1
|
Sheng C, He X, Chen J, Fan S, Li X. Seasonal dynamics of lipophilic marine algal toxins in water body and sediment environments of nearshore mariculture areas in northern China. MARINE POLLUTION BULLETIN 2025; 215:117920. [PMID: 40184806 DOI: 10.1016/j.marpolbul.2025.117920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Lipophilic marine algal toxins (LMATs) pose risks to mariculture industries and human health. This study investigated the seasonal variation of LMATs in water and sediment environments at nearshore mariculture sites in China, in order to facilitate the prevention of LMAT contamination. Eight LMATs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), gymnodimine, 13-desmethyl spirolide C, yessotoxin, homo-yessotoxin, and azaspiracid-2 and two derivatives-PTX2 Seco Acid and 7-epi-PTX-2 Seco Acid-were identified across various environmental samples. OA, DTX1, and PTX2 were dominant in Sishili Bay and Rongcheng Nearshore Bays. The composition and concentration of LMATs showed significant seasonal variation in both water and sediments. The total LMAT concentrations (∑LMATs) ranged from 4.20 ng/L to 107.62 ng/L in surface and bottom seawater, 2.01 ng/L to 120.58 ng/L in sediment porewater (mean 27.42 ng/L), and 17.04-490.87 ng/kg in sediments (mean 198.62 ng/kg). In water, LMAT diversity was higher in spring and summer, whereas concentrations peaked in summer and declined in winter. Conversely, ∑LMATs in sediments and porewater displayed a reciprocal seasonal pattern, implying dynamic exchange at the sediment-porewater interface. These findings highlight the seasonal dynamics of LMATs in mariculture sites, providing essential data for evaluating contamination risks during breeding cycle.
Collapse
Affiliation(s)
- Cancan Sheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| | - Shengqing Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Low WV, Zhang L, Wang P, Zheng P, Yang X, Lu L, Zheng J, Zhu Z, Chen J, Tong M. Spatiotemporal distribution, composition, and influencing factors of lipophilic marine algal toxins in the Beibu Gulf, China: Implications for necessity of offshore seawater monitoring. HARMFUL ALGAE 2025; 145:102845. [PMID: 40324855 DOI: 10.1016/j.hal.2025.102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
Lipophilic marine algal toxins (LMATs) are persistent, bioaccumulative metabolites that pose significant threats to marine biodiversity and seafood safety. To comprehensively understand LMATs pollution in offshore natural fishing grounds, we investigated the spatiotemporal distribution and composition of 13 LMATs in surface seawater in Beibu Gulf's offshore area, along with their key influencing factors and latitudinal variations across coastal regions in China. We detected 20-methyl spirolide G (SPX20G) for the first time in coastal waters in China, alongside other frequently detected LMATs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), azaspiracid-1 (AZA1), azaspiracid-2 (AZA2), gymnodimine (GYM), and 13-desmethyl spirolide C (SPX1). Significant seasonal variations were observed, with summer exhibiting eight LMAT types and higher total LMAT concentrations (ΣLMATs) (16.92 ± 20.45 ng/L) compared to winter's five LMAT types and ΣLMATs concentrations at 5.63 ± 3.30 ng/L. Predominant PTX2 and OA concentrations showed a decreasing trend from northern to southern Beibu Gulf, while other LMATs were distributed in patches, particularly in summer. Notably, cyclic imines (GYM and SPX1) were detected with high frequencies and concentrations, underscoring the need for their monitoring. Spearman correlation and redundancy analyses identified water depth, chlorophyll a (Chla), temperature, salinity, nutrients (DIN:DIP and SiO₃²⁻), and dissolved oxygen (DO) as key factors influencing LMATs distribution in the Beibu Gulf. Latitudinal analysis of LMAT contents across Chinese waters revealed DTX1 as more prevalent at higher latitudes, and GYM, SPX1, and AZA1 more common at lower latitudes, while ΣLMATs concentrations from this study ranked at moderate to high levels compared to other regions. Therefore, special attention is required for LMATs pollution in offshore fishing areas.
Collapse
Affiliation(s)
- Wee Vian Low
- Ocean College, Zhejiang University, Zhoushan 316021, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China.
| | - Pengbin Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, MNR, Hangzhou 310012, China
| | - Pengfei Zheng
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Xi Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Lu Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, MNR, Hangzhou 310012, China
| | - Zuhao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Jie Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China.
| |
Collapse
|
3
|
Peng Q, Ye Y, Wu X, Lin C, Lin X, Weng Q, Chen Q. Dual-mode monolithic column with zwitterion antifouling and aptamer affinity for online specific recognition of okadaic acid. J Chromatogr A 2025; 1747:465819. [PMID: 40036915 DOI: 10.1016/j.chroma.2025.465819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Developing a functional media for precise identification of trace shellfish toxin would underpin the effective assessment of marine pollution. Herein, a novel monolithic column with a dual-mode strategy integrating antifouling and aptamer bionic affinity recognition was proposed for online specific identification of the marine toxin okadaic acid (OA). The zwitterionic monomer 2-(methacryloyloxy)ethylphosphorylcholine (MPC) and aptamers were synergistically employed to enable efficient reduction of matrix interferences and selective capture of target OA. Preparation optimization, characterization, and fouling-resistant mechanism of the dual-mode bionic monolith were evaluated. The zwitterion phosphorylcholine MPC introduced into the monolith significantly improved the fouling resistance to biomass substrates, meanwhile the aptamers were able to provide a high specific recognition capacity. Coupled with LC-MS, the as-prepared monolith provided an effective approach for highly selective and sensitive identification of OA. Good recovery yields of over 90 % in shellfish tissue extracts and human serum were achieved with a sensitive limit of detection (LOD) as low as 0.1 ng/mL, as well as excellent specificity and low interference from proteins, fatty acids and analogues. Applied to popular shellfishes (such as clams, mussels, and oysters) and serum samples, trace OA toxin was accurately distinguished and quantified with satisfactory recoveries as 93.8 ± 2.2 % - 99.9 ± 1.9 % (n = 3). Compared to the traditional HLB cartridge and other materials in the LC-MS method, the resulting anti-fouling aptamer monolith provided a more advanced online analysis mode with higher sensitivity and better resolution of OA in biological samples. It might provide an attractive access to an online bionic recognition platform with LC-MS for efficient, anti-interference and sensitive specific detection of trace marine toxin OA in biological samples.
Collapse
Affiliation(s)
- Qi Peng
- Engineering Technology Research Center on reagent and Instrument for rapid detection of product quality and food safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yan Ye
- Engineering Technology Research Center on reagent and Instrument for rapid detection of product quality and food safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xinglin Wu
- Engineering Technology Research Center on reagent and Instrument for rapid detection of product quality and food safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chenchen Lin
- Engineering Technology Research Center on reagent and Instrument for rapid detection of product quality and food safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xucong Lin
- Engineering Technology Research Center on reagent and Instrument for rapid detection of product quality and food safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China; College of Zhicheng, Fuzhou University, Fuzhou, 350108, China.
| | - Qibiao Weng
- Fujian Provincial Key Laboratory of Eel Aquaculture and Processing, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou 350200, China
| | - Qinai Chen
- Fujian Business University, Fuzhou 350200, China
| |
Collapse
|
4
|
Cavion F, Sosa S, Kilcoyne J, D’Arelli A, Ponti C, Carlin M, Tubaro A, Pelin M. Effects of Dinoflagellate Toxins Okadaic Acid and Dinophysistoxin-1 and -2 on the Microcrustacean Artemia franciscana. Toxins (Basel) 2025; 17:80. [PMID: 39998097 PMCID: PMC11860938 DOI: 10.3390/toxins17020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Harmful algal blooms are an expanding phenomenon negatively impacting human health, socio-economic welfare, and ecosystems. Such events increase the risk of marine organisms' exposure to algal toxins with consequent ecological effects. In this frame, the objective of this study was to investigate the ecotoxicological potential of three globally distributed dinoflagellate toxins (okadaic acid, OA; dinophysistoxin-1, DTX-1; dinophysistoxin-2, DTX-2) using Artemia franciscana as a model organism of marine zooplankton. Each toxin (0.1-100 nM) was evaluated for its toxic effects in terms of cyst hatching, mortality of nauplii Instar I and adults, and biochemical responses related to oxidative stress. At the highest concentration (100 nM), these toxins significantly increased adults' mortality starting from 24 h (DTX-1), 48 h (OA), or 72 h (DTX-2) exposures, DTX-1 being the most potent one, followed by OA and DTX-2. The quantitation of oxidative stress biomarkers in adults, i.e., reactive oxygen species (ROS) production and activity of three endogenous antioxidant defense enzymes (glutathione S-transferase, superoxide dismutase, and catalase) showed that only DTX-2 significantly increased ROS production, whereas each toxin affected the antioxidant enzymes with a different activity profile. In general, the results indicate a negative impact of these toxins towards A. franciscana with potential consequences on the marine ecosystem.
Collapse
Affiliation(s)
- Federica Cavion
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.C.); (C.P.); (M.C.); (A.T.); (M.P.)
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.C.); (C.P.); (M.C.); (A.T.); (M.P.)
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, H91 R673 County Galway, Ireland;
| | - Alessandra D’Arelli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.C.); (C.P.); (M.C.); (A.T.); (M.P.)
| | - Cristina Ponti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.C.); (C.P.); (M.C.); (A.T.); (M.P.)
| | - Michela Carlin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.C.); (C.P.); (M.C.); (A.T.); (M.P.)
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.C.); (C.P.); (M.C.); (A.T.); (M.P.)
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.C.); (C.P.); (M.C.); (A.T.); (M.P.)
| |
Collapse
|
5
|
Fan S, Sheng C, Zhao H, Chen J, He X, Li X. Prevalence of lipophilic phycotoxins with different forms in the benthic environments of a typical mariculture bay. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106936. [PMID: 39753011 DOI: 10.1016/j.marenvres.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/14/2024] [Accepted: 12/25/2024] [Indexed: 02/09/2025]
Abstract
Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity. OA and PTX2 were dominant in bottom seawater and porewater; PTX2 and PTX2 SA were dominant in SPM; and PTX2 and AZA2 were dominant in sediments, but AZA2 was present in sediments only. At the bottom seawater-SPM interface, the average proportion of LPTs in the dissolved phase (DP) (84.35%) was significantly higher than in the particulate phase (PP) (15.65%), indicating that LPTs were mainly distributed to the DP in the bottom seawater. At the sediment-porewater interface, a considerable variation exists in the partitioning behavior of different groups of LPTs, with abundant PTX2 and OA in DP, while the AZA2 and YTX group of LPTs were present in PP. The concentration of total lipophilic phycotoxins (∑LPTs) in the bottom seawater ranged from 8.07 ng L-1 to 37.11 ng L-1, with an average of 22.63 ng L-1, showing that the spatial distribution characteristics of ∑LPTs of the northern farshore are higher than in the southern nearshore. Concentrations of ∑LPTs in sediment and porewater ranged from 1.51 ng kg-1-32.67 ng kg-1 (mean: 17.32 ng kg-1) and 17.32 ng L-1-226.54 ng L-1 (mean: 88.72 ng L-1), respectively. Notably, the concentration of ∑LPTs in porewater is significantly higher than in bottom and surface seawater, indicating that the potential harm of LPTs to benthos needs more attention.
Collapse
Affiliation(s)
- Shengqing Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Cancan Sheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Hao Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Cente, Qingdao, 266071, China.
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Cente, Qingdao, 266071, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
6
|
Geng HX, Kong FZ, Wang JX, Zhang QC, Li F, Hong X, Song MJ, Lian Z, Cai YL, Yu RC. An unusual winter bloom of dinoflagellates with notable damage to kelp cultivation around Shandong peninsula, China. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106687. [PMID: 39173207 DOI: 10.1016/j.marenvres.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
In the coastal waters around Shandong peninsula, an unprecedented winter bloom of dinoflagellates Gonyaulax polygramma and Akashiwo sanguinea occurred in 2021 from late November to early December. The bloom affected a wide area of coastal waters extending from west to east along the northern Shandong peninsula and had a devastating blow to the kelp cultivation industry. Based on the remote-sensing data, the initiation of the bloom was traced back to the region adjacent to the mouth of the Yellow River in Laizhou Bay, where enhanced freshwater discharge from the Yellow River was recorded from September to November. It's proposed that the increased precipitation in the Yellow River basin associated with northward extension of the precipitation band in China could be an important reason for this winter bloom. This unusual winter bloom around Shandong peninsula highlights the potential risks of harmful algal blooms and their impacts on coastal ecosystems under the background of climate change.
Collapse
Affiliation(s)
- Hui-Xia Geng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jin-Xiu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing-Chun Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xin Hong
- Marine College, Shandong University, Weihai, 264209, China
| | - Min-Jie Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ziru Lian
- Marine College, Shandong University, Weihai, 264209, China
| | - Yu-Lin Cai
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
7
|
Li D, Qiu J, Wang X, Li A, Wu G, Yin C, Yang Y. Spatial distribution of lipophilic shellfish toxins in seawater and sediment in the Bohai Sea and the Yellow Sea, China. CHEMOSPHERE 2024; 362:142780. [PMID: 38971437 DOI: 10.1016/j.chemosphere.2024.142780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Lipophilic shellfish toxins (LSTs) are widely distributed in marine environments worldwide, potentially threatening marine ecosystem health and aquaculture safety. In this study, two large-scale cruises were conducted in the Bohai Sea and the Yellow Sea, China, in spring and summer 2023 to clarify the composition, concentration, and spatial distribution of LSTs in the water columns and sediments. Results showed that okadaic acid (OA), dinophysistoxin-1 (DTX1) and/or pectenotoxin-2 (PTX2) were detected in 249 seawater samples collected in spring and summer. The concentrations of ∑LSTs in seawater were ranging of ND (not detected) -13.86, 1.60-17.03, 2.73-17.39, and 1.26-30.21 pmol L-1 in the spring surface, intermediate, bottom water columns and summer surface water layers, respectively. The detection rates of LSTs in spring and summer seawater samples were 97% and 100%, respectively. The high concentrations of ∑LSTs were mainly distributed in the north Yellow Sea and the northeast Bohai Sea in spring, and in the northeast Yellow Sea, the waters around Laizhou Bay and Rongcheng Bay in summer. Similarly, only OA, DTX1 and PTX2 were detected in the surface sediments. Overall, the concentration of ∑LSTs in the surface sediments of the northern Yellow Sea was higher than that in other regions. In sediment cores, PTX2 was mainly detected in the upper sediment samples, whereas OA and DTX1 were detected in deeper sediments, and LSTs can persist in the sediments for a long time. Overall, OA, DTX1 and PTX2 were widely distributed in the water column and surface sediments in the Bohai Sea and the Yellow Sea, China. The results of this study contribute to the understanding of spatial distribution of LSTs in seawater and sediment environmental media and provide basic information for health risk assessment of phycotoxins.
Collapse
Affiliation(s)
- Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
8
|
Shao Y, Li X, Qi X, Li J, Zhao S, Sun P, Wang H, Cheng Y, Zhang Z, Chen L, Zhang X, Zhu M. A graphene oxide-assisted protein immobilization paper-tip immunosensor with smartphone and naked eye readout for the detection of okadaic acid. Anal Chim Acta 2024; 1314:342781. [PMID: 38876519 DOI: 10.1016/j.aca.2024.342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Okadaic acid (OA), as a diarrhetic shellfish poisoning, can increase the risk of acute carcinogenic or teratogenic effects for the ingestion of OA contaminated shellfish. At present, much effort has been made to graft immunoassay onto a paper substrate to make paper-based sensors for rapid and simple detection of shellfish toxin. However, the complicated washing steps and low protein fixation efficiency on the paper substrate need to be further addressed. RESULTS A novel paper-tip immunosensor for detecting OA was developed combined with smartphone and naked eye readout. The trapezoid paper tip was consisted of quantitative and qualitative detection zones. To improve the OA antigen immobilization efficiency on the paper substrate, graphene oxide (GO)-assisted protein immobilization method was introduced. Meanwhile, Au nanoparticles composite probe combined with the lateral flow washing was developed to simplify the washing step. The OA antigen-immobilized zone, as the detection zone Ⅰ, was used for quantitative assay by smartphone imaging. The paper-tip front, as the detection zone Ⅱ, which could qualitatively differentiate OA pollution level within 45 min using the naked eye. The competitive immunoassay on the paper tip exhibited a wide linear range for detecting OA (0.02-50 ng∙mL-1) with low detection limit of 0.02 ng∙mL-1. The recovery of OA in spiked shellfish samples was in the range of 90.3 %-113.%. SIGNIFICANCE These results demonstrated that the proposed paper-tip immunosensor could provide a simple, low-cost and high-sensitivity test for OA detection without the need for additional large-scale equipment or expertise. We anticipate that this paper-tip immunosensor will be a flexible and versatile tool for on-site detecting the pollution of marine products.
Collapse
Affiliation(s)
- Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaotong Li
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Juan Li
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Sheng Zhao
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Peiyan Sun
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | | | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| |
Collapse
|
9
|
Shen N, Tang J, Chen J, Sheng C, Han T, He X, Liu C, Han C, Li X. Occurrence and prevalence of per- and polyfluoroalkyl substances in the sediment pore water of mariculture sites: Novel findings of PFASs from the Bohai and Yellow Seas using a newly established analytical method. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134256. [PMID: 38640673 DOI: 10.1016/j.jhazmat.2024.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.
Collapse
Affiliation(s)
- Nan Shen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Cancan Sheng
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Chenguang Liu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
10
|
Bian Y, Zhang Y, Feng XS, Gao HY. Marine toxins in seafood: Recent updates on sample pretreatment and determination techniques. Food Chem 2024; 438:137995. [PMID: 38029684 DOI: 10.1016/j.foodchem.2023.137995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
11
|
Tang J, He X, Chen J, Cao W, Han T, Xu Q, Sun C. Occurrence and distribution of phycotoxins in the Antarctic Ocean. MARINE POLLUTION BULLETIN 2024; 201:116250. [PMID: 38479322 DOI: 10.1016/j.marpolbul.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.
Collapse
Affiliation(s)
- Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China.
| | - Wei Cao
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qinzeng Xu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
12
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
13
|
Zheng C, Ge R, Wei J, Jiao T, Chen Q, Chen Q, Chen X. NIR-responsive photoelectrochemical sensing platform for the simultaneous determination of tetrodotoxin and okadaic acid in Nassariidae. Food Chem 2024; 430:136999. [PMID: 37542962 DOI: 10.1016/j.foodchem.2023.136999] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/05/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Simultaneous detection of tetrodotoxin (TTX) and okadaic acid (OA) is important for seafood safety. In this work, a novel paper electrode-based near-infrared (NIR) light-responsive photoelectrochemical (PEC) immunosensor was constructed using Ag2S quantum dots (QDs) and NaYF4: Yb, Er upconversion nanoparticles (UCNPs) matched with BiOI for the simultaneous detection of TTX and OA in aquatic products. A low-cost, easily prepared gold nanoparticle-functionalized paper-based screen-printed electrode with six channels was designed to immobilize OA and Ab1 of TTX. Correspondingly, PEC signal immunoprobes (BiOI@UCNPs-Ab and Ab2-Ag2S QDs) with NIR-light response were introduced to construct competitive-type and sandwich-type PEC immunosensors for OA and TTX, respectively. Under optimal conditions, the linear ranges for TTX and OA were 0.001-100 and 0.001-80 ng mL-1, respectively, and the detection limits were 5 and 7 pg mL-1, respectively. The proposed sensor was successfully used for the simultaneous analysis of TTX and OA in Nassariidae samples.
Collapse
Affiliation(s)
- Chenyan Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Rui Ge
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
14
|
Sheng C, He X, Shen N, Han T, Chen J, Liu C, Li X. Occurrence and phase distribution of lipophilic marine algal toxins in the bottom boundary layer and sediment-porewater system of two mariculture sites. CHEMOSPHERE 2023; 341:140109. [PMID: 37689146 DOI: 10.1016/j.chemosphere.2023.140109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
To date, understanding the fate of lipophilic marine algal toxins (LMATs) in benthic environments on which cultivated shellfish depend is still limited. In this work, the occurrence, concentration levels, and phase distributions of LMATs in the benthic environments of two mariculture sites (Sishili and Rongcheng Bays) in China were investigated for the first time. Five LMATs: okadaic acid (OA), pectenotoxin-2 (PTX2), gymnodimine, 13-desmethyl spirolide C, and azaspiracid-2 (AZA2) and three derivatives: dinophysistoxin-1 isomer (DTX1-iso), pectenotoxin-2 seco acid, and 7-epi- pectenotoxin-2 seco acid were detected in different environmental samples. OA and PTX2 were the dominant LMATs in the bottom boundary layer (BBL) and sediment, whereas AZA2 was present in the sediment only. Notably, DTX1-iso was found for the first time to be widely distributed in the benthic environments of the bays. In BBL, the average proportion of LMATs in the dissolved phase (99.20%) was much higher than in the particulate phase (0.80%). Partition of LMATs was more balanced between sediment porewater (57.80% average proportion) and sediment (42.20%). The concentrations of ∑LMATs in the BBL seawater ranged from 19.09 ng/L to 41.57 ng/L (mean of 32.67 ng/L), and the spatial distribution trend was higher in offshore than nearshore. ∑LMATs concentrations in the sediment and porewater of the two bays ranged from 17.04 ng/kg to 150.13 ng/kg (mean of 53.58 ng/kg) and from 8.29 ng/L to 120.58 ng/L (mean of 46.63 ng/L), respectively. Their spatial distributions differed from those in BBL, showing a trend of high concentrations in areas with heavy land-based inputs. ∑LMATs concentrations in porewater were significantly higher than those in BBL seawaters, suggesting that the potential hazards of LMATs to benthic organisms may be underestimated.
Collapse
Affiliation(s)
- Cancan Sheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiuping He
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Qingdao, 266061, China
| | - Nan Shen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tongzhu Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Qingdao, 266061, China
| | - Junhui Chen
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Qingdao, 266061, China.
| | - Chenguang Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
15
|
Li R, Wang J, Deng J, Peng G, Wang Y, Li T, Liu B, Zhang Y. Selective enrichments for color microplastics loading of marine lipophilic phycotoxins. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132137. [PMID: 37499500 DOI: 10.1016/j.jhazmat.2023.132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Microplastics (MPs) and marine lipophilic phycotoxins (MLPs) are two classes of emerging contaminants. Together, they may exacerbate the negative impacts on nearshore marine ecosystems. Herein, the loading of 14 representative MLPs, closely related to toxin-producing algae, on MPs and their relations with colorful MPs have been explored for the first time based on both field and lab data. The objectives of our study are to explore the roles of multiple factors (waterborne MLPs and MP characteristics) in the loading of MLPs by MPs with the applications of various statistical means, and to further explore the role of the color of MP in the loading of specific MLPs through lab simulation experiments. Our results demonstrated that MPs color determined the loading of some specific MLPs on MPs and green MPs can load much more than other colorful fractions (p < 0.05). These interesting phenomena illustrated that the color effects on the loading processes of MLPs on MPs are a dynamic process, and it can be well explained by the shading effect of MP color, which may affect the growth and metabolism of the attached toxic-producing algae on MPs and hence the production of specific MLPs. Furthermore, loading of MLPs on MPs can be considered as the comprehensive physicochemical and biological processes. Our results caution us that special attention should be paid to explore the real-time dynamic color shading effects on all kinds of bio-secreted contaminants loading on MPs, and highlight the necessary to comprehensive investigate the interaction between biota, organic contaminants and MPs.
Collapse
Affiliation(s)
- Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jiuming Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Environmental Science Research Center, Xiamen University, Xiamen 361102, China
| | - Jun Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Gen Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tiezhu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Beibei Liu
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Environmental Science Research Center, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
Ling J, Zhang W, Xiang P, Liao Y, Li J, Zhang Z, Ding Y. Trace detection of methcathinone in sewage using targeted extraction based on magnetic molecularly imprinted polymers coupled with liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4777-4784. [PMID: 37698227 DOI: 10.1039/d3ay01224g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Methcathinone, a new psychoactive substance (NPS), poses a serious threat to public health. Therefore, there is an urgent need to develop a reliable, selective, sensitive and simple analytical technique for monitoring trace amounts of this target NPS in complex matrices. For this purpose, magnetic molecularly imprinted polymers (MMIPs) based on MIPs combined with nano-sized magnetic Fe3O4 were developed for the specific enrichment of methcathinone in wastewater. The binding properties and selectivity of MMIPs toward methcathinone were evaluated and compared with non-imprinted polymer (MNIPs). For sensitive and selective extraction and determination of the target methcathinone, magnetic solid-phase extraction (MSPE) based on MMIPs was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Under optimized conditions, the proposed method was successfully used for the detection of methcathinone in wastewater, which provided a low limit of detection of 0.3 ng L-1 and a limit of quantification of 1.0 ng L-1 with relative standard deviations of less than 6.89% for intra- and inter-day analyses. Good linearity in the range of 1-2000 ng L-1 with a coefficient of determination (R2) greater than 0.98 was observed. Moreover, a certified reference material of water sample was successfully analyzed with satisfactory results and the recoveries of spike experiments ranged from 96.35-116.7%.
Collapse
Affiliation(s)
- Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Wenqi Zhang
- Hebei Province Public Security Department Criminal Police Corps, Shijiazhuang, Hebei, China
| | - Ping Xiang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yingyuan Liao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Jiahao Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | | | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
17
|
Oller-Ruiz A, Alcaraz-Oliver N, Férez G, Gilabert J. Measuring Marine Biotoxins in a Hypersaline Coastal Lagoon. Toxins (Basel) 2023; 15:526. [PMID: 37755952 PMCID: PMC10534363 DOI: 10.3390/toxins15090526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023] Open
Abstract
Marine biotoxins have posed a persistent problem along various coasts for many years. Coastal lagoons are ecosystems prone to phytoplankton blooms when altered by eutrophication. The Mar Menor is the largest hypersaline coastal lagoon in Europe. Sixteen marine toxins, including lipophilic toxins, yessotoxins, and domoic acid (DA), in seawater samples from the Mar Menor coastal lagoon were measured in one year. Only DA was detected in the range of 44.9-173.8 ng L-1. Environmental stressors and mechanisms controlling the presence of DA in the lagoon are discussed. As an enrichment and clean-up method, we employed solid phase extraction to filter and acidify 75 mL of the sample, followed by pre-concentration through a C18 SPE cartridge. The analytes were recovered in aqueous solutions and directly injected into the liquid chromatography system (LC-MS), which was equipped with a C18 column. The system operated in gradient mode, and we used tandem mass spectrometry (MS/MS) with a triple quadrupole (QqQ) in the multiple reaction monitoring mode (MRM) for analysis. The absence of matrix effects was checked and the limits of detection for most toxins were low, ranging from 0.05 to 91.2 ng L-1, depending on the compound. To validate the measurements, we performed recovery studies, falling in the range of 74-122%, with an intraday precision below 14.9% RSD.
Collapse
Affiliation(s)
| | | | | | - Javier Gilabert
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), E-30203 Cartagena, Spain
| |
Collapse
|
18
|
Chen J, Yang J, He X, Wang J, Pan L, Xin M, Chen F, Liang S, Wang B. Prevalence of the neurotoxin domoic acid in the aquatic environments of the Bohai and Northern Yellow seas in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162732. [PMID: 36906020 DOI: 10.1016/j.scitotenv.2023.162732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Domoic acid (DA), a natural marine phytotoxin produced by toxigenic algae, is harmful to fishery organisms and the health of seafood consumers. In this study, we performed a whole-sea area investigation of DA in seawater, suspended particulate matter (SPM), and phytoplankton of the Bohai and Northern Yellow seas to clarify the occurrence, phase partitioning, spatial distribution, potential sources, and environmental influencing factors of DA in the aquatic environment. DA in different environmental media was identified using liquid chromatography-high resolution mass spectrometry and liquid chromatography-tandem mass spectrometry. DA was found to be predominantly in a dissolved phase (99.84 %) in seawater with only 0.16 % in SPM. Dissolved DA (dDA) was widely detected in nearshore and offshore areas of the Bohai Sea, Northern Yellow Sea, and Laizhou Bay with concentrations ranging from < limits of detection (LOD) to 25.21 ng/L (mean: 7.74 ng/L), < LOD to 34.90 ng/L (mean: 16.91 ng/L), and 1.74 ng/L to 38.20 ng/L (mean: 21.28 ng/L), respectively. dDA levels were relatively lower in the northern part than in the southern part of the study area. In particular, the dDA levels in the nearshore areas of Laizhou Bay were significantly higher than in other sea areas. This may be due to seawater temperature and nutrient levels exerting a crucial impact on the distribution of DA-producing marine algae in Laizhou Bay during early spring. Pseudo-nitzschia pungens may be the main source of DA in the study areas. Overall, DA was prevalent in the Bohai and Northern Yellow seas, especially in the nearshore aquaculture zone. Routine monitoring of DA in the mariculture zones of the northern seas and bays of China should be performed to warn shellfish farmers and prevent contamination.
Collapse
Affiliation(s)
- Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| | - Jianbo Yang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China.
| | - Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lei Pan
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| | - Farong Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shengkang Liang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| |
Collapse
|
19
|
Wang J, Li R, Liu B, Zhang Q, Wang X, Zhu Y, Zhang Y. Occurrence and distribution of lipophilic marine algal toxins in the coastal seawater of Southeast China and the South China Sea. MARINE POLLUTION BULLETIN 2023; 187:114584. [PMID: 36642003 DOI: 10.1016/j.marpolbul.2023.114584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The composition, levels, and spatial distribution of dissolved lipophilic marine algal toxins (LMATs) including cyclic imines (CIs), yessotoxins (YTXs), okadaic acid (OA) and its derivatives, pectenotoxins (PTXs), azaspiracids (AZAs), and brevetoxins (BTXs) in the coastal waters of Southeast China (Xiamen) and the South China Sea (Hainan Island and Beibu Gulf) were investigated and compared for the first time. Dissolved AZA3 was firstly detected in the coastal seawater of China. OA and PTX2 were widely distributed in the three areas studied. Gymnodimine (GYM), 13-desmethyl spirolide C (SPX1), YTX, and homo-yessotoxins (h-YTX) were found mainly in the South China Sea. The average ∑LMAT concentrations in the coastal waters of Xiamen, Hainan Island, and Beibu Gulf were 10.02 ng/L, 4.21 ng/L, and 44.27 ng/L, respectively. More groups and much higher concentrations of LMATs occurred in the South China Sea than that in the other sea areas of China.
Collapse
Affiliation(s)
- Jiuming Wang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Beibei Liu
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Qinzhou Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
20
|
Chen H, Zhang W, Liu G, Ding Q, Xu J, Fang M, Zhang L. Highly sensitive detection of okadaic acid in seawater by magnetic solid-phase extraction based on low-cost metal/nitrogen-doped carbon nanotubes. J Chromatogr A 2023; 1689:463772. [PMID: 36610186 DOI: 10.1016/j.chroma.2022.463772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Algae toxins pose a severe threat to human health all over the world. In this study, magnetic metal/nitrogen-doped carbon nanotubes (M-NCNTs) were facilely synthesized based on one-step carbonization and applied for magnetic solid-phase extraction of okadaic acid (OA) from seawater followed by high performance liquid chromatographic tandem mass spectrometry (HPLC-MS/MS) analyses. Differences in the physicochemical properties of the three prepared materials (Fe/Co/Ni-NCNTs) were investigated to confirm the best extraction material. Among them, Ni-NCNTs demonstrated a faster extraction rate (10 min) and higher adsorption capacity (223.5 mg g-1), mainly due to the higher specific surface area, suitable pore structure and more abundant pyridine nitrogen ring. Under the optimal conditions, the calibration curve was linear over the range (1.0-800.0 pg mL-1) with good determination coefficients (R) of 0.9992. The limit of detection (LOD) obtained in multiple replicates was 0.4 pg mL-1. Three seawater samples were measured by the developed method, 12.3 pg mL-1 of OA was detected with a satisfying recovery (88.6%-106.7%) and acceptable repeatability (RSD ≤ 4.8%, n = 6). The results demonstrate that M-NCNTs materials are a promising candidate for magnetic solid-phase extraction. Benefiting from its high extraction and interference resistance, the established analytical method is expected to be extended to detect other marine environmental pollutions.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- School of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Guancheng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinhua Xu
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Min Fang
- School of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
21
|
Lin K, Wang R, Han T, Tan L, Yang X, Wan M, Chen Y, Zhao T, Jiang S, Wang J. Seasonal variation and ecological risk assessment of Pharmaceuticals and Personal Care Products (PPCPs) in a typical semi-enclosed bay - The Bohai Bay in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159682. [PMID: 36302405 DOI: 10.1016/j.scitotenv.2022.159682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay.
Collapse
Affiliation(s)
- Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongzhu Han
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xue Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengmeng Wan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanshan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Ting Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
22
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
23
|
Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. ANAL SCI 2022; 38:1457-1487. [PMID: 36198988 PMCID: PMC9659506 DOI: 10.1007/s44211-022-00190-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
Collapse
Affiliation(s)
- Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt.
| | - Mahmoud A M El-Nouby
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul K Kimani
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lee W Lim
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Entsar I Rabea
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| |
Collapse
|
24
|
Wu G, Zhuang D, Chew KW, Ling TC, Khoo KS, Van Quyen D, Feng S, Show PL. Current Status and Future Trends in Removal, Control, and Mitigation of Algae Food Safety Risks for Human Consumption. Molecules 2022; 27:6633. [PMID: 36235173 PMCID: PMC9572256 DOI: 10.3390/molecules27196633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
With the rapid development of the economy and productivity, an increasing number of citizens are not only concerned about the nutritional value of algae as a potential new food resource but are also, in particular, paying more attention to the safety of its consumption. Many studies and reports pointed out that analyzing and solving seaweed food safety issues requires holistic and systematic consideration. The three main factors that have been found to affect the food safety of algal are physical, chemical, and microbiological hazards. At the same time, although food safety awareness among food producers and consumers has increased, foodborne diseases caused by algal food safety incidents occur frequently. It threatens the health and lives of consumers and may cause irreversible harm if treatment is not done promptly. A series of studies have also proved the idea that microbial contamination of algae is the main cause of this problem. Therefore, the rapid and efficient detection of toxic and pathogenic microbial contamination in algal products is an urgent issue that needs to be addressed. At the same time, two other factors, such as physical and chemical hazards, cannot be ignored. Nowadays, the detection techniques are mainly focused on three major hazards in traditional methods. However, especially for food microorganisms, the use of traditional microbiological control techniques is time-consuming and has limitations in terms of accuracy. In recent years, these two evaluations of microbial foodborne pathogens monitoring in the farm-to-table chain have shown more importance, especially during the COVID-19 pandemic. Meanwhile, there are also many new developments in the monitoring of heavy metals, algal toxins, and other pollutants. In the future, algal food safety risk assessment will not only focus on convenient, rapid, low-cost and high-accuracy detection but also be connected with some novel technologies, such as the Internet of Things (artificial intelligence, machine learning), biosensor, and molecular biology, to reach the purpose of simultaneous detection.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Dong Van Quyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hanoi 100803, Vietnam
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi 100803, Vietnam
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
25
|
Panda D, Dash BP, Manickam S, Boczkaj G. Recent advancements in LC-MS based analysis of biotoxins: Present and future challenges. MASS SPECTROMETRY REVIEWS 2022; 41:766-803. [PMID: 33624883 DOI: 10.1002/mas.21689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
There has been a rising concern regarding the harmful impact of biotoxins, source of origin, and the determination of the specific type of toxin. With numerous reports on their extensive spread, biotoxins pose a critical challenge to figure out their parent groups, metabolites, and concentration. In that aspect, liquid chromatography-mass spectrometry (LC-MS) based analysis paves the way for its accurate identification and quantification. The biotoxins are ideally categorized as phytotoxins, mycotoxins, shellfish-toxins, ciguatoxins, cyanotoxins, and bacterial toxins such as tetrodotoxins. Considering the diverse nature of biotoxins, both low-resolution mass spectrometry (LRMS) and high-resolution mass spectrometry (HRMS) methods have been implemented for their detection. The sample preparation strategy for complex matrix usually includes "QuEChERS" extraction or solid-phase extraction coupled with homogenization and centrifugation. For targeted analysis of biotoxins, the LRMS consisting of a tandem mass spectrometer operating in multiple reaction monitoring mode has been widely implemented. With the help of the reference standard, most of the toxins were accurately quantified. At the same time, the suspect screening and nontarget screening approach are facilitated by the HRMS platforms during the absence of reference standards. Significant progress has also been made in sampling device employment, utilizing novel sample preparation strategies, synthesizing toxin standards, employing hybrid MS platforms, and the associated data interpretation. This critical review attempts to elucidate the progress in LC-MS based analysis in the determination of biotoxins while pointing out major challenges and suggestions for future development.
Collapse
Affiliation(s)
- Debabrata Panda
- Center of Excellence (CoE), Fakir Mohan University, Nuapadhi, Odisha, India
| | - Bisnu P Dash
- Department of Bioscience and Biotechnology, Fakir Mohan University, Nuapadhi, Odisha, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
26
|
Feng Y, Sun M, Sun M, Feng J, Sun H, Feng J. Extraction performance-structure relationship of polyamidoamine dendrimers on silica for online solid-phase extraction of organic pollutants. J Chromatogr A 2022; 1673:463132. [DOI: 10.1016/j.chroma.2022.463132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
|
27
|
Kanwischer M, Asker N, Wernersson AS, Wirth MA, Fisch K, Dahlgren E, Osterholz H, Habedank F, Naumann M, Mannio J, Schulz-Bull DE. Substances of emerging concern in Baltic Sea water: Review on methodological advances for the environmental assessment and proposal for future monitoring. AMBIO 2022; 51:1588-1608. [PMID: 34637089 PMCID: PMC9005613 DOI: 10.1007/s13280-021-01627-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants. However, current Baltic Sea monitoring programs do not address compounds of emerging concern. Hence, potentially harmful pharmaceuticals, UV filters, polar pesticides, estrogenic compounds, per- and polyfluoroalkyl substances, or naturally produced algal toxins are not taken into account during the assessment of the state of the Baltic Sea. Herein, we conducted literature searches based on systematic approaches and compiled reported data on these substances in Baltic Sea surface water and on methodological advances for sample processing and chemical as well as effect-based analysis of these analytically challenging marine pollutants. Finally, we provide recommendations for improvement of future contaminant and risk assessment in the Baltic Sea, which revolve around a combination of both chemical and effect-based analyses.
Collapse
Affiliation(s)
- Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18A, 41390 Göteborg, Sweden
| | - Ann-Sofie Wernersson
- Department for Management of Contaminated Sites, Swedish Geotechnical Institute, Hugo Grauers gata 5 B, 41296 Göteborg, Sweden
| | - Marisa A. Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Elin Dahlgren
- Swedish University of Agricultural Sciences, Stångholmsvägen 2, 178 93 Drottningholm, Sweden
| | - Helena Osterholz
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Friederike Habedank
- State Office for Agriculture, Food Safety and Fisheries, Mecklenburg-Western Pomerania, Thierfelderstraße 18, 18059 Rostock, Germany
| | - Michael Naumann
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jaakko Mannio
- Centre for Sustainable Consumption and Production/Contaminants, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Detlef E. Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
28
|
Li X, Cheng Y, Xu R, Zhang Z, Qi X, Chen L, Zhu M. A smartphone-assisted microarray immunosensor coupled with GO-based multi-stage signal amplification strategy for high-sensitivity detection of okadaic acid. Talanta 2022; 247:123567. [PMID: 35623247 DOI: 10.1016/j.talanta.2022.123567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Okadaic acid (OA) is one of the main virulence factors of diarrheal shellfish toxins (DSP), which can cause acute carcinogenic or teratogenic effects after ingestion of contaminated shellfish. Therefore, high-sensitivity and fast detection of OA is a key to preventing the occurrence of safety accidents. In this paper, we effectively established a smartphone-assisted microarray immunosensor combined with an indirect competitive ELISA (iELISA) for quantitative colorimetric detection of OA. To further improve the detection sensitivity and match the smartphone imaging, a novel graphene oxide (GO) composite probe was developed to realize the multi-stage signal amplification. The system exhibited a wide linear range for the detection of OA (0.02-33.6 ng ·mL-1) with low detection limit of 0.02 ng ·mL-1. The recovery of OA in spiked shellfish samples was in the range of 80%-103.5%, which indicates the good applicability of this biosensor. The whole detection system has advantages of simplicity, low cost, high sensitivity and portability, which is expected to be a powerful alternative tool for on-site detecting and early warning of the pollution of marine products.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China.
| | - Ranran Xu
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| |
Collapse
|
29
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
30
|
Zhang X, Gao Y, Deng B, Hu B, Zhao L, Guo H, Yang C, Ma Z, Sun M, Jiao B, Wang L. Selection, Characterization, and Optimization of DNA Aptamers against Challenging Marine Biotoxin Gymnodimine-A for Biosensing Application. Toxins (Basel) 2022; 14:195. [PMID: 35324692 PMCID: PMC8949142 DOI: 10.3390/toxins14030195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Gymnodimines (GYMs), belonging to cyclic imines (CIs), are characterized as fast-acting toxins, and may pose potential risks to human health and the aquaculture industry through the contamination of sea food. The existing detection methods of GYMs have certain defects in practice, such as ethical problems or the requirement of complicated equipment. As novel molecular recognition elements, aptamers have been applied in many areas, including the detection of marine biotoxins. However, GYMs are liposoluble molecules with low molecular weight and limited numbers of chemical groups, which are considered as "challenging" targets for aptamers selection. In this study, Capture-SELEX was used as the main strategy in screening aptamers targeting gymnodimine-A (GYM-A), and an aptamer named G48nop, with the highest KD value of 95.30 nM, was successfully obtained by screening and optimization. G48nop showed high specificity towards GYM-A. Based on this, a novel aptasensor based on biolayer interferometry (BLI) technology was established in detecting GYM-A. This aptasensor showed a detection range from 55 to 1400 nM (linear range from 55 to 875 nM) and a limit of detection (LOD) of 6.21 nM. Spiking experiments in real samples indicated the recovery rate of this aptasensor, ranging from 96.65% to 109.67%. This is the first study to report an aptamer with high affinity and specificity for the challenging marine biotoxin GYM-A, and the new established aptasensor may be used as a reliable and efficient tool for the detection and monitoring of GYMs in the future.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
- College of Medicine, Shaoxing University, 900th Chengnan Avenue, Shaoxing 312000, China
| | - Yun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bowen Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Navy Medical University, Shanghai 200433, China;
| | - Luming Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Han Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Chengfang Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Zhenxia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| |
Collapse
|
31
|
Liang Y, Li A, Chen J, Tan Z, Tong M, Liu Z, Qiu J, Yu R. Progress on the investigation and monitoring of marine phycotoxins in China. HARMFUL ALGAE 2022; 111:102152. [PMID: 35016765 DOI: 10.1016/j.hal.2021.102152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Marine phycotoxins associated with paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP), tetrodotoxin (TTX), palytoxin (PLTX) and neurotoxin β-N-methylamino-L-alanine (BMAA) have been investigated and routinely monitored along the coast of China. The mouse bioassay for monitoring of marine toxins has been progressively replaced by the enzyme-linked immunosorbent assay (ELISA) and liquid chromatography tandem mass spectrometry (LC-MS/MS), which led to the discovery of many new hydrophilic and lipophilic marine toxins. PSP toxins have been detected in the whole of coastal waters of China, where they are the most serious marine toxins. PSP events in the Northern Yellow Sea, the Bohai Sea and the East China Sea are a cause of severe public health concern. Okadaic acid (OA) and dinophysistoxin-1 (DTX1), which are major toxin components associated with DSP, were mainly found in coastal waters of Zhejiang and Fujian provinces, and other lipophilic toxins, such as pectenotoxins, yessotoxins, azaspiracids, cyclic imines, and dinophysistoxin-2(DTX2) were detected in bivalves, seawater, sediment, as well as phytoplankton. CFP events mainly occurred in the South China Sea, while TTX events mainly occurred in Jiangsu, Zhejiang and Fujian provinces. Microalgae that produce PLTX and BMAA were found in the phytoplankton community along the coastal waters of China.
Collapse
Key Words
- AZAs, azaspiracids
- Abbreviations: ASP, amnesic shellfish poisoning
- Animal seafood
- BMAA, β-N-methylamino-L-alanine
- CFP, ciguatera fish poisoning
- CIs, cyclic imines
- CTXs, ciguatoxins
- Coastal waters of China
- DA, domoic acid
- DSP, diarrhetic shellfish poisoning
- DTX1, dinophysistoxin-1
- DTX2, dinophysistoxin-2
- DTXs, dinophysistoxins
- ELISA, enzyme-linked immunosorbent assay
- FJ, Fujian
- GD, Guangdong
- GX, Guangxi
- GYM, gymnodimine
- HB, Hebei
- HN, Hainan
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- JS, Jiangsu
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- LMTs, lipophilic marine toxins
- LN, Liaoning
- LOD, limit of detection
- LOQ, limit of quantitation
- MBA, mouse bioassay
- Marine phycotoxins
- NSP, neurotoxic shellfish poisoning
- OA, okadaic acid
- PLTXs, palytoxins
- PSP, paralytic shellfish poisoning
- PTX2, pectenotoxin-2
- PbTXs, brevetoxins
- SD, Shandong
- SPATT, solid phase adsorbent toxin tracking
- SPE, solid phase extraction
- SPX1, 13-desmethyl spirolide C
- STXs, saxitoxins
- TTXs, tetrodotoxins
- Toxin analysis
- YTXs, yessotoxins
- ZJ, Zhejiang
- hYTX, 1-homoyessotoxin
Collapse
Affiliation(s)
- Yubo Liang
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Zhao Liu
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Rencheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
WANG J, CHEN J, YANG J, HE X, WANG Y, WANG B. [Determination of domoic acid in seawater by solid phase extraction-liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:889-895. [PMID: 34212589 PMCID: PMC9404059 DOI: 10.3724/sp.j.1123.2021.02026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Domoic acid (DA) can poison or even be fatal to marine mammals, and poses a potential risk to human health via transmission through the food chain. The level of DA in seawater will affect the safety of seafood. Therefore, a powerful method for the detection of DA in seawater, especially in the coastal mariculture zone, is needed. In order to identify different concentration levels of DA in real seawater, in this study, a method was established for the determination of trace DA in seawater by SPE-LC-MS/MS. First, the LC-MS/MS instrument and sample pretreatment conditions were optimized. Subsequently, DA was separated on a 5 TC-C18 (2) analytical column (150 mm×4.6 mm, 5 μm), and multiple reaction monitoring (MRM) was conducted in the positive electrospray ionization mode. For off-line SPE, the HLB cartridge could enrich DA in seawater. The best enrichment of DA was obtained after adding 0.32 mL formic acid to an 80.0 mL seawater sample. Four on-line SPE columns from Agilent, namely, 5 TC-C18(2) (12.5 mm×4.6 mm, 5 μm), Zorbax Eclipse Plus-C18 (12.5 mm×2.1 mm, 5 μm), Zorbax Eclipse XDB-C8 (12.5 mm×2.1 mm, 5 μm), and PLRP-S (12.5 mm×2.1 mm, 15-20 μm), were tested to determine their suitability to trap DA from seawater samples. The 5 TC-C18 (2) column offered the best retention ability and good peak shape of DA, and was selected as the on-line SPE column. Validation was then performed to assess the sensitivity, linearity, matrix effects (MEs), recoveries, and precisions of the proposed method. After simple treatment of the seawater samples by filtration and acidification, 0.6 mL of the seawater sample was injected directly for on-line SPE-LC-MS/MS. The linearity was good, and ranged from 10.0 to 500.0 ng/L (correlation coefficient R2=0.9992). The limit of detection (LOD) and limit of quantification (LOQ) of DA were 4.0 and 10.0 ng/L, respectively, with good recovery (≥81.0%) and precision (RSDs≤4.2%) at three spiked levels in the blank seawater samples. After the DA in the 80.0 mL seawater sample was enriched by off-line SPE, a 0.6 mL sample was injected for on-line SPE-LC-MS/MS. The DA in the spiked blank seawater sample showed a good linear relationship in the range of 0.3-50.0 ng/L (R2=0.9990). The LOD and LOQ were 0.1 and 0.3 ng/L, respectively. The recoveries of DA at low, medium, and high spiked levels in the blank seawater samples were all ≥69.2%, and the RSDs were ≤4.4%. The MEs of DA with both methods were 18.3% and 13.7%, respectively, indicating that the ME was mild enough to be negligible. In summary, the proposed method is simple, sensitive, robust, and powerful for the detection of DA in inshore and offshore seawater.
Collapse
|
33
|
Shang L, Xu Y, Leaw CP, Lim PT, Wang J, Chen J, Deng Y, Hu Z, Tang YZ. Potent allelopathy and non-PSTs, non-spirolides toxicity of the dinoflagellate Alexandrium leei to phytoplankton, finfish and zooplankton observed from laboratory bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146484. [PMID: 33774286 DOI: 10.1016/j.scitotenv.2021.146484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The dinoflagellate genus Alexandrium has been well known for causing paralytic shellfish poisoning (PSP) worldwide. Several non-PSP toxin-producing species, however, have shown to exhibit fish-killing toxicity. Here, we report the allelopathic activity of Alexandrium leei from Malaysia to other algal species, and its toxicity to finfish and zooplankton, via laboratory bioassays. Thirteen microalgal species that co-cultured with Al. leei revealed large variability in the allelopathic effects of Al. leei on the test algae, with the growth inhibition rates ranging from 0 to 100%. The negative allelopathic effects of Al. leei on microalgae included loss of flagella and thus the motility, damages of chain structure, deformation in cell morphology, and eventually cell lysis. The finfish experienced 100% mortality within 24 h exposed to the live culture (2000-6710 cells·mL-1), while the rotifer and brine shrimp exhibited 96-100% and 90-100% mortalities within 48 h when exposed to 500-6000 cells·mL-1 of Al. leei. The mortality of the test animals depended on the Al. leei cell density exposed, leading to a linear relationship between mortality and cell density for the finfish, and a logarithmic relationship for the two zooplankters. When exposed to the treatments using Al. leei whole live culture, cell-free culture medium, extract of algal cells in the f/2-Si medium, extract of methanol, and the re-suspended freeze-and-thaw algal cells, the test organisms (Ak. sanguinea and rotifers) all died at the cell density of 8100 cells·mL-1 within 24 h. Toxin analyses by HILIC-ESI-TOF/MS and LC-ESI-MS/MS demonstrated that Al. leei did not produce PSP-toxins and 13-desmethyl spirolide C. Overall, our findings demonstrated potent allelopathy and toxicity of Al. leei, which do not only pose threats to the aquaculture industry, fisheries, and marine ecosystems but may also play a part role in the population dynamics and bloom formation of this species.
Collapse
Affiliation(s)
- Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yangbing Xu
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
34
|
Zheng C, Yin M, Ge R, Wei J, Su B, Chen X, Chen X. Competitive near-infrared PEC immunosorbent assay for monitoring okadaic acid based on a disposable flower-like WO 3-Modified screen-printed electrode. Biosens Bioelectron 2021; 185:113278. [PMID: 33930751 DOI: 10.1016/j.bios.2021.113278] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 01/28/2023]
Abstract
The long-term toxic effects of okadaic acid (OA) in shellfish pose a serious threat to public health, negatively impacting the development of the shellfish aquaculture industry. In this study, a novel competitive near-infrared-mediated photoelectrochemical immunosorbent assay (cNIR-PECIA) was developed for ultrasensitive and highly selective detection of OA based on NaYF4:Yb, Tm upconversion nanophosphors (UCNPs) and a flower-like WO3-modified screen-printed electrode (FL-WO3 SPE). The UCNPs function as a self-powder to convert NIR excitation into visible emissions. FL-WO3 fully utilizes the visible illumination and induces the separation of electron-hole pairs, thus generating a photocurrent. After conjugating monoclonal antibodies against OA on UCNPs (UCNPs-Ab), the bright PEC immunoprobe selectively captured OA molecules, which were then determined by a competitive indirect immunosorbent assay. Under optimal conditions, the 50% inhibitory concentration of the immunosensor was 0.09 ng mL-1. The OA concentration had a linear relationship with the antibody binding rate in the range of 0.01-60 ng mL-1 with an extremely low detection limit of 0.007 ng mL-1. Finally, the proposed cNIR-PECIA was successfully utilized to analyze OA content in mussel samples. This study affords new ideas for constructing NIR PEC sensors by using upconversion luminescent materials to match semiconductors. The superior sensing properties indicate their potential applicability in food safety analysis.
Collapse
Affiliation(s)
- Chenyan Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Mingming Yin
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Rui Ge
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jie Wei
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Bingyuan Su
- Xiamen Center for Disease Control and Prevention, Xiamen, 361021, China.
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaomei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China.
| |
Collapse
|