1
|
Dong B, Moon HB. Toxicological effects of chemical pesticides in fish: Focusing on intestinal injury and gut microbial dysbiosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106405. [PMID: 40350225 DOI: 10.1016/j.pestbp.2025.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 05/14/2025]
Abstract
The gut is susceptible to environmental pollutants and is a crucial barrier to exchanging internal and exterior substances in animals and humans. Intestinal microbiota plays vital roles in nutrition metabolism, synthesis of functional compounds, immune regulation, inflammation, and infection. Gut microbiota dysbiosis can induce intestinal physical barrier damage, trigger inflammation, and increase gut permeability. Intestinal barrier dysfunction facilitates the entry of pathogenic bacteria and harmful chemicals into the body through the blood circulation system, potentially causing neurotoxicity, hepatotoxicity, respiratory toxicity, growth inhibition, and even death. Herein, we overviewed the knowledge on the toxic effects of chemical pesticides on fish intestines and gut microbiota in the latest decade (2015-2025) and attempted to summarize the potential toxicological mechanisms. Chemical pesticide exposure can cause intestinal damage, impair immune function, and disrupt gut microbiota in fish. Gut microbial dysbiosis was strongly associated with intestinal injury. Alterations in gut microbiome metabolites, such as lipopolysaccharide, peptidoglycan, and short-chain fatty acids, have been linked to intestinal damage, inflammation, and changes in permeability. The mechanisms underlying intestinal injury in fish exposed to chemical pesticides included apoptosis, oxidative stress, and inflammation, which are mediated by reactive oxygen species pathways as well as death receptor and mitochondrial signaling pathways. Furthermore, pesticide-induced intestinal dysbiosis can cause neurotoxicity and hepatotoxicity through the microbiome-gut-brain/liver axis.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Li H, Zhang Y, Zheng Y, Li X, Li Z, Man C, Zhang Y, Jiang Y. Structural characterization of the exopolysaccharide produced by Bacillus amyloliquefaciens JM033 and evaluation of its ability to regulate immunity and intestinal flora. Int J Biol Macromol 2025; 306:141052. [PMID: 39986497 DOI: 10.1016/j.ijbiomac.2025.141052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
The probiotic strain Bacillus amyloliquefaciens JM033 (B. amyloliquefaciens JM033), isolated from the traditional Chinese fermented food Sufu (also known as Fu-ru or fermented bean curd), is distinguished by its high production of exopolysaccharides (EPS). The EPS (BAP-1) produced by this strain was purified and its structure analyzed. BAP-1 is a novel hybrid fructan with a molecular weight of 17.6 kDa. It is composed of →6)-β-D-Fruf-(2 → and →1,6)-β-D-Fruf-(2→, which form the backbone, with a branched chain of β-D-Fruf-(2 → attached at the 1-position of residue B. In vivo studies on mice indicated that BAP-1 improves immunity in immunosuppressed mice by enhancing humoral immunity (P < 0.01), monocyte-macrophage phagocytosis (P < 0.01), and NK cell killing activity (P < 0.05). Additionally, BAP-1 was found to improve the composition of the intestinal microbiota and stimulate the production of short-chain fatty acids. Notably, BAP-1 exhibited a significant effect on the proliferation of Akkermansia. Therefore, BAP-1 shows promise as a prebiotic and may contribute to the development of new immunomodulatory agents.
Collapse
Affiliation(s)
- Hongxuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yubo Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xuejian Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zimu Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Shebeko SK, Drobot HY, Koshchaev AG, Todorov SD, Ermakov AM. Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine. Animals (Basel) 2025; 15:1222. [PMID: 40362037 DOI: 10.3390/ani15091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Artificial gastrointestinal tract models have become essential tools in veterinary medicine, providing alternatives to in vivo studies, which are labor-intensive, costly, and under certain circumstances even ethically challenging. These in vitro models facilitate the study of digestion, enable disease and host-pathogen interaction modeling, and allow for the investigation of nutrient absorption, microbiota, and pharmacokinetics. Considering the One Health concept, the application of gastrointestinal tract systems in investigations for animals can clearly reflect human health, and thus, it is pointing to the relevance of the adaptation of already existing models and the development of new models to meet the needs of veterinary and animal farming practices. This review explores and compares the various types of gastrointestinal tract models, including static and dynamic systems, and their applications across different animal species. Specific technical and methodological considerations are discussed for core animal-developed and -tested artificial systems and their integration with common 'omics' techniques. Dynamic models, such as RUSITEC and PolyFermS, more accurately simulate in vivo processes, including peristalsis, enzymatic activity, and microbial fermentation. The studies employing tools for 'omics' approaches have been conducted with more understanding analysis and comprehensive discussion and results.
Collapse
Affiliation(s)
- Sergei Konstantinovich Shebeko
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 1, Gagarina sq., Rostov-on-Don 344000, Russia
| | - Heorhii Yurievich Drobot
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 1, Gagarina sq., Rostov-on-Don 344000, Russia
| | - Andrey Georgievich Koshchaev
- Department of Biotechnology, Biochemistry and Biophysics, Kuban State Agrarian University, 13, Kalinina Street, Krasnodar 350044, Russia
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Alexey Mikhailovich Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 1, Gagarina sq., Rostov-on-Don 344000, Russia
| |
Collapse
|
4
|
Bariod L, Fuentes E, Millet M, White J, Jacquiod S, Moreau J, Monceau K. Exposure to pesticides is correlated with gut microbiota alterations in a farmland raptor. ENVIRONMENT INTERNATIONAL 2025; 199:109436. [PMID: 40252553 DOI: 10.1016/j.envint.2025.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/21/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
The gut microbiota is crucial for host health and can be impacted by various environmental disruptions, yet the effects of multiple pesticide exposures on farmland organisms' microbiomes remain largely unexplored. We assessed microbiota changes in a wild apex predator exposed to multiple pesticides in agricultural landscapes. Pesticides, including acetochlor and quinoxyfen, which are supposed to be banned, were significantly positively correlated with certain key bacteria from Actinobacteria, Alphaproteobacteria and Gammaproteobacteria classes. Our results light up the potential collateral effect of pesticides on gut bacterial assemblages through unknown mechanisms. These effects could result in dysbiosis and the promotion of potential pathogens and/or the selection of bacteria that might allow the organism to detoxify the organism. Although formal metagenomic analyses would be required soon, these microbial shifts underline the broader ecological consequences of pesticide exposure, emphasising the need for integrated biodiversity conservation and ecosystem management to protect environmental and public health.
Collapse
Affiliation(s)
- Léa Bariod
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Elva Fuentes
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Maurice Millet
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France
| | - Joël White
- Centre de Recherche sur la Biodiversité et l'Environnement, UMR 5300, CNRS-IRD-UT3-INPT, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Samuel Jacquiod
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21000 Dijon, France
| | - Jérôme Moreau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360 Villiers-en-Bois, France.
| |
Collapse
|
5
|
Shukla A, Sharma C, Malik MZ, Singh AK, Aditya AK, Mago P, Shalimar, Ray AK. Deciphering the tripartite interaction of urbanized environment, gut microbiome and cardio-metabolic disease. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124693. [PMID: 40022791 DOI: 10.1016/j.jenvman.2025.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Collapse
Affiliation(s)
- Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Chanchal Sharma
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Translational Medicine, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Center, Mathura, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
6
|
Song X, Li X, Wang Y, Wu YJ. Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice. Arch Toxicol 2025; 99:1237-1252. [PMID: 39714733 DOI: 10.1007/s00204-024-03934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF. In this study, we explored if the intestinal microbial community is involved in regulating the toxicity of CPF. Adult mice were continuously exposed to CPF (4 mg/kg body weight /day) for 10 weeks with or without a 2-week pretreatment of antibiotics to change the ecological structure of intestinal microorganisms in advance. Pathological changes in the liver and kidneys were examined and the biochemical parameters in serum for liver and kidney functions were detected, and changes in the intestinal microbial community of the mice were measured. The results showed that subchronic exposure to low-dose CPF caused an ecological imbalance in the intestinal flora and caused pathological damage to the liver and kidneys. Serum biochemical indicators for liver function such as alanine aminotransferase and total bile acids contents and renal biochemical indicators such as urea nitrogen and creatinine were disrupted. Changes in intestinal microbial community structure by using antibiotics in advance can effectively alleviate the pathological and functional damage to the liver and kidneys caused by CPF exposure. Further analysis showed that intestinal microorganisms such as Saccharibacteria (TM7), Odoribacter, Enterococcus and AF12 genera may be involved in managing the toxicity of CPF. Together, our results indicated that long-term low-dose CPF exposure could induce hepatotoxicity and nephrotoxicity, and liver and kidney damage may be mitigated by altering the ecology of intestinal microorganisms.
Collapse
Affiliation(s)
- Xiaohua Song
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyi Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China
| | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China.
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
| |
Collapse
|
7
|
Chen X, Wen P, Sun Y, Ding P, Chen H, Li H, Li X, Cai L, Yu Y, Hu G. Ecological risks caused by neonicotinoid pesticides in sediments: A case study of freshwater basins in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177547. [PMID: 39542272 DOI: 10.1016/j.scitotenv.2024.177547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Neonicotinoid insecticides (NNIs) are extensively used in agricultural production in China due to their selective neurotoxicity towards target insects. In recent years, the rapid development of agriculture has increased the use and residue of NNIs. Consequently, the sediment environment, serving as the ultimate sink, is significantly impacted by NNIs. Upon release into the environment, NNIs can enter the human body through the food chain, posing potential ecological and human health risks. This study analyzed 79 sediment samples from two major river basins in North and South China, the Liaohe River basin in Liaoning Province and the Jianjiang River basin in Guangdong Province. The content, composition, distribution, and source of eight NNIs were analyzed, and assess the ecological and human health risks of the target compounds in these regions. The results indicated that the average concentration of NNIs in the sediments of the Jianjiang River basin (2.34 μg/kg) is slightly higher than that of the Liaohe River basin (2.32 μg/kg), and the sources of NNIs in the two areas were different, with differences in the sources of NNIs likely attributable to varying types of agricultural production. The risk assessment revealed that the ecotoxicological and public health risks were more pronounced in the Jianjiang River basin compared to the Liaohe River basin, underscoring the critical need for surveillance and management of hazardous substances like NNIs. The insights findings from this study can provide scientific guidance for the risk evaluation and environmental management of NNIs.
Collapse
Affiliation(s)
- Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Pengchong Wen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanan Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Limei Cai
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan 430100, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
8
|
An X, Wang R, Cao C, Wang D, Chen C, Wang Y. Synergistic risk in the gut and liver: Insights into the toxic mechanisms and molecular interactions of combined exposure to triazophos and fenvalerate in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174710. [PMID: 38997031 DOI: 10.1016/j.scitotenv.2024.174710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
The simultaneous or sequential application of pesticides such as triazophos (TRI) and fenvalerate (FEN) in agriculture results in their residues co-existing in the environments. However, the impact of co-exposure to TRI and FEN on the gut-liver axis, along with the underlying mechanisms, remains unclear. Our results showed that exposure to FEN (96 h-LC50 value of 0.096 mg a.i. L-1) was more toxic to adult zebrafish compared to TRI (96 h-LC50 value of 6.75 mg a.i. L-1). Furthermore, the study aimed to reveal the toxic potencies of individual and combined exposure to TRI and FEN on the liver-gut axis in zebrafish (Danio rerio). Our results also indicated that pesticide exposure decreased tight junction molecule expression and increased intestinal inflammatory molecule expression in D. rerio, with co-exposure demonstrating enhanced toxicity. Co-exposure altered gut flora structure and species abundance. RNA-Seq sequencing revealed changes in liver gene expressions, particularly enrichment of P53 signaling. Molecular docking demonstrated FEN's stronger binding to P53 and Caspase3, correlating with its higher toxicity. Liver pathology confirmed exacerbated liver damage by individual and co-exposures, with co-exposure inducing more severe liver injury. qPCR results showed increased pro-apoptotic gene expression and decreased anti-apoptotic gene expression, with co-exposure exhibiting an interactive effect. Overall, this study identifies specific targets and pathways influenced by these pesticides, revealing toxicity mechanisms involving the gut-liver axis, which is crucial for environmental risk assessment of pesticide mixtures.
Collapse
Affiliation(s)
- Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
9
|
Pan Y, Zhang H, Zhu L, Tan J, Wang B, Li M. The role of gut microbiota in MP/NP-induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124742. [PMID: 39153541 DOI: 10.1016/j.envpol.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are globally recognized as emerging environmental pollutants in various environmental media, posing potential threats to ecosystems and human health. MPs/NPs are unavoidably ingested by humans, mainly through contaminated food and drinks, impairing the gastrointestinal ecology and seriously impacting the human body. The specific role of gut microbiota in the gastrointestinal tract upon MP/NP exposure remains unknown. Given the importance of gut microbiota in metabolism, immunity, and homeostasis, this review aims to enhance our current understanding of the role of gut microbiota in MP/NP-induced toxicity. First, it discusses human exposure to MPs/NPs through the diet and MP/NP-induced adverse effects on the respiratory, digestive, neural, urinary, reproductive, and immune systems. Second, it elucidates the complex interactions between the gut microbiota and MPs/NPs. MPs/NPs can disrupt gut microbiota homeostasis, while the gut microbiota can degrade MPs/NPs. Third, it reveals the role of the gut microbiota in MP/NP-mediated systematic toxicity. MPs/NPs cause direct intestinal toxicity and indirect toxicity in other organs via regulating the gut-brain, gut-liver, and gut-lung axes. Finally, novel approaches such as dietary interventions, prebiotics, probiotics, polyphenols, engineered bacteria, microalgae, and micro/nanorobots are recommended to reduce MP/NP toxicity in humans. Overall, this review provides a theoretical basis for targeting the gut microbiota to study MP/NP toxicity and develop novel strategies for its mitigation.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
10
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
11
|
Pu C, Liu Y, Ma J, Hou L, Cheng Y, Zhang B, Wang B, Wang A, Zhang C. Bisphenol S exposed changes in intestinal microflora and metabolomics of freshwater crayfish, Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106957. [PMID: 38772067 DOI: 10.1016/j.aquatox.2024.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Bisphenol S (BPS), a typical endocrine-disrupting chemical (EDC), can cause hepatopancreas damage and intestinal flora disturbance. Comprehensive studies on the mechanisms of acute toxicity in crustaceans are lacking. In this study, 16S rRNA and liquid chromatography were used to investigate intestinal microbiota and metabolites of freshwater crayfish (Procambarus clarkii). In this study, freshwater crayfish were exposed to BPS (10 µg/L and 100 µg/L). The results showed a significant decrease in catalase (CAT) and superoxide dismutase (SOD) activities after exposure to BPS, which inhibited the Nrf2-Keap1 signaling pathway and induced oxidative stress toxicity in freshwater crayfish. In addition, BPS exposure induced the structural changes of intestinal microbial in the freshwater crayfish, showing different patterns of effects. The number of potentially pathogenic bacteria increased, such as Citrobacter, Hafnia-Obesumbacterium, and RsaHf231. A total of 128 different metabolites were analyzed by LC-MS/MS. The inositol and leukotriene (LT) contents in the hepatopancreas of freshwater crayfish were significantly decreased after 10 µg/L BPS exposure, which in turn led to the accumulation of lipids causing hepatopancreas damage. In conclusion, when the concentration of BPS in the water environment exceeded 10 µg/L, the freshwater crayfish intestinal microbiota was dysbiosis and the hepatopancreas metabolism was disturbed.
Collapse
Affiliation(s)
- Changchang Pu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Yuanyi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Jianshuang Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Lixiao Hou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Yinfeng Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Boyang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, People's Republic of China
| | - Aimin Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| | - Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China.
| |
Collapse
|
12
|
Sundararaman S, Kumar KS, Siddharth U, Prabu D, Karthikeyan M, Rajasimman M, Thamarai P, Saravanan A, Kumar JA, Vasseghian Y. Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:248. [PMID: 38874631 DOI: 10.1007/s10653-024-02001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - K Satish Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - U Siddharth
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Karthikeyan
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, Chidambaram, 608002, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, India
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Xue H, Liang B, Wang Y, Gao H, Fang S, Xie K, Tan J. The regulatory effect of polysaccharides on the gut microbiota and their effect on human health: A review. Int J Biol Macromol 2024; 270:132170. [PMID: 38734333 DOI: 10.1016/j.ijbiomac.2024.132170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Polysaccharides with low toxicity and high biological activities are a kind of biological macromolecule. Recently, growing studies have confirmed that polysaccharides could improve obesity, diabetes, tumors, inflammatory bowel disease, hyperlipidemia, diarrhea, and liver-related diseases by changing the intestinal micro-environment. Moreover, polysaccharides could promote human health by regulating gut microbiota, enhancing production of short-chain fatty acids (SCFAs), improving intestinal mucosal barrier, regulating lipid metabolism, and activating specific signaling pathways. Notably, the biological activities of polysaccharides are closely related to their molecular weight, monosaccharide composition, glycosidic bond types, and regulation of gut microbiota. The intestinal microbiota can secrete glycoside hydrolases, lyases, and esterases to break down polysaccharides chains and generate monosaccharides, thereby promoting their absorption and utilization. The degradation of polysaccharides can produce SCFAs, further regulating the proportion of gut microbiota and achieving the effect of preventing and treating various diseases. This review aims to summarize the latest studies: 1) effect of polysaccharides structures on intestinal flora; 2) regulatory effect of polysaccharides on gut microbiota; 3) effects of polysaccharides on gut microbe-mediated diseases; 4) regulation of gut microbiota on polysaccharides metabolism. The findings are expected to provide important information for the development of polysaccharides and the treatment of diseases.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Beimeng Liang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
14
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
15
|
Zhao Y, Chen H, Liang H, Zhao T, Ren B, Li Y, Liang H, Liu Y, Cao H, Cui N, Wei W. Combined toxic effects of polyethylene microplastics and lambda-cyhalothrin on gut of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116296. [PMID: 38593498 DOI: 10.1016/j.ecoenv.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
16
|
Zhu S, Qin S, Wei C, Cen L, Xiong L, Luo X, Wang Y. Acetylcholine triggered enzymatic cascade reaction based on Fe 7S 8 nanoflakes catalysis for organophosphorus pesticides visual detection. Anal Chim Acta 2024; 1301:342464. [PMID: 38553122 DOI: 10.1016/j.aca.2024.342464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 μg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 μg mL-1. SIGNIFICANCE Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.
Collapse
Affiliation(s)
- Shu Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shangying Qin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chonghui Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Li Cen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Luyun Xiong
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xingyu Luo
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Yilin Wang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
17
|
Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, Wang J, Appenzeller BMR. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170535. [PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
18
|
Wu X, Liu Q, Li Y, Yue M, Su Q, Luo J, Li Y, Zeng S, Gao J. Urinary neonicotinoid concentrations and obesity: A cross-sectional study among Chinese adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123516. [PMID: 38346638 DOI: 10.1016/j.envpol.2024.123516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Epidemiological and toxicological studies on neonicotinoids and obesity have been relevant to adults and young children, but data are limited in adolescents. This study aimed to examine the association between urinary neonicotinoid concentrations and obesity measures among Chinese adolescent. A total of 524 urine samples from 300 boys (11.3-16.1 years) and 224 girls (12.1-15.8 years) were collected to detect the concentrations of eleven neonicotinoids. Generalized linear regression, weighted quantile sum regression (WQS) and Bayesian kernel machine regression (BKMR) were used to estimate covariate-adjusted associations between detectable neonicotinoids and ten indicators of obesity. Nitenpyram concentration was associated with increased body mass index z-score (β = 0.170, 95% CI: 0.041, 0.299) and greater odds of being general obesity (OR = 2.46, 95% CI: 1.11, 5.46). N-desmethyl- acetamiprid concentration was associated with an increase in waist-to-height ratio (β = 0.102, 95% CI: 0.029, 0.176) and waist-to-hip ratio (β = 0.083, 95% CI: 0.011, 0.155). The concentrations of clothianidin (OR = 2.06, 95% CI: 1.10, 3.88) and flonicamid (OR = 2.39, 95% CI: 1.07, 5.32) were associated with greater odds of being abdominal obesity. In contrast, the concentrations of imidacloprid (OR = 0.35, 95% CI: 0.14, 0.88) and thiacloprid (OR = 0.28, 95% CI: 0.08, 0.99) were associated with lower odds of being general obesity. The estimates of general obesity and abdominal obesity increased significantly when concentrations of neonicotinoids mixture were at or above the 55th and 65th percentiles, respectively, compared to the 50th percentile concentration. Sex modified the association between nitenpyram and clothianidin and the risk of obesity with a positive association among boys, and a nonsignificant inverse association among girls. The findings suggest that these associations may be mixed and sex-specific.
Collapse
Affiliation(s)
- Xu Wu
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Qin Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yin Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Min Yue
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Chongqing Shapingba Center for Disease Control and Prevention, Chongqing 400038, PR China
| | - Qian Su
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Jinzhu Luo
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yang Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Shaohua Zeng
- China Coal Technology & Engineering Group Chongqing Research Institute, Chongqing 400039, PR China
| | - Jieying Gao
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
19
|
Leddin D. The Impact of Climate Change, Pollution, and Biodiversity Loss on Digestive Health and Disease. GASTRO HEP ADVANCES 2024; 3:519-534. [PMID: 39131722 PMCID: PMC11307547 DOI: 10.1016/j.gastha.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 08/13/2024]
Abstract
The environment is changing rapidly under pressure from 3 related drivers: climate change, pollution, and biodiversity loss. These environmental changes are affecting digestive health and disease in multiple ways. Heat extremes can cause intestinal and hepatic dysfunction. Access to adequate amounts of food of high nutritional content and to clean water is under threat. Extreme weather is associated with flooding and enteric infections and affects the delivery of care through infrastructure loss. Air, water, and soil pollution from chemicals and plastics are emerging as risk factors for a variety of intestinal diseases including eosinophilic esophagitis, metabolic dysfunction associated fatty liver disease, digestive tract cancers, inflammatory bowel disease, and functional bowel disease. Migration of populations to cities and between countries poses a special challenge to the delivery of digestive care. The response to the threat of environmental change is well underway in the global digestive health community, especially with regard to understanding and reducing the environmental impact of endoscopy. Individuals, and peer societies, are becoming more engaged, and have an important role to play in meeting the challenge.
Collapse
Affiliation(s)
- Desmond Leddin
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
21
|
Zhang S, Luo T, Weng Y, Wang D, Sun L, Yu Z, Zhao Y, Liang S, Ren H, Zheng X, Jin Y, Qi X. Toxicologic effect and transcriptome analysis for sub-chronic exposure to carbendazim, prochloraz, and their combination on the liver of mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5500-5512. [PMID: 38123780 DOI: 10.1007/s11356-023-31412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Carbendazim (CBZ) and prochloraz (PCZ) are broad-spectrum fungicides used in agricultural peat control. Both fungicides leave large amounts of residues in fruits and are toxic to non-target organisms. However, the combined toxicity of the fungicides to non-target organisms is still unknown. Therefore, we characterized the toxic effects of dietary supplementation with CBZ, PCZ, and their combination for 90 days in 6-week-old male Institute of Cancer Research (ICR) mice. CBZ-H (100 mg/kg day), PCZ-H (10 mg/kg day), and their combination treatments increased the relative liver weights and caused liver injury. The serum total cholesterol (TC), triglyceride (TG), glucose (Glu), pyruvate (PYR), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were reduced, and synergistic toxicity was observed. Hepatic transcriptome revealed that 326 differentially expressed genes (DEGs) of liver were observed in the CBZ treatment group, 149 DEGs in the PCZ treatment group, and 272 DEGs in the combination treatment group. According to KEGG enrichment analysis, the fungicides and their combination affected lipid metabolism, amino acid metabolism, and ferroptosis. In addition, the relative mRNA levels of key genes involved in lipid metabolism were also examined. Compared with individual exposure, combined exposure to CBZ and PCZ caused a more obvious decrease in the expression of some genes related to glycolipid metabolism. Furthermore, the relative mRNA levels of some key genes in the combination treatment group were lower than those in the CBZ and PCZ treated groups. In summary, CBZ, PCZ, and their combination generally caused hepatotoxicity and glycolipid metabolism disorders, which could provide new insights for investigating the combined toxicity of multiple fungicides to animals.
Collapse
Affiliation(s)
- Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Senmiao Liang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiliang Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
22
|
Koukoulis TF, Beauchamp LC, Kaparakis-Liaskos M, McQuade RM, Purnianto A, Finkelstein DI, Barnham KJ, Vella LJ. Do Bacterial Outer Membrane Vesicles Contribute to Chronic Inflammation in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2024; 14:227-244. [PMID: 38427502 PMCID: PMC10977405 DOI: 10.3233/jpd-230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Tiana F. Koukoulis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Leah C. Beauchamp
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Ann Romney Center for Neurologic Diseases, Brighamand Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Rachel M. McQuade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Gut-Axis Injury and Repair Laboratory, Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC, Australia
| | - Adityas Purnianto
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
23
|
Li T, Chen H, Xu B, Yu M, Li J, Shi Y, Xia S, Wu S. Deciphering the interplay between LPS/TLR4 pathways, neurotransmitter, and deltamethrin-induced depressive-like behavior: Perspectives from the gut-brain axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105697. [PMID: 38072552 DOI: 10.1016/j.pestbp.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
The improper use of deltamethrin (DM) can result in its accumulation in soil, water, food, and even the human body, which is associated with an elevated risk of neurotoxicity and behavioral abnormalities; however, the underlying mechanisms remain insufficiently investigated. Emerging evidence underscores the significance of the gut-brain axis in central nervous system (CNS) dysfunctions. Accordingly, this study investigates the role of the gut-brain axis in DM-induced behavioral anomalies in mice. The results showed that DM exposure induced depressive-like behavior, and the hippocampus, the region that is responsible for the modulation of emotional behavior, showed structural integrity disrupted (neuronal nuclear shrinkage and decreased tight junction protein expression). In addition, DM exposure led to compromised gut barrier integrity (disruptions on crypt surfaces and decreased tight junction protein expression), which might contribute to the gut bacterial-derived lipopolysaccharide (LPS) leakage into the bloodstream and reaching the brain, triggering LPS/toll-like receptor (TLR) 4 -mediated increases in brain pro-inflammatory cytokines. Subsequently, we observed a disturbance in neurotransmitter metabolic pathways following DM exposure, which inhibited the production of 5-hydroxytryptamine (5-HT). Additionally, DM exposure resulted in gut microbiota dysbiosis. Characteristic bacteria, such as Alistipes, Bifidobacterium, Gram-negative bacterium cTPY-13, and Odoribacter exhibited significant correlations with behavior, tight junction proteins, inflammatory response, and neurotransmitters. Further fecal microbiota transplantation (FMT) experiments suggested that DM-induced gut microbiota dysbiosis might contribute to depressive-like behavior. These results provide a new perspective on the toxicity mechanism of DM, indicating that its neurotoxicity may be partially regulated by the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Shi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaohui Xia
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
24
|
Yang Y, Zhang C, Wang X, Yu Q, He L, Cai X, Li E, Qin C, Qin J, Chen L. Adverse effects of thiamethoxam on the behavior, biochemical responses, hepatopancreas health, transcriptome and intestinal flora of juvenile Chinese mitten crab (Eriocheir sinensis). CHEMOSPHERE 2023; 340:139853. [PMID: 37595694 DOI: 10.1016/j.chemosphere.2023.139853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Frequent detection of thiamethoxam in global surface waters has provoked great concern in environmental safety, as thiamethoxam exhibits high toxicity to aquatic arthropods. However, little systematic investigation has been conducted on the chronic toxicity of thiamethoxam to crustaceans. This study exposed Eriocheir sinensis to thiamethoxam (0, 0.5, 5 and 50 μg/L) in water for 28 days. No significant difference in mortality was observed among all groups. A high concentration of thiamethoxam (50 μg/L) impaired the righting ability of E. sinensis. Thiamethoxam significantly increased antioxidant enzyme activities (superoxide dismutase, total antioxidant capacity and glutathione peroxidase) and malondialdehyde levels. Simultaneously, detoxification enzyme activities (aminopyrine N-demethylase, erythromycin N-demethylase and glutathione-S-transferase) increased under chronic thiamethoxam stress. In addition, thiamethoxam caused immune and hepatopancreas damage. Moreover, thiamethoxam induced intestinal flora dysbiosis by altering the microbiome structure. The reduced complexity of the gut microbiota further illustrated that thiamethoxam could disrupt the stability of the microbiota ecological network. The transcriptomic results revealed that the number of downregulated DEGs increased in a dose-dependent manner, and most downregulated DEGs were enriched in energy metabolism-related pathways. These results indicate that thiamethoxam can adversely affect the crab behavior, biochemistry, intestinal microflora and transcriptomic responses.
Collapse
Affiliation(s)
- Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Long He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xinyu Cai
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
25
|
Lazarova S, Lozanova L, Neov B, Shumkova R, Balkanska R, Palova N, Salkova D, Radoslavov G, Hristov P. Composition and diversity of bacterial communities associated with honey bee foragers from two contrasting environments. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:693-702. [PMID: 37545319 DOI: 10.1017/s0007485323000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), commonly known as the microbiome. Here, we present data on honey bee microbiota from two localities having different surrounding landscapes - mountain (the Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdomen of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The composition and dominance structure and their variability within and between localities, alpha and beta diversity, and core and differential taxa were compared at different hierarchical levels (operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella, Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to include core gut-associated phylotypes or species clusters, dominated (92-100%) the bacterial assemblages. Significant variations were found in taxa distribution across both geographical regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the mountain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera, core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial genera (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses confirmed the observed differences in the bacterial communities from both localities. The occurrence of non-core taxa contributes substantially to higher microbial richness and diversity in bees from the Danube plain locality. We assume that the observed differences in the microbiota of honey bees from both apiaries are due to a combination of factors specific for each region. The surrounding landscape features of both localities and related vegetation, anthropogenic impact and land use intensity, the beekeeping management practices, and bee health status might all contribute to observed differences in bee microbiota traits.
Collapse
Affiliation(s)
- Stela Lazarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyudmila Lozanova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Boyko Neov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria
| | - Ralitsa Balkanska
- Department 'Special Branches', Institute of Animal Science, Agricultural Academy, 2230 Kostinbrod, Bulgaria
| | - Nadezhda Palova
- Scientific Center of Agriculture, Agricultural Academy, Sredets 8300, Bulgaria
| | - Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
26
|
Yin H, Huang Y, Yan G, Huang Q, Wang Y, Liu H, Huang Z, Hong Y. Effects of chlorantraniliprole-based pesticide on transcriptional response and gut microbiota of the crucian carp, Carassius carassius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115292. [PMID: 37494733 DOI: 10.1016/j.ecoenv.2023.115292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Chlorantraniliprole (CAP) is a presentative diamide pesticide utilized in agricultural area and as well as rice-fish co-culture system for pest control. However, the understanding of toxic effects of CAP on fish species is still incomplete. In the present study, we performed an integrated study of the acute toxicity and bioaccumulation of CAP on the crucian carp, Carassius carassius, a fish species widely distributed in freshwater area in China and commonly farmed in the rice-fish co-culture systems. Besides, biochemical changes, transcriptional responses and gut microbiota of fish were investigated upon sub-chronic CAP exposure. The results showed that CAP is low toxic to crucian carp with a 96 h LC50 of 74.824 mg/L, but has considerable accumulation in the fish muscles when exposed to 3 mg/L of CAP for 14 d and still detectable after 18 d recovery in fresh water. For sub-chronic test, fish were exposed to CAP at 0, 0.3, 3 and 30 mg/L respectively for 14 d. CAP induced oxidative stress and detoxification inhibition in the liver of fish by decreasing antioxidative and detoxicated enzymes activities and downregulating relevant genes expression. In addition, disrupted gut flora composition was found in all experimental groups by the 16 S rRNA sequencing data, indicating the gut microbiota dysbiosis in crucian carp and potential adverse host effect. All the results suggest that CAP at sublethal concentrations has prominent toxic effect on crucian carp and more attentions should be paid especially using directly in an integrated aquaculture system.
Collapse
Affiliation(s)
- Hongmei Yin
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Guangwen Yan
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Yan Wang
- Guangyuan Agricultural and Rural Bureau, Guangyuan 628017, China
| | - Hongming Liu
- Guangyuan Agricultural and Rural Bureau, Guangyuan 628017, China
| | - Zhiqiu Huang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China; Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Yuhang Hong
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China; Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China.
| |
Collapse
|
27
|
Gois MFB, Fernández-Pato A, Huss A, Gacesa R, Wijmenga C, Weersma RK, Fu J, Vermeulen RCH, Zhernakova A, Lenters VC, Kurilshikov A. Impact of occupational pesticide exposure on the human gut microbiome. Front Microbiol 2023; 14:1223120. [PMID: 37637104 PMCID: PMC10448898 DOI: 10.3389/fmicb.2023.1223120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general "all pesticides" class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.
Collapse
Affiliation(s)
- Milla F. Brandao Gois
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Asier Fernández-Pato
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke Huss
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Ranko Gacesa
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jingyuan Fu
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Roel C. H. Vermeulen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Virissa C. Lenters
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Alexander Kurilshikov
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Huang Y, Hong Y, Wu S, Yang X, Huang Q, Dong Y, Xu D, Huang Z. Prolonged darkness attenuates imidacloprid toxicity through the brain-gut-microbiome axis in zebrafish, Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163481. [PMID: 37068676 DOI: 10.1016/j.scitotenv.2023.163481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
The present study investigated the toxic effects of IMI on brain and gut of zebrafish (Danio rerio) by a combination of transcriptome and microbiome analysis. In addition, the involvement of light/dark period was also evaluated. An acute toxic test was conducted on adult zebrafish weighing 0.45 ± 0.02 g with 4 experimental groups (n = 15): 1) IMI group (Light: Dark = 12: 12 h), 2) prolonged light group (Light: Dark = 20: 4 h), 3) prolonged darkness group (Light: Dark = 4: 20 h) which received 20 mg/L of IMI, and 4) control group, which was not treated with IMI (Light: Dark = 12: 12 h). The results showed that prolonged darkness improved the survival rate of zebrafish upon IMI exposure for 96 h. In the sub-chronic test, zebrafish were divided into the same 4 groups and exposed to IMI at 1 mg/L for 14 d (n = 30). The results showed that IMI induced oxidative stress in both IMI and prolonged light groups by inhibition of antioxidant activities and accumulation of oxidative products. Transcriptome analysis revealed a compromise of antioxidation and tryptophan metabolism pathways under IMI exposure. Several genes encoding rate-limiting enzymes in serotonin and melatonin synthesis were all inhibited in both IMI and LL groups. Meanwhile, significant decrease (P < 0.5) of serotonin and melatonin levels was observed. However, there's remarkable improvement of biochemical and transcriptional status in prolonged darkness group. In addition, microbiome analysis showed great alteration of gut bacterial community structure and inhibition of tryptophan metabolism pathway. Similarly, the gut microbiota dysbiosis induced by IMI was alleviated in prolonged darkness. In summary, sub-chronic IMI exposure induced neurotoxicity and gut toxicity in zebrafish by oxidative stress and impaired the brain-gut-axis through tryptophan metabolism perturbation. Prolonged darkness could effectively attenuate the IMI toxicity probably through maintaining a normal tryptophan metabolism.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China.
| | - Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Centre of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yanzhen Dong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Dayong Xu
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
29
|
Liu Y, Ye L, Chen H, Tsim KWK, Shen X, Li X, Li X, Lei H. Herbicide propisochlor exposure induces intestinal barrier impairment, microbiota dysbiosis and gut pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115154. [PMID: 37348218 DOI: 10.1016/j.ecoenv.2023.115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Propisochlor is a chloroacetamide herbicide causing liver toxicity and suppressing immunity in human and animal. Although the herbicide has been used for years, the effects of propisochlor on intestinal health remain poorly understood. Hence, the impacts of propisochlor in intestinal health and gut microbiota were analyzed by using molecular approach and bacterial 16S rRNA sequencing. The result showed that the intake of propisochlor in mice impaired gut morphology, reduced expression of tight junction proteins, decreased thickness of mucus layer and activated pyroptosis signaling. Moreover, the exposure of propisochlor in mice led to significant alterations in gut microbial diversity and composition, including an increase of Bacteroidetes and a decrease of Firmicutes. The gut microbiota, such as Parabacteroides, Parasutterella, and Bacteroides, demonstrated a strong negative correlation with the intestinal health. These findings suggested that gut microbiota could play a critical role in the propisochlor-induced pyroptosis.
Collapse
Affiliation(s)
- Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
30
|
Matsuzaki R, Gunnigle E, Geissen V, Clarke G, Nagpal J, Cryan JF. Pesticide exposure and the microbiota-gut-brain axis. THE ISME JOURNAL 2023:10.1038/s41396-023-01450-9. [PMID: 37328570 DOI: 10.1038/s41396-023-01450-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
The gut microbiota exist within a dynamic ecosystem shaped by various factors that includes exposure to xenobiotics such as pesticides. It is widely regarded that the gut microbiota plays an essential role in maintaining host health, including a major influence on the brain and behaviour. Given the widespread use of pesticides in modern agriculture practices, it is important to assess the long-term collateral effects these xenobiotic exposures have on gut microbiota composition and function. Indeed, exposure studies using animal models have shown that pesticides can induce negative impacts on the host gut microbiota, physiology and health. In tandem, there is a growing body of literature showing that the effects of pesticide exposure can be extended to the manifestation of behavioural impairments in the host. With the increasing appreciation of the microbiota-gut-brain axis, in this review we assess whether pesticide-induced changes in gut microbiota composition profiles and functions could be driving these behavioural alterations. Currently, the diversity of pesticide type, exposure dose and variation in experimental designs hinders direct comparisons of studies presented. Although many insights presented, the mechanistic connection between the gut microbiota and behavioural changes remains insufficiently explored. Future experiments should therefore focus on causal mechanisms to examine the gut microbiota as the mediator of the behavioural impairments observed in the host following pesticide exposure.
Collapse
Affiliation(s)
- Rie Matsuzaki
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland
| | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
| | - Violette Geissen
- Department of Environmental Sciences, Wageningen University & Research, 6700AA, Wageningen, The Netherlands
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Sciences, University College Cork, T12 YT20, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- School of Pharmacy and Department of Pharmacology & Therapeutics, University College Cork, T12 YT20, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland.
| |
Collapse
|
31
|
Meng Z, Yan S, Sun W, Yan J, Teng M, Jia M, Tian S, Zhou Z, Zhu W. Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids metabolism via FXR pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131310. [PMID: 37003002 DOI: 10.1016/j.jhazmat.2023.131310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
As the most commonly used organochlorine pesticide nowadays, chlorothalonil (CHI), is ubiquitous in a natural environment and poses many adverse effects to organisms. Unfortunately, the toxicity mechanisms of CHI have not been clarified yet. This study found that the CHI based on ADI level could induce obesity in mice. In addition, CHI could induce an imbalance in the gut microbiota of mice. Furthermore, the results of the antibiotic treatment and gut microbiota transplantation experiments showed that the CHI could induce obesity in mice in a gut microbiota-dependent manner. Based on the results of targeted metabolomics and gene expression analysis, CHI could disturb the bile acids (BAs) metabolism of mice, causing the inhibition of the signal response of BAs receptor FXR and leading to glycolipid metabolism disorders in liver and epiWAT of mice. The administration of FXR agonist GW4064 and CDCA could significantly improve the CHI-induced obesity in mice. In conclusion, CHI was found to induce obesity in mice by regulating the gut microbiota and BAs metabolism via the FXR signaling pathway. This study provides evidence linking the gut microbiota and pesticides exposure with the progression of obesity, demonstrating the key role of gut microbiota in the toxic effects of pesticides.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Weng Y, Xu T, Wang C, Jin Y. Oral Exposure to Epoxiconazole Disturbed the Gut Micro-Environment and Metabolic Profiling in Male Mice. Metabolites 2023; 13:metabo13040522. [PMID: 37110180 PMCID: PMC10144212 DOI: 10.3390/metabo13040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Epoxiconazole (EPX), a triazole fungicide, is widely used in agriculture to control pests and diseases. High residual and occupational exposure to EPX increases health risks, and evidence of potential harm to mammals remains to be added. In the present study, 6-week-old male mice were exposed to 10 and 50 mg/kg bw EPX for 28 days. The results showed that EPX significantly increased the liver weights. EPX also decreased the mucus secretion of the colon and altered intestinal barrier function in mice including a reduced expression of some genes (Muc2, meprinβ, tjp1). Moreover, EPX altered the composition and abundance of gut microbiota in the colon of mice. The alpha diversity indices (Shannon, Simpson) in the gut microbiota increased after exposure to EPX for 28 days. Interestingly, EPX increased the ratio of Firmicutes to Bacteroides and the abundance of other harmful bacteria including Helicobacter and Alistipes. Based on the untargeted metabolomic analysis, it was found that EPX altered the metabolic profiles of the liver in mice. KEGG analysis of differential metabolites revealed that EPX disrupted the pathway related to glycolipid metabolism, and the mRNA levels of related genes were also confirmed. In addition, the correlation analysis showed that the most altered harmful bacteria were associated with some significantly altered metabolites. The findings highlight that EPX exposure changed the micro-environment and lipid metabolism disturbance. These results also suggest that the potential toxicity of triazole fungicides to mammals cannot be ignored.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
33
|
Wang X, Weng Y, Geng S, Wang C, Jin C, Shi L, Jin Y. Maternal procymidone exposure has lasting effects on murine gut-liver axis and glucolipid metabolism in offspring. Food Chem Toxicol 2023; 174:113657. [PMID: 36764477 DOI: 10.1016/j.fct.2023.113657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
There is increasing evidence that maternal exposure to environmental pollutants can cause intestinal and metabolic diseases, and these disease risks still exist in offspring. Here, female C57BL/6 mice were orally treated with procymidone (PRO) (10 and 100 mg/kg body weight/day) by dietary supplementation during the gestation and lactation periods. Then, we discovered PRO changed the physiology, intestinal barrier and metabolism both in the generations of F0 and different developmental stages of F1 (7 weeks and 30 weeks old, respectively). Maternal PRO exposure affected the growth phenotypes and the glucolipid metabolism related indicators and genes of mice, especially the male mice of F1 generations. The changes in bile acids (BAs) metabolism demonstrated that PRO disordered glucolipid metabolism through enterohepatic circulation. Furthermore, PRO reduced mucus secretion in the gut and altered the composition of gut microbiota, leading more bacteria to disseminate in the gut and inflammatory responses both in F0 and F1 regenerations. And PRO-induced gut microbiota dysbiosis was tightly related to BAs metabolites. Together, the results indicated that PRO destructed the functional integrity of intestinal barrier and the inflammatory reaction was triggered. And then, the disorder of glucolipid metabolism was induced through the BAs enterohepatic circulation. This study indicated that the cross-generation effects of PRO could not be ignored.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shinan Geng
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
34
|
Pezzini MF, Rampelotto PH, Dall'Agnol J, Guerreiro GTS, Longo L, Suarez Uribe ND, Lange EC, Álvares-da-Silva MR, Joveleviths D. Changes in the gut microbiota of rats after exposure to the fungicide Mancozeb. Toxicol Appl Pharmacol 2023; 466:116480. [PMID: 36963522 DOI: 10.1016/j.taap.2023.116480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Mancozeb is a fungicide commonly used in pest control programs, especially to protect vineyards. Its toxicity has already been evidenced in several studies. However, its influence on the composition and diversity of the gut microbiota remains unknown. In this work, the adverse impact of Mancozeb on the intestinal microbiota was investigated using a rodent model. Adult male Sprague Dawley rats were randomized into three groups: Control (standard diet), MZ1 (Mancozeb dose: 250 mg/kg bw/day), and MZ2 (Mancozeb dose: 500 mg/kg bw/day). After 12 weeks of experiment, animals were euthanized, and feces present in the intestine were collected. After fecal DNA extraction, the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™ System. Alpha and beta diversity analysis showed significant differences between Control and Mancozeb groups (MZ1 e MZ2), but no difference between MZ1 and MZ2 was observed. Seven genera significantly increased in abundance following Mancozeb exposure, while five genera decreased. Co-occurrence analyses revealed that the topological properties of the microbial networks, which can be used to infer co-occurrence interaction patterns among microorganisms, were significantly lower in both groups exposed to Mancozeb when compared to Control. In addition, 23 differentially abundant microbial metabolic pathways were identified in Mancozeb-treated groups mainly related to a change in energy metabolism, LPS biosynthesis, and nucleotide biosynthesis. In conclusion, the exposure to Mancozeb presented side effects by changing the composition of the microbiota in rats, increasing bacterial diversity regardless of the dose used, reducing the interaction patterns of the microbial communities, and changing microbial metabolic pathways.
Collapse
Affiliation(s)
- Marina Ferri Pezzini
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Pabulo Henrique Rampelotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil.
| | - Juliana Dall'Agnol
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Gabriel Tayguara Silveira Guerreiro
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Nelson D Suarez Uribe
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Elisa Carolina Lange
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Dvora Joveleviths
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
36
|
Mo Q, Kulyar MFEA, Quan C, Ding Y, Zhang Y, Zhang L, Pan H, Li J. Thiram-induced hyperglycemia causes tibial dyschondroplasia by triggering aberrant ECM remodeling via the gut-pancreas axis in broiler chickens. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130368. [PMID: 36423455 DOI: 10.1016/j.jhazmat.2022.130368] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Pesticide thiram is widely used in agriculture and has been demonstrated to cause tibial dyschondroplasia (TD) in birds. However, the underlying mechanism remains unclear. This work used multi-omics analysis to evaluate the molecular pathways of TD in broilers that were exposed to low level of thiram. Integrative analysis of transcriptomic, proteomic, and metabolomic revealed thiram activity in enhancing pathological ECM remodeling via attenuating the glycolysis pathway and activating the hexosamine and glucuronic acid pathways. Intriguingly, we found hyperglycemia as a crucial factor for ECM overproduction, which resulted in the development of TD. We further demonstrated that high glucose levels are caused by islet secretion dysfunction in thiram-treated broilers. A combination of factors, including lipid disorder, low-grade inflammation, and gut flora disturbance, might contribute to the dysregulation of insulin secretion. The current work revealed the underlying toxicological mechanisms of thiram-induced tibial dyschondroplasia through blood glucose disorder via the gut-pancreas axis in chickens for the first time, which makes it easier to figure out the health risks of pesticides for worldwide policy decisions.
Collapse
Affiliation(s)
- Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Varg JE, Svanbäck R. Multi stress system: Microplastics in freshwater and their effects on host microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159106. [PMID: 36183774 DOI: 10.1016/j.scitotenv.2022.159106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are persistent and complex contaminants that have recently been found in freshwater systems, raising concerns about their presence in aquatic organisms. Plastics tend to be seen as an inert material; however, it is not well known if exposure to plastics for a prolonged time, in combination with organic chemicals, causes organism mortality. Ingestion of microplastics in combination with another pollutant may affect a host organism's fitness by altering the host microbiome. In this study, we investigated how microplastics interact with other pollutants in this multi-stress system, and whether they have a synergistic impact on the mortality of an aquatic organism and its microbiome. We used wild water boatmen Hemiptera (Corixidae) found at lake Erken located in east-central Sweden in a fully factorial two-way microcosm experiment designed with polystyrene microspheres and a commonly used detergent. The microplastic-detergent interaction is manifested as a significant increase in mortality compared to the other treatments at 48 h of exposure. The diversity of the microbial communities in the water was significantly affected by the combined treatment of microplastics and the detergent while the microbial communities in the host were affected by the treatments with microplastics and the detergent alone. Changes in relative abundance in Gammaproteobacteria (family Enterobacteriaceae), were observed in the perturbed treatments mostly associated with the presence of the detergent. This confirms that microplastics can interact with detergents having toxic effects on wild water boatmen. Furthermore, microplastics may impact wild organisms via changes in their microbial communities.
Collapse
Affiliation(s)
- Javier Edo Varg
- Department of Ecology and Genetics, Section of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden; Department of Aquatic Sciences and Assessment, Section for Ecology and Biodiversity, Swedish University of Agricultural Sciences, Undervisningsplan 7H, 756 51 Uppsala, Sweden.
| | - Richard Svanbäck
- Department of Ecology and Genetics, Section of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| |
Collapse
|
38
|
Liang S, Wang L, Wu X, Hu X, Wang T, Jin F. The different trends in the burden of neurological and mental disorders following dietary transition in China, the USA, and the world: An extension analysis for the Global Burden of Disease Study 2019. Front Nutr 2023; 9:957688. [PMID: 36698474 PMCID: PMC9869872 DOI: 10.3389/fnut.2022.957688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The highly processed western diet is substituting the low-processed traditional diet in the last decades globally. Increasing research found that a diet with poor quality such as western diet disrupts gut microbiota and increases the susceptibility to various neurological and mental disorders, while a balanced diet regulates gut microbiota and prevents and alleviates the neurological and mental disorders. Yet, there is limited research on the association between the disease burden expanding of neurological and mental disorders with a dietary transition. Methods We compared the disability-adjusted life-years (DALYs) trend by age for neurological and mental disorders in China, in the United States of America (USA), and across the world from 1990 to 2019, evaluated the dietary transition in the past 60 years, and analyzed the association between the burden trend of the two disorders with the changes in diet composition and food production. Results We identified an age-related upward pattern in disease burden in China. Compared with the USA and the world, the Chinese neurological and mental disorders DALY percent was least in the generation over 75 but rapidly increased in younger generations and surpassed the USA and/or the world in the last decades. The age-related upward pattern in Chinese disease burdens had not only shown in the presence of cardiovascular diseases, neoplasms, and diabetes mellitus but also appeared in the presence of depressive disorders, Parkinson's disease, Alzheimer's disease and other dementias, schizophrenia, headache disorders, anxiety disorders, conduct disorders, autism spectrum disorders, and eating disorders, successively. Additionally, the upward trend was associated with the dramatic dietary transition including a reduction in dietary quality and food production sustainability, during which the younger generation is more affected than the older. Following the increase in total calorie intake, alcohol intake, ratios of animal to vegetal foods, and poultry meat to pulses, the burdens of the above diseases continuously rose. Then, following the rise of the ratios of meat to pulses, eggs to pulses, and pork to pulses, the usage of fertilizers, the farming density of pigs, and the burdens of the above disease except diabetes mellitus were also ever-increasing. Even the usage of pesticides was positively correlated with the burdens of Parkinson's disease, schizophrenia, cardiovascular diseases, and neoplasms. Contrary to China, the corresponding burdens of the USA trended to reduce with the improvements in diet quality and food production sustainability. Discussion Our results suggest that improving diet quality and food production sustainability might be a promising way to stop the expanding burdens of neurological and mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Li Wang
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| |
Collapse
|
39
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
40
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
41
|
Sharma T, Sirpu Natesh N, Pothuraju R, Batra SK, Rachagani S. Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes 2023; 15:2187578. [PMID: 36919486 PMCID: PMC10026936 DOI: 10.1080/19490976.2023.2187578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The human gut microbiota can be potentially disrupted due to exposure of various environmental contaminants, including pesticides. These contaminants enter into non-target species in multiple ways and cause potential health risks. The gut microbiota-derived metabolites have a significant role in maintaining the host's health by regulating metabolic homeostasis. An imbalance in this homeostasis can result in the development of various diseases and their pathogenesis. Pesticides have hazardous effects on the host's gut microbiota, which is evident in a few recent studies. Therefore, there is an urgent need to explore the effect of pesticide on gut microbiota-mediated metabolic changes in the host, which may provide a better understanding of pesticide-induced toxicity. The present review summarizes the pesticide-induced effects on gut microbiota, which in turn, induces changes in the release of their secondary metabolites that could lead to various host health effects.
Collapse
Affiliation(s)
- Tusha Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagabhishek Sirpu Natesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| |
Collapse
|
42
|
Campana AM, Laue HE, Shen Y, Shrubsole MJ, Baccarelli AA. Assessing the role of the gut microbiome at the interface between environmental chemical exposures and human health: Current knowledge and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120380. [PMID: 36220576 PMCID: PMC10239610 DOI: 10.1016/j.envpol.2022.120380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/05/2023]
Abstract
The explosion of microbiome research over the past decade has shed light on the various ways that external factors interact with the human microbiome to drive health and disease. Each individual is exposed to more than 300 environmental chemicals every day. Accumulating evidence indicates that the microbiome is involved in the early response to environmental toxicants and biologically mediates their adverse effects on human health. However, few review articles to date provided a comprehensive framework for research and translation of the role of the gut microbiome in environmental health science. This review summarizes current evidence on environmental compounds and their effect on the gut microbiome, discusses the involved compound metabolic pathways, and covers environmental pollution-induced gut microbiota disorders and their long-term outcomes on host health. We conclude that the gut microbiota may crucially mediate and modify the disease-causing effects of environmental chemicals. Consequently, gut microbiota needs to be further studied to assess the complete toxicity of environmental exposures. Future research in this field is required to delineate the key interactions between intestinal microbiota and environmental pollutants and further to elucidate the long-term human health effects.
Collapse
Affiliation(s)
- Anna Maria Campana
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yike Shen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
43
|
Bliznashka L, Roy A, Jaacks LM. Pesticide exposure and child growth in low- and middle-income countries: A systematic review. ENVIRONMENTAL RESEARCH 2022; 215:114230. [PMID: 36087771 PMCID: PMC7614514 DOI: 10.1016/j.envres.2022.114230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND In low- and middle-income countries (LMICs), pesticides are widely used in agricultural and residential settings. Little is known about how pesticides affect child growth. OBJECTIVES To systematically review and synthesise the evidence on the associations between pesticide exposure and adverse birth outcomes and/or impaired postnatal growth in children up to 5 years of age in LMICs. METHODS We searched 10 databases from inception through November 2021. We included cohort and cross-sectional studies investigating associations between self-reported or measured prenatal or postnatal pesticide exposure and child growth (postnatal child linear/ponderal growth, and/or birth outcomes). Two researchers screened studies, extracted data, and assessed certainty using GRADE. The protocol was preregistered with PROSPERO (CRD42021292919). RESULTS Of 939 records retrieved, 31 studies met inclusion criteria (11 cohort, 20 cross-sectional). All studies assessed prenatal exposure. Twenty-four studies reported on birth weight. Four found positive associations with organochlorines (0.01-0.25 standardised mean difference (SMD)) and two found negative associations (-0.009 SMD to -55 g). Negative associations with organophosphates (-170 g, n = 1) and pyrethroids (-97 to -233 g, n = 2) were also documented. Two (out of 15) studies reporting on birth length found positive associations with organochlorines (0.21-0.25 SMD) and one found negative associations (-0.25 to -0.32 SMD). Organophosphate exposure was negatively associated with birth length (-0.37 cm, n = 1). Organophosphate exposure was also associated with higher risk/prevalence of low birth weight (2 out of nine studies) and preterm birth (2 out of six studies). Certainty of the evidence was "very low" for all outcomes. CONCLUSION The limited literature from LMICs shows inconclusive associations between prenatal pesticide exposure, child growth, and birth outcomes. Studies with accurate quantitative data on exposure to commonly used pesticides in LMICs using consistent methodologies in comparable populations are needed to better understand how pesticides influence child growth.
Collapse
Affiliation(s)
- Lilia Bliznashka
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Alexander Robertson Building, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Aditi Roy
- Centre for Environmental Health, Public Health Foundation of India, Plot No. 47, Sector 44, Institutional Area Gurugram, 122002, India
| | - Lindsay M Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Alexander Robertson Building, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
44
|
Miao Z, Miao Z, Liu M, Xu S. Melatonin ameliorates imidacloprid-induced intestinal injury by negatively regulating the PGN/P38MAPK pathway in the common carp (Cyprinuscarpio). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1063-1074. [PMID: 36375784 DOI: 10.1016/j.fsi.2022.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid (IMI), one of the most frequently used neonicotinoid insecticides in agriculture, is resided in surface water worldwide and poses a threat to aquatic organisms. Melatonin (MT) provides effective protection against insecticide-induced toxicity, nevertheless, the toxic effects and whether MT attenuates intestinal injury caused by IMI exposure in the common carps remains poorly explored. Previous studies have reported adverse effects of IMI exposure on intestinal health status. Therefore, we first demonstrated that IMI altered the composition and function of the intestinal microbiota, destroying the integrity of intestinal ultrastructure, increasing intestinal permeability. Meanwhile, metagenomic sequencing and ELISA kits results hypothesized that peptidoglycan (PGN) is an IMI-triggered intestinal microbial metabolite. Subsequently, we thus further elucidated that IMI induced an increase in intestinal tight junction permeability by inducing PGN secretion in vitro model. MT addition dramatically attenuated IMI-induced intestinal toxicity by remitting PGN synthesis and thus resecuring tight junction permeability, thereby reducing intestinal injury. SB203580 was supplied as a P38MAPK inhibitor to alleviate the increased permeability of tight junctions induced by IMI/PGN. Therefore, these findings confirmed that MT protects against IMI-induced intestinal injury by negatively regulating PGN/P38MAPK pathway to antagonize the increased tight junction permeability.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
45
|
Wang X, Hu L, Wang C, He B, Fu Z, Jin C, Jin Y. Cross-generational effects of maternal exposure to imazalil on anaerobic components and carnitine absorption associated with OCTN2 expression in mice. CHEMOSPHERE 2022; 308:136542. [PMID: 36150497 DOI: 10.1016/j.chemosphere.2022.136542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Imazalil (IMZ) is a fungicide recommended by the Chinese ministry of agriculture. However, recent study was observed high level of IMZ by dietary exposure in pregnant women. To determine the cross-generational effects, C57BL/6 mice were exposed to IMZ at dietary levels of 0, 0.025‰, and 0.25‰ during the gestation and lactation periods. Then, we assessed the changes in growth phenotypes, carnitine levels, and gut microbiota in F0, F1 or F2 generations. The growth phenotypes of dams didn't observe significant difference, but there were significant changes in the offspring. Plasma samples revealed low levels of free carnitine (C0), long-chain acyl-carnitines and total carnitine. In particular, C0 may be regarded as relatively potential, specific markers by maternal IMZ exposure. Caco2 cell culture and animal experiment confirmed IMZ affected carnitine absorption through the organic cation transporter type-2 (OCTN2) protein encoded by solute carrier family 22A member 5 (SLC22A5) gene in colon. Maternal IMZ exposure also had a greater effect on gut microbiota in offspring, especially anaerobic bacteria, which positively correlated with C0 and acyl-carnitines. These results suggested that maternal IMZ exposure affected carnitine absorption through OCTN2 protein, which led to the decline of anaerobic bacteria and unbalanced intestinal homeostasis.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
46
|
Hu L, Wang X, Bao Z, Xu Q, Qian M, Jin Y. The fungicide prothioconazole and its metabolite prothioconazole-desthio disturbed the liver-gut axis in mice. CHEMOSPHERE 2022; 307:136141. [PMID: 36007749 DOI: 10.1016/j.chemosphere.2022.136141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The triazole fungicide prothioconazole (PTC) can cause adverse effects in animals, and its main metabolite prothioconazole-desthio (PTC-d) is even much more harmful. However, the toxic effects of PTC and PTC-d on the liver-gut axis of mice are still unknown. In the present experiment, we found that oral exposure to PTC and PTC-d increased total bile acids (TBAs) levels in the serum, liver, and feces. Correspondingly, the transcription of genes involved in bile acids (BAs) disposition was significantly influenced by PTC or PTC-d exposure. Furthermore, the BAs composition of serum BAs was analyzed by LC-MS, and the results indicated that PTC and PTC-d exposure changed the BAs composition, lowered the ratio of conjugated/unconjugated BAs, elevated the ratio of CA/b-MCA, and enhanced the hydrophobicity of BAs pool. 16s RNA gene sequencing of the DNA from colonic contents uncovered that PTC and PTC-d exposure altered the relative abundance and constitution of intestinal microbiota, increasing the relative level of Lactobacillus with bile salt hydrolase (BSH) activity. Furthermore, PTC and PTC-d exposure impaired the gut barrier function, causing an increase in mucus secretion. In particular, the effects of PTC-d on some endpoints in the BAs metabolism and gut barrier function had been proven to be more significant than the parent compound PTC. All these findings draw attention to the health risk of PTC and PTC-d exposure in regulating BAs metabolism, which might lead to some metabolic disorders and occur of related diseases in animals.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
47
|
Qi S, Al Naggar Y, Li J, Liu Z, Xue X, Wu L, El-Seedi HR, Wang K. Acaricide flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium Gilliamella apicola through microbe-host metabolic interactions. CHEMOSPHERE 2022; 307:136030. [PMID: 35973490 DOI: 10.1016/j.chemosphere.2022.136030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Flumethrin is one of the few acaricides that permit the control of Varroa disease or varroosis in bee colonies. However, flumethrin accumulates in hive products. We previously discovered that sublethal doses of flumethrin induce significant physiological stress in honeybees (Apis mellifera L.), however its potential impacts on the honeybee gut microenvironment remains unknown. To fill this gap, honeybees were exposed to a field-relevant concentration of flumethrin (10 μg/L) for 14 d and its potential impacts on gut system were evaluated. The results indicated that flumethrin triggered immune responses in the gut but had limited effects on survival and gut microbial composition. However, survival stress drastically increased in bees exposed to antibiotics, suggesting that the gut microbiota is closely related to flumethrin-induced dysbiosis in the bee gut. Based on a non-targeted metabolomics approach, flumethrin at 10 μg/L considerably altered the composition of intestinal metabolites, and we discovered that this metabolic stress was closely linked with a reduction of gut core bacterial endosymbiont Gilliamella spp. through a combination of microbiological and metabolomics investigations. Finally, an in vitro study showed that while flumethrin does not directly inhibit the growth of Gilliamella apicola isolates, it does have a significant impact on the glycerophospholipid metabolism in bacteria cells, which was also observed in host bees. These findings indicated that even though flumethrin administered at environmental relevant concentrations does not significantly induce death in honeybees, it still alters the metabolism balance between honeybees and the gut symbiotic bacterium, G. apicola. The considerable negative impact of flumethrin on the honeybee gut microenvironment emphasizes the importance of properly monitoring acaricide to avoid potential environmental concerns, and further studies are needed to illustrate the mode of action of bee health-gut microbiota-exogenous pesticides.
Collapse
Affiliation(s)
- Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany
| | - Jiahuan Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Zhaoyong Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-751 24, Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
48
|
Early-life chemical exposome and gut microbiome development: African research perspectives within a global environmental health context. Trends Microbiol 2022; 30:1084-1100. [PMID: 35697586 DOI: 10.1016/j.tim.2022.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiome of neonates, infants, and toddlers (NITs) is very dynamic, and only begins to stabilize towards the third year of life. Within this period, exposure to xenobiotics may perturb the gut environment, thereby driving or contributing to microbial dysbiosis, which may negatively impact health into adulthood. Despite exposure of NITs globally, but especially in Africa, to copious amounts and types of xenobiotics - such as mycotoxins, pesticide residues, and heavy metals - little is known about their influence on the early-life microbiome or their effects on acute or long-term health. Within the African context, the influence of fermented foods, herbal mixtures, and the delivery environment on the early-life microbiome are often neglected, despite being potentially important factors that influence the microbiome. Consequently, data on in-depth understanding of the microbiome-exposome interactions is lacking in African cohorts. Collecting and evaluating such data is important because exposome-induced gut dysbiosis could potentially favor disease progression.
Collapse
|
49
|
Jaffar S, Ahmad S, Lu Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front Microbiol 2022; 13:979383. [PMID: 36187965 PMCID: PMC9516005 DOI: 10.3389/fmicb.2022.979383] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022] Open
Abstract
Synthetic pesticides are extensively and injudiciously applied to control agriculture and household pests worldwide. Due to their high use, their toxic residues have enormously increased in the agroecosystem in the past several years. They have caused many severe threats to non-target organisms, including humans. Therefore, the complete removal of toxic compounds is gaining wide attention to protect the ecosystem and the diversity of living organisms. Several methods, such as physical, chemical and biological, are applied to degrade compounds, but as compared to other methods, biological methods are considered more efficient, fast, eco-friendly and less expensive. In particular, employing microbial species and their purified enzymes makes the degradation of toxic pollutants more accessible and converts them into non-toxic products by several metabolic pathways. The digestive tract of insects is usually known as a superior organ that provides a nutrient-rich environment to hundreds of microbial species that perform a pivotal role in various physiological and ecological functions. There is a direct relationship between pesticides and insect pests: pesticides reduce the growth of insect species and alter the phyla located in the gut microbiome. In comparison, the insect gut microbiota tries to degrade toxic compounds by changing their toxicity, increasing the production and regulation of a diverse range of enzymes. These enzymes breakdown into their derivatives, and microbial species utilize them as a sole source of carbon, sulfur and energy. The resistance of pesticides (carbamates, pyrethroids, organophosphates, organochlorines, and neonicotinoids) in insect species is developed by metabolic mechanisms, regulation of enzymes and the expression of various microbial detoxifying genes in insect guts. This review summarizes the toxic effects of agrochemicals on humans, animals, birds and beneficial arthropods. It explores the preferential role of insect gut microbial species in the degradation process and the resistance mechanism of several pesticides in insect species. Additionally, various metabolic pathways have been systematically discussed to better understand the degradation of xenobiotics by insect gut microbial species.
Collapse
Affiliation(s)
- Saleem Jaffar
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
50
|
Grados L, Pérot M, Barbezier N, Delayre-Orthez C, Bach V, Fumery M, Anton PM, Gay-Quéheillard J. How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases? CHEMOSPHERE 2022; 303:135260. [PMID: 35688194 DOI: 10.1016/j.chemosphere.2022.135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The development of an individual during fetal life and childhood is characterized by rapid growth as well as gradual maturation of organs and systems. Beyond the nutritional intake in essential nutrients, food contaminants can permanently influence the way organs mature and function. These processes are called "programming" and play an essential role in the occurrence of non-communicable chronic diseases throughout the lifespan. Populations as pregnant women, fetuses and young children are vulnerable and particularly sensitive to food contaminants which can induce epigenetic modifications transmissible to future generations. Among these contaminants, pesticides are found in most food matrices exposing humans to cocktails of molecules through variable concentrations and duration of exposure. The Maillard reaction products (MRPs) represent other food contaminants resulting from heat treatment of food. Modern diet, rich in fats and sugars, is also rich in neoformed pathogenic compounds, Advanced Glycation End products (AGEs), the levels of which depend on the heat treatment of foods and eating habits and whose effects on health are controversial. In this review, we have chosen to present the current knowledge on the impacts of selected pesticides and MRPs, on the risk of developing during life non-communicable chronic diseases such as IBD, metabolic disorders or allergies. A large review of literature was performed via Pubmed, and the most appropriate studies were summarised.
Collapse
Affiliation(s)
- Lucien Grados
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Maxime Pérot
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Nicolas Barbezier
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France
| | - Mathurin Fumery
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Pauline M Anton
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France.
| |
Collapse
|