 0.645 g/L ammonium sulphate, pH 8.29, 34.5 °C and 200 ppm RR120.
Collapse
Affiliation(s)
- Motharasan Manogaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia; (M.M.); (N.A.Y.)
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia; (M.M.); (N.A.Y.)
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Malaysia;
| | | | - Mohd Izuan Effendi Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Malaysia; (M.M.); (N.A.Y.)
| |
Collapse
|
21
|
Cherif S, Rezzaz-Yazid H, Sadaoui Z, Trari M. Biodegradation of Remazol Blue Brilliant R Dye Using Date Pedicels as a Biostimulant. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x2102003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
V B, Krishnaswamy VG. Combined treatment of synthetic textile effluent using mixed azo dye by phyto and phycoremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:924-936. [PMID: 33448866 DOI: 10.1080/15226514.2020.1868398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytoremediation is one of the biological approaches for remediating textile dyeing effluents. The objective of this study is the use of Pistia stratiotes, an aquatic macrophyte, which was found to degrade the maximum of 83% of mixed azo dye. A phytoreactor was designed and constructed to scale up the process of phytoremediation by P. stratiotes to treat 40 mg/l of synthetic textile effluent. Continuous flow phytoreactor fed with 40 mg/l (cycle 1) which showed maximum decolorization of 84%, COD removal was about 61%, BOD which was reduced up to 71.9%, and TDS removal was about 72% respectively. Further to remove the residual color and toxic effects of the dyes, Phycoremediation was followed for the mixed azo dyes using the microalgae Chlorella vulgaris which showed a maximum decolorization of 99% in the batch study and 74% in the scale-up study where the treated effluent was at the most minimal discharge. Phytotoxicity tests showed 80% of germination in treated effluent, and the plants in untreated wastewater had inhibited growth that indicates only 30% of germination. Such combined biological treatment techniques were put forward to be the most eco-friendly technology, which is cost-effective and attain zero discharge of the textile effluent.
Collapse
Affiliation(s)
- Bhavadhaarani V
- Department of Biotechnology, Stella Maris College, Chennai, India
| | | |
Collapse
|
23
|
Shahnaz T, Vishnu Priyan V, Pandian S, Narayanasamy S. Use of Nanocellulose extracted from grass for adsorption abatement of Ciprofloxacin and Diclofenac removal with phyto, and fish toxicity studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115494. [PMID: 33152600 DOI: 10.1016/j.envpol.2020.115494] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The present study deals with the adsorption of antibiotic Ciprofloxacin (CPXO) and anti-inflammatory agent Diclofenac (DCF) on Grass nanocellulose (GNC) extracted from Cyprus rotundas grass. The adsorbent GNC was characterised using various microscopic, elemental and spectroscopic analysis to monitor the physicochemical alterations of the surface before and after adsorption. The size of the converted nanocellulose was found to be 40-50 nm. The experimental measures influencing the adsorption of CPXO and DCF that were optimised are initial solution pH, GNC dosage, temperature and initial concentration of the adsorbate. Halsey isotherm model and pseudo-second order kinetic model agreed best with the experimental outcome for both the adsorbate. The maximum adsorption capacity of GNC were 227.223 and 192.307 mg/g for CPXO and DCF respectively. Phytotoxicity studies were performed using 6 different types of seeds to evaluate the effect of GNC treated effluent on plants. Similarly, acute fish toxicity on zebra fish analysis showed to have lesser mortality rate of the effluent after adsorption of CPXO and DCF on GNC.
Collapse
Affiliation(s)
- Tasrin Shahnaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - V Vishnu Priyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sivakumar Pandian
- School of Petroleum Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujrat, 382007, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
24
|
Li Z, Chen Z, Zhu Q, Song J, Li S, Liu X. Improved performance of immobilized laccase on Fe 3O 4@C-Cu 2+ nanoparticles and its application for biodegradation of dyes. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123088. [PMID: 32937718 DOI: 10.1016/j.jhazmat.2020.123088] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/05/2023]
Abstract
An effective strategy for enhancement of catalytic activity and stability of immobilized laccase via metal affinity adsorption on Fe3O4@C-Cu2+ nanoparticles was developed, which involved the fabrication of hydroxyl and carboxyl functionalized Fe3O4@C nanoparticles via a simple hydrothermal process and the subsequent chelation with Cu2+ for the immobilization of laccase under a mild condition. Our results revealed that the Fe3O4@C-Cu2+ nanoparticles possess a high loading amount of bovine serum albumin (BSA, 436 mg/g support) and laccase activity recovery of 82.3 % after immobilization. Laccase activity assays indicated that thermal and pH stabilities, and resistances to organic solvents and metal ions of the immobilized laccase were relatively higher than those of the free enzyme. The immobilized laccase maintained more than 61 % of its original activity after 10 consecutive reuses. Most importantly, the immobilized laccase possessed excellent degradation of diverse synthetic dyes. The degradation rates of malachite green (MG), brilliant green (BG), crystal violet (CV), azophloxine, Procion red MX-5B, and reactive blue 19 (RB19) was approximately 99, 93, 79, 88, 75 and 81 (%) in the first cycle. Even after 10 consecutive reuses, the removal efficiencies of the six dyes were found to be 94, 80, 71, 78, 60, and 65 (%), respectively.
Collapse
Affiliation(s)
- Zhiguo Li
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhiming Chen
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Qingpeng Zhu
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jiaojiao Song
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China
| | - Song Li
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xinhua Liu
- School of Textile and Clothing, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
25
|
Baena-Baldiris D, Montes-Robledo A, Baldiris-Avila R. Franconibacter sp., 1MS: A New Strain in Decolorization and Degradation of Azo Dyes Ponceau S Red and Methyl Orange. ACS OMEGA 2020; 5:28146-28157. [PMID: 33163797 PMCID: PMC7643201 DOI: 10.1021/acsomega.0c03786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 05/15/2023]
Abstract
The aim of the present study is focused on the decolorization and degradation of azo dyes Ponceau S Red and Methyl Orange by a bacterial strain isolated from the gold mining district of San Martin de Loba, South of Bolivar (Colombia) sediment samples and identified as Franconibacter sp. 1MS (GenBank: MT568543) based on phenotypic and genotypic methods. A higher percentage of decolorization at 100 mg/L concentration, 37 °C, and pH 7 was recorded at 120 h of incubation period for both dyes. The UV-vis, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry analysis of the original dyes and their degraded metabolites confirmed that the decolorization was due to degradation. The proposed metabolic pathways for biodegradation of both dyes have been elucidated, which showed the formation of five intermediate metabolites, namely, N,N-dimethylbenzyl-1,4-diamine, sulfonamide, 1,4-diaminobenzene, 2,5-diaminobenzenesulfonic acid, and 1-amino-2-naphthol, which are not only highly toxic but also be able to be converted through metabolic activation into mutagenic, carcinogenic, and/or teratogenic species. The phytotoxicity studies of the original dye and degraded metabolites were tested on Phaseolus vulgaris and divulged that the degraded metabolites have toxic effects. An effective phytostimulation was observed in Ponceau S Red, which could be attributed to its capacity for enrichment of the culture medium with essential nutrients, a favorable environment for the growth of the plant.
Collapse
Affiliation(s)
- Dayana Baena-Baldiris
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
| | - Alfredo Montes-Robledo
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
| | - Rosa Baldiris-Avila
- Clinical
and Environmental Microbiology Group. Faculty of Natural and Exact
Sciences, San Pablo Campus, University of
Cartagena, Cartagena 130005, Colombia
- CIPTEC
Group. Faculty of Engineering, Comfenalco
Technological University Foundation, Cartagena 130015, Colombia
| |
Collapse
|
26
|
Amin S, Rastogi RP, Chaubey MG, Jain K, Divecha J, Desai C, Madamwar D. Degradation and Toxicity Analysis of a Reactive Textile Diazo Dye-Direct Red 81 by Newly Isolated Bacillus sp. DMS2. Front Microbiol 2020; 11:576680. [PMID: 33072041 PMCID: PMC7541843 DOI: 10.3389/fmicb.2020.576680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
An efficient diazo dye degrading bacterial strain, Bacillus sp. DMS2 was isolated from a long-term textile dye polluted environment. The strain was assessed for its innate ability to completely degrade and detoxify Direct Red 81 (DR81) textile dye under microaerophilic conditions. The degradation ability of strain showed significant results on optimizing the nutritional and environmental parameters. Based on statistical models, maximum efficiency of decolorization achieved within 24 h for 100 mg/l of dye supplemented with glucose (0.02%), MgSO4 (0.002%) and urea (0.5%) at 30°C and pH (7.0). Moreover, a significant catabolic induction of a laccase and azoreductase suggested its vital role in degrading DR81 into three distinct metabolites (intermediates) as by-products. Further, toxicity analysis of intermediates were performed using seeds of common edible plants, aquatic plant (phytotoxicity) and the nematode model (animal toxicity), which confirmed the non-toxic nature of intermediates. Thus, the inclusive study of DMS2 showed promising efficiency in bioremediation approach for treating industrial effluents.
Collapse
Affiliation(s)
- Shivani Amin
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Bakrol, India
| | - Rajesh Prasad Rastogi
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Bakrol, India
| | - Mukesh Ghanshyam Chaubey
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, India
| | - Kunal Jain
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Bakrol, India
| | - Jyoti Divecha
- Department of Statistics, Sardar Patel University, Vallabh Vidyanagar, India
| | - Chirayu Desai
- P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Bakrol, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| |
Collapse
|
27
|
Reddy S, Osborne JW. Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1230-1241. [PMID: 32150781 DOI: 10.1002/wer.1319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Reactive dyes are pernicious pollutants in textile effluent, which are to be treated passably before discharging into the environment. In the present study, a potential dye degrading bacterial strain Pseudomonas guariconensis was isolated from paddy rhizosphere and was characterized by 16S rRNA gene sequencing. The biodegradation ability of the strain was evaluated by time-based study with immobilized bacterial cells in calcium alginate biocarrier matrix and also with free cells. The results indicated that the strain exhibited maximum degradation of 91% when immobilized in the biocarrier matrix. The enzymatic study revealed the production of oxidoreductase enzymes. The degraded products were identified as 2-amino-3-phenylpropanoic acid and benzoquinone by gas chromatography-mass spectroscopy (GC-MS) analysis, and a degradative pathway was derived based on the enzymatic profile. A packed bed column was designed using P. guariconensis VITSAJ5 immobilized in calcium alginate beads as a biosorbent for the removal of Reactive Red 120. The immobilized bacterial cells exhibited 87% uptake of RR120, whereas the nonimmobilized bacterial cells exhibited a maximum uptake of 37%. The phytotoxicity analysis by seed germination assay revealed an enhanced plumule and radicle length, indicating the nontoxic byproducts after the treatment of Reactive Red 120 by VITSAJ5 compared to the untreated Reactive Red 120 solution. PRACTITIONER POINTS: Current study is the first report on Pseudomonas guariconensis capable of degrading reactive dyes (Reactive Red 120) It was observed that the degradation potential was maximum when cells were immobilized with Ca-Ag biocarrier matrix Breakdown metabolism of Reactive Red 120 was derived through pathway prediction Employing immobilized bacteria in a packed bed column found to possess a prominent biosorption ability on the matrix enhancing the degradation process Toxic reactive dye was converted into nontoxic compounds, evidenced by phytotoxicity studies.
Collapse
Affiliation(s)
- Swarnkumar Reddy
- Biomolecules Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Jabez W Osborne
- Biomolecules Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
28
|
Moradi A, Rahimpour F, Salehi MA, Shojaeimehr T. Impact of operating conditions for the continuous‐flow removal of dye effluents in a fixed‐bed reactor using light expanded clay aggregate as a green adsorbent with ultrasound‐assisted desorption. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Azin Moradi
- Biotechnology Research Laboratory, Chemical Engineering Department, Faculty of Petroleum and Chemical Engineering Razi University Kermanshah Iran
- Department of Chemical Engineering University of Guilan Rasht Iran
| | - Farshad Rahimpour
- Biotechnology Research Laboratory, Chemical Engineering Department, Faculty of Petroleum and Chemical Engineering Razi University Kermanshah Iran
| | | | - Tahereh Shojaeimehr
- Department of Chemistry Technische Universität Berlin Berlin Germany
- Chemical Engineering Department Islamic Azad University Sanandaj Branch
| |
Collapse
|
29
|
Kausar A, Shahzad R, Iqbal J, Muhammad N, Ibrahim SM, Iqbal M. Development of new organic-inorganic, hybrid bionanocomposite from cellulose and clay for enhanced removal of Drimarine Yellow HF-3GL dye. Int J Biol Macromol 2020; 149:1059-1071. [DOI: 10.1016/j.ijbiomac.2020.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
|
30
|
Noreen S, Bhatti HN, Iqbal M, Hussain F, Sarim FM. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int J Biol Macromol 2020; 147:439-452. [DOI: 10.1016/j.ijbiomac.2019.12.257] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
|
31
|
Mittersteiner M, Barbieri MR, Colzani J, Scharf DR, de Jesus PC. Relationship between structure and catalyst effect in the degradation kinetics of reactive dyes with hydrogen peroxide: UV-light versus sodium hydroxide. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Biodegradation of synthetic orange G dye by Plearotus sojar-caju with Punica granatum peal as natural mediator. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Mumtaz A, Munir H, Zubair MT, Arif MH. Mimosa pudica gum based nanoparticles development, characterization, and evaluation for their mutagenicity, cytotoxicity and antimicrobial activity. MATERIALS RESEARCH EXPRESS 2019; 6:105308. [DOI: 10.1088/2053-1591/ab34ab] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
34
|
Graphene oxide decorated ZnWO4 architecture synthesis, characterization and photocatalytic activity evaluation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.139] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Jamil A, Bokhari TH, Iqbal M, Zuber M, Bukhari IH. ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2019-0006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
In view of promising efficiency of advanced oxidation process, ZnO/UV/H2O2 based advanced oxidation process (AOP) was employed for the degradation of Disperse Red-60 (DR-60) in aqueous medium. The process variables such as concentration of catalysts, reaction time, pH, dye initial concentration and H2O2 dose were evaluated for maximum degradation of dye. The maximum degradation of 97% was achieved at optimum conditions of H2O2 (0.9 mL/L), ZnO (0.6 g/L) at pH 9.0 in 60 min irradiation time. The analysis of treated dye solution revealed the complete degradation under the effect of ZnO/UV/H2O2 treatment. The water quality parameters were also studied of treated and un-treated dye solution and up to 79% COD and 60% BOD reductions were achieved when dye was treated with at optimum conditions. The dissolved oxygen increased up to 85.6% after UV/H2O2/ZnO treatment. The toxicity was also monitored using hemolytic and Ames tests and results revealed that toxicity (cytotoxicity and mutagenicity) was also reduced significantly. In view of promising efficiency of UV/H2O2/ZnO system, it could possibly be used for the treatment of wastewater containing toxic dyes.
Collapse
Affiliation(s)
- Aneela Jamil
- Department of Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
| | | | - Munawar Iqbal
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | - Muhammad Zuber
- Department of Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | | |
Collapse
|
36
|
Barkaat S, Zuber M, Zia KM, Noreen A, Tabasum S. UV/H 2O 2/Ferrioxalate Based Integrated Approach to Decolorize and Mineralize Reactive Blue Dye: Optimization Through Response Surface Methodology. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The decolorization and mineralization of Reactive Blue 222 dye was studied using UV/H2O2/ferrioxalate approach in combination with Pleorotus ostreatus. The dye was decolorized by UV/H2O2/ferrioxalate based advanced oxidation process (AOP) at different levels of process variables dye concentration, catalyst dose, pH, reaction time and resultantly, 80% decolorization was achieved. Pleorotus ostreatus treatment enhanced the dye degradation up to 92% at optimum levels of pH, temperature, inoculum size, carbon and nitrogen sources at specific concentration. Response Surface Methodology (RSM) was employed for optimization under face-centered central composite design (CCD). Although both treatments were found efficient for the removal of dye, but on applying the integrated approach, 96% dye removal was obtained which led to complete degradation of the dye. FTIR analysis confirmed the degradation of dye into low mass compounds. The water quality assurance parameters were measured to assess the mineralization efficiency. A significant reduction in COD (94%) and TOC (92%) were found when dye was degraded integrated approach. A phytotoxicity analysis on Pisum sativum plant revealed the non-toxic behavior of metabolites produced. Results revealed that the integrated approach is highly promising for the decolorization and mineralization of the Reactive Blue 222 dye and is also extendable to treat the dye in textile wastewater.
Collapse
Affiliation(s)
- Samra Barkaat
- Department of Applied Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
| | - Muhammad Zuber
- Department of Applied Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Khalid Mahmood Zia
- Department of Applied Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
| | - Aqdas Noreen
- Department of Applied Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
| | - Shazia Tabasum
- Department of Applied Chemistry , Government College University Faisalabad , Faisalabad , Pakistan
| |
Collapse
|
37
|
Kamran U, Bhatti HN, Iqbal M, Jamil S, Zahid M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Mojoudi F, Hamidian AH, Zhang Y, Yang M. Synthesis and evaluation of activated carbon/nanoclay/ thiolated graphene oxide nanocomposite for lead(II) removal from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:466-479. [PMID: 30924801 DOI: 10.2166/wst.2019.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Novel porous nanocomposite (AC/NC/TGO) was successfully synthesized through the composition of activated carbon, nanoclay and graphene oxide as a Pb(II) adsorbent for the treatment of contaminated aqueous environment. The physicochemical properties and morphology of AC/NC/TGO were examined by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption techniques. Results showed Pb(II) adsorption on the AC/NC/TGO was rapid in the first 20 min and reached equilibrium in 40 min. Kinetic studies showed significant fit to the pseudo second order kinetic model (R2 ≥ 0.9965) giving an equilibrium rate constant (K2) of 0.0017 g mg-1 min-1 for Pb(II) loaded. The experimental adsorption data were better fitted with the Langmuir isotherm model than with the Freundlich isotherm model. Prepared nanocomposite exhibited high values of Brunauer-Emmett-Teller (BET) surface area of 1,296 m2 g-1 and total pore volume of 1.01 cm3 g-1. Maximum adsorption capacity (Qmax = 208 mg g-1) and a relatively high adsorption rate was achieved at pH 5.0 using an adsorbent dose of 0.5 g L-1 and an initial lead concentration of 50 mg L-1. High adsorption capacity, reusability, fast kinetics and simple synthesis method indicate that prepared nanocomposite can be suggested as a high-performance adsorbent for Pb(II) removal from polluted water.
Collapse
Affiliation(s)
- Fatemeh Mojoudi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran E-mail:
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran E-mail: ; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
da Silva BC, Zanutto A, Pietrobelli JMTA. Biosorption of reactive yellow dye by malt bagasse. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617418823995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research evaluated the biosorption potential of the 134% Yellow Reafix BR2 dye by the malt bagasse. Tests were conducted at batch conditions, under controlled agitation, pH, and temperature. The biosorbent was characterized through scanning electron microscopy and Fourier transform infrared spectroscopy, before and after biosorption. Malt bagasse presented a point of zero charge at 6.75. In the process variables evaluation, there was a greater biosorption potential in acidic pH, without a significant influence of size on the biosorbent particles. The equilibrium time was achieved in 360 min, with approximately 93% removal at the evaluated temperatures. The experimental data were best represented by the pseudo-second-order model. Biosorption was characterized as spontaneous and endothermic, with indicative of physical. Considering the equilibrium, the Langmuir isotherm was the one that best fit the experimental data, with a maximum biosorption capacity of 68.75 mg g–1 (at 303 K and pH 2). The removal suffered no significant interference with the presence of another dye nor with the increase of ionic strength. Thus, the malt bagasse shows potential to be used as a biosorbent in treatment systems of industrial effluents.
Collapse
Affiliation(s)
- Bruna C da Silva
- Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, Brazil
| | - Adriane Zanutto
- Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, Brazil
| | | |
Collapse
|
40
|
Sreedharan V, Bhaskara Rao KV. Biodegradation of Textile Azo Dyes. NANOSCIENCE AND BIOTECHNOLOGY FOR ENVIRONMENTAL APPLICATIONS 2019. [DOI: 10.1007/978-3-319-97922-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Bilal M, Rasheed T, Iqbal HMN, Yan Y. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1-13. [PMID: 29980079 DOI: 10.1016/j.scitotenv.2018.06.274] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023]
Abstract
Environmental protection is one of the most important challenges for the humankind. Increasing number of emerging pollutants resulting from industrial/human-made activities represents a serious menace to the ecological and environmental equilibrium. Industrial dyes, endocrine disrupters, pesticides, phenols and halogenated phenols, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other xenobiotics are among the top priority environmental pollutants. Some classical remediation approaches including physical, chemical and biological are being employed, but are ineffective in cleaning the environment. Enzyme-catalyzed transformation reactions are gearing accelerating attention in this context as potential alternatives to classical chemical methods. Peroxidases are catalysts able to decontaminate an array of toxic compounds by a free radical mechanism resulting in oxidized or depolymerized products along with a significant toxicity reduction. Admittedly, enzymatic catalysis offers the hallmark of high chemo-, regio-, and enantioselectivity and superior catalytic efficiency under given reaction environment. Moreover, enzymes are considered more benign, socially acceptable and greener production routes since derived from the renewable and sustainable feedstock. Regardless of their versatility and potential use in environmental processes, several limitations, such as heterologous production, catalytic stability, and redox potential should be overcome to implement peroxidases at large-scale transformation and bio-elimination of recalcitrant pollutants. In this article, a critical review of the transformation of different types of hazardous pollutants by peroxidases, with special reference to the proposed reaction mechanisms of several dyes is presented. Following that major challenges for industrial and environmental applications of peroxidases are also discussed. Towards the end, the information is also given on miscellaneous applications of peroxidases, concluding remarks and outlook.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Tahir Rasheed
- The School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico.
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
42
|
Trotte NSF, Alzamora M, Sánchez DR, Carvalho NMF. Removal of methyl orange by heterogeneous Fenton catalysts prepared using glycerol as green reducing agent. ENVIRONMENTAL TECHNOLOGY 2018; 39:2822-2833. [PMID: 28797210 DOI: 10.1080/09593330.2017.1367038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
This study aims to prepare environmentally friendly iron catalysts supported on silica, using glycerol as green reducing and stabilizing agent, for application in heterogeneous Fenton degradation of the pollutant dye methyl orange (MO). The catalysts were characterized by X-ray powder diffraction, atomic absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analyses, Mössbauer and Fourier transform infrared spectroscopies, which revealed the formation of iron(II)/(III) oxalates from the oxidation of glycerol by the iron(III) nitrate precursor. Besides, iron oxihydroxide nanoparticles with superparamagnetic behavior were also formed. Iron catalysts prepared in the presence of nickel(II) or zinc(II) nitrates lead to the formation of the corresponding oxalates. The catalysts were able to degrade MO, efficiently in 180 min of reaction. Fe/SiO2 furnished higher reaction rates, followed by Zn4Fe2/SiO2, which presented higher iron content as well as the smallest nanoparticles. Reaction parameters such as catalyst dosage, hydrogen peroxide concentration, pH and reaction temperature were investigated.
Collapse
Affiliation(s)
- Natália S F Trotte
- a Instituto de Química, Universidade do Estado do Rio de Janeiro , Rio de Janeiro , Brazil
| | - M Alzamora
- b Universidade Federal do Rio de Janeiro , Duque de Caxias , Brasil
| | - D R Sánchez
- c Instituto de Física, Universidade Federal Fluminense , Niterói , Brasil
| | - Nakédia M F Carvalho
- a Instituto de Química, Universidade do Estado do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
43
|
Li Q, Feng X, Lu X, Li T, Han X, Xiao X, Wu X, Liu Z, Yang M, Feng Y. Combined intra- and extracellular reduction involved in the anaerobic biodecolorization of cationic azo dye by Shewanella oneidensis MR-1. CHEMOSPHERE 2018; 211:701-708. [PMID: 30098566 DOI: 10.1016/j.chemosphere.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Microbial reduction decolorization is a promising strategy for cationic azo dye pollution remediation, but the reduction mechanism is unclear yet. In this work, the anaerobic reduction decolorization mechanism of cationic red X-GRL (X-GRL) by Shewanella oneidensis MR-1 (MR-1) was investigated from both intracellular and extracellular aspects. The exogenous additional riboflavin treatment test was used to analyze the extracellular reduction mechanism of X-GRL, and the actual role of riboflavin during the reduction of X-GRL was identified by three-dimensional fluorescence analysis for the first time. The proteinase K and the electron competitor treatment tests were used to analyze the intracellular reduction mechanism of X-GRL. Moreover, the effect of external environment on the reduction mechanism of X-GRL was elucidated by the decolorization performance of MR-1 wild type and its mutants, ΔomcA/mtrC, ΔmtrA, ΔmtrB and ΔcymA, under different external pH conditions. The results indicated that X-GRL could be decolorized by MR-1 in both extracellular and intracellular spaces. The extracellular decolorization of X-GRL could be caused by Mtr respiratory pathway or the indirect reduction of riboflavin, while the intracellular decolorization might occur due to the intracellular reduction depending on CymA pathway and a NADH-dependent reduction catalyzed by intracellular azoreductases. Furthermore, the proportion of extracellular decolorization decreased, whereas that of intracellular decolorization increased as the environmental pH rose.
Collapse
Affiliation(s)
- Qian Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaoli Feng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuerong Lu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xue Han
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang Xiao
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoying Liu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mingfeng Yang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
44
|
|
45
|
Oliveira GARD, Leme DM, de Lapuente J, Brito LB, Porredón C, Rodrigues LDB, Brull N, Serret JT, Borràs M, Disner GR, Cestari MM, Oliveira DPD. A test battery for assessing the ecotoxic effects of textile dyes. Chem Biol Interact 2018; 291:171-179. [PMID: 29935967 DOI: 10.1016/j.cbi.2018.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022]
Abstract
The textile dyeing industry is one of the main sectors contributing to environmental pollution, due to the generation of large amounts of wastewater loaded with dyes (ca. 2-50% of the initial amount of dyes used in the dye baths is lost), causing severe impacts on human health and the environment. In this context, an ecotoxicity testing battery was used to assess the acute toxicity and genotoxicity of the textile dyes Direct Black 38 (DB38; azo dye) and Reactive Blue 15 (RB15; copper phthalocyanine dye) on different trophic levels. Thus these dyes were tested using the following assays: Filter paper contact test with earthworms (Eisenia foetida); seed germination and root elongation toxicity test (Cucumis sativus, Lactuca sativa and Lycopersicon esculentum); acute immobilization test (Daphnia magna and Artemia salina); and the Comet assay with the rainbow trout gonad-2 cell fish line (RTG-2) and D. magna. Neither phytotoxicity nor significant effects on the survival of E. foetida were observed after exposure to DB38 and RB15. Both dyes were classified as relatively non-toxic to D. magna (LC50 > 100 mg/L), but DB38 was moderately toxic to A. salina with a LC50 of 20.7 mg/L. DB38 and RB15 induced significant effects on the DNA of D. magna but only DB38 caused direct (alkaline comet assay) and oxidative (hOGG1-modified alkaline comet assay) damage to RTG-2 cells in hormetic responses. Therefore, the present results emphasize that a test battery approach of bioassays representing multiple trophic levels is fundamental in predicting the toxicity of textile dyes, aside from providing the information required to define their safe levels for living organisms in the environment.
Collapse
Affiliation(s)
- Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy (FF), Federal University of Goiás (UFG), Goiânia, GO, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| | - Daniela Morais Leme
- Departament of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| | - Joaquín de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | - Lara Barroso Brito
- Faculty of Pharmacy (FF), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Constança Porredón
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | | | - Natália Brull
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | - Joan Txu Serret
- Unit of Experimental Toxicology and Ecotoxicology (UTOX), Barcelona Science Park (PCB), Barcelona, Spain
| | - Miquel Borràs
- Association of Biologists of Catalonia (CBC), Barcelona, Spain
| | | | | | - Danielle Palma de Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| |
Collapse
|
46
|
Influence of different solvents on portrayal and photocatalytic activity of tin-doped zinc oxide nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.074] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Abbas M, Adil M, Ehtisham-Ul-Haque S, Munir B, Yameen M, Ghaffar A, Shar GA, Asif Tahir M, Iqbal M. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1295-1309. [PMID: 29898537 DOI: 10.1016/j.scitotenv.2018.01.066] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Vibrio fischeri bioluminescence inhibition bioassay (VFBIA) has been widely applied for the monitoring of toxicity on account of multiple advantages encompassing shorter test duration, sensitive, cost-effective and ease of operation. Moreover, this bioassay found to be equally applicable to all types of matrices (organic & inorganic compounds, metals, wastewater, river water, sewage sludge, landfill leachate, herbicides, treated wastewater etc.) for toxicity monitoring. This review highlights the apparent significance of Vibrio fischeri bioluminescence inhibition assay for ecotoxicological screening and evaluation of diverse chemical substances toxicity profile. The biochemical and genetic basis of the bioluminescence assay and its regulatory mechanism have been concisely discussed. The basic test protocol with ongoing improvements, widespread applications, typical advantages and probable limitations of the assay have been overviewed. The sensitivity of VFBIA and toxicity bioassays has also been compared.
Collapse
Affiliation(s)
- Mazhar Abbas
- CVAS, Jhang Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Adil
- CVAS, Jhang Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Bushra Munir
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Yameen
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Abdul Ghaffar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| | - Ghulam Abbas Shar
- Institute of Chemistry, Shah Abdul Latif University, Khairpur 66020, Sindh, Pakistan
| | - M Asif Tahir
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
48
|
|
49
|
Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, Singh RS. Recent advancements in bioremediation of dye: Current status and challenges. BIORESOURCE TECHNOLOGY 2018; 253:355-367. [PMID: 29352640 DOI: 10.1016/j.biortech.2018.01.029] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 05/23/2023]
Abstract
The rampant industrialization and unchecked growth of modern textile production facilities coupled with the lack of proper treatment facilities have proliferated the discharge of effluents enriched with toxic, baleful, and carcinogenic pollutants including dyes, heavy metals, volatile organic compounds, odorants, and other hazardous materials. Therefore, the development of cost-effective and efficient control measures against such pollution is imperative to safeguard ecosystems and natural resources. In this regard, recent advances in biotechnology and microbiology have propelled bioremediation as a prospective alternative to traditional treatment methods. This review was organized to address bioremediation as a practical option for the treatment of dyes by evaluating its performance and typical attributes. It further highlights the current hurdles and future prospects for the abatement of dyes via biotechnology-based remediation techniques.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Nadeem Raza
- Government Emerson College affiliated with Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, United Kingdom
| | - Kangkan Roy
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Birendra Nath Rai
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
50
|
Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:126-133. [DOI: 10.1016/j.jphotobiol.2018.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022]
|