1
|
Li Y, Zhan F, Shunthirasingham C, Lei YD, Oh J, Weng C, Ben Chaaben A, Lu Z, Lee K, Gobas FAPC, Hung H, Wania F. Inferring atmospheric sources of gaseous organophosphate esters from spatial patterns. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:643-652. [PMID: 39913418 PMCID: PMC11864208 DOI: 10.1093/etojnl/vgae089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 02/27/2025]
Abstract
Organophosphate esters (OPEs) have emerged as pervasive environmental contaminants, with concentrations often exceeding those of traditional flame retardants and plasticizers by orders of magnitude. Here, we present concentrations of OPEs in the atmospheric gas phase collected using passive air samplers deployed in the coastal regions of Quebec and British Columbia in southern Canada. Four OPEs, i.e., tri-n-butyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris (phenyl) phosphate (TPhP) were reliably and ubiquitously detected, with TCPP showing the highest level, followed by TBP. Concentration levels of TCPP and TCEP are correlated with each other and with population, possibly indicating emission from consumer products. Spatial patterns of TBP and TPhP are more indicative of industrial usage, with airports possibly being a major source for TBP. The positive relationships between atmospheric OPEs and population are influenced by ambient temperature, whereby the size of the populated area around a sampling site influencing the air concentration appears to be decreasing at higher temperatures.
Collapse
Affiliation(s)
- Yuening Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Faqiang Zhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Ying Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jenny Oh
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON, Canada
| | - Chunwen Weng
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Amina Ben Chaaben
- Institut des Sciences de la Mer, Université du Quebec à Rimouski, Rimouski, QC, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer, Université du Quebec à Rimouski, Rimouski, QC, Canada
| | - Kelsey Lee
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Frank A P C Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, North York, ON, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
2
|
Wang G, Li M, Ji Y, Hao Z, Wang Y, Xue H, Wang H, Liu Y. Insight into natural attenuation of tributyl phosphate by indigenous anaerobic microbes in soils: Implication by stable carbon isotope fractionation and microbial community structures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125482. [PMID: 39644960 DOI: 10.1016/j.envpol.2024.125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Organophosphate esters (OPEs) are widespread in the environment, with high persistence and toxicity. However, the underlying mechanisms of anaerobic microbial degradation of OPEs remain elusive in the field environment. In this study, the natural attenuation mechanisms of tributyl phosphate (TnBP) by indigenous anaerobic microorganisms in soils were investigated by using compound-specific stable isotope analysis (CSIA) and characterization of microbial communities. The results indicated that dibutyl phosphate (DnBP) was the major degradation product of TnBP. Significant carbon isotope fractionation was observed for TnBP during the anaerobic microbial degradation, and the carbon isotope enrichment factor (εC) was determined to be -2.71 ± 0.13‰. Unlike aerobic degradation with P-O bond cleavage, C-O bond cleavage was verified as the mode to removal a butyl side chain for TnBP to generate DnBP during the anaerobic microbial degradation. Microbial community analysis indicated that Sphingomonans, Nocardioides and Streptomyces were the important contributors to microbial degradation of TnBP in anoxic soils. TnBP altered microbial metabolic functions in anoxic soils, mainly enhancing the biosynthesis of ansamycins, ketone bodies and amino acids, and flagellar assembly, which promoted microbial degradation of TnBP. This study provided a better method to characterize the chemical bond cleavage mode and effect of OPEs on microbial communities, which was a prerequisite for the bioremediation of OPE pollution in soils.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China.
| | - Maojiao Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Yinli Ji
- The Yellow River Delta Sustainable Development Institute of Shandong Province, No.337 Nanyi Road, Dongying, 257000, PR China
| | - Zixuan Hao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Yana Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Hongyi Xue
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| |
Collapse
|
3
|
Yan Z, Liao W, Liu H, Zhang X, Lin Q, Feng C, Wu F. Temperature dependent cholinergic synapse induced by triphenyl phosphate and tris(1.3-dichloroisopropyl) phosphate via thyroid hormone synthesis in Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135822. [PMID: 39276737 DOI: 10.1016/j.jhazmat.2024.135822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Triphenyl phosphate (TPHP) and tris(1.3-dichloroisopropyl) phosphate (TDCIPP) are emerging contaminants that pervade diverse ecosystems and impair the thyroid and neural signaling pathways. The intricate interactions between thyroid and neurodevelopmental effects mediated by TPHP and TDCIPP remain elusive. This study integrates in vivo, in vitro, and in silico approaches to elucidate these mechanisms in Cyprinus carpio at varying temperatures. It showed that TPHP and TDCIPP hindered fish growth, particularly at low temperatures, by interfering with thyroid hormone synthesis and transport processes. Both compounds have been identified as environmental hormones that mimic thyroid hormone activity and potentially inhibit acetylcholinesterase, leading to neurodevelopmental disorders characterized by brain tissue damage and disrupted cholinergic synapses, such as axon guidance and regeneration. Notably, the bioaccumulation of TPHP was 881.54 % higher than that of TDCIPP, exhibiting temperature-dependent variations with higher levels of TDCIPP at low temperatures (20.50 % and 250.84 % above optimum and high temperatures, respectively), suggesting that temperature could exacerbate the toxicity effects of OPEs. This study sheds new light on the mechanisms underlying thyroid endocrine disruption and neurodevelopmental toxicity in C. carpio. More importantly, these findings indicate that temperature affects the environmental fate and effects of TPHP and TDCIPP, which could provide an important basis for ecological environmental zoning control of emerging contaminants in the future.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liao
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Hangshuo Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyi Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Wang H, Ding J, Luo S, Yan M, Hu F. Unveiling the mechanisms of reproductive toxicity induced by full life-cycle exposure to environmentally relevant concentrations of tris(2-chloroethyl) phosphate in male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107079. [PMID: 39260100 DOI: 10.1016/j.aquatox.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), a commonly used organophosphate flame retardant, has garnered considerable concern owing to its pervasive presence in the environment and its toxic effects on living organisms. The perpetuation of populations and species hinges on successful reproduction, yet research into the mechanisms underlying reproductive toxicity remains scant, particularly in aquatic species. In this work, zebrafish embryos were exposed to TCEP (0, 0.8, 4, 20, and 100 µg/L) for 120 days until sexual maturation, and multiple reproductive endpoints were investigated in male zebrafish. Our results showed that the body weight, body length, and gonadal-somatic index (GSI) were remarkably decreased in all TCEP treatment groups (except GSI in the 0.8 µg/L TCEP-treated group). Long-term exposure to TCEP led to reduced reproductive capacity of male zebrafish, as evidenced by decreased fertilization. Histological observation gave an indication of delayed testicular development and inhibited spermatogenesis under TCEP stress. The content of testosterone (T) was significantly elevated in all TCEP treatment group, whereas 17 β-estradiol (E2) levels remained stable. Transcriptome analysis revealed a lot of downregulated genes involved in steroid hormone biosynthesis, energy metabolism, and sperm motility, which might account for the imbalance of steroid hormone levels, retarded spermatogenesis and declined fertilization success. Overall, these findings offered a thorough understanding of the mechanisms underlying the male reproductive toxicity caused by TCEP, highlight the risk of TCEP on reproductive health of fish.
Collapse
Affiliation(s)
- Hongkai Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, PR China
| | - Shiyi Luo
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Meijiao Yan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, PR China.
| |
Collapse
|
6
|
Wang Y, Guo AL, Xu Y, Xu X, Yang L, Yang Y, Chao L. EHDPP induces proliferation inhibition and apoptosis to spermatocyte: Insights from transcriptomic and metabolomic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116878. [PMID: 39142116 DOI: 10.1016/j.ecoenv.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND 2-ethylhexyldiphenyl phosphate (EHDPP) was used widespread in recent years and it was reported to impair reproductive behaviors and decrease fertility in male Japanese medaka. However, whether EHDPP causes spermatogenesis disturbance remains uncertain. OBJECTIVES We aimed to study the male reproductive toxicity of EHDPP and its related mechanism. METHODS Human spermatocyte cell line GC-2 was treated with 10 µM, 50 µM or 100 µM EHDPP for 24 h. Male CD-1 mice aged 6 weeks were given 1, 10, or 100 mg/kg/d EHDPP daily for 42 days and then euthanized to detect sperm count and motility. Proliferation, apoptosis, oxidative stress was detected in mice and cell lines. Metabolome and transcriptome were used to detect the related mechanism. Finally, anti-oxidative reagent N-Acetylcysteine was used to detect whether it could reverse the side-effect of EHDPP both in vivo and in vitro. RESULTS Our results showed that EHDPP inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Metabolome and transcriptome showed that nucleotide metabolism disturbance and DNA damage was potentially involved in EHDPP-induced reproductive toxicity. Finally, we found that excessive ROS production caused DNA damage and mitochondrial dysfunction; NAC supplement reversed the side effects of EHDPP such as DNA damage, proliferation inhibition, apoptosis and decline in sperm motility. CONCLUSION ROS-evoked DNA damage and nucleotide metabolism disturbance mediates EHDPP-induced germ cell proliferation inhibition and apoptosis, which finally induced decline of sperm motility.
Collapse
Affiliation(s)
- Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - An-Liang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China; Department of Reproductive Medicine, Linyi People's Hospital, Lin'yi 276003, PR China
| | - Xiaoyan Xu
- Reproductive Medicine Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong 250012, PR China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
7
|
Yan Z, Feng C, Xu Y, Wang J, Huang N, Jin X, Wu F, Bai Y. Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100401. [PMID: 38487363 PMCID: PMC10937237 DOI: 10.1016/j.ese.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
Organophosphate esters (OPEs) are increasingly recognized as pervasive environmental contaminants, primarily from their extensive application in flame retardants and plasticizers. Despite their widespread presence, the intricacies of OPE bioaccumulation within aquatic ecosystems remain poorly understood, particularly the environmental determinants influencing their distribution and the bioaccumulation dynamics across aquatic food chains. Here we show that water temperature plays a crucial role in modulating the dispersion of OPE in the aquatic environment of Poyang Lake. We quantified OPE concentrations across various matrices, uncovering levels ranging from 0.198 to 912.622 ng L-1 in water, 0.013-493.36 ng per g dry weight (dw) in sediment, 0.026-41.92 ng per g wet weight (ww) in plankton, 0.13-2100.72 ng per g dw in benthic invertebrates, and 0.31-3956.49 ng per g dw in wild fish, highlighting a pronounced bioaccumulation gradient. Notably, the intestines emerged as the principal site for OPE absorption, displaying the highest concentrations among the seven tissues examined. Among the various OPEs, tris(chloroethyl) phosphate was distinguished by its significant bioaccumulation potential within the aquatic food web, suggesting a need for heightened scrutiny. The propensity for OPE accumulation was markedly higher in benthic invertebrates than wild fish, indicating a differential vulnerability within aquatic biota. This study lays a foundational basis for the risk assessment of OPEs as emerging contaminants and underscores the imperative to prioritize the examination of bioaccumulation effects, particularly in benthic invertebrates, to inform future environmental safeguarding strategies.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
8
|
Qiao Y, Feng C, Jin X, Yan Z, Feng W, Wang Y, Bai Y. Concentration levels and ecological risk assessment of typical organophosphate esters in representative surface waters of a megacity. ENVIRONMENTAL RESEARCH 2024; 251:118614. [PMID: 38462084 DOI: 10.1016/j.envres.2024.118614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.
Collapse
Affiliation(s)
- Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
9
|
Qadeer A, Anis M, Warner GR, Potts C, Giovanoulis G, Nasr S, Archundia D, Zhang Q, Ajmal Z, Tweedale AC, Kun W, Wang P, Haoyu R, Jiang X, Shuhang W. Global Environmental and Toxicological Data of Emerging Plasticizers: Current Knowledge, Regrettable Substitution Dilemma, Green Solution and Future Perspectives. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:5635-5683. [PMID: 39553194 PMCID: PMC11566117 DOI: 10.1039/d3gc03428c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The global plasticizer market is projected to increase from $17 billion in 2022 to $22.5 billion in 2027. Various emerging/alternative plasticizers entered the market following the ban on several phthalate plasticizers because of their harmful effects. However, there is limited data (especially peer-reviewed) on emerging plasticizers' toxicity and environmental impact. This review compiles available data on toxicity, exposure, environmental effects, and safe production of emerging plasticizers. It identifies gaps in scientific research and provides evidence that emerging plasticizers are potential cases of regrettable substitution. Several alternative plasticizers, such as acetyl tributyl citrate (ATBC), diisononyl cyclohexane-1,2 dicarboxylate (DINCH), tris-2-ethylhexyl phosphate (TEHP), tricresyl phosphate (TCP), tris-2-ethylhexyl phosphate (TPHP), bis-2-ethylhexyl terephthalate (DEHT), and tris-2-ethylhexyl trimellitate (TOTM), show potential as endocrine disrupting properties and other toxic characteristics. Some chemicals like bis-2-ethylhexyl adipate (DEHA), diisobutyl adipate (DIBA), ATBC, DINCH, bis-2-ethylhexyl sebacate (DOS), diethylene glycol dibenzoate (DEGDB), DEHT, and phosphate esters showed the potential to cause toxicity in aquatic species. Plus, there is great lack of information on compounds like diisononyl adipate (DINA), dibutyl adipate (DBA), diisodecyl adipate (DIDA), dipropylene glycol dibenzoate (DPGDB), dibutyl sebacate (DBS), alkylsulfonic phenyl ester (ASE), trimethyl pentanyl diisobutyrate (TXIB), DEGDB and bis-2-ethylhexyl sebacate (DOS). Some compounds like epoxidized soybean oil (ESBO), castor-oil-mono-hydrogenated acetate (COMGHA), and glycerin triacetate (GTA) are potentially safer or less toxic. Alternative plasticizers such as adipates (LogKow 4.3-10.1), cyclohexane dicarboxylic acids (LogKow 10), phosphate esters (LogKow 2.7-9.5), sebacates (LogKow 6.3-10.1), terephthalates (LogKow 8.4), and vegetable oil derivatives (LogKow 6.4-14.8) have logKow values that are comparable to phthalate plasticizers (LogKow 7.5-10.4), indicating potential bioaccumulation and health consequences. Field studies have demonstrated that phosphate esters can undergo bioaccumulation and biomagnification, but there is a lack of bioaccumulation studies for other compounds. We also discuss the metabolism of emerging plasticizers, though data is limited. Our article highlights that numerous alternative compounds display potential health and ecological risks, indicating they might not be suitable substitutes for legacy plasticizers. There is also a lack of scientific data on most emerging plasticizers. This way, we call for increased research and timely regulatory action to prevent global contamination and health risks. Finally, this study presents a scientifically robust protocol to avoid harmful substitutions and ensure the production of safer chemicals.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Muhammad Anis
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Genoa R. Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Samia Nasr
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Qinghuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Zeeshan Ajmal
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Anthony C. Tweedale
- R.I.S.K. Consultancy (Rebutting Industry Science with Knowledge), Brussels, Belgium
| | - Wang Kun
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Pengfei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Ren Haoyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Wang Shuhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| |
Collapse
|
10
|
Lao ZL, Wu D, Li HR, Feng YF, Zhang LW, Jiang XY, Liu YS, Wu DW, Hu JJ. Uptake, translocation, and metabolism of organophosphate esters (OPEs) in plants and health perspective for human: A review. ENVIRONMENTAL RESEARCH 2024; 249:118431. [PMID: 38346481 DOI: 10.1016/j.envres.2024.118431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.
Collapse
Affiliation(s)
- Zhi-Lang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dan Wu
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yu-Fei Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Long-Wei Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xue-Yi Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi-Shan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dong-Wei Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun-Jie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
11
|
Coelho SD, Maricoto T, Taborda-Barata L, Annesi-Maesano I, Isobe T, Sousa ACA. Relationship between flame retardants and respiratory health- A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123733. [PMID: 38458527 DOI: 10.1016/j.envpol.2024.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Chronic respiratory diseases are a dealing cause of death and disability worldwide. Their prevalence is steadily increasing and the exposure to environmental contaminants, including Flame Retardants (FRs), is being considered as a possible risk factor. Despite the widespread and continuous exposure to FRs, the role of these contaminants in chronic respiratory diseases is yet not clear. This study aims to systematically review the association between the exposure to FRs and chronic respiratory diseases. Searches were performed using the Cochrane Library, MEDLINE, EMBASE, PUBMED, SCOPUS, ISI Web of Science (Science and Social Science Index), WHO Global Health Library and CINAHL EBSCO. Among the initial 353 articles found, only 9 fulfilled the inclusion criteria and were included. No statistically significant increase in the risk for chronic respiratory diseases with exposure to FRs was found and therefore there is not enough evidence to support that FRs pose a significantly higher risk for the development or worsening of respiratory diseases. However, a non-significant trend for potential hazard was found for asthma and rhinitis/rhinoconjunctivitis, particularly considering urinary organophosphate esters (OPEs) including TNBP, TPHP, TCEP and TCIPP congeners/compounds. Most studies showed a predominance of moderate risk of bias, therefore the global strength of the evidence is low. The limitations of the studies here reviewed, and the potential hazardous effects herein identified highlights the need for good quality large-scale cohort studies in which biomarkers of exposure should be quantified in biological samples.
Collapse
Affiliation(s)
- Sónia D Coelho
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Tiago Maricoto
- Beira Ria Health Unit, Aveiro Health Center, Ílhavo, Portugal; GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Luís Taborda-Barata
- GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Immunoallergology, Cova da Beira University Hospital Center, Covilhã, Portugal
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, INSERM and Montpellier University, Department of Allergology and Respiratory Medicine, Montpellier University Hospital, Montpellier, France
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ana C A Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, School of Science and Technology, University of Évora, Portugal
| |
Collapse
|
12
|
Wei L, Li S, Ma Y, Ye S, Yuan Y, Zeng Y, Raza T, Xiao F. Curcumin attenuates diphenyl phosphate-induced apoptosis in GC-2spd(ts) cells through activated autophagy via the Nrf2/P53 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2032-2042. [PMID: 38095090 DOI: 10.1002/tox.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.
Collapse
Affiliation(s)
- Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Yuan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Tausif Raza
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| |
Collapse
|
13
|
Wang X, Song F. The neurotoxicity of organophosphorus flame retardant tris (1,3-dichloro-2-propyl) phosphate (TDCPP): Main effects and its underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123569. [PMID: 38369091 DOI: 10.1016/j.envpol.2024.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
As a major alternative to the brominated flame retardants, the production and use of organophosphorus flame retardants (OPFRs) are increasing. And tris (1,3-dichloro-2-propyl) phosphate (TDCPP), one of the most widely used OPFRs, is now commonly found in a variety of products, such as building materials, furniture, bedding, electronic equipment, and baby products. TDCPP does not readily degrade in the water and tends to accumulate continuously in the environment. It has been detected in indoor dust, air, water, soil, and human samples. Considered as an emerging environmental pollutant, increasing studies have demonstrated its adverse effects on environmental organisms and human beings, with the nerve system identified as a sensitive target organ. This paper systematically summarized the progress of TDCPP application and its current exposure in the environment, with a focus on its neurotoxicity. In particular, we highlighted that TDCPP can be neurotoxic (including neurodevelopmentally toxic) to humans and animals, primarily through oxidative stress, neuroinflammation, mitochondrial damage, and epigenetic regulation. Additionally, this paper provided an outlook for further studies on neurotoxicity of TDCPP, as well as offered scientific evidence and clues for rational application of TDCPP in daily life and the prevention and control of its environmental impact in the future.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
14
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
15
|
Cheng FJ, Tsai KF, Huang KC, Kung CT, Huang WT, You HL, Li SH, Wang CC, Lee WC, Pan HY. Association between organophosphate flame retardant exposure and lipid metabolism: data from the 2013-2014 National Health and Nutrition Examination Survey. Front Public Health 2024; 12:1340261. [PMID: 38525338 PMCID: PMC10959188 DOI: 10.3389/fpubh.2024.1340261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Organophosphate flame retardants (OPFRs) are emerging environmental pollutants that can be detected in water, dust, and biological organisms. Certain OPFRs can disrupt lipid metabolism in animal models and cell lines. However, the effects of OPFRs on human lipid metabolism remain unclear. We included 1,580 participants (≥20 years) from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to explore the relationship between OPFR exposure and lipid metabolism biomarkers. After adjusting for confounding factors, results showed that one-unit increases in the log levels of diphenyl phosphate (DPhP) (regression coefficient = -5.755; S.E. = 2.289; p = 0.023) and log bis-(1-chloro-2-propyl) phosphate (BCPP) (regression coefficient = -4.637; S.E. = 2.019; p = 0.036) were negatively associated with the levels of total cholesterol (TC) in all participants. One-unit increases in the levels of DPhP (regression coefficient = -2.292; S.E. = 0.802; p = 0.012), log bis (1,3-dichloro-2-propyl) phosphate (BDCPP) (regression coefficient = -2.046; S.E. = 0.825; p = 0.026), and log bis-2-chloroethyl phosphate (BCEP) (regression coefficient = -2.604; S.E. = 0.704; p = 0.002) were negatively associated with the levels of high-density lipoprotein cholesterol (HDL-C). With increasing quartiles of urine BDCPP levels, the mean TC levels significantly decreased in all participants (p value for trend = 0.028), and quartile increases in the levels of DPhP (p value for trend = 0.01), BDCPP (p value for trend = 0.001), and BCEP (p value for trend<0.001) were negatively corelated with HDL-C, with approximately 5.9, 9.9, and 12.5% differences between the upper and lower quartiles. In conclusion, DPhP, BDCPP, and BCEP were negatively related to HDL-C concentration, whereas DPhP and BCPP levels were negatively associated with TC level. Thus, exposure to OPFRs may interfere with lipid metabolism.
Collapse
Affiliation(s)
- Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chen Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Xie Z, Zhang X, Xie Y, Liu F, Sun B, Liu W, Wu J, Wu Y. Bioaccumulation and Potential Endocrine Disruption Risk of Legacy and Emerging Organophosphate Esters in Cetaceans from the Northern South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4368-4380. [PMID: 38386007 DOI: 10.1021/acs.est.3c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wen Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
17
|
Ye C, Chen Z, Lin W, Dong Z, Han J, Zhang J, Ma X, Yu J, Sun X, Li Y, Zheng J. Triphenyl phosphate exposure impairs colorectal health by altering host immunity and colorectal microbiota. CHEMOSPHERE 2024; 349:140905. [PMID: 38065263 DOI: 10.1016/j.chemosphere.2023.140905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Colorectal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD) have become one of the most common public health concerns worldwide due to the increasing incidence. Environmental factors are one of the important causes of colorectal diseases, as they can affect the intestinal barrier function, immune response and microbiota, causing intestinal inflammation and tumorigenesis. Triphenyl phosphate (TPHP), a widely used organophosphorus flame retardant that can leach and accumulate in various environmental media and biota, can enter the human intestine through drinking water and food. However, the effects of TPHP on colorectal health have not been well understood. In this study, we investigated the adverse influence of TPHP exposure on colorectal cells (in vitro assay) and C57BL/6 mice (in vivo assay), and further explored the potential mechanism underlying the association between TPHP and colorectal disease. We found that TPHP exposure inhibited cell viability, increased apoptosis and caused G1/S cycle arrest of colorectal cells. Moreover, TPHP exposure damaged colorectal tissue structure, changed immune-related gene expression in the colorectal transcriptome, and disrupted the composition of colorectal microbiota. Importantly, we found that TPHP exposure upregulated chemokine CXCL10, which was involved in colorectal diseases. Our study revealed that exposure to TPHP had significant impacts on colorectal health, which may possibly stem from alterations in host immunity and the structure of the colorectal microbial community.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhao Lin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zepeng Dong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Xueqian Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
18
|
Li J, Dai L, Feng Y, Cao Z, Ding Y, Xu H, Xu A, Du H. Multigenerational effects and mutagenicity of three flame retardants on germ cells in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115815. [PMID: 38091675 DOI: 10.1016/j.ecoenv.2023.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Flame retardants (FRs) have raised public concerns because of their environmental persistence and negative impacts on human health. Recent evidence has revealed that many FRs exhibit reproductive toxicities and transgenerational impacts, whereas the toxic effects of FRs on germ cells remain barely explored. Here we investigated the multigenerational effects of three flame retardants (TBBPA, TCEP and TCPP) on germ cell development in Caenorhabditis elegans, and examined the germ cell mutagenicity of these FRs by using whole genome sequencing. Parental exposure to three FRs markedly increased germ cell apoptosis, and impeded oogenesis in F1-F6 offspring. In addition, the double-increased mutation frequencies observed in progeny genomes uncover the mutagenic actions of FRs on germ cells. Analysis of mutation spectra revealed that these FRs predominantly induced point mutations at A:T base pairs, whereas both small and large indels were almost unaffected. These results revealed the long-term effects of FRs on development and genomic stability of germ cells, which may pose risks to environmental organisms and human reproductive health. Taken together, our findings suggest that germ cell mutagenicity should be carefully examined for the environmental risk assessment of FRs and other emerging pollutants.
Collapse
Affiliation(s)
- Jiali Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China
| | - Linglong Dai
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Yu Feng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Zhenxiao Cao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuting Ding
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| |
Collapse
|
19
|
He W, Ding J, Gao N, Zhu L, Zhu L, Feng J. Elucidating the toxicity mechanisms of organophosphate esters by adverse outcome pathway network. Arch Toxicol 2024; 98:233-250. [PMID: 37864630 DOI: 10.1007/s00204-023-03624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
With the widespread use of organophosphate esters (OPEs), the accumulation and toxicity effect of OPEs in biota are attracting more and more concern. In order to clarify the mechanism of toxicity of OPEs to organisms, this study reviewed the OPEs toxicity and systematically identified the mechanism of OPEs toxicity under the framework of adverse outcome pathway (AOP). OPEs were divided into three groups (alkyl-OPEs, aryl-OPEs, and halogenated-OPEs) and biota was divided into aquatic organism and mammals. The results showed that tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) mainly caused neurotoxicity, reproductive, and hepatotoxicity in different mechanisms. According to the constructed AOP network, the toxicity mechanism of OPEs on aquatic organisms and mammals is different, which is mainly attributed to the different biological metabolic systems of aquatic organisms and mammals. Interestingly, our results indicate that the toxicity effect of the three kinds of OPEs on aquatic organisms is different, while there was no obvious difference in the mechanism of toxicity of OPEs on mammals. This study provides a theoretical basis for OPEs risk assessment in the future.
Collapse
Affiliation(s)
- Wanyu He
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiaqi Ding
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
20
|
Ye L, Li J, Gong S, Herczegh SM, Zhang Q, Letcher RJ, Su G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132095. [PMID: 37523961 DOI: 10.1016/j.jhazmat.2023.132095] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The list of organophosphate esters (OPEs) reported in the environment continues to expand as evidenced by the increasing number of OPE studies in the literature. However, there remains a general dearth of information on more recently produced and used OPEs that are proving to be emerging environmental contaminants. The present review summarizes the available studies in a systematic framework of the current state of knowledge on the analysis, environmental fate, and behavior of emerging OPEs. This review also details future directions to better understand emerging OPEs in the environment. Firstly, we make recommendations that the current structural/practical abbreviations and naming of OPEs be revised and updated. A chemical database (CDB) containing 114 OPEs is presently established based on the suspect list from the current scientific literature. There are 12 established OPEs and a total of 83 emerging OPEs that have been reported in human and/or biota samples. Of the emerging OPEs more than 80% have nearly 100% detection frequencies in samples of certain environmental media including indoor air, wastewater treatment plants, sediment, and fish. In contrast to OPEs considered established contaminants, most emerging OPEs have been identified more recently due to the more pervasive use of high-resolution mass spectrometry (HRMS) based approaches and especially gas or liquid chromatography coupled with HRMS-based non-target analysis (NTA) of environmental sample fractions. Intentional/unintentional industrial use and non-industrial formation are sources of emerging OPEs in the environment. Predicted physical-chemical properties in silico of newer, molecularly larger and more oligomeric OPEs strongly suggest that some compounds such as bisphenol A diphenyl phosphate (BPA-DPP) are highly persistent, bioaccumulative and/or toxic. Limited information on laboratory-based toxicity data has shown that some emerging OPEs elicit harmful effects such as cytotoxicity, development toxicity, hepatotoxicity, and endocrine disruption in exposed humans and mammals. Established, and to a much lesser degree emerging OPEs, have also been shown to transform and degrade in biota and possibly alter their toxicological effects. Research on emerging OPE contaminants is presently limited and more study is warranted on sample analysis methods, source apportionment, transformation processes, environmental behavior, biomarkers of exposure and toxicity.
Collapse
Affiliation(s)
- Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sofia M Herczegh
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
21
|
Xing Y, Gong X, Wang P, Wang Y, Wang L. Occurrence and Release of Organophosphite Antioxidants and Novel Organophosphate Esters from Plastic Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37470367 DOI: 10.1021/acs.jafc.3c01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Organic phosphite antioxidants (OPAs) are widely added in plastic products and can be oxidized to generate oxidized derivatives (OPAs = O), namely organic phosphate esters (OPEs), during production and use processing. Herein, the occurrence of OPEs and OPAs in five plastic food packages was detected by liquid chromatography-tandem mass spectrometry. Three OPEs (TPhP, TCEP, and AO168 = O) and three OPAs (TPhPi, TCEPi, and AO168) were found in the plastic packages, with concentrations of <MQL-124 ng/g (∑3OPAs) and 196-831 ng/g (∑3OPEs), respectively. The migration potential of OPAs and OPEs to food was measured by simulation experiments. OPAs and OPEs in plastic can efficiently migrate to oily simulants, alkaline simulants, and acidic simulants. After 14 days, the total concentration of all OPAs and OPEs in the food simulants reached <MQL-1.21 (acidic food simulants), <MQL-0.32 (alkaline food simulants), and 11.4-31.4 ng/mL (oily food simulants), respectively. OPAs and OPEs in 12 kinds of plastic-packaged foods were detected, with high concentrations in dairy food (∑3OPAs + ∑3OPEs: 18.3-28.9 ng/mL) and in oils (∑3OPAs + ∑3OPEs: 32.7-60.9 ng/mL). Accordingly, the estimated ingestion of OPAs and OPEs through plastic-packaged food can reach 2.6 and 32.7 ng/kg in children and 1.1 and 6.5 ng/kg in adults, indicating a non-negligible exposure risk of organic phosphorus pollutants.
Collapse
Affiliation(s)
- Yatong Xing
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinying Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
22
|
Feng C, Huang W, Qiao Y, Liu D, Li H. Research Progress and New Ideas on the Theory and Methodology of Water Quality Criteria for the Protection of Aquatic Organisms. TOXICS 2023; 11:557. [PMID: 37505523 PMCID: PMC10386067 DOI: 10.3390/toxics11070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Water quality criteria (WQC) for the protection of aquatic organisms mainly focus on the maximum threshold values of the pollutants that do not have harmful effects on aquatic organisms. The WQC value is the result obtained based on scientific experiments in the laboratory and data fitting extrapolation and is the limit of the threshold value of pollutants or other harmful factors in the water environment. Until now, many studies have been carried out on WQC for the protection of aquatic organisms internationally, and several countries have also issued their own relevant technical guidelines. Thus, the WQC method for the protection of aquatic organisms has been basically formed, with species sensitivity distribution (SSD) as the main method and the assessment factor (AF) as the auxiliary method. In addition, in terms of the case studies on WQC, many scholars have conducted relevant case studies on various pollutants. At the national level, several countries have also released WQC values for typical pollutants. This study systematically discusses the general situation, theoretical methodology and research progress of WQC for the protection of aquatic organisms, and deeply analyzes the key scientific issues that need to be considered in the research of WQC. Furthermore, combined with the specific characteristics of the emerging pollutants, some new ideas and directions for future WQC research for the protection of aquatic organisms are also proposed.
Collapse
Affiliation(s)
- Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjie Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
23
|
Akhtar S, Pranay K, Kumari K. Personal protective equipment and micro-nano plastics: A review of an unavoidable interrelation for a global well-being hazard. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100055. [PMID: 37102160 PMCID: PMC10089666 DOI: 10.1016/j.heha.2023.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The usage and the demand for personal protective equipments (PPEs) for our day-to-day survival in this pandemic period of COVID-19 have seen a steep rise which has consequently led to improper disposal and littering. Fragmentation of these PPE units has eventually given way to micro-nano plastics (MNPs) emission in the various environmental matrices and exposure of living organisms to these MNPs has proven to be severely toxic. Numerous factors contribute to the toxicity imparted by these MNPs that mainly include their shape, size, functional groups and their chemical diversity. Even though multiple studies on the impacts of MNPs toxicity are available for other organisms, human cell line studies for various plastic polymers, other than the most common ones namely polyethylene (PE), polystyrene (PS) and polypropylene (PP), are still at their nascent stage and need to be explored more. In this article, we cover a concise review of the literature on the impact of these MNPs in biotic and human systems focusing on the constituents of the PPE units and the additives that are essentially used for their manufacturing. This review will subsequently identify the need to gather scientific evidence at the smaller level to help combat this microplastic pollution and induce a more in-depth understanding of its adverse effect on our existence.
Collapse
Affiliation(s)
- Shaheen Akhtar
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| | - Kumar Pranay
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences (IGIMS), Patna 800014, Bihar, India
| | - Kanchan Kumari
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| |
Collapse
|
24
|
Deng D, Wang J, Xu S, Sun Y, Shi G, Wang H, Wang X. The physiological effect of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) seed germination and seedling growth under the presence of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27312-7. [PMID: 37147540 DOI: 10.1007/s11356-023-27312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
This study investigated the physiological and biochemical impacts of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) germination and growth performance in the presence and absence of copper. The study evaluated seed germination, growth, OPFRs concentrations, chlorophyll fluorescence index (Fv/Fm and Fv/F0), and antioxidant enzyme activity. It also calculated the root accumulation of OPFRs and their root-stem translocation. At the germination stage, at a concentration of 20 μg·L-1 OPFR exposure, wheat germination vigor, root, and shoot lengths were significantly decreased compared to the control. However, the addition of a high concentration of copper (60 mg·L-1) decreased by 80%, 82%, and 87% in the seed germination vitality index and root and shoot elongation, respectively, compared to 20 μg·L-1 of OPFR treatment. At the seedling stage, a concentration of 50 μg·L-1 of OPFRs significantly decreased by 42% and 5.4% in wheat growth weight and the photochemical efficiency of photosystem II (Fv/Fm) compared to the control. However, the addition of a low concentration of copper (15 mg·L-1) slightly enhanced the growth weight compared to the other two co-exposure treatments, but the results were not significant (p > 0.05). After 7 days of exposure, the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) (indicates lipid peroxidation) content in wheat roots significantly increased compared to the control and was higher than in leaves. MDA contents in wheat roots and shoots were decreased by 18% and 6.5% when OPFRs were combined with low Cu treatment compared with single OPFRs treatment, but SOD activity was slightly improved. These results suggest that the co-exposure of copper and OPFRs enhances reactive oxygen species (ROS) production and oxidative stress tolerance. Seven OPFRs were detected in wheat roots and stems, with root concentration factors (RCFs) and translocation factors (TFs) ranging from 67 to 337 and 0.05 to 0.33, respectively, for the seven OPFRs in a single OPFR treatment. The addition of copper significantly increased OPFR accumulation in the root and aerial parts. In general, the addition of a low concentration of copper promoted wheat seedling elongation and biomass and did not significantly inhibit the germination process. OPFRs could mitigate the toxicity of low-concentration copper on wheat but had a weak detoxification effect on high-concentration copper. These results indicated that the combined toxicity of OPFRs and Cu had antagonistic effects on the early development and growth of wheat.
Collapse
Affiliation(s)
- Dengxian Deng
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Junxia Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China.
| | - Sijie Xu
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Yueying Sun
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Guangyu Shi
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Huili Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Xuedong Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| |
Collapse
|
25
|
Xu Y, Yang L, Teng Y, Li J, Li N. Exploring the underlying molecular mechanism of tri(1,3-dichloropropyl) phosphate-induced neurodevelopmental toxicity via thyroid hormone disruption in zebrafish by multi-omics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106510. [PMID: 37003012 DOI: 10.1016/j.aquatox.2023.106510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Tri(1,3-dichloropropyl) phosphate (TDCPP) is widespread in the environment as a typical thyroid hormone-disrupting chemical. Here, we aimed to explore the toxicological mechanisms of the thyroid hormone-disrupting effects induced by TDCPP in zebrafish embryos/larvae using multi-omics analysis. The results showed that TDCPP (400 and 600 µg/L) induced phenotypic alteration and thyroid hormone imbalance in zebrafish larvae. It resulted in behavioral abnormalities during zebrafish embryonic development, suggesting that this chemical might exhibit neurodevelopmental toxicity. Transcriptomic and proteomic analysis provided consistent evidence at the gene and protein levels that neurodevelopmental disorders were significantly enhanced by TDCPP exposure (p < 0.05). Additionally, multi-omics data indicated that membrane thyroid hormone receptor (mTR)-mediated non-genomic pathways, including cell communication (ECM-receptor interactions, focal adhesion, etc.) and signal transduction pathways (MAPK signaling pathway, calcium signaling pathway, neuroactive ligand-receptor interaction pathway, etc.), were significantly disturbed (p < 0.05) and might contribute to the neurodevelopmental toxicity induced by TDCPP. Therefore, behavioral abnormalities and neurodevelopmental disorders might be important phenotypic characteristics of TDCPP-induced thyroid hormone disruption, and mTR-mediated non-genomic networks might participate in the disruptive effects of this chemical. This study provides new insights into the toxicological mechanisms of TDCPP-induced thyroid hormone disruption and proposes a theoretical basis for risk management of this chemical.
Collapse
Affiliation(s)
- Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
26
|
Percy Z, Chen A, Sucharew H, Yang W, Vuong AM, Braun JM, Lanphear B, Ospina M, Calafat AM, Cecil KM, Xu Y, Yolton K. Early-life exposure to a mixture of organophosphate esters and child behavior. Int J Hyg Environ Health 2023; 250:114162. [PMID: 36989997 PMCID: PMC10149607 DOI: 10.1016/j.ijheh.2023.114162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Organophosphate esters (OPEs), widely used as flame retardants and plasticizers for commercial and residential purposes, are suspected of being neurotoxic. We aimed to assess exposure to an OPE mixture in early life and its relationship to parent-reported child behavior. We measured urinary concentrations of three OPE metabolites, bis-2-chloroethyl phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and diphenyl phosphate (DPHP), at pregnancy (16 and 26 weeks of gestation and delivery) and postnatal time points (ages 1, 2, 3, and 5 years) in the Health Outcomes and Measures of the Environment Study, a longitudinal pregnancy and birth cohort in Cincinnati, Ohio, USA (enrolled 2003-2006, n = 219). We used latent variable analysis in structural equations models and quantile g-computation to investigate associations of a mixture of the three OPE metabolites with parent-reported child behaviors at 3 and 8 years, measured using the Behavioral Assessment System for Children, Second Edition. Higher log-transformed urinary OPE latent variable values at 16 weeks were associated with fewer externalizing problem behaviors (ß = -5.74; 95% CI = -11.24, -0.24) and fewer overall behavioral problems at age 3 years (ß = -5.26; 95% CI = -10.33, -0.19), whereas having higher OPEs at delivery was associated with poorer overall behavioral problems at age 3 years (ß = 2.87; 95% CI = 0.13, 5.61). OPE latent variable values at 16 weeks, 26 weeks, and delivery were not associated with child behavior at 8 years. However, higher OPE latent variable values at 3 years were associated with fewer externalizing behaviors at 8 years (ß = -2.62; 95% CI = -5.13, -0.12). The quantile g-computation estimates had directions largely consistent with the latent variable analysis results. Pregnancy and postnatal urinary OPE metabolite mixtures were associated with child internalizing, externalizing, and overall negative behaviors at 3 and 8 years, but we did not identify a consistent pattern in terms of the direction of the effects or a particularly sensitive time point.
Collapse
Affiliation(s)
- Zana Percy
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Sucharew
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Weili Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
27
|
Yan Z, Feng C, Leung KMY, Luo Y, Wang J, Jin X, Wu F. Insights into the geographical distribution, bioaccumulation characteristics, and ecological risks of organophosphate esters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130517. [PMID: 36463749 DOI: 10.1016/j.jhazmat.2022.130517] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs), as flame retardants and plasticizers, have been numerously explored regarding the occurrence and ecotoxicology. Given their toxicity, persistency and bio-accumulative potential, however, they may pose negative effects on ecosystems, regarding which is a growing global concern. Accordingly, the present review systematically analyses the recent literature to (1) elucidate their worldwide distribution, bioaccumulation, and biomagnification potential, (2) determine their interim water quality criteria (i.e., effect thresholds), and (3) preliminarily assess the ecological risks for 32 OPEs in aquatic ecosystems. The results showed that the spatiotemporal distribution of OPEs was geographically specific and closely related to human activities (i.e., megacities), especially halogenated-OPEs. We also found that precipitation of airborne particulates could affect the concentrations of OPEs in soil, and there was a positive correlation between the bioaccumulation and hydrophobicity of OPEs. Tris(2-ethylhexyl) phosphate may exhibit high bioaccumulation in aquatic organisms. A substantial difference was found among interim water quality criteria for OPEs, partly attributable to the variation of their available toxicity data. Tris(phenyl) phosphate (TPHP) and tris(1,3-dichloroisopropyl) phosphate with the lowest predicted no-effect concentration showed the strongest toxicity of growth and reproduction. Through the application of the risk quotient and joint probability curve, TPHP and tris(chloroethyl) phosphate tended to pose moderate risks, which should receive more attention for risk management. Future research should focus on knowledge gaps in the mechanism of biomagnification, derivation of water quality criteria, and more precise assessment of ecological risks for OPEs.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
28
|
Yang W, Braun JM, Vuong AM, Percy Z, Xu Y, Xie C, Deka R, Calafat AM, Ospina M, Burris HH, Yolton K, Cecil KM, Lanphear BP, Chen A. Gestational exposure to organophosphate esters and infant anthropometric measures in the first 4 weeks after birth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159322. [PMID: 36220473 PMCID: PMC9883112 DOI: 10.1016/j.scitotenv.2022.159322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Few studies have examined whether gestational exposure to organophosphate esters (OPEs), widely used chemicals with potential endocrine-disrupting potency and developmental toxicity, is associated with impaired infant growth. METHODS We analyzed data from 329 mother-infant pairs in the Health Outcomes and Measures of the Environment (HOME) Study (2003-2006, Cincinnati, Ohio, USA). We quantified concentrations of four OPE metabolites in maternal urine collected at 16 and 26 weeks of gestation, and at delivery. We calculated z-scores using 2006 World Health Organization (WHO) child growth standards for the 4-week anthropometric measures (weight, length, and head circumference), the ponderal index, and weekly growth rates. We used multiple informant models to examine window-specific associations between individual OPE metabolites and anthropometric outcomes. We further modeled OPEs as a mixture for window-specific associations with 4-week anthropometric outcomes using mean field variational Bayesian inference procedure for lagged kernel machine regression (MFVB-LKMR). We stratified the models by infant sex. RESULTS Diphenyl phosphate (DPHP) in mothers at 16 weeks, and bis(2-chloroethyl) phosphate (BCEP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) at delivery were positively associated with z-scores of weight, length, and head circumference in all infants at 4 weeks of age. After stratifying by infant sex, positive associations were only observed in males for DPHP at 16 weeks and BCEP at delivery and in females for BDCIPP at delivery. Negative associations not present in all infants were observed in males for di-n-butyl phosphate (DNBP) at 26 weeks of gestation with weight z-score and DPHP at delivery with head circumference z-score. Results were generally similar using MFVB-LKMR models with more conservative 95 % credible intervals. We did not identify consistent associations of gestational OPE metabolite concentrations with the ponderal index and weekly growth rates. CONCLUSION In this cohort, exposure to OPEs during gestation was associated with altered infant anthropometry at 4 weeks after birth.
Collapse
Affiliation(s)
- Weili Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zana Percy
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Heather H Burris
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
29
|
Pang L, Huang Z, Yang P, Wu M, Zhang Y, Pang R, Jin B, Zhang R. Effects of biochar on the degradation of organophosphate esters in sewage sludge aerobic composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130047. [PMID: 36194960 DOI: 10.1016/j.jhazmat.2022.130047] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, the impact of biochar on the degradation of organophosphate esters (OPEs) during the aerobic composting of sewage sludge was investigated. Three treatments were conducted with different percentages of biochar in the compost, including 5 %, 10 %, and 20 %. The treatment with 10 % of biochar showed the longest thermophilic phase compared to that of 5 % and 20 % of biochar, which greatly promoted the decomposition of organic matter. In addition, the degradation rate of the hard-to-degrade chlorinated-OPEs was significantly increased by 10 % biochar, reaching to 57.2 %. Correspondingly, approximately 43.6 % of the total concentration of OPEs (Σ6OPEs) was eliminated in the presence of 10 % of biochar, which was higher than the treatments with 5 % and 20 % of biochar. Biochar significantly influenced the microbial community structure of compost, but the previously reported organophosphorus-degrading bacteria did not play a major role in the degradation of OPEs. The redox ability of the increased oxygen-containing functional groups such as quinone on the surface of biochar and the biochar-mediated electron transfer ability may play an essential role in the degradation of OPEs during the composting process.
Collapse
Affiliation(s)
- Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Ziling Huang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Peijie Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mingkai Wu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanyan Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Rong Pang
- Department of Medicine, Huanghe Science and Technology College, Zhengzhou, Henan, 450001, China
| | - Baodan Jin
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ruiming Zhang
- College of Chemistry and Materials, Longyan University, Fujian 364012, China
| |
Collapse
|
30
|
Yang W, Braun JM, Vuong AM, Percy Z, Xu Y, Xie C, Deka R, Calafat AM, Ospina M, Burris HH, Yolton K, Cecil KM, Lanphear BP, Chen A. Associations of gestational exposure to organophosphate esters with gestational age and neonatal anthropometric measures: The HOME study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120516. [PMID: 36341822 PMCID: PMC9884151 DOI: 10.1016/j.envpol.2022.120516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are developmental toxicants in experimental studies of animals, but limited evidence is available in humans. We included 340 mother-infant pairs in the Health Outcomes and Measures of the Environment (HOME) Study (Cincinnati, Ohio, USA) for the analysis. We evaluated gestational exposure to OPEs with gestation age at birth and newborn anthropometric measures. We quantified four OPE urinary metabolites at 16 weeks and 26 weeks of gestation. We extracted gestational age at birth, newborn weight, length, and head circumference from the chart review. We calculated z-scores for these anthropometric measures and the ponderal index. We used multiple informant models to examine the associations between repeated OPE measurements and the outcomes. We used modified Poisson regression to estimate the association of gestational exposure to OPEs with preterm birth. We also explored effect modification by infant sex and the potential mediation effect by the highest maternal blood pressure and glucose levels. We found that bis(2-chloroethyl) phosphate (BCEP) at 16 weeks and diphenyl phosphate at 26 weeks of pregnancy were positively associated with gestational age and inversely associated with preterm birth. In female newborns, BCEP at 16 weeks was inversely related to birth weight and length z-scores. In male newborns, we observed negative associations of 26-week di-n-butyl phosphate with the ponderal index at birth. No mediation by the highest maternal blood pressure or glucose levels during pregnancy was identified. In this cohort, gestational exposure to some OPEs was associated with gestational age, preterm birth, and neonatal anthropometric measures. Certain associations tended to be window- and infant sex-specific.
Collapse
Affiliation(s)
- Weili Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zana Percy
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Heather H Burris
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
31
|
Lippold A, Harju M, Aars J, Blévin P, Bytingsvik J, Gabrielsen GW, Kovacs KM, Lyche JL, Lydersen C, Rikardsen AH, Routti H. Occurrence of emerging brominated flame retardants and organophosphate esters in marine wildlife from the Norwegian Arctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120395. [PMID: 36228858 DOI: 10.1016/j.envpol.2022.120395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
To understand the exposure and potential sources of emerging brominated flame retardants (EBFR) and organophosphate esters (OPEs) in marine wildlife from the Norwegian Arctic, we investigated concentrations of EBFRs in 157 tissue samples from nine species of marine vertebrates and OPEs in 34 samples from three whale species. The samples, collected from a wide range of species with contrasting areal use and diets, included blubber of blue whales, fin whales, humpback whales, white whales, killer whales, walruses and ringed seals and adipose tissue and plasma from polar bears, as well as adipose tissue from glaucous gulls. Tris(2-ethylhexyl) phosphate (TEHP) and tris(2-chloroisopropyl) phosphate (TCIPP) ranged from <0.61 to 164 and < 0.8-41 ng/g lipid weight, respectively, in blue whales and fin whales. All other EBRFs and OPEs were below the detection limit or detected only at low concentration. In addition to the baseline information on the occurrence of EBFRs and OPEs in marine wildlife from the Arctic, we provide an in-depth discussion regarding potential sources of the detected compounds. This information is important for future monitoring and management of EBFRs and OPEs.
Collapse
Affiliation(s)
- Anna Lippold
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | - Mikael Harju
- Norwegian Institute for Air Research, Fram Centre, Tromsø 9296, Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | | | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | | | | | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway.
| |
Collapse
|
32
|
Wang X, Li F, Teng Y, Ji C, Wu H. Potential adverse outcome pathways with hazard identification of organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158093. [PMID: 35985583 DOI: 10.1016/j.scitotenv.2022.158093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Data-driven analysis and pathway-based approaches contribute to reasonable arrangements of limited resources and laboratory tests for continuously emerging commercial chemicals, which provides opportunities to save time and effort for toxicity research. With the widespread usage of organophosphate esters (OPEs) on a global scale, the concentrations generally reached up to micromolar range in environmental media and even in organisms. However, potential adverse effects and toxicity pathways of OPEs have not been systematically assessed. Therefore, it is necessary to review the current situation, formulate the future research priorities, and characterize toxicity mechanisms via data-driven analysis. Results showed that the early toxicity studies focused on neurotoxicity, cytotoxicity, and metabolic disorders. Then the main focus shifted to the mechanisms of cardiotoxicity, endocrine disruption, hepatocytes, reproductive and developmental toxicity to vulnerable sub-populations, such as infants and embryos, affected by OPEs. In addition, several novel OPEs have been emerging, such as bis(2-ethylhexyl)-phenyl phosphate (HDEHP) and oxidation derivatives (OPAsO) generated from organophosphite antioxidants (OPAs), leading to multiple potential ecological and human health risks (neurotoxicity, hepatotoxicity, developmental toxicity, etc.). Notably, in-depth statistical analysis was promising in encapsulating toxicological information to develop adverse outcome pathways (AOPs) frameworks. Subsequently, network-centric analysis and quantitative weight-of-evidence (QWOE) approaches were utilized to construct and evaluate the putative AOPs frameworks of OPEs, showing the moderate confidences of the developed AOPs. In addition, frameworks demonstrated that several events, such as nuclear receptor activation, reactive oxygen species (ROS) production, oxidative stress, and DNA damage, were involved in multiple different adverse outcome (AO), and these AOs had certain degree of connectivity. This study brought new insights into facilitating the complement of AOP efficiently, as well as establishing toxicity pathways framework to inform risk assessment of emerging OPEs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
33
|
Yan Z, Feng C, Jin X, Wang F, Liu C, Li N, Qiao Y, Bai Y, Wu F, Giesy JP. Organophosphate esters cause thyroid dysfunction via multiple signaling pathways in zebrafish brain. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100198. [PMID: 36157343 PMCID: PMC9500371 DOI: 10.1016/j.ese.2022.100198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 05/04/2023]
Abstract
Organophosphate esters (OPEs) are widespread in various environmental media, and can disrupt thyroid endocrine signaling pathways. Mechanisms by which OPEs disrupt thyroid hormone (TH) signal transduction are not fully understood. Here, we present in vivo-in vitro-in silico evidence establishing OPEs as environmental THs competitively entering the brain to inhibit growth of zebrafish via multiple signaling pathways. OPEs can bind to transthyretin (TTR) and thyroxine-binding globulin, thereby affecting the transport of TH in the blood, and to the brain by TTR through the blood-brain barrier. When GH3 cells were exposed to OPEs, cell proliferation was significantly inhibited given that OPEs are competitive inhibitors of TH. Cresyl diphenyl phosphate was shown to be an effective antagonist of TH. Chronic exposure to OPEs significantly inhibited the growth of zebrafish by interfering with thyroperoxidase and thyroglobulin to inhibit TH synthesis. Based on comparisons of modulations of gene expression with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, signaling pathways related to thyroid endocrine functions, such as receptor-ligand binding and regulation of hormone levels, were identified as being affected by exposure to OPEs. Effects were also associated with the biosynthesis and metabolism of lipids, and neuroactive ligand-receptor interactions. These findings provide a comprehensive understanding of the mechanisms by which OPEs disrupt thyroid pathways in zebrafish.
Collapse
Key Words
- AChE, acetylcholinesterase
- ANOVA, analysis of variance
- BCF, bioconcentration factor
- BFR, brominated flame retardant
- CD-FBS, charcoal-dextran-treated fetal bovine serum
- CDP, cresyl diphenyl phosphate
- Competitive inhibition assay
- DEG, differentially expressed gene
- DKA, β-diketone antibiotic
- DMSO, dimethyl sulfoxide
- EAS, estrogen
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GO, Gene Ontology
- HPLC-MS/MS, high-performance liquid chromatograph interfaced with a mass spectrometer
- HPT, hypothalamic–pituitary–thyroid
- HS, horse serum
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MAPK, mitogen-activated protein kinase
- Molecular docking simulation
- NIS, Na+/I− symporter
- OD490, optical density
- OPE, organophosphate ester
- OPFR, organophosphate flame retardant
- Organophosphate ester
- P/S, penicillin–streptomycin
- PBDE, polybrominated diphenyl ether
- PBS, phosphate-buffered saline
- RIC20/50, concentration inhibiting 20%/50%
- T4, thyroxin
- TBG, thyroxine-binding globulin
- TCIPP, tris(2-chloroisopropyl) phosphate
- TDCIPP, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP)
- TDCIPP-d15, tris(1,3-dichloroisopropyl) phosphate-D15
- TG, thyroglobulin
- TH, thyroid hormone
- THR, thyroid hormone receptor
- TIPP, tris(isopropyl) phosphate
- TPHP, triphenyl phosphate
- TPO, thyroperoxidase
- TRβ, thyroid hormone receptor β
- TTR, transthyretin
- Thyroid endocrine function
- Transcriptome sequencing
- androgen, and steroidogenesis
- cga, glycoprotein hormone
- qRT-PCR, quantitative real-time PCR
- tshβa, thyroid-stimulating hormone beta subunit a
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Corresponding author.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
- Corresponding author.
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|
34
|
Hong Z, Li Y, Deng X, Chen M, Pan J, Chen Z, Zhang X, Wang C, Qiu C. Comprehensive analysis of triphenyl phosphate: An environmental explanation of colorectal cancer progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113778. [PMID: 36068737 DOI: 10.1016/j.ecoenv.2022.113778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate flame retardants (OPFRs) are alternatives to brominated flame retardants (BFRs) and have recently gained wide acceptance in various materials. For the treatment and prevention of diseases, it is also important to clarify the relationship between OPFRs and tumors, despite the fact that OPFRs are less toxic than BFRs. This research used the TCGA and CTD databases for transcriptome profiling and identifying OPFRs-related genes. GO and KEGG analyses suggested that OPFRs may be closely related to colorectal cancer (CRC), and genes correlated with OPFRs were significantly and differently expressed between tumor and normal group. Further, OPFRs-related genes were associated with a good prognosis in CRC patients. The deeper research demonstrated that one of the OPFRs-triphenyl phosphate could significantly increased the viability and proliferation of CRC cell lines compared with the control group. In addition, Our research also found that melatonin at 50 μM could significantly impact CRC cell proliferation and migration ability induced by TPP.
Collapse
Affiliation(s)
- Zhongshi Hong
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Yachen Li
- Medical Department of the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Xian Deng
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Mingliang Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Jianpeng Pan
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhichuan Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing 210029, China
| | - Chunxiao Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Chengzhi Qiu
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China.
| |
Collapse
|
35
|
Pan HY, Cheng FJ, Huang KC, Kung CT, Huang WT, You HL, Li SH, Wang CC, Lee WC, Hsu PC. Exposure to tris(2-butoxyethyl) phosphate induces abnormal sperm morphology and testicular histopathology in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113718. [PMID: 35660377 DOI: 10.1016/j.ecoenv.2022.113718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBEP) is one of the most abundant organophosphate flame retardants in the environment. This study aimed to evaluate the effect of TBEP exposure during adolescence on male reproductive function in adult rats. Male Sprague-Dawley rats were treated with 20 and 200 mg/kg body weight of TBEP or corn oil from postnatal day (PND) 42 to PND 105. A significant increase in the proportion of sperm with abnormal morphology (flattened head and bent tail) and superoxide anion (O2-.) production in the sperm of the 200 mg/kg treated group was observed (p < 0.05). Excessive production of sperm hydrogen peroxide (H2O2) was found in both the 20 and 200 mg/kg treatment groups (p < 0.05). Disruption of testicular structure was observed in the 20 and 200 mg/kg treated groups and seminiferous tubule degeneration was observed in the 200 mg/kg treated group. Our study demonstrated the adverse effects of TBEP on male reproductive function in rats.
Collapse
Affiliation(s)
- Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan; Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Kuo-Chen Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan.
| |
Collapse
|
36
|
Chen Z, An C, Elektorowicz M, Tian X. Sources, behaviors, transformations, and environmental risks of organophosphate esters in the coastal environment: A review. MARINE POLLUTION BULLETIN 2022; 180:113779. [PMID: 35635887 DOI: 10.1016/j.marpolbul.2022.113779] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth in the global production of organophosphate esters (OPEs) has resulted in their high environmental concentrations. The low removal rate of OPEs makes the effluents of wastewater treatment plants be one of the major sources of OPEs. Due to relatively high solubility and mobility, OPEs can be carried to the coastal environment through river discharge and atmospheric deposition. Therefore, the coastal environment can be an important OPE sink. Previous studies have shown that OPEs were widely detected in coastal atmospheres, water, sediments, and even aquatic organisms. OPEs can undergo various environmental processes in the coastal environment, including adsorption/desorption, air-water exchange, and degradation. In addition, bioaccumulation of OPEs was observed in coastal biota but current concentrations would not cause significant ecological risks. More efforts are required to understand the environmental behaviors of OPEs and address resultant environmental and health risks, especially in the complicated environment.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Maria Elektorowicz
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Xuelin Tian
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
37
|
Xie J, Pei N, Sun Y, Chen Z, Cheng Y, Chen L, Xie C, Dai S, Zhu C, Luo X, Zhang L, Mai B. Bioaccumulation and translocation of organophosphate esters in a Mangrove Nature Reserve from the Pearl River Estuary, South China. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127909. [PMID: 34863572 DOI: 10.1016/j.jhazmat.2021.127909] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the distribution and bioaccumulation of organophosphate esters (OPEs) in mangrove ecosystems. In this study, water, sediments, plants and animals were collected from Qi'ao Island Mangrove Nature Reserve to investigate the levels, bioaccumulation and biomagnification of OPEs. Concentrations of ΣOPEs in the mangrove plant Sonneratia apetala (an exotic species) were greater than those in Kandelia obovata (a native species). Translocation factors of OPEs in the two mangrove tree species were greater than 1, indicating that OPEs were mainly absorbed in aboveground tissues. Concentrations of OPEs in mangrove trees and animals were negatively correlated with their log Kow, suggesting that accumulation of OPEs in mangrove biota was influenced by hydrophobicity. A significant difference for concentrations of ΣOPEs was found among the eight mangrove animal species. Concentrations of ΣOPEs in mangrove animals were related with lipid contents, feeding habits and Kow of OPEs. Biota-sediment accumulation factor of OPEs was larger than 1, suggesting that bioaccumulation of OPEs occurred in mangrove animals. The targeted OPEs except isodecyl diphenyl phosphate were not biomagnified in mangrove animals. This study highlights bioaccumulation of OPEs in mangrove biota and suggests further concern about the ecological risk of OPEs to mangrove biota.
Collapse
Affiliation(s)
- Jinli Xie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Zhongyang Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yuanyue Cheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Chenmin Xie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouhui Dai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chunyou Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
38
|
Zhang X, Lu Z, Ren X, Chen X, Zhou X, Zhou X, Zhang T, Liu Y, Wang S, Qin C. Genetic comprehension of organophosphate flame retardants, an emerging threat to prostate cancer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112589. [PMID: 34358932 DOI: 10.1016/j.ecoenv.2021.112589] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 05/25/2023]
Abstract
In recent years, organophosphate ester flame retardants (OPFRs), which have been regarded as alternatives for brominated flame retardants (BFRs), have become widely used in building materials, textiles, and electric equipment. Elucidating the relationship between OPFRs and tumors holds great significance for the treatment and prevention of diseases. In this work, we found a new method for predicting the correlation between the interactive genes of OPFRs and tumors. Transcriptome profiles and OPFR information were obtained from The Cancer Genome Atlas and the Genotype-Tissue Expression, Comparative Toxicogenomics, and PharmMapper databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that interactive genes were mainly enriched in prostate cancer, steroid metabolic process, and steroid hormone regulation. Furthermore, protein-protein interaction network analysis revealed 33 biological hub genes. The operating characteristic curves and survival analysis showed the role of key genes in predicting the prognosis of prostate cancer. Gene target prediction and gene set variation analysis proved that OPFRs and their metabolites exert potential effects on prostate cancer. Colony formation assay showed that the cells with AR, mTOR and DDIT3 knockdown could remarkably mitigate the cell proliferation ability in both PC-3 and LNCap cells. Transwell assay demonstrated that the silencing of AR, mTOR and DDIT3 could significantly inhibit the cell invasion capacity of prostate cells. Triphenyl phosphate (TPP) significantly increase the cell proliferation ability and promote cell invasion capacity. AR, mTOR and DDIT3 in the PC-3 and LNCap cells were significantly upregulated with 10-6 M TPP treated.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongwen Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaohan Ren
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinglin Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xuan Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tongtong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiyang Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Shangqian Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
39
|
Patisaul HB, Behl M, Birnbaum LS, Blum A, Diamond ML, Rojello Fernández S, Hogberg HT, Kwiatkowski CF, Page JD, Soehl A, Stapleton HM. Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:105001. [PMID: 34612677 PMCID: PMC8493874 DOI: 10.1289/ehp9285] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND To date, the toxicity of organophosphate esters has primarily been studied regarding their use as pesticides and their effects on the neurotransmitter acetylcholinesterase (AChE). Currently, flame retardants and plasticizers are the two largest market segments for organophosphate esters and they are found in a wide variety of products, including electronics, building materials, vehicles, furniture, car seats, plastics, and textiles. As a result, organophosphate esters and their metabolites are routinely found in human urine, blood, placental tissue, and breast milk across the globe. It has been asserted that their neurological effects are minimal given that they do not act on AChE in precisely the same way as organophosphate ester pesticides. OBJECTIVES This commentary describes research on the non-AChE neurodevelopmental toxicity of organophosphate esters used as flame retardants and plasticizers (OPEs). Studies in humans, mammalian, nonmammalian, and in vitro models are presented, and relevant neurodevelopmental pathways, including adverse outcome pathways, are described. By highlighting this scientific evidence, we hope to elevate the level of concern for widespread human exposure to these OPEs and to provide recommendations for how to better protect public health. DISCUSSION Collectively, the findings presented demonstrate that OPEs can alter neurodevelopmental processes by interfering with noncholinergic pathways at environmentally relevant doses. Application of a pathways framework indicates several specific mechanisms of action, including perturbation of glutamate and gamma-aminobutyric acid and disruption of the endocrine system. The effects may have implications for the development of cognitive and social skills in children. Our conclusion is that concern is warranted for the developmental neurotoxicity of OPE exposure. We thus describe important considerations for reducing harm and to provide recommendations for government and industry decision makers. https://doi.org/10.1289/EHP9285.
Collapse
Affiliation(s)
- Heather B. Patisaul
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carol F. Kwiatkowski
- Green Science Policy Institute, Berkeley, California, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jamie D. Page
- Cancer Prevention & Education Society, Meads House, Leighterton, Tetbury, Gloucestershire, UK
| | - Anna Soehl
- Green Science Policy Institute, Berkeley, California, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
40
|
Llorca M, Farré M. Current Insights into Potential Effects of Micro-Nanoplastics on Human Health by in-vitro Tests. FRONTIERS IN TOXICOLOGY 2021; 3:752140. [PMID: 35295102 PMCID: PMC8915894 DOI: 10.3389/ftox.2021.752140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Humans are exposed to micro and nanoplastics (MNPLs) through inhalation, ingestion and, to a lesser extent, dermal contact. In recent years, new insights indicate the potential of MNPLs to cause damages to human health. Particle toxicity can include oxidative stress, inflammatory lesions, and then increased internalization or translocation through tissues. On the other hand, plastic additives are used in plastic particles, once internalized, can release toxic substances. It is noteworthy that the potential effects of MNPLs encompass a wide range of polymers and chemical additives, showing various physicochemical and toxicological properties, and the size, shape and surface properties are other variables influencing their effects. In spite of the research carried out recently, MNPLs research is in its early stages, and further investigation is required. In this review article, the knowledge of human exposure routes and the recent results on the toxicological effects of MNPLs in human health are presented and discussed. Finally, the current limitations and the main gaps in the body of knowledge are summarised.
Collapse
Affiliation(s)
- Marta Llorca
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Marinella Farré
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|