1
|
Wang X, Zhao C, Fan J, Zhao Q, Zhang X, Zhang N, Fang X, Pang H, Li W, Su X, Li M, Xia Y. Contamination status and health risk assessment of potentially toxic trace elements in soils surrounding rare earth tailings in China: A retrospective review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118270. [PMID: 40334538 DOI: 10.1016/j.ecoenv.2025.118270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/30/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
The contamination of soils surrounding rare earth tailings (SRET) with potentially toxic trace elements (PTEs), including Ni, Cd, Cr, As, Pb, Mn, Cu, Zn, and Hg, has garnered increasing scientific concern. However, existing studies predominantly focused on localized regions, limiting insights into nationwide pollution patterns associated with SRET. To address this gap, we systematically compiled and analyzed PTE concentration data from SRET across China using peer-reviewed studies published between 2012 and 2023. The index of geo-accumulation (Igeo) was applied to quantify contamination levels, while Monte Carlo simulation (MCS) was employed to assess uncertainty and sensitivity in health risks posed by ingestion, inhalation, and dermal exposure pathways. Results revealed that average concentrations of Cd, As, Pb, Mn, Zn, and Hg exceeded Chinese soil background values by up to 11.16-fold. Igeo revealed significant Cd contamination in SRET in Inner Mongolia (Igeo = 1.77), Fujian (Igeo = 5.64), and Sichuan (Igeo = 3.89). Moderate Mn contamination was identified in Guangdong (Igeo = 1.80) and Inner Mongolia (Igeo = 1.63). Adults exhibited elevated health risks via oral ingestion of PTEs-contaminated SRET. MCS demonstrated that the median hazard index (HI) and carcinogenic risk (CR) values in five provinces surpassed safety thresholds (CR > 1.00 ×10-6, HI > 1.00). Sensitivity analyses identified daily soil intake and exposure duration were positively linked to health risks, with As, Ni, Cd, Cr, and Mn concentrations contributing substantially to cumulative risks. This study provides actionable insights for optimizing cost-effective PTE remediation strategies in SRET-affected regions.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Chen Zhao
- School of Medicine, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Jingping Fan
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Qianwei Zhao
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Xingguang Zhang
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Nan Zhang
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Xin Fang
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Hui Pang
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Wuyuntana Li
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Xiong Su
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Minhui Li
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China.
| | - Yuan Xia
- School of Public Health, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, China.
| |
Collapse
|
2
|
Babu NM, Mishra AK. Geotechnical performance of black cotton clay in the presence of lead and cadmium solutions for geoenvironmental application. ENVIRONMENTAL TECHNOLOGY 2025; 46:1178-1192. [PMID: 39034457 DOI: 10.1080/09593330.2024.2379990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
The usage of bentonites and sand-bentonite mixtures as liners has become prevalent due to their low permeability. However, these materials are scarce and prohibitively expensive in India. Black cotton clay (BCC) was chosen as an alternative clay liner for this research due to its abundance in India and its mineralogical composition. Since heavy metals accumulation in municipal landfills is a rising issue with devastating effects on the ecosystem and human health, in this investigation, two heavy metals (lead and cadmium) were intended as permeants at three different concentrations (100, 500, and 1000 ppm) to imitate the impact of heavy metal leachate on BCC. The essential index and engineering properties of BCC were evaluated and compared under these two permeants from the liner perspective. Experimental results revealed that the free swell index, Atterberg limits, swelling and swelling pressures were reduced for a rise in concentration irrespective of metal type. However, this reduction was more with cadmium permeants compared to lead. The measured swelling data was compared with predicted swelling data using a rectangular hyperbola model, and a good correlation was achieved. The hydraulic conductivity (k) and unconfined compressive strength (UCS) values were increased for a rise in concentration with both metal permeants. At 1000 ppm concentration, the k values were raised to 3.5 and 6.7 times, and UCS values were enhanced by 8.3 and 5.5% for lead and cadmium permeants, respectively. At high concentrations, field emission scanning electron microscopy (FESEM) results showed the formation of huge voids and aggregation.
Collapse
Affiliation(s)
- N Mahesh Babu
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
| | - Anil Kumar Mishra
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
3
|
Chen L, Zhou W, Bao Y, He X, Deng L. Speciation characteristics of heavy metal(loid)s in maize-wheat farmland with applying spent mushroom substrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117329. [PMID: 39546867 DOI: 10.1016/j.ecoenv.2024.117329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Spent mushroom substrates (SMS) have been increasingly applied as organic fertilizer worldwide. However, the effects of various SMS on the accumulation and speciation characteristics of soil heavy metal(loid)s (HMs) are generally overlooked. Three types of SMS, including Flammulina velutipes residue (FVR), Agaricus bisporus residue (ABR), and Auricularia auricula residue (AAR), were applied to replace 25 % and 50 % of chemical fertilizer (based on nitrogen application) used in maize-wheat farmland. Compared to chemical fertilizer, the soil Cd, Pb, and As concentrations were decreased by 20.41 %, 5.97 %, and 10.09 %, respectively. And the residual fractions of soil HMs were increased through the application of SMS, indicating a reduction in their bioavailability. Notably, 50 % ABR replacement significantly increased the proportion of residual fraction in soil Cd, Pb, and As by 23.03 %, 15.15 %, and 4.85 %, respectively (P<0.05). A significant negative correlation was observed between the concentrations of HMs in grains and the residual fractions of soil HMs. Thus, compared with chemical fertilizers, the residual fractions of soil HMs were increased by the application of SMS, thereby reducing the concentrations of HMs in grains. Ingestion of crops is the primary route for human exposure to HMs. Therefore, the application of SMS (especially ABR) reduced the accumulation and bioavailability of HMs in soil, which in turn limited the transfer of HMs to crops, resulting in lowered human health risk indices.
Collapse
Affiliation(s)
- Ludan Chen
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuhai Bao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - Xiubin He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
4
|
Ma C, Nong X, Xu F, Zhu Z, Nong P, Luo F, Tang S, Zhang L, Kang Z, Zhu Y. Dissolution and solubility of the calcium-nickel carbonate solid solutions [(Ca 1-xNi x)CO 3] at 25 °C. GEOCHEMICAL TRANSACTIONS 2024; 25:13. [PMID: 39612076 DOI: 10.1186/s12932-024-00096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
A series of the calcium-nickel carbonate solid solutions [(Ca1-xNix)CO3] were synthesized and their dissolution in N2-degassed water (NDW) and CO2-saturated water (CSW) at 25 °C was experimentally investigated. During dissolution of the synthetic solids (Ni-bearing calcite, amorphous Ca-bearing NiCO3 and their mixtures), the Ni-calcite and the Ca-NiCO3 dissolved first followed by the formation of the Ni-bearing aragonite-structure phases. After 240-300 days of dissolution in NDW, the water solutions achieved the stable Ca and Ni concentrations of 0.592-0.665 and 0.073-0.290 mmol/L for the solids with lower Ni/(Ca + Ni) mol ratios (XNi), or 0.608-0.721 and 0.273-0.430 mmol/L for the solids with higher XNi, respectively. After 240-300 days of dissolution in CSW, the water solutions achieved the stable Ca and Ni concentrations of 1.094-3.738 and 0.831-4.300 mmol/L, respectively. For dissolution in NDW and CSW, the mean values of log IAP (Ion activity products) in the final stable state (≈ log Ksp, Solubility product constants) were determined to be - 8.65 ± 0.04 and - 8.16 ± 0.11 for calcite [CaCO3], respectively; - 8.50 ± 0.02 and - 7.69 ± 0.03 for the synthetical nickel carbonates [NiCO3], respectively. In respect to the bulk composition of the (Ca1-xNix)CO3 solid solutions, the final log IAP showed the highest value when XNi = 0.10-0.30. Mostly, the mean values of log IAP increased with the increasing XNi in respect to the Ni-calcite, the Ni-aragonite and the amorphous Ca-Ni carbonate. The plotting of the experimental data on the Lippmann diagram for the (Ca1-xNix)CO3 solid solution using the predicted Guggenheim parameters of a0 = 2.14 and a1 = - 0.128 from a miscibility gap of XNi = 0.238 to 0.690 indicated that the solids dissolved incongruently and the final Ca and Ni concentrations in the water solutions were simultaneously limited by the minimum stoichiometric saturation curves for the Ni-calcite, Ni-aragonite and the amorphous Ca-Ni carbonate. During dissolution in NDW, the Ni2+ preferred to dissolve into the water solution and Ca2+ preferred to remain in the solid, while during dissolution in CSW for the solids with higher XNi, the Ca2+ preferred to dissolve into the water solution and Ni2+ preferred to remain in the solid. These findings provide valuable insights into understanding the mechanisms governing Ni geochemical cycle in natural environments.
Collapse
Affiliation(s)
- Chengyou Ma
- College of Earth Sciences, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Xiaoke Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Fan Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Zongqiang Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Peijie Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Fei Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Shen Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China
| | - Lihao Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China
| | - Zhiqiang Kang
- College of Earth Sciences, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Yinian Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| |
Collapse
|
5
|
Li Y, Kong L, Ma L, Zeng T, Liu W, Abuduwaili J. Deciphering the driving factors and probabilistic health risks of potentially toxic elements in arid surface water: Insights from the Tarim River Basin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117211. [PMID: 39427544 DOI: 10.1016/j.ecoenv.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Potentially toxic elements (PTEs) in surface water in arid areas pose a serious threat to environmental safety and human health within a basin. It is important to determine the factors controlling PTEs and to assess the likelihood that they will pose a risk to human health in order to support the development of environmental protection and risk management strategies. In this study, a structural equation model and Bayesian method were combined to discuss the distribution and probabilistic health risks of PTEs in surface water in arid area, and the Tarim River Basin was taken as a case study. The results show that the average concentrations of As, Co, Cu, and Ni in the surface water in the Tarim River Basin ranged from 0.04 to 2.92 μg/L, which do not exceed the international standard values. However, the maximum value of As (19.20 μg/L) exceeded both the recommended drinking water standards and the Chinese irrigation water standards. Spatially, the high As concentrations were distributed in the upper reaches of the Kashgar River, and the high Co, Cu and Ni concentrations were distributed in reservoirs and lakes on the main stream of the Tarim River. The concentrations of the PTEs in the surface water in the basin were not only affected by random anthropogenic factors such as traffic discharge, agricultural activities and mining industry, but were also directly and indirectly influenced by climatic factors. The results of the probabilistic health risk assessment showed that the 95th percentile the total hazard index for infants exceeded the allowable value of 1, and the total carcinogenic risk of PTEs exposure in four age groups was at the notable level. In this study, we conducted a comprehensive analysis of the controlling factors and health risks associated with PTEs in surface water in the Tarim River Basin, and the findings are expected to provide a scientific basis for regional water environment management and safety control.
Collapse
Affiliation(s)
- Yizhen Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxin Kong
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi 830011, China.
| | - Tao Zeng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xie X, Wang S, Li M, Zhou Z, Zhang Z, Tang Z. Assessment of soil environmental capacity for heavy metals in Shantou City, Guangdong Province, China: source analysis and enrichment evaluation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:978. [PMID: 39320654 DOI: 10.1007/s10661-024-13146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Most studies assessing soil environmental capacity (EC) often overlook the impact of heavy metal sources. Analyzing the sources of heavy metals (HMs) provides a better understanding of regional environmental capacity characteristics and their dynamic changes. The current study focuses on the surface soil of Shantou, using 511 soil samples to assess the soil environmental capacity. Results indicate that the contents of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in Shantou's surface soil are notable, with lead moderately enriched and other metals lightly enriched. The principal component analysis (PCA) identifies five primary sources of heavy metals: mixed natural and agricultural sources, mixed agricultural and industrial sources, industrial sources, mining sources, and quarrying sources. The primary source contributing significantly to soil HM concentrations in Shantou City is a complex interplay between natural geological processes and extensive agricultural practices. In terms of static environmental capacity, Zn, Cr, Ni, Pb, Cu, As, Hg, and Cd are ranked in descending order. The overall environmental capacity for heavy metals in the soil is at a medium level, influenced by geological backgrounds. However, regions such as Yanhong Town, Guiyu Town, and Chendian Town face lower environmental capacities due to comprehensive human activities, posing certain risks. This study provides a scientific reference for forecasting, controlling soil heavy metal pollution, and improving soil quality and environmental capacity in Shantou City.
Collapse
Affiliation(s)
- Xianming Xie
- Guangdong Hydrogeology Battalion, Guangzhou, China
| | - Song Wang
- Guangdong Hydrogeology Battalion, Guangzhou, China.
| | - Ming Li
- Guangdong Hydrogeology Battalion, Guangzhou, China
| | | | - Zhe Zhang
- Guangdong Hydrogeology Battalion, Guangzhou, China
| | - Zhenhua Tang
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
7
|
Laha T, Gupta N, Pal M, Koley A, Masto RE, Hoque RR, Balachandran S. Chemical speciation and health risk assessment of potentially toxic elements in playground soil of bell metal commercial town of Eastern India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:453. [PMID: 39320529 DOI: 10.1007/s10653-024-02240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Contaminated playground soils can expose players to harmful pollutants, increasing the risk of respiratory, skin, and gastrointestinal issues and potentially impacting long-term health and development. This study investigated the chemical forms and the human health risks associated with potentially toxic elements (PTEs) found in playground soil samples from Khagra, a historic town known for its bell metal industry, located in the Murshidabad district of eastern India. Sequential extraction techniques were employed to analyze the distribution of PTEs such as As, Cd, Co, Cu, Mn, Pb, Ni, Sn, and Zn among different fractions: exchangeable (F1), bound to carbonate phase (F2), bound to iron and manganese oxides (F3), bound to organic matter (F4), and residual (F5). The playground soil showed the highest contamination with Sn, with an IPOLL value of 3.14, indicating moderate to heavy contamination, while Cd, Cu, Mn, Pb, and Zn exhibit moderate contamination. The mean concentration of PTEs in all fractions (F1-F5) follows the order: Fe > Zn > Cu > Mn > Pb > Sn > Ni > Co > As > Cd. The maximum affinity of PTEs and their percentages are as follows: Fe (F5, 80.6%), As (F5, 55.31%), Cd (F5, 48.8), Co (F5, 64.9%), Mn (F3, 44%), Ni (F5, 53.2%), Pb (F3, 44.7%), Zn (F3, -43.19%), Sn (F3, 55%), Cu (F5 -42.18). As, Cd, Co, Cu, Fe, and Ni have a high affinity for F5, indicating geogenic source, while Mn, Pb, Sn, and Zn have a high affinity for F3, indicating anthropogenic source. Fe-Mn oxide partition was dominant for nearly all PTEs due to elevated sorption of cations onto Fe-Mn oxides at high pH. The risk assessment code for Cd, Cu, Mn, Ni, Sn, and Zn in playground soil is categorized under moderate risk, below 30%, while other elements showed no risk. Also, mobility factors were calculated for each PTEs, suggesting the degree of mobility that PTEs can easily migrate and be taken up, absorbed, or adsorbed by the human body. The mobility factor in playground soil was higher for Sn (59.89%) followed by Mn (54.24%) > Pb (52.91%) > Zn (52.01%) > Cd (39.49%) > Ni (33.20%) > As (30.39%) > Co (26.56%) > Cu (21.24%) > Fe (11.20%). Risk hazard quotients for children and adults were found to follow the order: Pb (0.263; 0.040), Cu (0.098; 0.015) > As(0.056; 0.008) > Mn (0.045; 0.009) > Zn(0.36; 0.05) > Cd(0.006; 0.001) > Ni (0.004; 0.001) > Co (0.001; 0.0). PTEs detected in the environment result from atmospheric deposition from small-scale metallurgical industries (bell metal and brass), coal and oil combustion, civil works, municipal waste incineration, and fugitive emissions from road dust. The human non-carcinogenic health risk for PTEs from ingestion and dermal contact was higher than that from inhalation. In the context of carcinogenic risk, As shows the highest health risk of 2.51E-05, followed by Cd (1.02E-09) and Co (8.14E-09). This study uniquely assesses the chemical speciation of PTEs in playground soils, revealing their geogenic and anthropogenic sources, and evaluates associated health risks. Policy intervention is vital for monitoring and remediating PTEs in playgrounds to protect children's health.
Collapse
Affiliation(s)
- Tanmay Laha
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Nitu Gupta
- Department of Environmental Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mousumi Pal
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Apurba Koley
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Reginald Ebin Masto
- Environmental Management Division, CSIR-Central Institute of Mining and Fuel Research (Digwadih Campus), Jharkhand, 828108, India
| | - Raza Rafiqul Hoque
- Department of Environmental Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India.
| |
Collapse
|
8
|
Liu S, Li Y, Zhan C, Liu H, Zhang J, Guo K, Hu T, Kunwar B, Fang L, Wang Y. Assessing bioavailability risks of heavy metals in polymetallic mining regions: a comprehensive analysis of soils with varied land uses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:975. [PMID: 39312081 DOI: 10.1007/s10661-024-13144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
To accurately assess the bioavailability risk of heavy metals (HMs) in a representative polymetallic mining region, we undertook an exhaustive analysis of Cu, Pb, Ni, Co, Cd, Zn, Mn, and Cr in soils from diverse land-use types, encompassing agricultural, forest, residential, and mining areas. We employed speciation analysis methods and a modified risk assessment approach to ascertain potential ecological threats posed by the HMs. Our findings reveal that both the total potential ecological risk and the modified bioavailability risks are most pronounced in the soil of the mining area. The modified bioavailability threats are primarily caused by Pb, Ni, Cd, and Co. Although the total potential ecological risk of Cu is high in the local soil, the predominance of its stable forms reduces its mobility, thereby mitigating its detrimental impact on the ecosystem. Additionally, medium modified bioavailability risks were identified in the peripheries of agricultural and forest areas, potentially attributable to geological processes and agricultural activities. Within the urban district, medium risks were observed in residential and mining areas, likely resulting from mining, metallurgy, industrial operations, and traffic-related activities. This study provides critical insights that can assist governmental authorities in devising targeted policies to alleviate health hazards associated with soils in polymetallic mining regions.
Collapse
Affiliation(s)
- Shan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Yanni Li
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Changlin Zhan
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Kuangxin Guo
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Tianpeng Hu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Bhagawati Kunwar
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601, Japan
| | - Lihu Fang
- Research Center of Ecological Environment Restoration and Resources Comprehensive Utilization, The First Geological Brigade of Hubei Geological Bureau, Huangshi, 435000, China
| | - Yanan Wang
- Research Center of Ecological Environment Restoration and Resources Comprehensive Utilization, The First Geological Brigade of Hubei Geological Bureau, Huangshi, 435000, China
| |
Collapse
|
9
|
Xu B, Chu T, Zhang R, Yang R, Zhu M, Guo F, Zan S. Earthworm gut bacteria facilitate cadmium immobilization through the formation of CdS nanoparticles. CHEMOSPHERE 2024; 361:142453. [PMID: 38821127 DOI: 10.1016/j.chemosphere.2024.142453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Gut bacteria of earthworm Amynthas hupeiensis exhibit significant potential for the in-situ remediation of cadmium (Cd)-contaminated soil. However, the mechanisms by which these gut bacteria immobilize and tolerate Cd remain elusive. The composition of the gut bacterial community was characterized by high-throughput sequencing. Cd-tolerant bacteria were isolated from the gut, and their roles in Cd immobilization, as well as their tolerance mechanisms, were explored through chemical characterization and transcriptome analysis. The predominant taxa in the gut bacterial community included unclassified Enterobacteriaceae, Citrobacter, and Bacillus, which were distinctly different from those in the surrounding soil. Notably, the most Cd-tolerant gut bacterium, Citrobacter freundii DS strain, immobilized 63.61% of Cd2+ within 96 h through extracellular biosorption and intracellular bioaccumulation of biosynthetic CdS nanoparticles, and modulation of solution pH and NH4+ concentration. Moreover, the characteristic signals of CdS were also observed in the gut content of A. hupeiensis when the sterilized Cd-contaminated soil was inoculated with C. freundii. The primary pathways involved in the response of C. freundii to Cd stress included the regulation of ABC transporters, bacterial chemotaxis, cell motility, oxidative phosphorylation, and two-component system. In conclusion, C. freundii facilitates Cd immobilization both in vitro and in vivo, thereby enhancing the host earthworm's adaptation to Cd-contaminated soil.
Collapse
Affiliation(s)
- Bo Xu
- South Jiuhua Road No. 189, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Tingting Chu
- South Jiuhua Road No. 189, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Ranran Zhang
- South Jiuhua Road No. 189, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Ruyi Yang
- South Jiuhua Road No. 189, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Meng Zhu
- South Jiuhua Road No. 189, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Fuyu Guo
- South Jiuhua Road No. 189, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Shuting Zan
- South Jiuhua Road No. 189, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
10
|
Lu Y, Xiao X, Liang Y, Li J, Guo C, Xu L, Liu Q, Xiao Y, Zhou S. Distribution and transformation of potentially toxic elements in cracks under coal mining disturbance in farmland. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:312. [PMID: 39001963 DOI: 10.1007/s10653-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.
Collapse
Affiliation(s)
- Yin Lu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Xin Xiao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yan Liang
- Beijing Invision Ruida Technology Co., Ltd, Huaxia Happiness Entrepreneurship Center, Beijing, 100000, China
| | - Junchi Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Chunying Guo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Lili Xu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Qingfeng Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yu Xiao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Shiyuan Zhou
- College of Architecture and Design, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
11
|
Zhang X, Liu H, Li X, Zhang Z, Chen Z, Ren D, Zhang S. Ecological and health risk assessments of heavy metals and their accumulation in a peanut-soil system. ENVIRONMENTAL RESEARCH 2024; 252:118946. [PMID: 38631470 DOI: 10.1016/j.envres.2024.118946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Heavy metals pollution is a notable threat to environment and human health. This study evaluated the potential ecological and health risks of heavy metals (Cu, Cr, Cd, Pb, Zn, Ni, and As) and their accumulation in a peanut-soil system based on 34 soil and peanut kernel paired samples across China. Soil As and Cd posed the greatest pollution risk with 47.1% and 17.6% of soil samples exceeding the risk screen levels, respectively, with 26.5% and 20.6% of the soil sites at relatively strong potential ecological risk level, respectively, and with the geo-accumulation levels at several soil sites in the uncontaminated to moderately contaminated categories. About 35.29% and 2.94% of soil sites were moderately and severely polluted based on Nemerow comprehensive pollution index, respectively, and a total of 32.4% of samples were at moderate ecological hazard level based on comprehensive potential ecological risk index values. The Cd, Cr, Ni, and Cu contents exceeded the standard in 11.76, 8.82, 11.76 and 5.88% of the peanut kernel samples, respectively. Soil metals posed more health risks to children than adults in the order As > Ni > Cr > Cu > Pb > Zn > Cd for non-carcinogenic health risks and Ni > Cr ≫ Cd > As > Pb for carcinogenic health risks. The soil As non-cancer risk index for children was greater than the permitted limits at 14 sites, and soil Ni and Cr posed the greatest carcinogenic risk to adults and children at many soil sites. The metals in peanut did not pose a non-carcinogenic risk according to standard. Peanut kernels had strong enrichment ability for Cd with an average bio-concentration factor (BCF) of 1.62. Soil metals contents and significant soil properties accounted for 35-74% of the variation in the BCF values of metals based on empirical prediction models.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| | - Huanhuan Liu
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| | - Xin Li
- Baowu Water Technology Co., Ltd. Wuhan Branch, 430081, PR China.
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China.
| | - Zhihua Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang, 453007, PR China.
| | - Dajun Ren
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| |
Collapse
|
12
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
13
|
Borah P, Mitra S, Reang D. Geochemical fractionation of iron in paper industry and municipal landfill soils: Ecological and health risks insights. ENVIRONMENTAL RESEARCH 2024; 250:118508. [PMID: 38395333 DOI: 10.1016/j.envres.2024.118508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Industrial processes and municipal wastes largely contribute to the fluctuations in iron (Fe) content in soils. Fe, when present in unfavorable amount, causes harmful effects on human, flora, and fauna. The present study is an attempt to evaluate the composition of Fe in surface soils from paper mill and municipal landfill sites and assess their potential ecological and human health risks. Geochemical fractionation was conducted to explore the chemical bonding of Fe across different fractions, i.e., water-soluble (F1) to residual (F6). Different contamination factors and pollution indices were evaluated to comprehend Fe contamination extent across the study area. Results indicated the preference for less mobile forms in the paper mill and landfill, with 26.66% and 43.46% of Fe associated with the Fe-Mn oxide bound fraction (F4), and 57.22% and 24.78% in the residual fraction (F6). Maximum mobility factor (MF) of 30.65% was observed in the paper mill, and 80.37% in the landfill. The enrichment factor (EF) varied within the range of 20 < EF < 40, signifying a high level of enrichment in the soil. The individual contamination factor (ICF) ranged from 0 to >6, highlighting low to high contamination. Adults were found to be more vulnerable towards Fe associated health risks compared to children. The Hazard Quotient (HQ) index showed the highest risk potential pathways as dermal contact > ingestion > inhalation. The study offers insights into potential Fe contamination risks in comparable environments, underscoring the crucial role of thorough soil assessments in shaping land use and waste management policies.
Collapse
Affiliation(s)
- Pallabi Borah
- Department of Environmental Science, Royal Global University, Guwahati, Assam, 781035, India; Department of Environmental Science, Tezpur University, Tezpur, Assam, 784028, India.
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| | - Demsai Reang
- Department of Environmental Science, Royal Global University, Guwahati, Assam, 781035, India.
| |
Collapse
|
14
|
Sun R, Gao S, Zhang K, Cheng WT, Hu G. Recent advances in alginate-based composite gel spheres for removal of heavy metals. Int J Biol Macromol 2024; 268:131853. [PMID: 38679268 DOI: 10.1016/j.ijbiomac.2024.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The discharge of heavy metal ions from industrial wastewater into natural water bodies is a consequence of global industrialisation. Due to their high toxicity and resistance to degradation, these heavy metal ions pose a substantial threat to human health as they accumulate and amplify. Alginate-based composite gels exhibit good adsorption and mechanical properties, excellent biodegradability, and non-toxicity, making them environmentally friendly heavy metal ion adsorbents for water with promising development prospects. This paper introduces the basic properties, cross-linking methods, synthetic approaches, modification methods, and manufacturing techniques of alginate-based composite gels. The adsorption properties and mechanical strength of these gels can be enhanced through surface modification, multi-component mixing, and embedding. The main production processes involved are sol-gel and cross-linking methods. Additionally, this paper reviews various applications of alginate composite gels for common heavy metals, rare earth elements, and radionuclides and elucidates the adsorption mechanism of alginate composite gels. This study aimed to provide a reference for synthesising new, efficient, and environmentally friendly alginate-based adsorbents and to contribute new ideas and directions for addressing the issue of heavy metal pollution.
Collapse
Affiliation(s)
- Ruiyi Sun
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Sanshuang Gao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Kai Zhang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Wen-Tong Cheng
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
15
|
Nath A, Paul B, Deka P. Chemical characterization of road dust during diwali festival in Guwahati city of Assam, Northeast India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:484. [PMID: 38684530 DOI: 10.1007/s10661-024-12628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
The present study focuses on the elemental analysis of road dust in Guwahati, the largest city of Assam and the largest metropolis of Northeast India during the Diwali festival. Road dust samples were collected on pre-Diwali (PD), the Day after Diwali (DaD), and one week after Diwali (WaD) from two sites (Lankeshwar; LKW and Patharquarry; PTQ). Three composite samples were collected from 3 points at each site. The elemental concentration was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of Ba and Sr increased by 1.6 and 1.7 times, respectively, after Diwali. Among other firework-related elements (FREs), Mg, Al, K, and Cu increased at LKW following Diwali (both DaD and WaD), whereas Mg, Al, and K increased in DaD dust at PTQ. The average concentration of Traffic Related Elements (TREs) at PTQ was significantly higher than at LKW (p < 0.05; 75.40 mg/kg vs 63.96 mg/kg). Cd had the highest enrichment (EF), followed by Ni and Zn. EF for Cd, Ni, and Zn ranged from high to extremely high enrichment. Ni and Cd exhibited moderate contamination (CF). The ecological risk (ER) values for Cd at LKW and PTQ were 54.32 and 56.71, respectively, indicating a moderate ER. Pearson's correlation was performed to study the relationship between elements, while PCA analysis was used to identify the main sources of these elements. Although the health hazard indices presently do not suggest any immediate danger, hazard quotient (HQ) values for ingestion, inhalation, and dermal exposure were higher for children than adults. In children, the contribution of HQing to HI (total risk) was the highest, accounting for more than 65% of all elements. There is no apparent lifetime cancer risk due to road dust exposure through inhalation.
Collapse
Affiliation(s)
- Anamika Nath
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India
| | - Baishali Paul
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India
| | - Pratibha Deka
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India.
| |
Collapse
|
16
|
Gogoi BB, Yeasin M, Paul RK, Deka D, Malakar H, Saikia J, Rahman FH, Maiti CS, Sarkar A, Handique JG, Kanrar B, Singh AK, Karak T. Pollution indices of selected metals in tea (Camellia sinensis L.) growing soils of the Upper Assam region divulge a non-trifling menace of National Highway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170737. [PMID: 38340860 DOI: 10.1016/j.scitotenv.2024.170737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The study investigated the influence of a National Highway (NH) traversing tea estates (TEs) on heavy metal (HM) contamination in the top soils of Upper Assam, India. The dispersion and accumulation of six HMs, viz. cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), within tea-growing soils were assessed using diverse indices: contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geo-accumulation index (Igeo), modified degree of contamination (MDC), Nemerow pollution index (PINemerow), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI). The order of HM prevalence was Fe > Mn > Zn > Ni > Cu > Cd. Elevated Cd levels near the NH prompted immediate attention, while Cd and Zn showed moderate pollution in CF, EF, and RI. The remaining metals posed minimal individual risk (Eri< 40), resulting in an overall contamination range of "nil to shallow," signifying slight contamination from the studied metals. From MDC values for investigated metals, it was found to be "zero to very low degree of contamination" at all locations except the vicinity of NH. Soil pollution, as determined by PLI, indicated unpolluted soils in both districts, yet PINemerow values indicated slight pollution. The statistical analysis revealed that there is a significant decrease in most of the indices of HM as the distance from NH increases. The application of multivariate statistical techniques namely Principal Component Analysis and Cluster Analysis showed the presence of three distinct homogenous groups of distances based on different indices. This investigation underscores NH-associated anthropogenic effects on TE soil quality due to HM deposition, warranting proactive mitigation measures.
Collapse
Affiliation(s)
- Bidyot Bikash Gogoi
- Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101 Dibrugarh, Assam, India; Department of Chemistry, D.H.S.K. College, Dibrugarh 786001, Assam, India; Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Md Yeasin
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Ranjit Kumar Paul
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Diganta Deka
- North Bank Advisory Centre, Tea Research Association, Thakurbari 784 503, Assam, India
| | - Harisadhan Malakar
- Tea Research Association, Tocklai Tea Research Institute, Cinnamara, 785008 Jorhat, Assam, India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Feroze Hasan Rahman
- ICAR-NBSS and LUP, Regional Center Kolkata, Block DK, Sector II, Salt Lake, Kolkata 700091, India
| | - C S Maiti
- Department of Horticulture, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema 797106, Nagaland, India
| | - Animesh Sarkar
- Department of Horticulture, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema 797106, Nagaland, India
| | | | - Bappaditya Kanrar
- TLabs, Tea Research Association, Kolkata 700 016, West Bengal, India
| | - A K Singh
- Department of Soil Science, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema 797106, Nagaland, India
| | - Tanmoy Karak
- Department of Soil Science, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema 797106, Nagaland, India.
| |
Collapse
|
17
|
Rai PK, Nongtri ES. Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16216-16240. [PMID: 38334920 DOI: 10.1007/s11356-024-32177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Heavy metals/-metalloids can result in serious human health hazards. Phytoremediation is green bioresource technology for the remediation of heavy metals and arsenic (As). However, there exists a knowledge gap and systematic information on duckweed-based metal phytoremediation in an eco-sustainable way. Therefore, the present review offers a critical discussion on the effective use of duckweeds (genera Landoltia and Lemna)-based phytoremediation to decontaminate metallic contaminants from wastewater. Phytoextraction and rhizofiltration were the major mechanism in 'duckweed bioreactors' that can be dependent on physico-chemical factors and plant-microbe interactions. The biotechnological advances such as gene manipulations can accelerate the duckweed-based phytoremediation process. High starch and protein contents of the metal-loaded duckweed biomass facilitate their use as feedstock in biorefinery. Biorefinery prospects such as bioenergy production, value-added products, and biofertilizers can augment the circular economy approach. Coupling duckweed-based phytoremediation with biorefinery can help achieve Sustainable Development Goals (SDGs) and human well-being.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University (A Central University), Aizawl, 796004, India.
| | - Emacaree S Nongtri
- Department of Environmental Science, Mizoram University (A Central University), Aizawl, 796004, India
| |
Collapse
|
18
|
Verma A, Yadav S, Kumar R. Geochemical fractionation, bioavailability, ecological and human health risk assessment of metals in topsoils of an emerging industrial cluster near New Delhi. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9041-9066. [PMID: 36932290 DOI: 10.1007/s10653-023-01536-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Urban spaces have become sink for metal-rich waste, particularly in unorganized industrial clusters and metro-cities. Geochemical distribution of metals in different forms and their mobility and bioavailability in topsoils of Bhiwadi Industrial Cluster (BIC) near New Delhi are studies following m-BCR-SEP. Contamination factor (Cf), risk assessment code (RAC), ecological risk assessment (Er), and carcinogenic and non-carcinogenic health risk (HRA) were calculated to assess health and environmental risks. Residual fraction (F4) contained considerable amounts of Cd (57.2%), Cr (81.5%), Fe (86.1%), Mn (62.5%), Ni (58.3%), and V (71.4%). Pb was present in reducible fraction (F2; 52.8%), whereas Cu was distributed in F2 (33.3%) and F4 (31.6%). Zn showed equal distribution in acid exchangeable (F1; 33.9%) and oxidizable fraction (F3; 32.5%). High Cf was observed for Zn (0.9-20.9), Cu (0.46-17) and Pb (0.2-9.9). RAC indicated high risk of Cd, Cu, Mn, Ni, and Zn due to their high mobility and toxicity. High potential bioavailability of Cu, Pb, and Zn (> 65%) was found in samples collected near to metal casting, electroplating, and automobile part manufacturing industries. Considerable to extremely high ecological risk was observed for Cd, low to high risk for Cu, low risk to moderate risk for Cr, Mn, Ni, Zn, and Pb. All topsoil samples were in low to very high-risk range for metals. Ingestion was major pathway of metals followed by dermal and inhalation. Children were more prone to non-carcinogenic risks (hazardous index: 3.6). Topsoils had high carcinogenic risk to exposed population for Cd, Cr, Ni, and Pb.
Collapse
Affiliation(s)
- Anju Verma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Rakesh Kumar
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, India
| |
Collapse
|
19
|
Aradhi KK, Dasari BM, Banothu D, Manavalan S. Spatial distribution, sources and health risk assessment of heavy metals in topsoil around oil and natural gas drilling sites, Andhra Pradesh, India. Sci Rep 2023; 13:10614. [PMID: 37391457 PMCID: PMC10313719 DOI: 10.1038/s41598-023-36580-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
Soils are usually the interface between human activity and environmental components that must be conserved and protected. As a result of rising industrialization and urbanization, activities such as exploration and extraction operations lead to the release of heavy metals into the environment. This study presents distribution of six heavy metals (As, Cr, Cu, Ni, Pb and Zn) in 139 top soil samples collected in and around oil and natural gas drilling sites at a sampling density of 1 site/12 km2. The results indicated the concentration ranged from 0.1 to 16 mg/kg for As, 3-707 mg/kg for Cr, 7-2324 mg/kg for Cu, 14-234 mg/kg for Ni, 9-1664 mg/kg for Pb, and 60-962 mg/kg for Zn. The contamination of soil was estimated on the basis of Index of geo accumulation (Igeo), enrichment factor (Ef), and contamination factor (Cf). Further, spatial distribution pattern maps indicated that the pollution levels for Cu, Cr, Zn, and Ni were higher around drilling sites of the study area relative to other regions. Using exposure factors for the local population and references from the USEPA's integrated database, potential ecological risk indices (PERI) and health risk assessments were made. The hazard index (HI) values of Pb (in adults) and Cr, Pb (in children) exceeded the recommended limit of HI = 1, indicating the non-carcinogenic risks. Total carcinogenic risk (TCR) calculations revealed Cr (in adults) and As, Cr (in children) levels in soils exceeded the threshold value of 1.0E - 04, indicating significant carcinogenic risk due to high metal concentrations in the study area. These results may assist in determining the soil's present state and its effect due to extraction strategies used during drilling process and initiate few remedial techniques, particularly for proper management strategies in farming activities to decrease point and non-point source of contamination.
Collapse
Affiliation(s)
- Keshav Krishna Aradhi
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Babu Mallesh Dasari
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dasaram Banothu
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
| | - Satyanarayanan Manavalan
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
20
|
Yakamercan E, Aygün A. Health risk assessment of metal(loid)s for land application of domestic sewage sludge in city of Bursa, Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:733. [PMID: 37231226 DOI: 10.1007/s10661-023-11302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
This study aims to determine the potential health risks (Carcinogenic and non-carcinogenic) of metal(loid)s in sewage sludge samples for agricultural purposes. For this purpose, sewage sludge was collected annually from a domestic wastewater treatment plant, and metal(loid)s were determined by ICP-MS. Metal(loid)s concentration in sludge samples was within the legal standards. No statically significant seasonal variation of metal(loid)s were observed. The total cancer risk and the hazard index (HI) of metal(loid)s through ingestion, dermal, and inhalation exposure from sewage sludge samples were estimated. The main risk contributor to metal(loid)s were Pb, Zn, and Ni. The average HI values were 0.75 (child) and 0.09 (adult). The total carcinogenic risk (TCR) for child and adult was found to be 3.43 × 10-5 and 2.31 × 10-5, respectively. EPA risk assessment model and Monte Carlo Simulation were used to estimate probability and sensitivity distributions for carcinogenic and non-carcinogenic risks. Sensitivity analysis showed that metal(loid)s concentration, exposure duration, exposure frequency, and body weight significantly affect total health risk. The sewage sludge can be applied safely in agriculture due to no important carcinogenic and non-carcinogenic risk for child and adult.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye
| | - Ahmet Aygün
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye.
| |
Collapse
|
21
|
Wang L, Liu R, Liu J, Qi Y, Zeng W, Cui B. A novel regional-scale human health risk assessment model for soil heavy metal(loid) pollution based on empirical Bayesian kriging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114953. [PMID: 37146388 DOI: 10.1016/j.ecoenv.2023.114953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Soil heavy metal(loid)s contamination caused by rapid urbanization and industrialization seriously affects human health and hinders the global sustainable development goals (SDGs). Currently, there is a lack of comprehensive human health risk assessment (HHRA) studies for multiple land use types at the regional scale. We propose a practical risk assessment framework that integrates empirical Bayesian kriging (EBK), pollution level analyses, and modified HHRA modeling. The concentrations of copper industry-related metals (Cu, Ni, Cd, As, and Hg) in 332 topsoil samples from the south bank of the Yangtze River in Tongling were investigated. Obvious enrichment of Cu, Cd, As, and Hg was detected, and the average concentration of Cu was 5.24 times higher than the background values. The distribution of heavy metal(loid) pollution was typically high in the south and east, and low in the north and west. The mean errors of interpolation for Cu, Ni, and Hg were 0.84, 1.29, and 0, respectively, and the root mean square errors of interpolation for Cd and As were 1.29 and 0.86, respectively. Non-carcinogenic risks of soil heavy metal(loid)s were assessed as acceptable throughout the studied area. The hazard index decreased in the order As (0.448) > Ni (0.0729) > Cd (0.0136) > Hg (9.04 ×10-4) > Cu (6.41 ×10-4). Nevertheless, the carcinogenic risks of Ni, Cd, and As in 70-80% of the administrative units (AUs) were between 10-6 to 10-4, considered an unacceptable level. Exposure through the oral ingestion route accounted for 88.0-99.2% of the total three exposure routes. It is worth noting that four AUs were considered to be the priority control units, and Ni and As were identified as the priority control soil heavy metal(loid)s. This case demonstrates the feasibility and scientific validity of the new EBK-HHRA framework, which confirms that EBK can effectively predict the spatial distribution patterns of soil heavy metal(loid)s and that modified HHRA models are conducive to risk integration at the regional scale. The EBK-HHRA approach is generic and provides substantial support for risk source identification and risk management of soil heavy metal(loid)s contamination at the regional scale.
Collapse
Affiliation(s)
- Liting Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Renzhi Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, 210019 Nanjing, China
| | - Yushun Qi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Weihua Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001 Qinghai, China
| | - Baoshan Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Shi J, Zhao D, Ren F, Huang L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161768. [PMID: 36740051 DOI: 10.1016/j.scitotenv.2023.161768] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Soil heavy metal pollution has been a serious and widespread problem in China. Although more attention has been paid on soil pollution status of heavy metals in China, systematic reviews on the spatiotemporal distribution of soil heavy metals and their related health risk considering different land use types at a national scale are still lacking. In this review, we extracted concentrations of seven heavy metals in soils including lead (Pb), cadmium (Cd), mercury (Hg), chromium (Cr), arsenic (As), nickel (Ni), and copper (Cu), assessed the spatiotemporal distribution of soil heavy metal concentrations from studies carried out between 1977 and 2020, and estimated the ecological and human health risks on a national scale. Among the seven metals, associated risks posed by Pb and As are more serious compared to other metals. Based on the temporal trend of the geoaccumulation index of the seven heavy metals during 1977-2020, there is no further increasing trend. Among different land use types, mining areas showed higher risk compared to others. Totally, the pollution was more serious in southeast China than those in northwest. Children and adult females are identified as the priority group for protection. This paper presents a comprehensive ecological and health risk assessment of seven heavy metals in soils across China considering different land use types and spatiotemporal variation, and provides important evidence for policy makers to manage and reduce soil heavy metal pollution and related health risks.
Collapse
Affiliation(s)
- Jiangdan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Di Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Futian Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China.
| |
Collapse
|
23
|
Agnihotri R, Gujre N, Mitra S, Sharma MP. Decoding the PLFA profiling of microbial community structure in soils contaminated with municipal solid wastes. ENVIRONMENTAL RESEARCH 2023; 219:114993. [PMID: 36535388 DOI: 10.1016/j.envres.2022.114993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to assess the influence of municipal solid waste (MSW) disposal on soil microbial communities. Soil samples from 20 different locations of an MSW dumping site contaminated with toxic heavy metals (HMs) and a native forest (as control) were collected for phospholipid fatty acid (PLFA) profiling to predict microbial community responses towards unsegregated disposal of MSW. PLFA biomarkers specific to arbuscular mycorrhizal fungi (AMF), Gram-negative and Gram-positive bacteria, fungi, eukaryotes, actinomycetes, anaerobes, and microbial stress markers-fungi: bacteria (F/B) ratio, Gram-positive/Gram-negative (GP/GN) ratio, Gram-negative stress (GNStr) ratio and predator/prey ratio along with AMF spore density and the total HM content (Cu, Cr, Cd, Mn, Zn, and Ni) were assessed. The results showed that all of the PLFA microbial biomarkers and the F/B ratio were positively correlated, while HMs and microbial stress markers were negatively correlated. The significant correlation of AMF biomass with all microbial groups, the F/B ratio, and T. PLFA confirmed its significance as a key predictor of microbial biomass. With AMF and T. PLFA, Cd and Cr had a weak or negative connection. Among the toxic HMs, Zn and Cd had the greatest impact on microbial populations. Vegetation did not have any significant effect on soil microbial communities. This research will aid in the development of bioinoculants for the bioremediation of MSW-polluted sites and will improve our understanding of the soil microbial community's ability to resist, recover, and adapt to toxic waste contamination.
Collapse
Affiliation(s)
- Richa Agnihotri
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Nihal Gujre
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India; Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India
| | - Mahaveer P Sharma
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India.
| |
Collapse
|
24
|
Verma A, Yadav S. Chemical Speciation, Bioavailability and Human Health Risk Assessment of Metals in Surface Dust from an Industrial Cluster in India. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:267-283. [PMID: 36764952 DOI: 10.1007/s00244-023-00984-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
In this study, distribution of metals in different geochemical forms, their mobility and bioavailability in bulk surface dust samples of Bhiwadi industrial cluster (BIC) in Rajasthan, India, was assessed by modified Community Bureau of Reference (m-BCR) sequential extraction procedure. Potential risk of metals in surface dust to environment and human health was evaluated using Contamination factor (Cf), Mobility Factor (MF) and Risk Assessment Code (RAC), and carcinogenic and non-carcinogenic health risk. Residual fraction contained significant amount of metals as Cd(55.86%), Cr(86.05%), Fe(90.06%), Mn(69.94%), Ni(66.08%), and V(71.80%). Pb(52.43%) was present in reducible fraction, while Cu was equally distributed in reducible (27.66%) and oxidizable (28.20%) fractions. Zn was equally distributed in acid exchangeable (33.15%) and reducible (35.01%) fractions. High Cf values were observed for Zn (1.32-16.98), followed by Pb (0.38-11.23) and Cu (0.26-8.22). RAC indicated high risk of Cd, Mn, Ni and Zn to environment due to their high mobility and toxic nature. Zn, Pb, Cu and Cd showed highest mobility (potential bioavailability) in samples collected around metal casting, electroplating, and automobile part industries. Data indicated that metals can bio-available with the changes in redox conditions in environment. Ingestion was major pathway for carcinogenic and non-carcinogenic health risks followed by dermal and inhalation. Hazardous Index value (6.32) indicated higher susceptibility of children for non-carcinogenic risk as compared to adults. Carcinogenic risk of Cr, Cd, Ni and Pb was higher than acceptable levels in surface dust, suggesting a high risk of cancer to exposed population.
Collapse
Affiliation(s)
- Anju Verma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
25
|
Noudeng V, Quan NV, Xuan TD. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16169. [PMID: 36498242 PMCID: PMC9741469 DOI: 10.3390/ijerph192316169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Lithium-ion batteries (LIBs) have become a hot topic worldwide because they are not only the best alternative for energy storage systems but also have the potential for developing electric vehicles (EVs) that support greenhouse gas (GHG) emissions reduction and pollution prevention in the transport sector. However, the recent increase in EVs has brought about a rise in demand for LIBs, resulting in a substantial number of used LIBs. The end-of-life (EoL) of batteries is related to issues including, for example, direct disposal of toxic pollutants into the air, water, and soil, which threatens organisms in nature and human health. Currently, there is various research on spent LIB recycling and disposal, but there are no international or united standards for LIB waste management. Most countries have used a single or combination methodology of practices; for instance, pyrometallurgy, hydrometallurgy, direct recycling, full or partial combined recycling, and lastly, landfilling for unnecessary waste. However, EoL LIB recycling is not always easy for developing countries due to multiple limitations, which have been problems and challenges from the beginning and may reach into the future. Laos is one such country that might face those challenges and issues in the future due to the increasing trend of EVs. Therefore, this paper intends to provide a future perspective on EoL LIB management from EVs in Laos PDR, and to point out the best approaches for management mechanisms and sustainability without affecting the environment and human health. Significantly, this review compares the current EV LIB management between Laos, neighboring countries, and some developed countries, thereby suggesting appropriate solutions for the future sustainability of spent LIB management in the nation. The Laos government and domestic stakeholders should focus urgently on specific policies and regulations by including the extended producer responsibility (EPR) scheme in enforcement.
Collapse
Affiliation(s)
- Vongdala Noudeng
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Ministry of Natural Resources and Environment, Dongnasok-Nong Beuk Road, P.O. Box 7864, Vientiane XHXM+C8M, Laos
| | - Nguyen Van Quan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - Tran Dang Xuan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| |
Collapse
|
26
|
Zhu YJ, Zhu XY, Xu QJ, Qian YH. Water quality criteria and ecological risk assessment for copper in Liaodong Bay, China. MARINE POLLUTION BULLETIN 2022; 185:114164. [PMID: 36252440 DOI: 10.1016/j.marpolbul.2022.114164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The establishment of water quality criteria (WQC) for copper (Cu) was used as the basis for an ecological risk assessment of marine Cu pollution in Liaodong Bay, China. Published ecotoxicity data for Cu were obtained and supplemented with the results of acute Cu toxicity tests. The marine WQC for Cu in Liaodong Bay was developed using a species sensitivity distribution method with a safety factor of 2.0 and the USEPA acute-to-chronic ratio method. The ecological risk of Cu in Liaodong Bay was assessed by comparing the seawater Cu concentrations with the developed WQC. The results of this study showed that the acute and chronic Cu concentrations in Liaodong Bay were 3.31 and 2.18 μg/L, respectively. Comparison of the WQC to Cu concentrations in the bay resulted in risk quotients slightly >1.0 and typically ≤2.0. These data suggest that certain organisms in Liaodong Bay are at risk. These results can assist in the development of a pollution control management approach for the bay.
Collapse
Affiliation(s)
- Yun-Jie Zhu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xiao-Yan Zhu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Qiu-Jin Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yan-Hua Qian
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Wuxi No.5 Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Zari M, Smith R, Wright C, Ferrari R. Health and environmental impact assessment of landfill mining activities: A case study in Norfolk, UK. Heliyon 2022; 8:e11594. [PMID: 36425411 PMCID: PMC9678709 DOI: 10.1016/j.heliyon.2022.e11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
The release of fine particles during mechanical landfill mining (LFM) operations is a potential environmental pollution and human health risk. Previous studies demonstrate that a significant proportion (40–80% wt) of the content of fine soil-like materials within the size range <10 mm to <4 mm recovered from such operations originate from municipal solid waste (MSW) landfills. This study evaluates the potential health risks caused by emissions from LFM activities. MSW samples recovered from the drilling of four different wells of a closed UK landfill were analysed for physical, chemical, and biological properties to determine the extent of potential contaminant emissions during LFM activities. The results show that fine particles (approximately ≤1.5 mm) accounted for more than 50% of the total mass of excavated waste and contained predominantly soil-like materials. The concentrations of Zn, Cu, Pb, Cd, As, and Cr exceed the permissible limits set by the current UK Soil Guideline Values. The highest geoaccumulation index and contamination factor values for Cu were 2.51 and 12.51, respectively, indicating a moderate to very high degree of contamination. Unsurprisingly, the pollution load index was >1, indicating the extent of pollution within the study area. The hazard quotient values indicated high exposure-related risks for Pb (16.95), Zn (3.56), Cd (1.47), and As (1.46) for allotment land use and As (1.96) for residential land use. The cancer-related risk values were higher than the acceptable range of 1.0 × 10−6 to 1.0 × 10−4. The cancer risk factor indicated that Cr and As were the major human health risk hazards. Potentially toxic elements and organics associated with waste fine fractions. Novel method for assessing potential human health risk of heavy metals achieved. Landfill poses major risk to human health and environment if LFM occurs. Pb highest contributor to the non-carcinogenic risk. Cr most prominent metal with respect to carcinogenic effect.
Collapse
Affiliation(s)
- Mohammed Zari
- University of Nottingham, Faculty of Engineering, Chemical and Environmental Engineering Department, Coates Building, University Park, Nottingham NG7 2RD, United Kingdom
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Corresponding author.
| | - Richard Smith
- University of Nottingham, Faculty of Engineering, Chemical and Environmental Engineering Department, Coates Building, University Park, Nottingham NG7 2RD, United Kingdom
- Industrial Chemicals Ltd, Titan Works, Hogg Lane, Grays, Essex RM17 5DU, United Kingdom
| | - Charles Wright
- Norfolk County Council, County Hall, Martineau Ln, Norwich NR1 2DH, United Kingdom
| | - Rebecca Ferrari
- University of Nottingham, Faculty of Engineering, Chemical and Environmental Engineering Department, Coates Building, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
28
|
Yang J, Sun Y, Wang Z, Gong J, Gao J, Tang S, Ma S, Duan Z. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. CHEMOSPHERE 2022; 304:135340. [PMID: 35709847 DOI: 10.1016/j.chemosphere.2022.135340] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are naturally occurring elements with high natural background levels in the volcanic area. Therefore, it is necessary to conduct a risk assessment and identify potential sources of heavy metals. In this study, 4488 soil samples (0-20 cm) were collected in Chengmai County, a typical volcanic area in Hainan Province, and analyzed for eight heavy metals and major oxides. Pollution level, ecological risks, and health risks were evaluated by geo-accumulation index (Igeo), pollution index (PI), potential ecological risk index (RI), hazard index (HI), and carcinogenic risks (CR). The positive matrix factorization (PMF) model was further used to determine the priority source of heavy metals. The average values of heavy metal concentrations in soil were 7.06, 0.07, 156.88, 33.43, 0.05, 72.47, 19.48, and 67.51 mg kg-1 for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively. Except for Pb, the average concentrations of all heavy metals exceeded background concentration in Hainan soils, indicating different degrees of heavy metal enrichment. The Igeo and PI showed that the main pollutant element in volcanic soils was Ni, followed by Cr and Cu. The RI shows that the percentage of soil samples with considerable or worse potential ecological risk was 44.4% of the total samples, with Hg, As, Cd, and Ni causing high ecological risks. The estimated average daily doses of heavy metals were below the tolerable limits and the HI values were below one for both adults and children, indicating that the residents had an acceptable potential non-carcinogenic risk. However, the potential carcinogenic risk of exposure to Cr, Ni, and As was unacceptable for residents, with high CR values exceeding 10-4, especially for children. Based on the PMF, five major sources of heavy metals were found in the study area: Ni, Cu, and Zn mainly from parent materials, As and Pb from daily life and vehicle emissions, Cd from agricultural activities, Hg from industrial activities, and Cr from parent materials under different environmental conditions. Significant positive correlations between Al2O3, TFe2O3, Mn, soil organic carbon (SOC), and heavy metals reflect that aluminium-rich minerals, Fe-Mn oxides, and SOC are the most critical factors affecting heavy metal accumulation in volcanic agricultural soils.
Collapse
Affiliation(s)
- Jianzhou Yang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China.
| | - Yanling Sun
- School of Earth Sciences, China University of Geoscience, Wuhan, 430074, China
| | - Zhenliang Wang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Jingjing Gong
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Jianweng Gao
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Shixin Tang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Shengming Ma
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Zhuang Duan
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| |
Collapse
|
29
|
Vedula SS, Yadav GD. Synthesis and application of environment friendly membranes of chitosan and chitosan-PTA for removal of copper (II) from wastewater. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2093636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shivani S. Vedula
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
30
|
Huang F, Guan R, Wang J, Wang L, Zhang Y, Wang S, Wang L, Qu J, Dong M, Rong S. Interference between di(2-ethylhexyl) phthalate and heavy metals (Cd and Cu) in a Mollisol during aging and mobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155635. [PMID: 35513158 DOI: 10.1016/j.scitotenv.2022.155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Diffuse pollution of the soil by phthalates and heavy metals causes numerous concerns. Their respective fates when coexisting require further investigation. In this study, di(2-ethylhexyl) phthalate (DEHP) and Cd/Cu were used as subjects, focusing on their behavior in Mollisols under combined pollution based on their concentration, fractionation, and leaching. The results indicated that when the two pollutants coexist, the dissipation rate of DEHP in the soil decreased, and its half-life was extended from 30.81 to 40.53 (Cd) and 35.40 d (Cu). DEHP altered the distribution of Cd and Cu in the soil, and this effect persisted after most of the DEHP had degraded. Leaching tests showed that the interaction of DEHP with Cd and Cu hindered leaching during the first rainfall event, but as DEHP degraded and Cd/Cu stabilized, the trapped pollutants were gradually released in subsequent rainfall events. Additionally, to investigate the partitioning of pollutants between soil water and solid surfaces, a diffusion model of DEHP and metal ions on the surface of montmorillonite (high specific surface area adsorbents abundant in soils) was built using molecular dynamics simulations. Simulations revealed their density distribution on the clay surface increased synergistically, whereas their diffusion was antagonistic. This study provides basic data and theoretical support concerning the ecological risk assessment of combined phthalate and heavy metals pollution in soil.
Collapse
Affiliation(s)
- Fuxin Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingyi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shiyu Wang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Shaowen Rong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
31
|
Wu L, Yue W, Zheng N, Guo M, Teng Y. Assessing the impact of different salinities on the desorption of Cd, Cu and Zn in soils with combined pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155725. [PMID: 35526625 DOI: 10.1016/j.scitotenv.2022.155725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Exploring the relationships between heavy metal release and salinity can help address the problems of combination of toxic heavy metals and salinization in contaminated soils. Therefore, in this study, the release characteristics of heavy metals (Cd, Cu and Zn) under different salt types and mass concentrations were investigated through batch desorption experiments. Spearman's correlation analysis was performed to assess the effects of typical physicochemical properties on metal release under salt stress. The results indicated that the types and concentration gradients of salt had notably different impacts on the release of different metals; specifically, there were significant impacts for Cd but slight impacts for Cu and Zn. MgCl2 and CaCl2 had more obvious promoting effects on Cd release, followed by a salt mixture and NaCl, and this pattern was similar for Zn release. Most salts could slightly restrain the release of Cu, except for MgCl2 and Na2SO4, which had slight promoting effects. Moreover, low levels of CaCl2 could effectively restrain the release of Cu. The results showed that the release capacities of metals followed the order of Cd > Cu > Zn, possibly attributed to the competitive adsorption among cations. Ferromanganese oxides in the soil favored the release of Cd and Zn under salt treatments, and redox potential was an important factor affecting Cu release. The results also suggested that the background values of metals could affect metal release, but the effects were varied under different salt treatments for Zn. The reason for this may be that the addition of different salts changed the effects of certain soil properties on the metal release. Overall, this study can serve as an important reference for controlling heavy metal pollution in soils in salinization and coastal areas.
Collapse
Affiliation(s)
- Lijun Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education, Beijing Normal University, Beijing 100875, China.
| | - Nengzhan Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Mengshen Guo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
32
|
Mng'ong'o M, Munishi LK, Blake W, Comber S, Hutchinson TH, Ndakidemi PA. Towards sustainability: Threat of water quality degradation and eutrophication in Usangu agro-ecosystem Tanzania. MARINE POLLUTION BULLETIN 2022; 181:113909. [PMID: 35810649 DOI: 10.1016/j.marpolbul.2022.113909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The agrochemicals and nutrient losses from farming areas such as paddy farming significantly dictate quality and eutrophication of the freshwater resource. However, how farming and land use pattern affect water qualities and eutrophication remain poorly understood in most African agro-ecosystems. The present study characterized how paddy farming influences water qualities and eutrophication in 10 irrigation schemes in Usangu agro-ecosystem (UA). About 42 water samples were sampled from intakes, channels, paddy fields, and drainages and analyzed for EC, Cl, P, NH4-N, NO3-N, TN, Zn, Cu, Ca, and Mg. We observed water pH ranging from 4.89 to 6.76, which was generally below the acceptable range (6.5-8.4) for irrigation water. NH4-N concentration was in a range of 10.6-70.0 mg/L, NO3-N (8.4-33.9 mg/L), and TN (19.1-21,104 mg/L). NH4-N increased along sampling transect (sampling points) from intakes (5.7-29.1 mg/L), channels (19-20 mg/L), fields (12.9-35.8 mg/L), and outflow (10.6-70.0 mg/L), the same trend were found for NO3-N and TN. The TP determined in water samples were in the range of 0.01 to 1.65 mg/L; where some sites had P > 0.1 mg/L exceeding the allowable P concentration in freshwater resource, thus indicating P enrichment and eutrophication status. The P concentration was observed to increase from intake through paddy fields to drainages, where high P was determined in drainages (0.02-1.65 mg/L) and fields (0.0-0.54 mg/L) compared to channels (0.01-0.13 mg/L) and intakes (0.01-0.04 mg/L). Furthermore, we determined appreciable amount of potentially toxic elements (PTEs) such as Cu, Pb, Cd and Cr in studied water samples. The high N, P, and PTEs in drainages indicate enrichment from agricultural fields leading to water quality degradation and contaminations (eutrophication). The study demonstrates that water quality in UA is degrading potentially due to paddy rice farming and other associated activities in the landscape. Thus, the current study recommends starting initiatives to monitor irrigation water quality in UA for better crop productivity, and improved quality of drainage re-entering downstream through the introduction of mandatory riparian buffer, revising irrigation practices, to include good agronomic practices (GAP) to ensure water quality and sustainability.
Collapse
Affiliation(s)
- Marco Mng'ong'o
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania; School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK; College of Science and Technical Education (CoSTE), Mbeya University of Science and Technology (MUST), P.O. Box 131, Mbeya, Tanzania.
| | - Linus K Munishi
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - William Blake
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK
| | - Sean Comber
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK
| | - Thomas H Hutchinson
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK
| | - Patrick A Ndakidemi
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
33
|
Li J, Wu B, Luo Z, Lei N, Kuang H, Li Z. Immobilization of cadmium by mercapto-functionalized palygorskite under stimulated acid rain: Stability performance and micro-ecological response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119400. [PMID: 35525516 DOI: 10.1016/j.envpol.2022.119400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The interaction of cadmium (Cd) pollution and acid rain stress has seriously threatened soil ecosystem and human health. However, there are still few effective amendments for the in-situ remediation in the Cd-contaminated acidified soil. In this study, the performance and mechanisms of palygorskite (PAL) and mercapto-functionalized PAL (MPAL) on Cd immobilization were investigated, and the stability as well as effects on soil micro-ecology under stimulated acid rain were also explored. Results showed that MPAL could react with Cd to form stable Cd-sulfhydryl and Cd-O complexes. The reduction of bioavailable Cd by MPAL was 121.19-164.86% higher than that by PAL. Notably, the Cd immobilization by MPAL remained stable within 90 days in which the concentrations of HOAc-extractable Cd were reduced by 18.28-25.12%, while the reducible and residual fractions were increased by 9.26-18.53% and 54.16%-479.01%, respectively. The sequential acid rain leaching demonstrated that soil after MPAL treatments had a strong H+ resistance, and the immobilized Cd showed prominent stability. In addition, activities of acid phosphatase, catalase and invertase in MPAL treated soil were significantly enhanced by 34.60%, 22.09% and 48.87%, respectively. After MPAL application, bacterial diversity was further improved with diversified sulfur metabolism biomarkers. The decreased abundance of Cd resistance genes including cadA, cadC, czcA, czcB, czcR and zipA also indicated that soil micro-ecology was improved by MPAL. These results showed that MPAL was an effective and eco-friendly amendment for the immobilization of Cd in contaminated soil.
Collapse
Affiliation(s)
- Jia Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bin Wu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Zhi Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ningfei Lei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Hongjie Kuang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ziqing Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| |
Collapse
|
34
|
Özer Ç, İmamoğlu M. Isolation of Nickel(II) and Lead(II) from Aqueous Solution by Sulfuric Acid Prepared Pumpkin Peel Biochar. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2078981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Çiğdem Özer
- Faculty of Arts and Sciences, Chemistry Department, Bitlis Eren University, Bitlis, Turkey
| | - Mustafa İmamoğlu
- Faculty of Arts and Sciences, Chemistry Department, Sakarya University, Sakarya, Turkey
| |
Collapse
|
35
|
Wan X, Zeng W, Gu G, Wang L, Lei M. Discharge Patterns of Potentially Harmful Elements (PHEs) from Coking Plants and Its Relationship with Soil PHE Contents in the Beijing–Tianjin–Hebei Region, China. TOXICS 2022; 10:toxics10050240. [PMID: 35622653 PMCID: PMC9144211 DOI: 10.3390/toxics10050240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
The Beijing–Tianjin–Hebei (BTH) region in China is a rapid development area with a dense population and high-pollution, high-energy-consumption industries. Despite the general idea that the coking industry contributes greatly to the total emission of potentially harmful elements (PHEs) in BTH, quantitative analysis on the PHE pollution caused by coking is rare. This study collected the pollutant discharge data of coking enterprises and assessed the risks of coking plants in BTH using the soil accumulation model and ecological risk index. The average contribution rate of coking emissions to the total emissions of PHEs in BTH was ~7.73%. Cross table analysis indicated that there was a close relationship between PHEs discharged by coking plants and PHEs in soil. The accumulation of PHEs in soil and their associated risks were calculated, indicating that nearly 70% of the coking plants posed a significant ecological risk. Mercury, arsenic, and cadmium were the main PHEs leading to ecological risks. Scenario analysis indicated that the percentage of coking plants with high ecological risk might rise from 8.50% to 20.00% as time progresses. Therefore, the control of PHEs discharged from coking plants in BTH should be strengthened. Furthermore, regionalized strategies should be applied to different areas due to the spatial heterogeneity of risk levels.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-1064888087
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoquan Gu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2022; 12:809834. [PMID: 35601203 PMCID: PMC9122265 DOI: 10.3389/fmicb.2021.809834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Wang Q, Kong L, Tseng ML, Song Y, Wang H. Solid waste material reuse analysis: filling the road subgrade with riverway silt and sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35096-35109. [PMID: 35044602 DOI: 10.1007/s11356-022-18650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
This study proposes to explore solid waste material (SWM) reuse of the riverway silt and sediment, and examines the impacts of chemical composition on road construction through sensitivity analysis. Considering the characteristics of silt mixture, it is necessary to investigate the modified materials to improve the mechanical feasibility for subgrade filling. In this study, the water content of riverway silt and sediments was found to be important to determine the selection and content of modified materials. Specifically, the riverway silt and sediment with low water content could be improved effectively with 6 to 8% lime. Compared to the original sludge, the improved mixture had better particle size and permeability, and the carrying capacity also grew 2 to 3 times. On the other hand, the reuse of riverway silt and sediment with high water content over 40% was provided with multiple schemes. Among them, the modification scheme of construction waste or garbage slag showed well mechanical properties and environmental benefits in the sensitivity analysis, especially for the high water content sludge modified by the mixture of garbage slag and lime. The California bearing ratio (CBR2.5) was 2 to 5 times higher than the original silt, which would promote the reuse of multiple solid wastes in road construction. Finally, this study puts forward engineering measures to prevent heavy metals from polluting the water and soil environment by silt-improved soil roadbeds, and the improved riverway silt and sediment roadbeds were proved to be safe and reliable for the environment during service.
Collapse
Affiliation(s)
- Qingzhou Wang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Liying Kong
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Ming-Lang Tseng
- Institute of Innovation and Circular Economy, Asia University, Taichung City, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Yang Song
- Hebei Key Laboratory of Geotechnical Engineering Safety and Deformation Control, Hebei University of Water Resources and Electric Engineering, Cangzhou City, China
| | - Hongyu Wang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
38
|
Famurewa AC, Renu K, Eladl MA, Chakraborty R, Myakala H, El-Sherbiny M, Elsherbini DMA, Vellingiri B, Madhyastha H, Ramesh Wanjari U, Goutam Mukherjee A, Valsala Gopalakrishnan A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed Pharmacother 2022; 149:112914. [DOI: 10.1016/j.biopha.2022.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
39
|
Gupta PK, Singh A, Vaish B, Singh P, Kothari R, Singh RP. A comprehensive study on aquatic chemistry, health risk and remediation techniques of cadmium in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151784. [PMID: 34808189 DOI: 10.1016/j.scitotenv.2021.151784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a non-essential trace element, it's intrusion in groundwater has ubiquitous implications on the environment and human health. This review is an approach to comprehensively emphasize on i) chemistry and occurrence of Cd in groundwater and its concomitant response on human health ii) sustainable Cd remediation techniques, iii) and associated costs. Current study is depending on meta-analysis of Cd contaminations in groundwater and discusses its distributions around the globe. Literature review primarily comprises from the last three decades online electronic published database, which mainly includes i) research literatures, ii) government reports. On the basis of meta-data, it was concluded that Cd mobility depends on multiple factors: such as pH, redox state, and ionic strength, dissolved organic (DOC) and inorganic carbon (DIC). A substantially high Cd concentration has been reported in Lagos, Nigeria (0.130 mg/L). In India, groundwater is continuing to be contaminated by Cd in the proximity of industrial, agricultural areas, high concentrations (>8.20 mg/L) were reported in Tamil Nadu and Maharashtra. Depending on chemical behavior and ionic radius cadmium disseminate into the food chain and ultimately cause health hazard that can be measured by various index-based assessment tools. Instead of chemical adsorbents, nanoparticles, phytoextraction, and bioremediation techniques can be very useful in the remediation and management of Cd polluted groundwater at a low-cost. For Cd pollution, the development of a comprehensive framework that links the hydro-geological, bio-geochemical processes to public health is important and need to be further studied.
Collapse
Affiliation(s)
- Pankaj Kumar Gupta
- Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Anita Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Barkha Vaish
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Pooja Singh
- Department of Science, Society for Higher Education & Practical Applications (SHEPA), Varanasi, India
| | - Richa Kothari
- Department of Environmental Science, Central University of Jammu, Rahya Suchani (Bagla) Samba, Jammu, Jammu and Kashmir 181143, India
| | - Rajeev Pratap Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
40
|
Li S, Wu Y, Li X, Liu Q, Li H, Tu W, Luo X, Luo Y. Enhanced remediation of Cd-contaminated soil using electrokinetic assisted by permeable reactive barrier with lanthanum-based biochar composite filling materials. ENVIRONMENTAL TECHNOLOGY 2022:1-13. [PMID: 35244499 DOI: 10.1080/09593330.2022.2049891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic remediation (EK) combined with a permeable reactive barrier (PRB) is a relatively new technique for efficiently remediating Cd-contaminated soil in situ. Eupatorium adenophorum, which is a malignant invasive plant, was used to synthesise biochar and a novel lanthanum-based biochar composite (LaC). The biochar and LaC were used as cheap and environmentally benign PRB filling materials to remediate simulated and real Cd-contaminated soils. The pH and residual Cd concentration in the simulated contaminated soil during remediation gradually increased from the anode to the cathode used to apply an electric field to the EK-PRB system. However, the soil conductivity changed in the opposite way, and the current density first increased and then decreased. For simulated contaminated soils with initial Cd concentrations of 34.9 and 100.6 mg kg-1, the mean Cd removal rates achieved using LaC were 90.6% and 89.3%, respectively, which were significantly higher than those of biochar (P < 0.05). Similar results were achieved using natural soils from mining area and polluted farmland, and the Cd removal rates were 66.9% and 72.0%, respectively. Fourier-transform infrared and X-ray photoelectron spectroscopy indicated that there were many functional groups on the LaC surfaces. The removal mechanism of EK-PRB for Cd in contaminated soil includes electromigration, electroosmotic flow, surface adsorption, and ion exchange. The results indicated that the LaC could be used in the EK-PRB technique as a cheap and 'green' material to efficiently decontaminate soil polluted with heavy metals.
Collapse
Affiliation(s)
- Sen Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Yong Wu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Xueling Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Qin Liu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Hongtao Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Yong Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| |
Collapse
|
41
|
Jia J, Bai J, Xiao R, Tian S, Wang D, Wang W, Zhang G, Cui H, Zhao Q. Fractionation, source, and ecological risk assessment of heavy metals in cropland soils across a 100-year reclamation chronosequence in an estuary, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151725. [PMID: 34822888 DOI: 10.1016/j.scitotenv.2021.151725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Coastal reclamation for cropland has led to the accumulation of heavy metals in soils, bringing about pervasive and severe risks for environment and human health. However, less is known about the influence of long-term reclamation on heavy metals risk, mobility and bioavailability in cropland soil. In this study, we determined six heavy metals (Cd, Cr, Ni, Cu, Zn and Pb) and their fractionations in soils from five croplands across a 100-year reclamation chronosequence in the Pearl River estuary. Results showed that across five reclaimed soils, Cd posed seriously ecological risk and bioavailability according to assessments based on both total contents (single-metal pollution index: Cd > Cu > Zn > Ni > Cr > Pb) and fractionations (risk assessment code: Cd > Zn > Cu > Ni > Pb > Cr). Cr, Ni, Cu, Zn and Pb posed slightly to moderately ecological risks, and were mainly bound to residual (73.70%) and reducible (15.86%) fractions with lower mobility and bioavailability. With the highest risks level, mobility, toxicity and bioavailability (5.67% exchangeable and 11.75% carbonate fractions bound), Cd was identified as the main pollution factor in study area. Principal component analysis and Pearson's correlation analysis revealed that anthropogenic reclamation activities (including phosphate fertilizers, pesticides and sewage irrigation) were the major sources of these heavy metals. Long-term reclamation activities induced the increases of soil organic matter, clay contents, total concentrations and non-residual fractions of heavy metals by 46.14%, 538.98%, 42.87% and 219.78%, respectively, demonstrating significant promotions in level and mobility of heavy metals due to longer-term agricultural activities, higher soil clay and organic matter content.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Yellow River Institute of Hydraulic Research, Zhengzhou 45003, PR China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Rong Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, PR China
| | - Shimin Tian
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Yellow River Institute of Hydraulic Research, Zhengzhou 45003, PR China
| | - Dawei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Hao Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qingqing Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250103, PR China
| |
Collapse
|
42
|
Essien JP, Ikpe DI, Inam ED, Okon AO, Ebong GA, Benson NU. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS One 2022; 17:e0263279. [PMID: 35113945 PMCID: PMC8812908 DOI: 10.1371/journal.pone.0263279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022] Open
Abstract
Municipal landfill leachates are a source of toxic heavy metals that have been shown to have a detrimental effect on human health and the environment. This study aimed to assess heavy metal contamination in leachates, surface water, and sediments from non-sanitary landfills in Uyo, Nigeria, and to identify potential health and environmental effects of leachate contamination. Over the wet and dry seasons, surface water and sediment samples were collected from an impacted freshwater ecosystem, and leachates samples from six monitoring wells. Elemental analyses of samples were conducted following standard analytical procedures and methods. The results indicated that leachate, surface water, and sediment samples all had elevated levels of heavy metals, implying a significant impact from landfills. Pollution indices such as the potential ecological risk index (PERI), pollution load index (PLI), degree of contamination (Cd), modified degree of contamination (mCd), enrichment factor (EF), geoaccumulation index (Igeo), and Nemerov pollution index (NPI) were used to assess the ecological impacts of landfill leachates. The following values were derived: PERI (29.09), PLI (1.96E-07), Cd (0.13), mCd (0.16), EF (0.97-1.79E-03), Igeo (0), and NPI (0.74). Pollution indicators suggested that the sediment samples were low to moderately polluted by chemical contaminants from the non-sanitary landfills, and may pose negative risks due to bioaccumulation. Human health risks were also assessed using standard risk models. For adults, children, and kids, the incremental lifetime cancer rate (ILCR) values were within the acceptable range of 1.00E-06-1.00E-04. The lifetime carcinogenicity risks associated with oral ingestion exposure to heavy metals were 9.09E-05, 1.21E-05, and 3.60 E-05 for kids, adults, and children, respectively. The mean cumulative risk values for dermal exposures were 3.24E-07, 1.89E-06, and 1.17E-05 for adults, children, and kids, respectively. These findings emphasized the risks of human and biota exposure to contaminants from landfills.
Collapse
Affiliation(s)
| | - Donald I. Ikpe
- Department of Science Technology, Akwa Ibom State Polytechnic, Ikot Ekpene, Nigeria
| | - Edu D. Inam
- Department of Chemistry, University of Uyo, Uyo, Nigeria
| | | | | | | |
Collapse
|
43
|
Han R, Xu Z. Spatial distribution and ecological risk assessment of heavy metals in karst soils from the Yinjiang County, Southwest China. PeerJ 2022; 10:e12716. [PMID: 35178289 PMCID: PMC8815369 DOI: 10.7717/peerj.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Soil heavy metals (HMs) under different land-use types have diverse effects, which may trigger the ecological risk. To explore the potential sources of HMs in karst soils, the spatial distribution and geochemical behavior of HMs based on different land-use types are employed in this study. METHODS Soil samples (n = 47) were collected in three suites of karst soil profiles from the secondary forest, abandoned cropland and shrubland in Yinjiang, Southwest China. The concentrations of Ni, Mn, Cr, Pb, Cd and Mo were determined to give a comprehensive understanding of the possible sources of these HMs and evaluate the potential ecological risk in Yinjiang County. RESULTS The mean concentrations of HMs in all profiles followed the same order: Mn > Cr > Ni > Pb > Mo > Cd. Meanwhile, the concentrations of most HMs roughly increased with the depth. Additionally, the concentrations of HMs were mostly correlated with soil pH and SOC, rather than with clay and silt proportions. By contrast, with the enrichment factors (EF), geo-accumulation (Igeo) and potential ecological risk index (PERI) of HMs in soil under different land-use types, the results indicated that these HMs exhibited non-pollution (Igeo < 0) and no ecological risk (PERI < 30) to human health in soils of Yinjiang County. CONCLUSIONS The distribution of HMs is dominated by weathering in the karst area, and the effects of agricultural inputs on the enrichment of soil HMs in Yinjiang County are limited. This further state that the arrangement of the local agricultural structure is reasonable.
Collapse
Affiliation(s)
- Ruiyin Han
- Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhifang Xu
- Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences, Center for Excellence in Life and Paleoenvironment, Beijing, China
| |
Collapse
|
44
|
Peng H, Chen Y, Li J, Lu J. Energy information flow-based ecological risk transmission among communities within the heavy metals contaminated soil system. CHEMOSPHERE 2022; 287:132124. [PMID: 34523449 DOI: 10.1016/j.chemosphere.2021.132124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
An energy information flow-based ecological risk assessment framework (EIF-ERA) is developed for identifying ecological risk transmission rules among communities (i.e., vegetation E1, herbivorous animals E2, soil microorganisms E3, and carnivorous animals E4) within the heavy metals contaminated soil system. This framework is integrated with numerous techniques of carcinogenic risk evaluation, ecological risk assessment (ERA), and Monte Carlo simulation. Stepwise quadratic response surface analysis (SQRSA) is employed for reflecting the relation between contaminants' concentration and comprehensive risk. Two scenarios with respect to the environmental quality standards (scenarios 1) and carcinogenic risk reversion (scenarios 2) are merged into the EIF-ERA. A real-world mining area in Xinglong County in Chengde is selected to verify the developed framework's effectiveness. Results reveal that E3 is considered as the most sensitive community when contaminant interference occurs, and its 62.3% and 37.7% of comprehensive risk are contributed by initial and direct risks, respectively. Other communities can receive direct risk through control allocation (CA). Monte Carlo anlysis shows that there are 7.68% and 20.25% increase in the initial risk of Cd and Pb when their quantile statistics increase from 70% to 90%. Determination of an appropriate screening value is vital for contaminated mining soil remediation due to its inefficiency of remediation funds, especially when considering the trict standards of contaminants' concentration within scenarios 1. The surrogates obtained from the SQRSA display the relation of contaminant concentration and comprehensive risks with the adjusted R2 greater than 0.77. These findings can be in support of system design, risk assessment, and site remediation.
Collapse
Affiliation(s)
- He Peng
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China
| | - Yizhong Chen
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China.
| | - Jing Li
- Hebei Key Laboratory of Environmental Change and Ecological Construction, College of Resource and Environment Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jingzhao Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| |
Collapse
|
45
|
Sahu S, Rajbonshi MP, Gujre N, Gupta MK, Shelke RG, Ghose A, Rangan L, Pakshirajan K, Mitra S. Bacterial strains found in the soils of a municipal solid waste dumping site facilitated phosphate solubilization along with cadmium remediation. CHEMOSPHERE 2022; 287:132320. [PMID: 34826951 DOI: 10.1016/j.chemosphere.2021.132320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Phosphate solubilizing bacteria (PSB) that can withstand high cadmium (Cd) stress is a desired combination for bioremediation. This study evaluated the Cd bioremediation potential of four PSB strains isolated from the contaminated soils of a municipal solid waste (MSW) discarding site (Guwahati, India). PSB strains were cultured in Pikovskaya (PVK) media, which led to higher acid phosphatase (ACP) activity and the release of organic acid. Optical density (OD) measurements were performed to determine the growth pattern of PSB; furthermore, Cd uptake by PSB was evaluated using infrared spectroscopy (IR) and X-Ray Diffraction (XRD) analyses. The 16S rRNA taxonomic analysis revealed that all the four promising PSB strains belonged to either Bacillus sp. or Enterobacter sp. One strain (SM_SS8) demonstrated higher tolerance towards Cd (up to 100 mg L-1). Flow cytometry analysis revealed 70.92%, 46.93% and 20.4% viability of SM_SS8 in 10, 50 and 100 mg L-1, respectively in PVK media containing Cd. This study has therefore substantiated the bioremediation of Cd from polluted soil by the PSB isolates. Thus, experimental results revealed a potential combo benefit, phosphate solubilization along with Cd remediation.
Collapse
Affiliation(s)
- Sudha Sahu
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, 781039, India; Department of Zoology, Government Kamla Nehru Girls College, Balaghat, Madhya Pradesh, 481001, India
| | - Manas Protim Rajbonshi
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Nihal Gujre
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Manish Kumar Gupta
- Applied Biodiversity Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Rahul G Shelke
- Applied Biodiversity Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Latha Rangan
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, 781039, India; Applied Biodiversity Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Kannan Pakshirajan
- Applied Biodiversity Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
46
|
Yap CK, Chew W, Al-Mutairi KA, Nulit R, Ibrahim MH, Wong KW, Bakhtiari AR, Sharifinia M, Ismail MS, Leong WJ, Tan WS, Cheng WH, Okamura H, You CF, Al-Shami SA. Assessments of the Ecological and Health Risks of Potentially Toxic Metals in the Topsoils of Different Land Uses: A Case Study in Peninsular Malaysia. BIOLOGY 2021; 11:biology11010002. [PMID: 35053001 PMCID: PMC8772714 DOI: 10.3390/biology11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023]
Abstract
Simple Summary This study reported the ecological risks and human health risk assessments of five potentially toxic metals in the topsoils of six land uses in Peninsular Malaysia. It was found that industry, landfill, rubbish heap, and mining areas were categorized as “very high ecological risk”. The land uses of industry, landfill and rubbish heap were found to have higher hazard quotient values for the three pathways of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks for inhalation (Cd and Ni) obtained for children and adults in this study showed no harmful health effects on their health. However, of public concern, the hazard index, for Pb of children at the landfill and the rubbish heap showed non-carcinogenic risk for children. Therefore, children need to be taken care from public standpoint. They should be advised not to play in the topsoils near industry, landfill and rubbish heap areas. The present findings are important for the environmental management of potentially toxic metals especially in the land uses of industry, landfill and rubbish heap in Peninsular Malaysia. Abstract Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24–12.43 for Cd (mean: 1.94), 4.66–2363 for Cu (mean: 228), 2576–116,344 for Fe (mean: 32,618), 2.38–75.67 for Ni (mean: 16.04), 7.22–969 for Pb (mean: 115) and 11.03–3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as “very high ecological risk”. For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
- Correspondence: or
| | - Weiyun Chew
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | - Khalid Awadh Al-Mutairi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk P.O. Box 741, Saudi Arabia;
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | - Mohd. Hafiz Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | - Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 46417-76489, Iran;
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran;
| | | | - Wah June Leong
- Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Wan Hee Cheng
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN, Seremban 71800, Malaysia;
| | - Hideo Okamura
- Graduate School of Maritime Sciences, Faculty of Maritime Sciences, Kobe University, Kobe 658-0022, Japan;
| | - Chen Feng You
- Department of Earth Sciences, National Cheng-Kung University, No 1, University Road, Tainan City 701, Taiwan;
| | - Salman Abdo Al-Shami
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL 34945, USA;
| |
Collapse
|
47
|
Mng'ong'o M, Comber S, Munishi LK, Ndakidemi PA, Blake W, Hutchinson TH. Land use patterns influence the distribution of potentially toxic elements in soils of the Usangu Basin, Tanzania. CHEMOSPHERE 2021; 284:131410. [PMID: 34323788 DOI: 10.1016/j.chemosphere.2021.131410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Spatial distribution of Potentially Toxic Elements (PTEs) in agricultural soils in Usangu Basin (Mbeya Region)-Tanzania were conducted. The study included three land-use types (paddy farming, maize farming, and conserved community forest areas). About 198 soil samples were collected from November to December 2019 across contrasting land management schemes (Group I dominated by agricultural areas versus Group II dominated by residential and agricultural areas). Total (aqua regia extracts) and bioavailable (Mehlich 3 extracts) PTEs concentrations were analyzed. For Group I and II areas, total and bioavailable concentrations (mg/kg dry weight, mean values) of some PTEs were: chromium 1662 ± 5.2 μg/kg for Group I and 1307 ± 3.9 μg/kg for Group II (Total), 55.1 ± 37.1 μg/kg for Group I and 19.2 ± 21.6 μg/kg for Group II (bioavailable); and lead 5272 ± 1650 μg/kg for Group I and 6656 ± 1994 μg/kg for Group II (Total), 1870 ± 800 μg/kg for Group I and 1730 ± 530 μg/kg for Group II (bioavailable). Soil total PTEs such as cadmium and lead were generally lower in Group I areas than in Group II areas. The reverse scenario was observed for copper. Farming areas had high PTEs concentration than non-farming areas because of anthropogenic activities. Overall, soil total concentrations of Fe (99.5%), As (87%), Se (66%), and Hg (12%) were above Tanzanian Maximum Allowable Limits. This study provides essential baseline information to support environmental risk assessment of PTEs in Tanzanian agro-ecosystem.
Collapse
Affiliation(s)
- Marco Mng'ong'o
- School of Life Sciences and Bio-Engineering (LiSBE), The Nelson Mandela -African Institution of Science and Technology, P O Box 447, Arusha, Tanzania; School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, United Kingdom.
| | - Sean Comber
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, United Kingdom
| | - Linus K Munishi
- School of Life Sciences and Bio-Engineering (LiSBE), The Nelson Mandela -African Institution of Science and Technology, P O Box 447, Arusha, Tanzania
| | - Patrick A Ndakidemi
- School of Life Sciences and Bio-Engineering (LiSBE), The Nelson Mandela -African Institution of Science and Technology, P O Box 447, Arusha, Tanzania
| | - William Blake
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, United Kingdom
| | - Thomas H Hutchinson
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, United Kingdom
| |
Collapse
|
48
|
Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The goal of this research is to assess hazardous heavy metal levels in PM2.5 fractioned road dust in order to quantify the risk of inhalation and potential health effects. To accomplish this, Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was used to determine concentrations of eight heavy metals (Cr, Cu, Ni, Zn, Cd, As, Pb, and Hg) in the PM2.5 portion of road dust samples from five different land use areas (commercial, residential, industrial, parks, and educational) in Zhengzhou, China. The following were the average heavy metal concentrations in the city: Cr 46.26 mg/kg, Cu 25.13 mg/kg, Ni 12.51 mg/kg, Zn 152.35 mg/kg, Cd 0.56 mg/kg, As 11.53 mg/kg, Pb 52.15 mg/kg, and Hg 0.32 mg/kg. Two pollution indicators, the Pollution Index (PI) and the Geoaccumulation Index (Igeo), were used to determine the degree of contamination. Both PI and Igeo indicated the extreme pollution of Hg and Cd, while PI also ranked Zn in the extreme polluted range. The US Environmental Protection Agency (USEPA) model for adults and children was used to estimate health risks by inhalation. The results identified non-carcinogenic exposure of children to lead (HI > 0.1) in commercial and industrial areas. Both children and adults in Zhengzhou’s commercial, residential, and park areas are exposed to higher levels of copper (Cu), lead (Pb), and zinc (Zn).
Collapse
|
49
|
Mng'ong'o M, Munishi LK, Ndakidemi PA, Blake W, Comber S, Hutchinson TH. Toxic metals in East African agro-ecosystems: Key risks for sustainable food production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112973. [PMID: 34102465 DOI: 10.1016/j.jenvman.2021.112973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The dramatic increase in world population underpins current escalating food demand, which requires increased productivity in the available arable land through agricultural intensification. Agricultural intensification involves increased agrochemicals use to increase land productivity. Increased uses of agrochemicals pose environmental and ecological risks such as contamination and water eutrophication. Consequently, toxic metals accumulate in plant products, thus entering the food chain leading to health concerns. To achieve this study, secondary data from peer-reviewed papers, universities, and government authorities were collected from a public database using Tanzania as a case study. Data from Science Direct, Web of Science, and other internet sources were gathered using specific keywords such as nutrient saturation and losses, water eutrophication, potentially toxic metal (PTEs), and impact of toxic metals on soils, water, and food safety. The reported toxic metal concentrations in agro-ecosystem worldwide are linked to agricultural intensification, mining, and urbanization. Statistical analysis of secondary data collected from East African agro-ecosystem had wide range of toxic metals concentration such as; mercury (0.001-11.0 mg Hg/kg), copper (0.14-312 mg Cu/kg), cadmium (0.02-13.8 mg Cd/kg), zinc (0.27-19.30 mg Zn/kg), lead (0.75-51.7 mg Pb/kg) and chromium (19.14-34.9 mg Cr/kg). In some cases, metal concentrations were above the FAO/WHO maximum permissible limits for soil health. To achieve high agricultural productivity and environmental safety, key research-informed policy needs are proposed: (i) development of regulatory guidelines for agrochemicals uses, (ii) establishment of agro-environmental quality indicators for soils and water assessment to monitor agro-ecosystem quality changes, and (iii) adoption of best farming practices such as split fertilization, cover cropping, reduced tillage, drip irrigation to ensure crop productivity and agro-ecosystem sustainability. Therefore, robust and representative evaluation of current soil contamination status, sources, and processes leading to pollution are paramount. To achieve safe and sustainable food production, management of potential toxic metal in agro-ecosystems is vital.
Collapse
Affiliation(s)
- Marco Mng'ong'o
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania; School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK.
| | - Linus K Munishi
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania.
| | - Patrick A Ndakidemi
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania.
| | - William Blake
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK.
| | - Sean Comber
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK.
| | - Thomas H Hutchinson
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK.
| |
Collapse
|
50
|
Datta A, Gujre N, Gupta D, Agnihotri R, Mitra S. Application of enzymes as a diagnostic tool for soils as affected by municipal solid wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112169. [PMID: 33621849 DOI: 10.1016/j.jenvman.2021.112169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Assessing the relationship between soil enzyme activities (SEAs) and heavy metals (HMs) without any amendment has rarely been conducted in soils contaminated with municipal solid wastes (MSW). Five soil enzymes [dehydrogenase (DHA), alkaline phosphatase (ALP), acid phosphatase (ACP), urease (UR), and nitrate reductase (NR)] have been assessed for HMs bioremediation using Zea mays L. grown in unamended soils that were contaminated with different types of MSW. Pot experiment was conducted for two seasons with soils collected from seven different locations within the MSW site. Experimental soil samples included a control (CA), contaminated by brick kiln wastes (SA1), kitchen and household wastes (SA2), medical wastes (SA3), mixed wastes (SA4), glass wastes (SA5), and metal scrap wastes (SA6). Rhizospheric soils were collected after the harvest of each season to investigate the impact of HMs on SEAs and physicochemical properties of soil. The results revealed an increase in DHA, ALP, and NR activities by 89.30%, 58.03% and 21.98% in SA1. Likewise, enhanced activities for UR (28.26%) and ACP (19.6%) were observed in SA3 and SA5 respectively. Insignificant increase in the macronutrients and organic carbon (OC) were also noted. The increased microbial count and the relatively higher amount of organic matter (OM) in the rhizosphere indicated the role of OM in HMs immobilization. Principal component analysis (PCA) indicated that DHA and NR are the important soil enzymes, underscored by their active involvement in the C and N turnover in the soil. Likewise, correlation analysis showed that DHA and NR activities were positively correlated with copper (Cu) (0.90, p < 0.01; 0.88, p < 0.01), suggesting its participation as a cofactor in enzymatic activities. In contrast, DHA was negatively correlated with cadmium (Cd) (-0.48, p < 0 0.05). Finally, these results indicated that in the absence of exogenous nutrient amendment, the SEAs were governed by OC, available nitrogen (Avl. N), Cu and Cd respectively. The study also highlighted the need for extensive research on SEAs for its utilization as a bioindicator in various soil bioremediation and quality management practices.
Collapse
Affiliation(s)
- Ankita Datta
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, 781039, India
| | - Nihal Gujre
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, 781039, India
| | - Richa Agnihotri
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, 781039, India.
| |
Collapse
|