1
|
Wang X, Tong J, Li H, Lu M, Liu Y, Gan H, Wang Y, Geng M, Qie X, Wu X, Gao H, Zhu B, Tao S, Tao X, Yan S, Gao G, Wu X, Huang K, Cao Y, Tao F. Sex-and stage-specific effect of prenatal exposure to organophosphate esters with children's physical growth patterns and adiposity rebound timing: Modification by breastfeeding. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138309. [PMID: 40252324 DOI: 10.1016/j.jhazmat.2025.138309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Exploring the stage-specific effects of prenatal exposure to organophosphate esters (OPEs) on offspring growth and developmental trajectories is critical for early-life health management. METHODS Based on 2519 mother-child dyads from the Ma'anshan Birth Cohort, we examined the concentrations of OPEs in maternal urine during the three trimesters. Seventeen follow-up visits were made to the children, and physical data were collected. A grouped trajectory model was used to fit the growth trajectories. RESULTS First-trimester bis(2-butoxyethyl) phosphate (BBOEP) was inversely associated with the children's adiposity rebound (AR) timing (β = -0.33, 95 % CI: -0.65, -0.01), and the ORs (95 % CIs) for early age at AR for each doubling of BBOEP and dibutyl phosphate (DBP) were 1.07 (1.00, 1.14) and 1.12 (1.03, 1.22), respectively. BBOEP increased the risk of a high-stable BMI-for-age z score (BMIz) group (OR = 1.18, 95 % CI: 1.01, 1.39), whereas tris(2-chloroethyl) phosphate (TCEP) and bis(2-ethylhexyl) phosphate reduced this risk. Diphenyl phosphate (OR = 0.74, 95 % CI: 0.59, 0.94) and aromatic OPEs (OR = 0.70, 95 % CI: 0.54, 0.90) reduced the odds of an extreme-high body fat group. TCEP also reduced the risk of a high body fat percentage group (p < 0.05). There appeared to be sex and ester bond differences in these associations, and breastfeeding could counteract the association between the OPEs and growth trajectories. No mixed effects of OPEs on BMIz trajectories were found. CONCLUSIONS The present study identified a heterogeneous association between OPE exposure during pregnancy and AR timing and physical growth patterns in offspring. Future studies are needed involving more regions and populations, with consideration of other developmentally toxic compounds, to obtain more reliable and comprehensive results.
Collapse
Affiliation(s)
- Xing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuan Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yifan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Menglong Geng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xuejiao Qie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiulong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui 243011, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xingyong Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui 243011, China
| | - Guopeng Gao
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui 243011, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yunxia Cao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
2
|
Lu M, Han F, Liu Y, Gan H, Wang X, Zhang F, Tong J, Huang K, Yan S, Tao S, Tao F. Pregnancy-related anxiety modifies the effects of maternal exposure to organophosphate esters on preschoolers' behavioral development. ENVIRONMENTAL RESEARCH 2025; 271:121081. [PMID: 39923820 DOI: 10.1016/j.envres.2025.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Longitudinal associations with psychological factors modifying the effects of chemicals have not been sufficiently explored in epidemiologic studies. Our birth cohort study is the first to assess the associations between prenatal organophosphate ester (OPE) exposure and child behavior and to determine whether these associations change with pregnancy-related anxiety (PRA). Ultra-performance liquid chromatography‒tandem mass spectrometry (LC‒MS) was used to measure the tris(2-chloroethyl) phosphate (TCEP) and OPE metabolites in the 1st, 2nd and 3rd trimester urine samples. The evaluation of the behavioral development of children aged 4 years was based on the Chinese version of the Child Behavior Checklist (CBCL 1.5-5) from the main caregivers' reports. Two PRA groups (anxiety vs. nonanxiety) were identified using growth mixture models (GMMs). Generalized linear models (GLMs) and quantile-based g-computation (QGC) models were established to assess the effects of individual OPEs and a mixture of OPEs on preschoolers' behaviors stratified by PRA. Among the 1148 mother‒child pairs, GLMs revealed that, in the 1st trimester, children in the highest tertile of dibutyl phosphate (DBP) concentration presented remarkably greater behavioral problem scores than did those in the lowest tertile. First-trimester diphenyl phosphate (DPHP) was positively associated with internalizing problem scores, whereas bis(2-ethylhexyl) phosphate (BEHP) was negatively associated with behavioral problem scores. Third-trimester bis(1-chloro-2-propyl) phosphate (BCIPP) was associated with increased internalizing problem scores. Notably, positive associations between 1st trimester DBP, 2nd trimester DPHP and 3rd trimester BCIPP and behavioral problem scores were stronger among children of mothers with PRA. Using the QGC model, when the analysis was performed separately in the anxiety group, significant associations were found between the mixture of OPEs during the 3rd trimester and internalizing (β = 4.25, 95% CI: 0.24, 8.26) and total problem scores (β = 3.97, 95% CI: 0.64, 7.30). Prenatal OPE exposure may impair preschoolers' behavior, and this effect is potentially driven by PRA.
Collapse
Affiliation(s)
- Mengjuan Lu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feifei Han
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaorui Wang
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fu Zhang
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare Center, Ma'anshan, 243011, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Li YP, Liu C, Mustieles V, Zhang Y, Messerlian C, Gaskins AJ, Chen HG, Chen YJ, Xu QT, Zhao XY, Wang H, Meng TQ, Pan A, Mei SR, Wang YX. Organophosphate Esters, Sperm Mitochondrial DNA Copy Number, and Semen Quality: A Longitudinal Study with Repeated Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3388-3400. [PMID: 39932113 DOI: 10.1021/acs.est.4c09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Toxicological studies revealed that exposure to organophosphate esters (OPEs) affects semen quality, but human evidence is controversial. Over a 3-month follow-up, 1,385 healthy young men provided 3,550 urine samples and 6,466 semen samples, which were determined for urinary OPE metabolite concentrations, sperm quality parameters, and sperm mitochondrial DNA copy number (mtDNAcn). Linear mixed models revealed inverse associations between diphenyl phosphate (DPHP) concentrations and sperm concentration [-3.81% (95% CI: -6.31, -1.24) per each 2-fold increment in exposure], total count [-4.07% (95% CI: -7.21, -0.76)], progressive motility [-0.55 (95% CI: -0.93, -0.17)], and total motility [-0.54 (95% CI: -0.91, -0.17)]; and between bis(2-butoxyethyl) phosphate (BBOEP) and diocresyl phosphate and di-p-cresyl phosphate (DoCP and DpCP) concentrations and sperm concentration [-3.61% (95% CI: -5.53, -1.58) and -3.27% (95% CI: -5.92, -0.48), respectively] and total count [-5.13% (95% CI: -7.53, -2.67) and -3.87% (95% CI: -7.21, -0.35), respectively]. These inverse associations persisted only for DPHP, DoCP and DpCP, and BBOEP measured during the epididymal storage period. Sperm mtDNAcn mediated 67.7% and 52.5%, respectively, of the associations between BBOEP and sperm concentration and total count [beta coefficient of average causal mediation effects = -0.15 (95% CI: -0.25, -0.07) and -0.18 (95% CI: -0.29, -0.08), respectively].
Collapse
Affiliation(s)
- Ya-Ping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Center for Biomedical Research (CIBM), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Granada, Madrid 28029, Spain
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Heng-Gui Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ying-Jun Chen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qi-Tong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiao-Ya Zhao
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, Hubei 430050, China
| | - Hui Wang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, Hubei 430050, China
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Wuhan, Hubei 430015, China
| | - An Pan
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Su-Rong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Gan H, Lu M, Tong J, Li H, Zhou Q, Han F, Wang X, Yan S, Huang K, Wang Q, Wu X, Zhu B, Gao H, Tao F. Sex- and trimester-specific impact of gestational co-exposure to organophosphate esters and phthalates on insulin action among preschoolers: Findings from the Ma'anshan birth cohort. ENVIRONMENT INTERNATIONAL 2025; 196:109287. [PMID: 39848094 DOI: 10.1016/j.envint.2025.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Prenatal exposure to organophosphate esters (OPEs) and phthalic acid esters (PAEs) is ubiquitous among pregnant individuals. However, research exploring the relationship between prenatal co-exposure to OPEs and PAEs and childhood insulin function remains limited. METHODS In this study, utilizing data from 2,246 maternal-fetal dyads in the Ma'anshan Birth Cohort, associations between co-exposure to OPEs and PAEs and insulin action were analyzed. Repeated measures of tris (2-chloroethyl) phosphate, six OPE metabolites, and seven PAE metabolites were collected from maternal urine. Homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin action index (IAI) served as outcome measures. After adjusting for potential confounders, the effects of repeated exposure on insulin action were evaluated using generalized estimating equations, while mixture effects were assessed through BayesianKernel Machine Regression and Quantile-Based G-Computation. RESULTS The average age of the children at the time of the study was 5.33 years. Repeated measures analysis revealed that prenatal exposure to MEP was positively associated with increased HOMA-IR (β, 0.027; 95 % CI: 0.002, 0.053), while IAI was inversely correlated with rising MEP levels (β, 0.025; 95 % CI: -0.046, -0.004) and MEHHP exposure (β, -0.128; 95 % CI: -0.218, -0.037). Mixed exposure modeling further indicated that co-exposure to OPEs and PAEs was positively linked to HOMA-IR (β, 0.058; 95 % CI: 0.001, 0.114) and negatively correlated with IAI (β, -0.054; 95 % CI: -0.097, -0.010), with stronger effects observed during the second trimester. Notably, the association was more pronounced in female children compared to males. CONCLUSIONS This study provides the first epidemiological evidence highlighting the pregnancy- and sex-specific links between prenatal co-exposure to OPEs and PAEs and childhood insulin action.
Collapse
Affiliation(s)
- Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Huijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Qiong Zhou
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Xiaorui Wang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Qunan Wang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China.
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China.
| |
Collapse
|
5
|
Kalinke N, Stopper P, Völkl L, Diehl F, Huhn C. SWIEET-a salt-free alternative to QuEChERS. Anal Bioanal Chem 2024; 416:6387-6403. [PMID: 39292259 PMCID: PMC11541295 DOI: 10.1007/s00216-024-05525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
The efficient extraction of various analytes from a wide spectrum of matrices with organic solvents is still a great challenge in analytical chemistry. Especially polar and charged compounds are hard to extract in combination with neutral analytes of intermediate to low polarity. The QuEChERS method is often chosen and has been adapted not only to the analysis of food samples, but also to environmental matrices (soil, wastewater) or biota. In this study, we overcome major drawbacks of QuEChERS such as low recoveries of charged analytes and impairment of downstream analysis by high salt loads. The new extraction method, applicable to liquid and solid samples, is called SWIEET (sugar water isopropanol ethyl nitrile extraction technique). Phase separation of the otherwise miscible extraction solvents water and acetonitrile is achieved by sugaring-out instead of salting-out. Extraction efficiencies were greatly improved by adding isopropanol to the acetonitrile phase. The concentrations of the additives glucose and isopropanol, as well as temperature, were optimized by a design of experiment. Further improvement was achieved through electro- or double-extractions. For all sample types tested (surface water, wastewater treatment plant effluent, tomato, soil, and oats), recoveries and precision were higher with SWIEET than with the established QuEChERS method. From wastewater treatment plant effluent, 75% recovery on average were achieved with our SWIEET method compared to 37% with QuEChERS for a model analyte mixture with polarities of logDpH7 = - 5.7 - 3.5. Higher recoveries and lower standard deviations compared to QuEChERS were achieved especially for polar and charged analytes such as metformin. Handling proved to be easy, since there was no additional solid phase and no tedious weighing of salts.
Collapse
Affiliation(s)
- Nadja Kalinke
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pascal Stopper
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Luca Völkl
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Florian Diehl
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Zhong Z, Huang W, Yin Y, Wang S, Chen L, Chen Z, Wang J, Li L, Khalid M, Hu M, Wang Y. Tris(1-chloro-2-propyl) phosphate enhances the adverse effects of biodegradable polylactic acid microplastics on the mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124741. [PMID: 39147220 DOI: 10.1016/j.envpol.2024.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Microplastics (MPs) and organophosphate flame retardants (OPFRs) have recently become ubiquitous and cumulative pollutants in the oceans. Since OPFRs are added to or adsorbed onto MPs as additives, it is necessary to study the composite contamination of OPFRs and MPs, with less focus on bio-based PLA. Therefore, this study focused on the ecotoxicity of the biodegradable MP polylactic acid (PLA) (5 μm, irregular fragments, 102 and 106 particles/L), and a representative OPFRs tris(1-chloro-2-propyl) phosphate (TCPP, 0.5 and 50 μg/L) at environmental and high concentrations. The mussel Mytilus coruscus was used as a standardised bioindicator for exposure experiments. The focus was on examining oxidative stress (catalase, CAT, superoxide dismutase, SOD, malondialdehyde, MDA), immune responses acid (phosphatase, ACP, alkaline phosphatase, AKP, lysozyme, LZM), neurotoxicity (acetylcholinesterase, AChE), energy metabolism (lactate dehydrogenase, LDH, succinate dehydrogenase, SDH, hexokinase, HK), and physiological indices (absorption efficiency, AE, excretion rate, ER, respiration rate, RR, condition index, CI) after 14 days exposure. The results of significantly increased oxidative stress and immune responses, and significantly disturbed energy metabolism and physiological activities, together with an integrated biomarker response (IBR) analysis, indicate that bio-based PLA MPs and TCPP could cause adverse effects on mussels. Meanwhile, TCPP interacted significantly with PLA, especially at environmental concentrations, resulting in more severe negative impacts on oxidative and immune stress, and neurotoxicity. The more severe adverse effects at environmental concentrations indicate higher ecological risks of PLA, TCPP and their combination in the real marine environment. Our study presents reliable data on the complex effects of bio-based MP PLA, TCPP and their combination on marine organisms and the environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Yiwei Yin
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiacheng Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
7
|
Li H, Tong J, Wang X, Lu M, Yang F, Gao H, Gan H, Yan S, Gao G, Huang K, Cao Y, Tao F. Associations of prenatal exposure to individual and mixed organophosphate esters with ADHD symptom trajectories in preschool children: The modifying effects of maternal Vitamin D. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135541. [PMID: 39154480 DOI: 10.1016/j.jhazmat.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) are a class of environmental chemicals with endocrine-disrupting properties. Epidemiologic studies have demonstrated that prenatal OPEs exposure is associated with neurodevelopmental disorders in offspring. However, studies assessing the effects of prenatal OPEs exposure on the dynamic changes in attention deficit hyperactivity disorder (ADHD) symptoms in preschoolers are scarce. Since vitamin D has been demonstrated to have a "neuroprotective" effect, the modifying effects of maternal vitamin D were estimated. METHODS The present study included 2410 pregnant women from the Ma'anshan Birth Cohort. The levels of OPEs in the mothers' urine were examined in the three trimesters. The Chinese version of the Conners Abbreviated Symptom Questionnaire was used to examine preschoolers' ADHD symptoms at 3, 5, and 6 years of age. ADHD symptom trajectories were fitted via group-based trajectory modeling. We used multinomial logistic regression, Bayesian kernel machine regression, quantile-based g-computation, and generalized linear models to assess individual and mixed relationships between OPEs during pregnancy and preschoolers' ADHD symptoms and trajectories. RESULTS Preschoolers' ADHD symptom scores were fitted to 3 trajectories, including the low-score, moderate-score, and high-score groups. First-trimester dibutyl phosphate (DBP), second-trimester bis(2-butoxyethyl) phosphate (BBOEP), and third-trimester diphenyl phosphate (DPHP) were associated with an increased risk in the high-score group (p < 0.05). BBOEP in the third trimester was associated with decreased risk in the moderate-score group (OR = 0.89, 95% CI: 0.79, 1.00). For mothers with 25(OH)D deficiency, a positive relationship was observed between OPEs during pregnancy and symptom trajectories. Our results did not reveal any mixed effects of OPEs on ADHD symptom trajectories. CONCLUSION Prenatal exposure to OPEs had heterogeneous associations with ADHD symptom trajectories in preschoolers. Additionally, the effect of individual OPEs on symptom trajectories was intensified by vitamin D deficiency.
Collapse
Affiliation(s)
- Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Xing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Fengyu Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Guopeng Gao
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
Yang S, Li Y, Zhang M, Xu Q, Xie C, Wan Z, Song L, Lv Y, Wang Y, Chen H, Mei S. Individual and joint effects of organophosphate esters and hypertension or diabetes on renal injury among Chinese adults. Int J Hyg Environ Health 2024; 261:114424. [PMID: 39019002 DOI: 10.1016/j.ijheh.2024.114424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Exposure to environmental contaminants and the development of hypertension and diabetes represent crucial risk factors for chronic kidney disease (CKD). Toxicological studies have revealed that organophosphate esters (OPEs) impair kidney function. However, the joint effects of OPE exposure on kidney injury and the interactions of OPE exposure with hypertension or diabetes on kidney injury remain unclear. Our study aimed to investigate the individual and joint effects of OPE exposure on renal injury, as well as the potential interaction between OPE exposure and hypertension or diabetes on kidney injury. The study enrolled 1938 participants from Wuhan, China. To explore the relationship between OPE exposure and renal injury, we conducted multivariate linear and logistic regression analysis. The results indicated that each unit increase in 4-hydroxyphenyl diphenyl phosphate (4-HO-DPHP), bis(2-butoxyethyl) phosphate (BBOEP), and tris(2-chloroethyl) phosphate (TCEP) (1 μg/L-ln transformed) was associated with a decreased 0.57 mL/min/1.73 m2 (95%CI: -1.05, -0.09), 0.85 mL/min/1.73 m2 (95%CI: -1.52, -0.19) and 1.24 mL/min/1.73 m2 (95%CI: -2.26, -0.23) of estimated glomerular filtration rate (eGFR), while each unit increase in 4-HO-DPHP and BBOEP (1 μg/L-ln transformed) was associated with 14% and 20% elevation of incident impaired renal function (IRF) risk. Notably the highest tertile of BCIPHIPP was positively associated with eGFR, although the p for trend > 0.05. We employed Bayesian kernel machine regression (BKMR) and quartile-based g-computation (qgcomp) models to explore the joint effects of OPE mixtures on eGFR and IRF. Both the results of BKMR and qgcomp model consistently demonstrated negative associations between OPE mixtures and eGFR, and TCEP and 4-HO-DPHP were major contributors. Furthermore, we observed multiplicative interactions of diphenyl phosphate (DPHP), BBOEP, di-ocresyl phosphate (DoCP) & di-p-cresyl phosphate (DpCP), 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and hypertension or diabetes on kidney injury (all P<0.05). Those with diabetes or hypertension and higher OPE metabolite concentrations had increased risk of kidney function impairment compared to those who did not have diabetes or hypertension. These findings suggest that specific OPE exposure may elevate the risk of renal injury, particularly among hypertensive and diabetic populations.
Collapse
Affiliation(s)
- Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Li Y, Dai Y, Luo X, Zhang L, Yuan J, Tan L. Biomonitoring urinary organophosphorus flame retardant metabolites by liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress. Anal Bioanal Chem 2024; 416:4543-4554. [PMID: 38877147 DOI: 10.1007/s00216-024-05393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 μg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 μg/L for males and 0.53 μg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.
Collapse
Affiliation(s)
- Yongxian Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinni Luo
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Xu Q, Xie C, Yang S, Li Y, Zhang M, Wan Z, Song L, Lv Y, Chen H, Wang Y, Mei S. Association between organophosphate esters individual and mixed exposure with the risk of hyperlipidemia and serum lipid levels among adults in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48629-48640. [PMID: 39037626 DOI: 10.1007/s11356-024-34411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Toxicologic studies reported that organophosphate esters (OPEs) may disrupt lipid metabolism, thus affecting serum lipid levels. However, epidemiological evidence regarding the association between OPEs and the risk of hyperlipidemia (HPL) as well as serum lipid levels is scarce. In the present study, our aim was to investigate the impact of individual and mixed OPE exposure on HPL. A total of 1981 Chinese adults were involved based on a cross-sectional design. Overall, we found a positive association between bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and the risk of HPL. Bis(1-chloro-2-propyl) phosphate (BCIPHIPP) showed a positive association with total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). BDCIPP, diphenyl phosphate (DPHP), di-ocresyl phosphate and di-p-cresyl phosphate (Docp&Dpcp), and 4-hydroxyphenyl-diphenyl phosphate (4-OH-DPHP) exhibited a negative association with high-density lipoprotein cholesterol (HDL-C). In stratified analyses, BDCIPP and BCIPHIPP were significantly correlated with the increased risk of HPL in the age ≤ 45 group. Bis(2-butoxyethyl) phosphate (BBOEP) was in relationship with an elevated risk of HPL in the subgroup of BMI < 24 kg/m2. BDCIPP was also positively associated with HPL in men. Quantile-based g computation (qgcomp) and generalized weighted quantile sum regression (gWQS) models demonstrated a negative association between OPEs mixed exposure and HDL-c in the total population, as well as a positive effect of them on HPL in the subgroup of age ≤ 45 years, which is consistent with the individual analyses. Furthermore, joint effect analyses revealed that participants with detected BDCIPP urinary levels and unhealthy lifestyles had the highest risk of HPL. Our findings offer evidence supporting the correlation between exposure to OPE and the risk of HPL, necessitating further prospective studies for validation.
Collapse
Affiliation(s)
- Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Lu M, Gan H, Zhou Q, Han F, Wang X, Zhang F, Tong J, Huang K, Gao H, Yan S, Jin Z, Wang Q, Tao F. Trimester-specific effect of maternal co-exposure to organophosphate esters and phthalates on preschooler cognitive development: The moderating role of gestational vitamin D status. ENVIRONMENTAL RESEARCH 2024; 251:118536. [PMID: 38442813 DOI: 10.1016/j.envres.2024.118536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Organophosphate esters (OPEs) and phthalate acid esters (PAEs) are prevalent endocrine-disrupting chemicals (EDCs). Humans are often exposed to OPEs and PAEs simultaneously through multiple routes. Given that fetal stage is a critical period for neurodevelopment, it is necessary to know whether gestational co-exposure to OPEs and PAEs affects fetal neurodevelopment. However, accessible epidemiological studies are limited. The present study included 2, 120 pregnant women from the Ma'anshan Birth Cohort (MABC) study. The concentrations of tris (2-chloroethyl) phosphate (TCEP), 6 OPE metabolites and 7 PAE metabolites were measured in the first, second and third trimester using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS). Cognitive development of preschooler was assessed based on the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) of the Chinese version. Generalized estimating equations (GEEs), restricted cubic spline (RCS) and generalized additive models (GAMs) were employed to explore the associations between individual OPE exposure and preschooler cognitive development. The quantile-based g-computation (QGC) method was used to estimate the joint effect of PAEs and OPEs exposure on cognitive development. GEEs revealed significant adverse associations between diphenyl phosphate (DPHP) (β: -0.58, 95% CI: -1.14, -0.01), bis (2-butoxyethyl) phosphate(BBOEP) (β: -0.44, 95% CI: -0.85, -0.02), bis(1-chloro-2-propyl) phosphate (BCIPP) (β: -0.81, 95%CI: -1.43, -0.20) and full-scale intelligence quotient (FSIQ) in the first trimester; additionally, TCEP and bis(2-ethylhexyl) phosphate (BEHP) in the second trimester, as well as DPHP in the third trimester, were negatively associated with cognitive development. Through the QGC analyses, mixture exposure in the first trimester was negatively associated with FSIQ scores (β: -1.70, 95% CI: -3.06, -0.34), mono-butyl phthalate (MBP), BCIPP, and DPHP might be the dominant contributors after controlling for other OPEs and PAEs congeners. Additionally, the effect of OPEs and PAEs mixture on cognitive development might be driven by vitamin D deficiency.
Collapse
Affiliation(s)
- Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiong Zhou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaorui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Zhongxiu Jin
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Liu W, Luo D, Zhou A, Li H, Covaci A, Xu S, Mei S, Li Y. Prenatal exposure to organophosphate esters and growth trajectory in early childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169080. [PMID: 38052391 DOI: 10.1016/j.scitotenv.2023.169080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Maternal exposure to organophosphate esters (OPEs) has been linked to an increased risk of adverse birth outcomes. However, the impact of OPEs on childhood growth remains uncertain. This study assessed the associations between prenatal concentrations of OPE metabolites and the growth trajectory in early childhood. 212 singleton pregnant women were included in this study, and they were recruited between August 2014 and August 2016 in Wuhan, China. We measured the urinary concentrations of OPE metabolites during the 1st, 2nd, and 3rd trimesters. Standard deviation scores for weight and length were calculated for children at birth, 1, 6, 12, and 24 months. Trajectories of weight-for-age z-score (WAZ) and weight-for-length z-score (WLZ) were classified into four groups using group-based trajectory modeling. Trajectories of length-for-age z-score (LAZ) were classified into three groups with the same model. Then, we calculated odds ratios (ORs) and 95 % confidence interval (95%CI) using multinomial logistic regression to estimate increases in odds of different growth trajectories per doubling in OPE concentrations compared with moderate-stable trajectory. For average concentrations of OPE metabolites and growth trajectory, our results indicated that higher bis(2-butoxyethyl) phosphate, total aromatic OPE metabolites, and total OPE metabolites during pregnancy were associated with a higher likelihood of children falling into the low-stable and low-rising WAZ trajectory. Furthermore, compared to the moderate-stable LAZ trajectory, increased concentrations of 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate were linked to an elevated risk of a low-stable LAZ trajectory. Additionally, the 1st and 2nd trimesters may represent critical windows of heightened vulnerability to the effects of OPE metabolites on childhood growth. In conclusion, our study proves that prenatal exposure to OPE metabolites is inversely related to childhood growth. It is essential to conduct further research involving larger populations and to consider other compounds with known developmental toxicity to obtain more reliable and comprehensive results.
Collapse
Affiliation(s)
- Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dan Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Aifen Zhou
- Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Li Y, Zheng Z, Luo D, Liu C, Yang S, Chen Y, Hu Q, Lu W, Wang Y, Mei S. Reproductive hormones, organophosphate esters and semen quality: Exploring associations and mediation effects among men from an infertility clinic. ENVIRONMENTAL RESEARCH 2024; 240:117458. [PMID: 37884071 DOI: 10.1016/j.envres.2023.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Accumulating evidence indicates that organophosphate esters (OPEs) exposure may affect semen quality. As a crucial factor in male reproduction, reproductive hormones might be linked organophosphate esters (OPEs) exposure and semen quality. This study aimed to explore the mediating role of reproductive hormones on the association between OPEs exposure and semen quality. Five serum reproductive hormones, semen quality, and 16 urinary OPE metabolites were measured among 491 reproductive-aged men from a reproductive center. The associations of urinary OPE metabolites with reproductive hormones and semen quality were assessed using multivariable linear regression models, and the mediating role of reproductive hormones was evaluated by mediation analyses. We found that follicle stimulating hormone (FSH) was positively associated with diphenyl phosphate (DPHP) that in turn was negatively associated with sperm total count. In addition, inverse associations were exhibited between serum FSH and sperm concentration, sperm total count, total motility, and progressive motility (all Ptrend <0.05). Mediation analysis further showed that FSH mediated 13.7% of the inverse association of DPHP and sperm total count. Although further investigations are required, our results suggest that FSH was an intermediate mechanism in the associations between OPEs exposure and impaired semen quality.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhiyi Zheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Dan Luo
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chong Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yingjun Chen
- Southern Medical University Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wenqing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yixin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Rd, Shanghai 200025, China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
14
|
Guo X, Jiang H, Guo Y, Jia L, Jing X, Wu J. Subzero-temperature homogeneous liquid-liquid extraction for the stereoselective determination of chiral triadimefon and its metabolite in water, fruit juice, vinegar, and fermented liquor by HPLC. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5492-5499. [PMID: 37842813 DOI: 10.1039/d3ay01061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A novel method based on homogeneous liquid-liquid extraction with deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC) for the determination of chiral fungicide triadimefon (TF) and its metabolite triadimenol (TN) in water, fruit juice, vinegar, and fermented liquor was developed in this study. The method involved using deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC). This novel technique, known as subzero-temperature homogeneous liquid-liquid extraction (STHLLE), offers several advantages, including high efficiency, time-saving, low-cost, and eco-friendliness. The enantiomers of chiral TF and TN were simultaneously separated and quantified using HPLC coupled with a Daicel Chiralpak OD-RH column. Various experimental parameters such as DES composition and volume, freezing condition, salt concentration, and pH were optimized to enhance the recoveries of the target analytes. Under the optimized conditions, spiked recoveries of six enantiomers (i.e., S-TF, R-TF, SR-TN, RS-TN, SS-TN, and RR-TN) in the water, fruit juice, vinegar, and fermented liquor samples were 82.2-100.1% with relative standard deviations of 0.4-10.1%. The current method demonstrated a detection range of 0.03-0.06 mg L-1 in the target analytes. This established technique exhibits potential for efficient and precise extraction and quantification of the enantiomers of TF and TN in water phase samples.
Collapse
Affiliation(s)
- Xingle Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Haijuan Jiang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Yuqi Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Shanxi 030801, China
| | - Junxue Wu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
15
|
Hu L, Zhou B, Li Y, Song L, Wang J, Yu M, Li X, Liu L, Kou J, Wang Y, Hu X, Mei S. Independent and combined effects of exposure to organophosphate esters on thyroid hormones in children and adolescents. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3833-3846. [PMID: 36592286 DOI: 10.1007/s10653-022-01464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Toxicological studies suggest that organophosphate esters (OPEs) may impair thyroid function. Epidemiological evidence, related to children and adolescents, has not been reported, and little is known about the combined effects of exposure to OPE mixtures. In this study, we collected information of 1156 children and adolescents (aged 6-18 years, 48.4% males) from a cross-sectional study in Liuzhou, China, and measured the levels of 15 urinary OPE metabolites and 5 serum thyroid hormones. Multivariate linear regression and quantile g-computation (QGC) approach were used to examine the associations which adjusted for demographic and lifestyle characteristics. Few participants had levels of triiodothyronine (T3) and free thyroxine (FT4) outside age-specific pediatric ranges. QGC analyses showed that individuals in the second, third, and fourth quartiles (Q2-Q4) of exposure had 3.93% (2.14%, 5.75%), 8.01% (4.32%, 11.8%), and 12.3% (6.54%, 18.3%) higher T3 than those in the first quartile (Q1), with similar pattern for free triiodothyronine (FT3). Individuals in Q2 and Q3 had higher thyroid-stimulating hormone (TSH) than those in Q1, but no differences were observed in TSH between Q1-Q4. In contrast, compared to the lowest quartile, FT4 was lower for those in Q2 (- 1.54%; 95% CI: - 3.02%, -0.04%), Q3 (-3.07%; 95% CI: -5.95%, -0.09%), and Q4 (-4.56%; 95% CI: - 8.80%, - 0.13%). These associations were consistent with the results from multivariate linear regression. When stratified by sex, OPE exposure (individual or mixtures) was associated with increased T3 and FT3 in males and decreased FT4 in females. This study provides the first evidence to characterize the thyroid-disrupting effects of OPE exposure in children and adolescents.
Collapse
Affiliation(s)
- Liqin Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xijiang Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| |
Collapse
|
16
|
Li Y, Hu L, Zhou B, Zheng Z, Xu Q, Liu J, Song L, Wang Y, Mei S. The association between organophosphate esters exposure and body mass index in children and adolescents: The mediating effect of sex hormones. CHEMOSPHERE 2023; 324:138305. [PMID: 36871798 DOI: 10.1016/j.chemosphere.2023.138305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate esters (OPEs), used as flame retardants and plasticizers, have been indicated to impair growth and development in toxicological studies, but current epidemiological data on their associations with body mass index (BMI) are limited and the underlying biological mechanisms remain unclear. In this study, we aim to explore the association of OPE metabolites with BMI z-score, and assess whether sex hormones mediate the relationships between OPE exposure and BMI z-score. We measured weight and height, and determined OPE metabolites in spot urine samples and sex hormones in serum samples among 1156 children and adolescents aged 6-18 years in Liuzhou city, China. The results showed that di-o-cresyl phosphate and di-pcresyl phosphate (DoCP & DpCP) levels were associated with lower BMI z-score of all participants and a similar pattern of associations were presented in prepubertal boys stratified by sex-puberty groups and male children stratified by sex-age groups. In addition, sex hormone binding globulin (SHBG) were related to reduced BMI z-score among all subgroups including prepubertal boys, prepubertal girls, pubertal boys, and pubertal girls (all Ptrend<0.05). We also found that DoCP & DpCP showed positive associations with SHBG among prepubertal boys. Mediation analysis further showed that SHBG mediated 35.0% of the association between DoCP & DpCP and reduced BMI z-score in prepubertal boys. Our results indicated that OPEs may impair growth and development by disrupting the sex hormones in prepubertal boys.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Zheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jun Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
17
|
Li Y, Luo D, Zhao X, Wang H, Zheng Z, Liu J, Liu C, Wang H, Chen Y, Shang Y, Lu W, Mei S, Wang Y. Urinary concentrations of organophosphate esters in relation to semen quality: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161202. [PMID: 36581274 DOI: 10.1016/j.scitotenv.2022.161202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in consumer products. Toxicological studies have indicated that OPEs may affect male reproductive health, but human evidence is inconclusive. In this study, we explored associations of individual and mixtures of OPE exposure with semen quality among 1015 Chinese men from an infertility clinic. After adjusting for potential confounders, we observed that higher diphenyl phosphate (DPHP) and [Bis(2-methylphenyl) phosphate (BMPP)] exposure was associated with increased odds ratios (ORs) of having below-reference total sperm count. Higher bis (2-butoxyethyl) phosphate (BBOEP) exposure was associated with increased ORs of having below-reference progressive motility and total motility. For semen quality parameters modeled as continuous outcomes, inverse associations with individual OPE were still observed. In addition, urinary 1-hydroxy-2-propyl bis (1-chloro-2-propyl) phosphate (BCIPHIPP) concentrations were inversely associated with the percentage of normal morphology while positively associated with the percentage of abnormal heads. Quantile g-computation regression analyses showed that exposure to higher OPE mixtures was associated with lower total sperm motility and normal morphology. Our results indicated that both individual and mixtures of OPE exposure were associated with reduced semen quality.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Dan Luo
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoya Zhao
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Han Wang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Zhiyi Zheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jun Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Chong Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hui Wang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Yingjun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinzhu Shang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Wenqing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Yixin Wang
- Department of Nutrition and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Wang H, Wang P, Li Q, Li J, Zhang L, Shi H, Li J, Zhang Y. Prenatal Exposure of Organophosphate Esters and Its Trimester-Specific and Gender-Specific Effects on Fetal Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17018-17028. [PMID: 36375127 DOI: 10.1021/acs.est.2c03732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The toxicity of organophosphate esters (OPEs) on embryonic development is well noted in animal experiments, but epidemiological studies are still lacking. This study evaluated the prenatal exposure of OPEs and its trimester-specific and gender-specific effects on fetal growth. The correlations between OPE exposure and fetal growth were investigated by linear mixed-effect models and multivariable linear regression analyses. Prenatal exposure to tributyl phosphate (TBP) was negatively associated with a z-score of fetal abdominal circumference (AC), biparietal diameter (BPD), femur length (FL), and head circumference (HC). In the second trimester, the serum concentration of TBP was inversely related to the z-score of AC, BPD, and HC. In the third trimester, serum concentration of TBP was inversely related to AC, BPD, and FL z-scores. Prenatal exposure to tri-m-cresyl phosphate (TMCP) was inversely related to the z-score of AC, BPD, and HC. In the second trimester, TMCP was negatively correlated with AC, BPD, FL, and HC z-scores. After stratification by gender, male fetuses were more sensitive to OPE exposure. The above results remained robust after excluding pregnant women who gave preterm birth or those with low or high pre-pregnancy BMI. Our findings suggested that health effects of typical OPEs, particularly TBP and TMCP, should be taken into consideration in future works.
Collapse
Affiliation(s)
- Hang Wang
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiufeng Li
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Department of Environmental Health, School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Guo Y, Liang C, Zeng MX, Wei GL, Zeng LX, Liu LY, Zeng EY. An overview of organophosphate esters and their metabolites in humans: Analytical methods, occurrence, and biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157669. [PMID: 35926632 DOI: 10.1016/j.scitotenv.2022.157669] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
With the strict regulation of brominated flame retardants, organophosphate esters (OPEs) have been extensively used as replacements. Increasing concerns on OPEs have aroused due to their extensive distribution in the environment and humans, as well as their potential toxicities. Recent studies have demonstrated that some organophosphate di-esters are even more toxic than their respective tri-esters. This review summarized the current state of knowledge on the analytical methodologies (including sample collection and preparation, instrumental analysis, and the feasibility of each potential human matrix), as well as the occurrences of OPEs and/or their metabolites (m-OPEs) in various human matrices. Organophosphate esters are readily metabolized in human thus only limited studies reported their occurrences in blood and breast milk, whereas abundant studies are available regarding the occurrences of m-OPEs rather than OPEs in urine. Since none of the matrix is suitable all the time, appropriate matrix should be selected depending on the aims of biomonitoring studies, e.g., high throughput screening or body burden estimation. Biomonitoring with non-invasive matrices such as hair and/or nail is useful to screen specific populations that might be under high exposure risks while urine is more suitable to provide valuable information on body burden. In terms of urinary monitoring, specific biomarkers have been identified for some OPE compounds, including tri(2-butoxyethyl) phosphate, tri(1,3-dichloro-2-propyl) phosphate, tri(2-chloroethyl) phosphate and tri(1-chloro-2-propyl) phosphate. Further studies are required to identify suitable urinary biomarkers for other OPE compounds, especially the emerging ones.
Collapse
Affiliation(s)
- Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Meng-Xiao Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Gao-Ling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Managements, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li-Xi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
20
|
Porto LS, Ferreira LF, Pio Dos Santos WT, Pereira AC. Determination of organophosphorus compounds in water and food samples using a non-enzymatic electrochemical sensor based on silver nanoparticles and carbon nanotubes nanocomposite coupled with batch injection analysis. Talanta 2022; 246:123477. [PMID: 35462247 DOI: 10.1016/j.talanta.2022.123477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/29/2022]
Abstract
This work presents, for the first time, a fast and highly sensitive electrochemical method for determination of three organophosphorus compounds (OPs), diazinon (DZN), malathion (MLT), and chlorpyrifos (CLPF), using a modified pyrolytic graphite electrode (PGE) coupled to batch injection analysis system with multiple pulse amperometric detection (BIA-MPA). The PGE was modified by a nanocomposite based on functionalized carbon nanotubes (CNTf) and silver nanoparticles (AgNPs). The OPs samples were directly analyzed on the modified working electrode surface by BIA-MPA system in Britton-Robinson (BR) buffer 0.15 mol L-1 at pH 6.0. The MPA detection of DZN, MLT and CLPF was performed using two potential pulses, which were sequentially applied on modified PGE at -1.3 V (100 ms) and +0.8 V (100 ms) for selective determination of these three OPs and working electrode cleaning, respectively. Under optimized conditions, the sensor presented a linear range of 0.1-20 μmol L-1 for DZN, 1.0-30 μmol L-1 for MLT and from 0.25 to 50 μmol L-1 for CLPF. The limits of detection (LOD) and quantification (LOQ) of 0.35 and 1.18 μmol L-1 for DZN, 0.89 and 2.98 μmol L-1 for MLT, and 0.53 and 1.78 μmol L-1 for CLPF were obtained. The proposed method exhibited high sensitivity of 0.068, 0.030 and 0.043 mA L μmol-1 for DZN, MLT and CLPF detection, respectively. Furthermore, the BIA-MPA system provided an analytical frequency of 71 determinations per hour for direct determination of these OPs in water and food samples. The modified PGE coupled to BIA-MPA system showed a high stability of electrochemical response for OPs detection with relative standard deviation (RSD) of 1.60% (n = 20). The addition-recovery studies of the proposed method were carried out in tap water, orange juice, and apple fruit real samples, which showed suitable recovery values between 77 and 124%. The analytical performance of the developed sensor provides an attractive alternative method for OPs determination with great potential for a fast and sensitive application in contaminated samples with these pesticides.
Collapse
Affiliation(s)
- Laís Sales Porto
- Department of Natural Sciences, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, 36.301-160, Brazil
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, 39.100-000, Brazil
| | - Wallans Torres Pio Dos Santos
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, 39.100-000, Brazil
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, 36.301-160, Brazil.
| |
Collapse
|
21
|
Lu Q, Lin N, Cheng X, Yuan T, Zhang Y, Gao Y, Xia Y, Ma Y, Tian Y. Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry. CHEMOSPHERE 2022; 300:134585. [PMID: 35427657 DOI: 10.1016/j.chemosphere.2022.134585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) and organophosphate pesticides (OPPs), pertaining to organophosphate esters, are ubiquitous in environment and have been verified to pose noticeable risks to human health. To evaluate human exposures to OPFRs and OPPs, a fast and sensitive approach based on a solid phase extraction (SPE) followed by the ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) detection has been developed for the simultaneous analysis of multiple organophosphorus metabolites in urine. The method allows the identification and quantification of ten metabolites of the most common OPFRs and all six dialkylphosphates (DAPs) of OPPs concerning the population exposure characteristics. The method provided good linearities (R2 = 0.998-0.999), satisfactory method detection limits (MDLs) (0.030-1.129 ng/mL) and only needed a small volume (200 μL) of urine. Recovery rates ranged 73.4-127.1% at three spiking levels (2, 10 and 25 ng/mL urine), with both intra- and inter-day precision less than 14%. The good correlations for DAPs in a cross-validation test with a previous gas chromatography-mass spectrometry (GC-MS) method and a good inter-laboratory agreement for several OPFR metabolites in a standard reference material (SRM 3673) re-enforced the precision and validity of our method. Finally, the established method was successfully applied to analyze 16 organophosphorus metabolites in 35 Chinese children's urine samples. Overall, by validating the method's sensitivity, accuracy, precision, reproducibility, etc., data reliability and robustness were ensured; and the satisfactory pilot application on real urine samples demonstrated feasibility and acceptability of this method for being implemented in large population-based studies.
Collapse
Affiliation(s)
- Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuning Ma
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Development of magnetic molecularly imprinted solid-phase extraction and ultra-high performance liquid chromatography tandem mass spectrometry for rapid and selective determination of urinary diphenyl phosphate of college students. J Chromatogr A 2022; 1678:463344. [PMID: 35872539 DOI: 10.1016/j.chroma.2022.463344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Organophosphate esters (OPEs), known as novel alternative flame retardants, are a class of environmental endocrine disruptors. Long-term exposure to OPEs may bring a non-negligible health risk to human. Urinary OPE metabolites (mOPEs) are generally used as biomarkers to evaluate the internal exposure to OPEs. Diphenyl phosphate (DPHP), the main metabolite of aryl-OPEs, exhibited high detection rates and concentrations in urine samples. To establish a selective and simple analytical method for biomonitoring urinary DPHP, a specific magnetic molecular imprinted polymer (MMIP) was fabricated via a sol-gel method. Under optimum magnetic solid-phase extraction (MSPE) conditions, the resultant MMIP exhibited selective recognition ability, ideal adsorption capacity and good reusability on urinary DPHP enrichment. The developed MSPE method coupled with ultra-high performance liquid chromatography tandem mass spectrometry (U-HPLC-MS/MS) exhibited good precision and accuracy (spiked recoveries of 85.8%-109% with relative standard deviations (RSDs) ranged from 5.1%-13%), low detection limit of 0.035 ng/mL, and negligible matrix inhibition. Then we used this proposed method to detect urinary DPHP levels of recruited 30 college students and investigate the time variability and potential determinants. All urine samples revealed the presence of DPHP at a median concentration of 0.56 μg/g Creatinine (Cr). Moderate reproducibility of DPHP level was observed in first morning urine samples (ICC>0.40). Significant correlations were found between urinary DPHP levels and gender (β=0.72; 95% CI: 0.48∼0.96), sampling time (β=0.36; 95% CI: 0.08∼0.65) as well as the frequency for take-out food (β=0.45; 95% CI: 0.07∼0.74) (p< 0.05). Hence, a fast and sensitive MSPE-U-HPLC-MS/MS method was successfully built to quantify urinary DPHP.
Collapse
|
23
|
Chen ZF, Tang YT, Liao XL, Jiang JR, Qi Z, Cai Z. A QuEChERS-based UPLC-MS/MS method for rapid determination of organophosphate flame retardants and their metabolites in human urine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153989. [PMID: 35192813 DOI: 10.1016/j.scitotenv.2022.153989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been widely used in consumer products to prevent fire spread. However, once released into the atmospheric environment, they may accumulate in humans and undergo metabolic transformation and excretion by urine. In order to clarify the human exposure to OPFRs, a quick, easy, cheap, effective, rugged, and safe method for the simultaneous determination of urinary OPFRs and their metabolites by ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry was developed. After the optimization by a single-factor or orthogonal experiment, the satisfactory recovery (87.8-119%), matrix effect (-8.88-9.29%), method quantitation limit (3.66-159 ng/L), and inter-day repeatability (1.24 - 10.6%) of most analytes were achieved in artificial urine samples. Based on a monitoring test by the developed method, we propose that urinary bis(1-chloro-2-propyl) phosphate and di-p-cresyl phosphate could be used to trace human exposure to tris(1-chloro-2-propyl) phosphate and tricresyl phosphate, respectively. Most importantly, this is the first study to reveal that 4-hydroxyphenyl diphenyl phosphate (4-OH-TPHP) was dominantly presented in its conjugated form rather than its free form in urine (p = 0.037). Overall, the obtained results contribute a relatively rapid method to help conduct large-scale urine monitoring for revealing the human exposure and risk of OPFRs.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Ying-Tao Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie-Ru Jiang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
24
|
Yu M, Li X, Liu B, Li Y, Liu L, Wang L, Song L, Wang Y, Hu L, Mei S. Organophosphate esters in children and adolescents in Liuzhou city, China: concentrations, exposure assessment, and predictors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39310-39322. [PMID: 35098472 DOI: 10.1007/s11356-021-18334-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Dermal contact with dust is commonly considered an important pathway of exposure to organophosphate esters (OPEs), but the importance of OPE uptake from diet is unclear. Herein, we used hand wipes to estimate OPE exposure from indoor dust and examined whether urinary OPE metabolite concentrations were influenced by sociodemographic characteristics, OPE amount in hand wipes, and dietary factors. OPEs were measured in urine and hand wipes from 6 to 18-year-old children and adolescents (n=929) in Liuzhou, China. Sociodemographic and dietary factors were obtained from questionnaire. Six OPE metabolites were detected in >70% of the urine samples, and seven OPEs were detected in >50% of the hand wipes. Estimated daily intakes (EDIs) were calculated using urinary OPE metabolites to investigate the total daily intake of OPEs, in which 0.36-10.1% of the total intake was attributed to the exposure from dermal absorption. In multivariate linear regression models, sex, age, and maternal education were significant predictors of urinary OPE metabolite concentrations. Urinary diphenyl phosphate (DPHP) is positively associated with its parent compounds 2-ethylhexyl-diphenyl phosphate (EHDPP) and triphenyl phosphate (TPHP) in hand wipes. High versus low vegetable intake was associated with a 23.7% higher DPHP (95% confidence interval (CI): 0.51%, 52.1%). Barreled water drinking was associated with a 30.4% (95% CI: 11.8%, 52.0%) increase in bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP) compared to tap water drinking. Our results suggested the widespread exposure to OPEs in children and adolescents. In addition to dermal absorption, dietary intake may be an important exposure source of certain OPEs.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Bingqing Liu
- Department of Women's Healthcare, Women's Hospital, Zhejiang University School of Medicine, #1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liqin Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
25
|
Occurrence, Distribution, and Risk of Organophosphate Flame Retardants in Sediments from Jiulong River Estuary and Adjacent Western Taiwan Strait, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042449. [PMID: 35206636 PMCID: PMC8872513 DOI: 10.3390/ijerph19042449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Organophosphate ester flame retardants (OPFRs) are widely prevalent in the environment and are of significant concern because of their potential toxicity to human health and wildlife. In this study, the concentration, frequency, spatial distribution, potential sources, and ecological risks of OPFRs in sediments from the Jiulong River estuary and the adjacent western Taiwan Strait were investigated. Concentrations of four of the five studied OPFRs were between <LOD and 36.6 ng/g. The distribution of all OPFRs, except 2-Ethylhexyl diphenyl phosphate (EHDPP), remained highly consistent with hydrological (salinity) trends. Furthermore, a significantly positive correlation between EHDPP and total concentrations suggested that it may be the dominant contaminant at both sites. Principal element analysis indicated multiple sources of OPFRs, which were categorized as emissions from road runoff and surface traffic, effects of atmospheric deposition and hydrologic conditions, and a combination of industrial and population effects. Ecological risk indicates that tris (chloroethyl) phosphate (TCEP) and triphosphate ester (2,3-dibromopropyl) (TDBPP) have almost no risk, tris (clorisopropyl) phosphate (TCPP) generally has low risk, while EHDPP has moderate risk with the highest value of 0.487 in the sediments from both sites. Meanwhile, TCPP and TCEP exhibit lower theoretical health risks but are still not negligible. Overall, this work provides data to support global pollutant studies and facilitate the implementation of pollutant control strategies.
Collapse
|
26
|
Hu L, Yu M, Li Y, Liu L, Li X, Song L, Wang Y, Mei S. Association of exposure to organophosphate esters with increased blood pressure in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118685. [PMID: 34923060 DOI: 10.1016/j.envpol.2021.118685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) are widely added to various industrial and consumer products, and are mainly used as flame retardants and plasticizers. Existing epidemiological studies suggest that OPE exposure may be linked to increased blood pressure (BP) and hypertension risk in adults. However, it remains unclear whether OPE exposure is associated with increased BP in children and adolescents. Here, we investigated the associations between OPE exposure and BP levels in 6-18-year-old children and adolescents from a cross-sectional study in Liuzhou, China. OPE metabolites were determined in spot urine samples (n = 1194) collected between April and May 2018. Three measurements of systolic and diastolic BP for each participant were averaged as study outcomes. Associations of OPE exposure with age-, sex- and height-standardized BP were assessed using linear regression models. We found that each natural log unit increment of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with a 0.06 standard deviation unit (95% confidant interval (CI): 0.01, 0.11) increase in systolic BP z-score. When conducting stratified analysis based on sex, age, and BMI category, BDCIPP was shown to be positively associated with systolic/diastolic BP z-score in females, but not in males. The associations between bis(2-butoxyethyl) phosphate (BBOEP) and systolic/diastolic BP z-score were pronounced in adolescents, but not in children. Moreover, a significant positive association between 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and diastolic BP z-score was observed in obese subjects. The present study provides the first evidence that OPE exposure was related to increased BP in children and adolescents. Given the scarcity of high-quality evidence supporting these results, the health effects of OPEs are warrant investigation in well-designed prospective studies.
Collapse
Affiliation(s)
- Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
27
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
28
|
Zhang L, Meng L, Wang H, Lu D, Luo X. Development and validation of a liquid chromatography-tandem mass spectrometry method for comprehensive detection of organophosphate esters and their degradation products in sediment. J Chromatogr A 2022; 1665:462826. [DOI: 10.1016/j.chroma.2022.462826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
|
29
|
Chen CY, Liu YH, Chieh CH, Chang WH. Fast and Environment-Friendly GC-MS Method for Eleven Organophosphorus Flame Retardants in Indoor Air, Dust, and Skin Wipes. TOXICS 2021; 9:toxics9120350. [PMID: 34941784 PMCID: PMC8707019 DOI: 10.3390/toxics9120350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
Organophosphorus based flame retardants (OPFRs) extensively used as alternatives to banned polybrominated diphenyl ethers and hexabromocyclododecane have been garnering interest due to the possibility that these compounds may have less significant impact on human and environmental health. Long pretreatment time, larger consumption of organic solvents, matrix interferents, and cross-contamination were found in previous studies while assessing OPFRs in indoor environments. We developed and optimized the extraction methods and simultaneous analysis of 11 OPFRs in indoor air, dust and skin wipe samples using the GC-MS approach. The proposed methods were validated using a standard addition approach, dust SRM 2585 and the real samples. Our procedures enabled the analyst to effectively limit coextracted interferences and simultaneous analytical methods of 11 target OPFRs for three matrices were achieved. The validation was performed according to standard guidelines (relative errors were identified by the analytes: −19% to 18% for indoor air, −11% to 14% for house dust, −15% to 16% for skin wipe). Good practices for quality assurance and quality control were well stated. The current high-Eco-scored methods could be categorized as “an excellent green analysis”. All analytes for the target OPFRs were detected in the real samples of indoor air, house dust and skin wipe collected from ten Taiwanese homes. Tris(2-butoxyethyl) phosphate, tris(1,3-dichloro-2-propyl)phosphate and tris(chloroisopropyl) phosphate were the most abundant OPFRs. Rapid, green and cost-effective GC-MS methods were developed and validated for the analysis of eleven OPFRs in indoor air, house dust and skin wipes.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Department of Occupational Safety and Health, School of Safety and Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
- Occupation Environment and Food Safety Research Center, Chan Jung Christian University, Tainan 711, Taiwan
| | - Yu-Hsuan Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-H.L.); (C.-H.C.)
| | - Chia-Hui Chieh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-H.L.); (C.-H.C.)
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-274-4412; Fax: +886-6-274-3748
| |
Collapse
|
30
|
Tao Y, Hu L, Liu L, Yu M, Li Y, Li X, Liu W, Luo D, Covaci A, Xia W, Xu S, Li Y, Mei S. Prenatal exposure to organophosphate esters and neonatal thyroid-stimulating hormone levels: A birth cohort study in Wuhan, China. ENVIRONMENT INTERNATIONAL 2021; 156:106640. [PMID: 34015666 DOI: 10.1016/j.envint.2021.106640] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Increasing animal studies have indicated that organophosphate esters (OPEs) have endocrine-disruptive potential. However, human epidemiological evidence is limited, especially in susceptible populations, such as pregnant women and neonates. The purpose of this present study was to examine the trimester-specific relationships of prenatal exposure to OPEs with neonatal thyroid-stimulating hormone (TSH). METHOD A total of 102 mother-newborn pairs were recruited from a birth cohort study between April 2015 and September 2016 in Wuhan, China. Eight OPE metabolites were detectable in urine samples from pregnant women across the different three trimesters. Neonatal TSH levels were measured using time-resolved immunofluorescence assay. The associations between maternal urinary OPE metabolites and neonatal TSH and the critical exposure windows of fetal vulnerability were estimated using multiple informant models. RESULTS Seven OPE metabolites with detection frequency > 50% (52.9%-98.0%) were detected in repeated urine samples from different three trimesters, and the urinary OPE metabolites across pregnancy was of high variability (ICCs: 0.09-0.26). After adjusted for confounders (e.g., maternal age, prepregnancy BMI, passive smoking during pregnancy), some suggestive associations were observed between maternal urinary OPE metabolites and neonatal TSH in different trimesters. A doubling of second trimester di-o-cresyl phosphate & di-p-cresyl phosphate (DoCP & DpCP) was associated with a 7.82% increase in neonatal TSH level (95% CI: -0.70%, 17.06%, p-value = 0.07), a doubling of third trimester diphenyl phosphate (DPHP) was associated with a 4.71% decrease in neonatal TSH level (95% CI: -9.80%, 0.67%, p-value = 0.09), and a doubling of third trimester bis(2-butoxyethyl) phosphate (BBOEP) was associated with a 6.38% increase in neonatal TSH level (95% CI: -0.12%, 13.31%, p = 0.05). However, such associations did not differ materially across trimesters. When performing stratified analysis by infant sex, the associations were statistically significant and were sex-dependent.In females, maternal urinary DoCP & DpCP concentrations in each trimester were associated with increased neonatal TSH levels, and urinary DPHP concentration in the third trimester was associated with decreased neonatal TSH level. In males, maternal urinary BBOEP concentration in the first trimester was positively related to neonatal TSH level. CONCLUSION This prospective study demonstrated that prenatal exposure to OPEs can lead to a sex-dependent change in neonatal TSH levels. Although the sex-selective effect was differed among various urinary OPE metabolites, more evidence was supported that OPE exposure was related to increased TSH levels for both males and females.
Collapse
Affiliation(s)
- Yun Tao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Hospital Management Institute of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Wenyu Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
31
|
Liu Y, Gong S, Ye L, Li J, Liu C, Chen D, Fang M, Letcher RJ, Su G. Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. ENVIRONMENT INTERNATIONAL 2021; 155:106691. [PMID: 34146766 DOI: 10.1016/j.envint.2021.106691] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Over the course of the continual phase-outs of toxic halogenated flame retardants (HFRs), there has been an increasing demand for organophosphate esters (OPEs) in global FR markets. OPE-FRs have largely been identified as OP triesters, which have a basic chemical structure of O = P(OR)3. In addition to OP triesters, OPEs can refer to another class of related substances, namely, OP diesters that have a typical chemical structure of O = P(OR)2(OH)). OP diesters are known as biotic or abiotic degradation products of OP triesters. In recent years, environmental scientists have proven that OP diesters widely exist in a variety of environmental matrices and biotic samples around the world, implying the potential risks from OP diester exposure to biota and humans in the environment. Here, we have reviewed the scientific literature for studies involving OP diesters and up to the end of 2020. The aim of the present review is to assess the present understanding of the physicochemical properties, sources (industrial production and degradation), environmental occurrence of OP diesters, and adverse effects to exposed organisms. Based on the literature in the Web of Science core collection, we found that at least 23 OP diesters have been reported as contaminants in various environments or as degradation products of OP triesters. The physicochemical properties of OP diesters vary depending on their specific chemical structures. OP diesters containing halogen atoms and aryl groups seem to be more persistent (with greater estimated half-life (t1/2) values) in environmental matrices. There were multiple sources of OP diesters, including industrial production and biotic or abiotic degradation from OP triesters. Specifically, we found that ten OP diesters are produced somewhere in the world, and the total annual output was estimated to be 17,050 metric tons (this number is underestimated due to the limitation of the available information). In addition, the wide application of OP triesters worldwide makes the degradation of OP triesters another critical source of OP diesters to the environment and to organisms. Current monitoring studies have demonstrated that some OP diesters were detectable in the human body (via both blood and urine samples), indoor dust, wastewater, or sewage sludge worldwide. The highest concentrations of diphenyl phosphate (DPHP) in human urine have been reported as high as 727 ng/mL (children (aged 0-5 years) urine samples from Australia). In addition, adverse effects following direct or indirect exposure to 11 OP diesters in organisms (including animals, bacteria, and algae) have been reported, and the recorded adverse outcomes following exposure to OP diesters included developmental toxicity, alteration of gene expression, and disturbance of nuclear receptor activity. Biomonitoring studies regarding human samples have frequently reported statistically significant associations between the concentrations of OP diesters and markers of human health (mainly related to reproductive toxicity). Finally, on the basis of current knowledge on OP diesters, we propose prospects for related research directions in future studies.
Collapse
Affiliation(s)
- Yaxin Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
32
|
Wang X, Zhu Q, Liao C, Jiang G. Human internal exposure to organophosphate esters: A short review of urinary monitoring on the basis of biological metabolism research. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126279. [PMID: 34329041 DOI: 10.1016/j.jhazmat.2021.126279] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
As alternatives to traditional brominated flame retardants, organophosphate flame retardants (OPFRs), especially for organophosphate esters (OPEs) -- the most widely used and investigated OPFRs, have raised people's concern on their environmental and health-related risks over the years. Considering their extensive environmental occurrence and potential adverse effects, precise estimation on the human body burden of OPEs will be conducive to the restrictions on the usage of these compounds scientifically. Biomonitoring research can provide precise information on human exposure to OPEs as it reveals the degree of external exposure from all exposure routes. Knowledge on biotransformation and metabolism of OPEs in the biosystems is of great significance for our understanding of the internal exposure to these compounds. In this study, the biological metabolic processes of nine OPEs prevalent in the environment, involving tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tripropyl phosphate (TPrP), tri-n-butyl phosphate (TnBP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPhP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tricresyl phosphate (TCrP), are comprehensively reviewed. Specifically, the metabolic pathway, kinetics and mechanism of OPEs are depicted in detail. Under this context, the advances and limitations on biomonitoring of OPE metabolites in human urine are summarized. The requirements of specificity, quantitative stability, high detection frequency/concentration are needed for OPE metabolites to be considered and validated as biomarkers. Thus far, deeper elucidations on the metabolic processes and identification of biomarkers of OPEs are urgently required, given that some OPEs have no suitable biomarkers in human biomonitoring. For better assessment of the body burden of OPEs in humans, reliable and effective methodologies for urine sampling and estimation on internal exposure to OPEs need to be further developed in the future.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Jing Y, Singh V, Chen L, Pawliszyn J. High-throughput biomonitoring of organophosphate flame-retardant metabolites in urine via 96-blade solid-phase microextraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Talanta 2021; 232:122466. [PMID: 34074438 DOI: 10.1016/j.talanta.2021.122466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022]
Abstract
Organophosphate flame retardants (OPFRs) are widely used in consumer products and building materials, but their propensity for migration poses a problem with respect to polluting indoor environments, water, soil, and dust. OPFR metabolites in urine samples are appropriate biomarkers for assessing exposure risk levels. In this paper, a high-throughput method that couples 96-blade solid-phase microextraction with ultra-performance liquid chromatography-tandem mass spectrometry (SPME-UPLC-MS/MS) is applied for the simultaneous detection of four OPFR metabolites in urine samples. The results indicated that the best extraction was achieved using 96 blades coated with hydrophilic-lipophilic balance weak anion exchange (HLB-WAX). The proposed SPME method's extraction efficiency was maximized by optimizing extraction time, pH value, desorption solution, desorption volume, and desorption time, and it was validated in accordance with the Food and Drug Administration's guidelines. The findings indicated that the proposed method has a wide linearity range (0.5-100 ng mL-1) and low detection limits (0.09-0.14 ng mL-1). The method's accuracy ranged from 98% to 118%, with intra-day precision ranging from 1% to 10%. In contrast, inter-day precision ranged from 3% to 16%. Accuracy was also evaluated using independent urine samples, which ranged from 78% to 124% with corresponding relative standard deviations (1%-16%). Ultimately, DoCP was detected in two real samples at a concentration of 0.5-1.1 ng mL-1, and BEHP was detected at a concentration of 0.2-1.2 ng mL-1. Overall, the proposed SPME-UPLC-MS/MS method is reliable, accurate, and capable of simultaneously determining four OPFR metabolites in urine samples and screening them to assess exposure risk for humans.
Collapse
Affiliation(s)
- Yu Jing
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium(1)
| | - Liqin Chen
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
34
|
Wang LM, Luo D, Li X, Hu LQ, Chen JX, Tu ZZ, Sun B, Chen HG, Liu L, Yu M, Li YP, Pan A, Messerlian C, Mei SR, Wang YX. Temporal variability of organophosphate flame retardant metabolites in spot, first morning, and 24-h urine samples among healthy adults. ENVIRONMENTAL RESEARCH 2021; 196:110373. [PMID: 33190805 DOI: 10.1016/j.envres.2020.110373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 05/20/2023]
Abstract
A single measurement of organophosphate flame retardant (OPFR) metabolites in a spot sample is often used in epidemiological studies to estimate individual exposures. Over seven consecutive days, we collected 661 spot samples, including 127 first morning voids (FMVs) and 123 simulated 24-h collections, from 20 healthy adults and analyzed for eight OPFR metabolites. Intraclass correlation coefficients (ICCs) were calculated to evaluate the variability of the analyzed metabolites. In spot samples group, serial measurements of OPFR metabolites showed poor reproducibility (0.0422 ≤ ICC ≤ 0.349), and the within-day variability was the main contributor of the total variability. The estimated ICCs based on different correction methods for urine dilution (i.e., specific gravity-adjusted, creatinine-adjusted, and creatinine as a covariate) were similar, but varied according to gender and body mass index. Uniformly low sensitivities (0.417-0.633) were observed when using a single FMV or spot sample to predict the 1-week highly (top 33.0%) exposed volunteers. Therefore, using a single urinary measurement to predict chronic exposure to OPFRs can lead to a high degree of classification errors. When multiple urine samples are collected, considering the sampling type, the time of collection, and demographic characteristics may provide a more complete approach to assess exposure to diverse OPFRs.
Collapse
Affiliation(s)
- Li-Mei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Qin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhou-Zheng Tu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Bin Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ya-Ping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Carmen Messerlian
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Su-Rong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
35
|
Liu W, Luo D, Xia W, Tao Y, Wang L, Yu M, Hu L, Zhou A, Covaci A, Lin C, Xu S, Mei S, Li Y. Prenatal exposure to halogenated, aryl, and alkyl organophosphate esters and child neurodevelopment at two years of age. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124856. [PMID: 33383451 DOI: 10.1016/j.jhazmat.2020.124856] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Neurotoxicity of organophosphate esters (OPEs) has been reported in toxicological studies, but epidemiological findings are limited. We aimed to assess the associations between prenatal OPE exposures and children's neurodevelopment at 2 years old. We measured urinary concentrations of OPEs collected in the first and third trimester from 184 pregnant women in Wuhan, China. Childhood neurodevelopment was assessed using the Chinese revision of Bayley Scale of Infant Development. A two-fold increase in the average of bis (1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with 3.50 decrease in Psychomotor Development Index (PDI) score (95%CI: -5.86, -1.14) and 5.75 decrease in Mental Development Index (MDI) score (95%CI: -8.94, -2.55). Average of the molar concentrations of chlorinated-alkyl OPEs (ΣCl-OPEs) during pregnancy was inversely associated with PDI [β = -3.24 (95%CI: -5.95, -0.53)] and MDI scores [β = -5.86 (95%CI: -9.52, -2.20)]. Prenatal concentrations of BDCIPP and ΣCl-OPEs were inversely associated with neurodevelopment scores in boys, but not in girls. Our study provides evidence that elevated prenatal exposure to chlorinated-alkyl OPEs especially BDCIPP might be inversely associated with childhood neurodevelopment, and the effect seems to be sex-specific.
Collapse
Affiliation(s)
- Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Tao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limei Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liqin Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aifen Zhou
- Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Chunye Lin
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
36
|
Luo D, Liu W, Wu W, Tao Y, Hu L, Wang L, Yu M, Zhou A, Covaci A, Xia W, Xu S, Li Y, Mei S. Trimester-specific effects of maternal exposure to organophosphate flame retardants on offspring size at birth: A prospective cohort study in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124754. [PMID: 33310325 DOI: 10.1016/j.jhazmat.2020.124754] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 05/18/2023]
Abstract
Organophosphate flame retardants (OPFRs) are substantially applied as flame retardants and plasticizers in consumer products. Although the embryonic developmental toxicity of OPFRs has been reported, human data are limited and the critical windows of susceptibility to OPFRs exposure urgently need to be identified. Here, we investigated the trimester-specific associations between prenatal OPFR exposure and birth size for the first time. The concentrations of 15 OPFR metabolites and tris(2-chloroethyl) phosphate were repeatedly determined in urine samples of 213 pregnant women collected in the first, second, and third trimesters in Wuhan, China, and anthropometric data were retrieved from medical records. In multiple informant models, urinary concentrations of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and bis(2-butoxyethyl) phosphate (BBOEP) in the third trimester, 4-hydroxyphenyl-diphenyl phosphate (4-HO-DPHP) in the second trimester, and diphenyl phosphate (DPHP) in the first trimester were negatively associated with birth weight, among which a significant difference in exposure-effect relationships across the three trimesters was observed for BDCIPP. BBOEP concentrations in the third trimester were negatively correlated to birth length with significant varying exposure effects. Our results suggest that prenatal exposure to certain OPFRs may impair fetal growth, and the fetus is vulnerable to the developmental toxicity of BDCIPP and BBOEP in the third trimester.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weixiang Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Tao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqin Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limei Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aifen Zhou
- Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Zhong X, Yu Y, Wang C, Zhu Q, Wu J, Ke W, Ji D, Niu C, Yang X, Wei Y. Hippocampal proteomic analysis reveals the disturbance of synaptogenesis and neurotransmission induced by developmental exposure to organophosphate flame retardant triphenyl phosphate. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124111. [PMID: 33189059 DOI: 10.1016/j.jhazmat.2020.124111] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
With the spread of organophosphorus flame retardants (OPFRs), the environmental and health risks they induce are attracting attention. Triphenyl phosphate (TPHP) is a popular alternative to brominated flame retardant and halogenated OPFRs. Neurodevelopmental toxicity is TPHP's primary adverse effect, whereas the biomarkers and the modes of action have yet to be elucidated. In the present study, 0.5, 5, and 50 mg/kg of TPHP were orally administered to mice from postnatal day 10 (P10) to P70. The behavioral tests showed a compromised learning and memory capability. Proteomic analysis of the hippocampus exposed to 0.5 or 50 mg/kg of TPHP identified 531 differentially expressed proteins that were mainly involved in axon guidance, synaptic function, neurotransmitter transport, exocytosis, and energy metabolism. Immunoblot and immunofluorescence analysis showed that exposure to TPHP reduced the protein levels of TUBB3 and SYP in the synapses of hippocampal neurons. TPHP exposure also downregulated the gene expression of neurotransmitter receptors including Grins, Htr1α, and Adra1α in a dose-dependent fashion. Moreover, the calcium-dependent synaptic exocytosis governed by synaptic vesicle proteins STX1A and SYT1 was inhibited in the TPHP-treated hippocampus. Our results reveal that TPHP exposure causes abnormal learning and memory behaviors by disturbing synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuejin Yu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qicheng Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingwei Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Congying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518172, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
38
|
Bastiaensen M, Gys C, Colles A, Verheyen V, Koppen G, Govarts E, Bruckers L, Morrens B, Loots I, De Decker A, Nelen V, Nawrot T, De Henauw S, Van Larebeke N, Schoeters G, Covaci A. Exposure levels, determinants and risk assessment of organophosphate flame retardants and plasticizers in adolescents (14-15 years) from the Flemish Environment and Health Study. ENVIRONMENT INTERNATIONAL 2021; 147:106368. [PMID: 33421765 DOI: 10.1016/j.envint.2020.106368] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The ubiquitous use of organophosphate flame retardants and plasticizers (PFRs) in a variety of consumer products has led to widespread human exposure. Since certain PFRs are developmental and carcinogenic toxicants, detailed exposure assessments are essential to investigate the risk associated with environmental exposure levels. However, such data are still lacking for European countries. In this study, concentrations of thirteen PFR metabolites were measured in urine samples from 600 adolescents from Flanders, Belgium. 1-Hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP), diphenyl phosphate (DPHP), bis(1,3-dichloro-isopropyl) phosphate (BDCIPP), 2-hydroxyethyl bis(2-butoxyethyl) phosphate (BBOEHEP), 2-ethylhexyl phenyl phosphate (EHPHP) and 2-ethyl-5-hydroxyhexyl diphenyl phosphate (5-HO-EHDPHP) were frequently detected (>83%) in all participants. Comparisons with study populations from outside the EU showed that urinary levels of DPHP, BDCIPP and BCIPHIPP were generally within the same range. Only exposure to 2-ethylhexyl diphenyl phosphate (EHDPHP) was presumably higher in Flemish adolescents. However, determinants analysis through multivariate regression analyses did not reveal significant predictors that may explain this finding. Significantly higher levels of BDCIPP were observed in participants with new decorations at home, while adolescents with highly educated parents had higher levels of BBOEHEP and BDCIPP. Furthermore, multiple PFR metabolite concentrations followed a seasonal pattern. Estimated daily intakes (EDIs) were calculated from the internal dose by including fractions of urinary excretion (FUE) estimated in in vitro metabolism studies. EDIs ranged from 6.3 ng/kg bw/day for TBOEP to 567.7 ng/kg bw/day for EHDPHP, which were well below the available oral reference doses for all investigated PFRs. This suggests that the associated risk is low at present. This is the first report on internal exposure to seven commonly used PFRs in a European population.
Collapse
Affiliation(s)
- Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ann Colles
- VITO - Health, Boeretang 200, 2400 Mol, Belgium
| | - Veerle Verheyen
- VITO - Health, Boeretang 200, 2400 Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | - Eva Govarts
- VITO - Health, Boeretang 200, 2400 Mol, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Bert Morrens
- Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000 Antwerp, Belgium
| | - Ilse Loots
- Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000 Antwerp, Belgium
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Stefaan De Henauw
- Department of Public Health, Ghent University, C. Heymanslaan 10, 9000 Gent, Belgium
| | - Nik Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Greet Schoeters
- VITO - Health, Boeretang 200, 2400 Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
39
|
Microfluidic Chip-Based Induced Phase Separation Extraction as a Fast and Efficient Miniaturized Sample Preparation Method. Molecules 2020; 26:molecules26010038. [PMID: 33374763 PMCID: PMC7796191 DOI: 10.3390/molecules26010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
Induced phase separation extraction (IPSE) is an efficient sample clean-up technique that can replace liquid-liquid extraction (LLE). The purpose of this study was to miniaturize IPSE by carrying it out in a microfluidic chip. An IPSE chip was designed and evaluated for its ability to separate and purify samples on a microscale. The 5 × 2 cm chip was fed with a solution of polar to non-polar model compounds in acetonitrile-water (1:1). In the 100 µm wide and 40 µm deep microchannels, the sample solution was efficiently separated into two immiscible phases by adding a hydrophobic solvent as inducer. Analytes present in the sample solution each migrated to their own favorable phase upon phase separation. After optimization, extraction and fractionation were easily and efficiently achieved. The behavior of analytes with a pH-dependent partitioning could be influenced by adjusting the pH of the sample solution. Scutellaria baicalensis extract, used in Traditional Chinese Medicine (TCM), was successfully separated in aglycones and glycosides. In this microscale system, the sample and solvent consumption is reduced to microliters, while the time needed for the sample pretreatment is less than one minute. Additionally, the extraction efficiency can reach up to 98.8%, and emulsion formation is avoided.
Collapse
|
40
|
Dmitrienko SG, Apyari VV, Gorbunova MV, Tolmacheva VV, Zolotov YA. Homogeneous Liquid–Liquid Microextraction of Organic Compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Luo D, Liu W, Tao Y, Wang L, Yu M, Hu L, Zhou A, Covaci A, Xia W, Li Y, Xu S, Mei S. Prenatal Exposure to Organophosphate Flame Retardants and the Risk of Low Birth Weight: A Nested Case-Control Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3375-3385. [PMID: 32106667 DOI: 10.1021/acs.est.9b06026] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organophosphate flame retardants (OPFRs), used as flame retardants and plasticizers, have been suggested to impair fetal growth and development in toxicological studies, but epidemiological data are extremely limited. This study was designed to explore whether prenatal exposure to OPFRs was associated with an increased risk of low birth weight (LBW) using a nested case-control design based on the ongoing prospective birth cohort in Wuhan, China. A total of 113 cases and 226 matched controls recruited from this cohort project in 2014-2016 were included. OPFR metabolite concentrations in maternal urine samples collected in the third trimester were determined, and birth outcomes were extracted from medical records. Compared with the lowest tertile of diphenyl phosphate (DPHP) concentrations, pregnant women with the highest tertile of DPHP had a 4.62-fold (95% confidence interval (CI): 1.72, 12.40) significantly increased risk for giving birth to LBW infants, with a significant dose-response relationship (p-trend < 0.01). After stratification by newborn sex, the significant positive association of DPHP levels with LBW risk was merely observed among female newborns. Our results suggest a positive association between maternal urinary DPHP concentrations and LBW risk for the first time, and the effect appears be sex-specific.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510632, China
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510632, China
| | - Yun Tao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limei Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liqin Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aifen Zhou
- Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|