1
|
Alesary HF, Odda AH, Ismail HK, Hassan WH, Alghanimi GA, Halbus AF, Sultan HKI, Al-Kinani AA, Barton S. Green triiron tetraoxide@Algae (Fe 3O 4@Algae) nanoparticles for highly efficient removal of lead (Pb 2+), cadmium (Cd 2+), and aluminum (Al 3+) from contaminated water: an isothermal, kinetic, and thermodynamic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6817-6838. [PMID: 40016609 DOI: 10.1007/s11356-025-36169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Developing and producing a versatile adsorbent for effective wastewater treatment remains a significant obstacle to wastewater processing. As the objective is to eliminate various metal ions (lead, cadmium, and aluminum) from wastewater, we therefore strategically designed and synthesized new iron oxide nanoparticles (Fe3O4 NPs) based on the green algae called triiron tetraoxide@algae nanoparticles (Fe3O4@Algae NPs) that grow in the same contaminated water using a facile one-pot green synthetic method. Investigations were conducted into the adsorption circumstances, including pH, starting concentration, adsorbent dosage, and adsorption time. More importantly, great absorption of lead, cadmium, and aluminum was achieved, with 97.5%, 81.3%, and 75.13%, respectively. The best conditions were 60 min, 0.1 g of nanoparticles, at 25 °C, and 150 mL of water containing 30 mg/L of Pb, Cd, and Al, with pH 6 for Cd and Pb and pH 5 for Al. To analyze the kinetics and equilibrium adsorption data and to evaluate the interaction between the metal ions and the adsorbent, a variety of kinetic and isotherm models were employed. The Langmuir isotherm and a pseudo-second-order were the best ways to look at the adsorption isotherm and kinetics data for how the Fe3O4@algae removes metal ions. Furthermore, thermodynamic studies showed that the adsorption process was an exothermic, favorable, and spontaneous reaction. For the elimination of Al(III), Pb(II), and Cd(II), the Fe3O4@algae experimental adsorption capacity was 33.8 mg/g, 56.70 mg/g, and 36.58 mg/g, respectively. The composite of Fe3O4@algae nanoparticles was characterized using several analytical techniques including scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and UV-vis spectroscopy. In addition, the material exhibited notable durability and recyclability, with the metal removal effectiveness remaining at a high level even after undergoing five successive adsorption cycles. This study paves the way to the use of green nanotechnology for eco-friendly, cheap, and rapid techniques that can be used in the purification of wastewater.
Collapse
Affiliation(s)
- Hasan F Alesary
- Applied Medical Sciences College, University of Kerbala, Karbala, Iraq
| | - Atheer Hameid Odda
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | - Hani K Ismail
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya, Koya KOY45, Kurdistan Region - F.R, Iraq.
| | - Waqed H Hassan
- University of Warith Al-Anbiyaa, Karbala, 56001, Iraq
- College of Engineering, University of Kerbala, Karbala, 56001, Iraq
| | | | - Ahmed F Halbus
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| | - Hani K I Sultan
- College of Pharmacy, Al-Kitab University, Kirkuk, 36015, Iraq
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Research Group, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE, UK
| | - Stephen Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, Surrey, UK
| |
Collapse
|
2
|
Feng J, Yu Y, Huang S, Zhu N, Mojiri A, Ge D. Tannic acid as a green chemical for the removal of various heavy metals: A critical review of recent developments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124390. [PMID: 39908615 DOI: 10.1016/j.jenvman.2025.124390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Heavy metals are persistent, bioaccumulative, and toxic pollutants that greatly challenge the environment. Pursuing green and efficient methods to remove these contaminants from wastewater has become a key focus in environmental research. Tannic acid (TA), a natural plant-derived secondary metabolite, has demonstrated exceptional potential for heavy metal removal. This review provides a comprehensive analysis of TA-based materials, focusing on their performance, influencing factors, underlying mechanisms, thermodynamic models, and regeneration in the removal process. Enhancing the adsorption capacity of TA-based materials for targeted heavy metals remains a priority, requiring further modifications and optimizations. Expanding the operational range of pH and temperature and minimizing interference from coexisting substances are also crucial for practical applications. Additionally, kinetic and adsorption models offer valuable insights into removal mechanisms while providing predictions and guidance for real-world implementations. By offering an in-depth overview, this review serves as a critical resource for advancing the development of sustainable and effective TA-based adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Junkun Feng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yalin Yu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Shouqiang Huang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Dongdong Ge
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Jjagwe J, Olupot PW, Kulabako R, Carrara S. Electrochemical sensors modified with iron oxide nanoparticles/nanocomposites for voltammetric detection of Pb (II) in water: A review. Heliyon 2024; 10:e29743. [PMID: 38665564 PMCID: PMC11044046 DOI: 10.1016/j.heliyon.2024.e29743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Permissible limits of Pb2+ in drinking water are being reduced from 10 μgL-1 to 5 μgL-1, which calls for rapid, and highly reliable detection techniques. Electrochemical sensors have garnered attention in detection of heavy metal ions in environmental samples due to their ease of operation, low cost, and rapid detection responses. Selectivity, sensitivity and detection capabilities of these sensors, can be enhanced by modifying their working electrodes (WEs) with iron oxide nanoparticles (IONPs) and/or their composites. Therefore, this review is an in-depth analysis of the deployment of IONPs/nanocomposites in modification of electrochemical sensors for detection of Pb2+ in drinking water over the past decade. From the analyzed studies (n = 23), the optimal solution pH, deposition potential, and deposition time ranged between 3 and 5.6, -0.7 to -1.4 V vs Ag/AgCl, and 100-400 s, respectively. Majority of the studies employed square wave anodic stripping voltammetry (n = 16), in 0.1 M acetate buffer solution (n = 19) for detection of Pb2+. Limits of detection obtained (2.5 x 10-9 - 4.5 μg/L) were below the permissible levels which indicated good sensitivities of the modified electrodes. Despite the great performance of these modified electrodes, the primary source of IONPs has always been commercial iron-based salts in addition to the use of so many materials as modifying agents of these IONPs. This may limit reproducibility and sustainability of the WEs due to lengthy and costly preparation protocols. Steel and/or iron industrial wastes can be alternatively employed in generation of IONPs for modification of electrochemical sensors. Additionally, biomass-based activated carbons enriched with surface functional groups are also used in modification of bare IONPs, and subsequently bare electrodes. However, these two areas still need to be fully explored.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
4
|
Xiong L, Zhang F, Yang Y, Ding Y, Chen S. Preparation of a novel polypyrrole/dolomite composite adsorbent for efficient removal of Cr(VI) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21279-21290. [PMID: 38388974 DOI: 10.1007/s11356-024-32526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
A novel adsorbent, deposited PPy on the DMI (PPy/DMI) composite, was successfully synthesized for Cr(VI) removal from aqueous solution. PPy/DMI composite was characterized by BET, SEM, TEM, XRD, and XPS. The SEM and TEM analyses revealed that DMI can greatly reduce the aggregation of PPy and significantly enhance its adsorption performance. The Cr(VI) removal was highly pH dependent. The high selectivity of PPy/DMI composite for Cr(VI) removal was found even in the presence of co-existing ions. The adsorption kinetic process followed the pseudo-second-order equation, demonstrating that the Cr(VI) adsorption behavior onto PPy/DMI is chemisorption. Furthermore, the intra-particle diffusion model implied that the adsorption was controlled by both liquid membrane diffusion and internal diffusion. The adsorption isotherm data fitted well with the Langmuir model with the maximum adsorption capacity (406.50 mg/g at 323 K) which was considerably higher than that of other PPy-based adsorbents. The Cr(VI) adsorption onto PPy/DMI composite was endothermic. The main mechanisms of Cr(VI) removal are involved in adsorption through electrostatic attractions, ion exchange, and in situ reduction. The results suggested that PPy/DMI composite could be a promising candidate for efficient Cr(VI) removal from aqueous solution.
Collapse
Affiliation(s)
- Ling Xiong
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Fen Zhang
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Yanan Yang
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Yuqing Ding
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Shaohua Chen
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
5
|
Ferenj A, Kabtamu DM, Assen AH, Gedda G, Muhabie AA, Berrada M, Girma WM. Hagenia abyssinica-Biomediated Synthesis of a Magnetic Fe 3O 4/NiO Nanoadsorbent for Adsorption of Lead from Wastewater. ACS OMEGA 2024; 9:6803-6814. [PMID: 38371754 PMCID: PMC10870417 DOI: 10.1021/acsomega.3c08151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Magnetic nanocomposite adsorbents are cost-effective, environmentally friendly, easy to use, and highly efficient at removing metals from large volumes of wastewater in a short time by using an external magnetic field. In this study, an Fe3O4/NiO composite nanoadsorbent was prepared by varying the mass percent ratios of NiO (50, 40, 30, 20%), which are denoted Fe3O4/50%NiO, Fe3O4/40%NiO, Fe3O4/30%NiO, and Fe3O4/20%NiO, respectively, using Hagenia abyssinica plant extract as the template/capping agent and a simple mechanical grinding technique. The nanocomposites were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, nitrogen adsorption, and ζ-potential measurements. The adsorption performance of the nanoadsorbent was assessed for the removal of lead (Pb2+) ions from aqueous solutions. Among the composite adsorbents, Fe3O4/50%NiO demonstrated the best Pb(II) removal efficiency (96.65%) from aqueous solutions within 80 min at pH 8, at a 100 mg/L lead concentration and 0.09 g of adsorbent dose. However, with the same parameter, only 62.8% of Pb(II) was removed using Fe3O4 nanoparticles (NPs). The adsorptive performance indicated that the optimum amount of porous material (NiO) in the preparation of the Fe3O4/NiO composite nanoadsorbent, with the aid of H. abyssinica plant extract, enhances the removal of toxic heavy metals from aqueous solutions. Multiple isotherm and kinetic models were used to analyze the equilibrium data. Adsorption isotherm and kinetic studies were found to follow the Freundlich isotherm and pseudo-second-order kinetics, respectively.
Collapse
Affiliation(s)
- Abdurohman
Eshetu Ferenj
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Daniel Manaye Kabtamu
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ayalew H. Assen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
- Applied
Chemistry and Engineering Research Centre of Excellence (ACER CoE), Mohammed VI Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Gangaraju Gedda
- Central
Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
- Department
of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Gyeonggi-do, Republic of Korea
| | - Adem Ali Muhabie
- Department
of Chemistry, Faculty of Natural and Computational Science, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Mhamed Berrada
- Institute
of Science Technology and Innovation (IST&I), Mohammed VI Polytechnic University, Lot 660 – Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Wubshet Mekonnen Girma
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| |
Collapse
|
6
|
P A, S V, G S, M R. Sustainable development and analysis of a novel bio-derived (biochar) nanocomposite for the remediation of carbamazepine from aqueous solution. CHEMOSPHERE 2024; 347:140696. [PMID: 37977531 DOI: 10.1016/j.chemosphere.2023.140696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The presence of pharmaceutical compounds in aqueous environments has become a growing concern due to their potential adverse effects on ecosystems and human health. In this work, synthesis of a novel bio based nanocomposite using a biowaste, palm seed is employed for the preparation of biochar. The bio derived nanocomposite consist of polypyrrole (Ppy), graphene oxide (GO), and biochar, is employed for the Carbamazepine (CBZ) removal. The synthesized nanocomposite, Ppy-GO-Biochar, is characterized using various analytical techniques. The characterization results confirmed the successful synthesis of the Ppy-GO-Biochar nanocomposite with the desired morphology and structural properties. The effect of variables is investigated and the optimum conditions are found as: pH (7.8), adsorbent dosage (1.4 g/L), agitation speed (200 rpm) and temperature (39.5 °C). The results demonstrated that a removal efficiency of over 97.74% and uptake of 45.045 mg/g is achieved for CBZ. Furthermore, the CBZ removal followed pseudo-second-order, indicating chemisorption as the predominant mechanism. The CBZ sorption equilibrium is well represented by Langmuir and Freundlich isotherm. Thermodynamic results show that CBZ sorption is endothermic and spontaneous. Mechanism of CBZ sorption using the synthesized nanocomposite follows π-π interaction and electrostatic attraction. Molecular docking studies were also performed for the sorption of CBZ.
Collapse
Affiliation(s)
- Agilandeswari P
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India.
| | - Venkateshbabu S
- Department of Petroleum Engineering, JCT College of Engineering &Technology, Coimbatore, India
| | - Sarojini G
- Department of Food Technology, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India
| |
Collapse
|
7
|
Al Ajmi ASS, Bosu S, Rajamohan N. Biomass - metal oxide nano composite for the decontamination of phenol from polluted environment - parametric, kinetics and isotherm studies. ENVIRONMENTAL RESEARCH 2024; 240:117467. [PMID: 37866537 DOI: 10.1016/j.envres.2023.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
The contamination of aqueous environment by phenol poses a major threat due to its hyper toxic effects and removal of phenol is challenging due to its hydrophilic properties. This research study examines the surface encapsulation of iron oxide (IO) with bio-derived carbon-based date palm (DP) to make date palm-iron oxide (DP-IO) nanocomposite to potentially remediate phenol in aqueous environment. Phenol removal percentage is predominantly influenced by environmental factors, namely pH, nano sorbent loading, temperature, agitation speed, and initial phenol concentration. Under optimum conditions of 30 °C and pH 7.8, 80.30% of phenol was removed using a 0.75 g/L sorbent load with 100 mg/L initial phenol concentration. Langmuir isotherm fitted well (R2 > 0.997), supporting single-layer phenol attachment with maximum bio-sorption capacity of 72.46 mg/g. A pseudo-2nd-order (PSO) kinetic model is identified to be the most appropriate for the DP-IO sorption experiment (R2>0.999). Scanning electron microscopic images, X-ray diffraction observations, FT-IR plots, and thermogravimetric analysis have been used to characterize. The removal mechanism involves unimolecular layer and chemisorption is identified as a rate determining step. The reuse potential proved that the synthesized nanocomposite as a sustainable solution for phenolic wastewater treatment.
Collapse
Affiliation(s)
- Abrar Said Saif Al Ajmi
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| |
Collapse
|
8
|
Yadav A, Raghav S, Jangid NK, Srivastava A, Jadoun S, Srivastava M, Dwivedi J. Myrica esculenta Leaf Extract-Assisted Green Synthesis of Porous Magnetic Chitosan Composites for Fast Removal of Cd (II) from Water: Kinetics and Thermodynamics of Adsorption. Polymers (Basel) 2023; 15:4339. [PMID: 37960019 PMCID: PMC10649474 DOI: 10.3390/polym15214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapna Raghav
- Department of Chemistry, Nirankari Baba Gurubachan Singh Memorial College, Sohna 122103, India
| | | | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General, Velásquez, Arica 1775, Chile;
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| |
Collapse
|
9
|
Chander S, Yadav S, Gupta A, Luhach N. Sequestration of Ni (II), Pb (II), and Zn (II) utilizing biogenic synthesized Fe 3O 4/CLPC NCs and modified Fe 3O 4/CLPC@CS NCs: Process optimization, simulation modeling, and feasibility study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114056-114077. [PMID: 37858026 DOI: 10.1007/s11356-023-30318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The present study reports low-cost novel biogenic magnetite Citrus limetta peels carbon (Fe3O4/CLPC) nanocomposites and modified Fe3O4/CLPC@CS nanocomposites cross-linked with glutaraldehyde and subsequently employed in batch mode sequestration of heavy metals ions. Diverse techniques fully characterized them, and the influence of operating variables on adsorption reactions from aqueous solutions was investigated. The Brunauer, Emmett, and Teller (BET) surface areas of synthesized Fe3O4/CLPC and Fe3O4/CLPC@CS NCs were 53.91 and 32.16 m2/g, while the mesoporous diameters were 7.69 and 7.57 nm, respectively. The Langmuir isotherm and Pseudo second order kinetic were well-fitting and capable of explaining the adsorption reaction. The Langmuir-based monolayer adsorption (qmax) for Fe3O4/CLPC@CS NCs was 82.65, 95.24, and 64.10 mg/g, higher than Fe3O4/CLPC NCs, which were 70.92, 84.75, and 59.17 mg/g for Ni (II), Pb (II), and Zn (II), respectively. Each metal's pseudo second order correlation coefficient (R2 ≥ 0.99) reveals that nanocomposites surface binding functional groups controlled the adsorption rate via chemisorption. Further, thermodynamic results confirm that each studied metal ions' adsorption was spontaneous, endothermic, and characterized by an increase in randomness. In addition to magnetic separability, three ad-desorption cycles yielded exceptional adsorption efficacy and > 93% regenerability. The present study also reveals the effective utilization of Fe3O4/CLPC and Fe3O4/CLPC@CS NCs as cost-effective magnetic separable green adsorbents for heavy metals sequestration from electroplating wastewater.
Collapse
Affiliation(s)
- Subhash Chander
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India
| | - Sangita Yadav
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India
| | - Asha Gupta
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India.
| | - Neha Luhach
- Department of Environmental Science and Engineering, GJUS&T, Hisar, 125001, India
| |
Collapse
|
10
|
Jjagwe J, Olupot PW, Carrara S. Iron oxide nanoparticles/nanocomposites derived from steel and iron wastes for water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118236. [PMID: 37235992 DOI: 10.1016/j.jenvman.2023.118236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Iron oxide nanoparticles (IONPs) are characterized by superior magnetic properties, high surface area to volume ratio, and active surface functional groups. These properties aid in removal of pollutants from water, through adsorption and/or photocatalysis, justifying the choice of IONPs in water treatment systems. IONPs are usually developed from commercial chemicals of ferric and ferrous salts alongside other reagents, a procedure that is costly, environmentally unfriendly and limits their mass production. On the other hand, steel and iron industries produce both solid and liquid wastes which in most cases are piled, discharged into water streams or landfilled as strategies to dispose them off. Such practices are detrimental to environmental ecosystems. Given the high content of iron present in these wastes, they can be used to generate IONPs. This work reviewed published literature through selected key words on the deployment of steel and/or iron-based wastes as IONPs precursors for water treatment. The findings reveal that steel waste-derived IONPs have properties such as specific surface area, particle sizes, saturation magnetization, and surface functional groups that are comparable or sometimes better than those synthesized from commercial salts. Furthermore, the steel waste-derived IONPs have high removal efficacy for heavy metals and dyes from water with possibilities of being regenerated. The performance of steel waste-derived IONPs can be enhanced by functionalization with different reagents such as chitosan, graphene, and biomass based activated carbons. Nonetheless, there is need to explore the potential of steel waste-based IONPs in removing contaminants of emerging concern, modifying pollutant detection sensors, their techno-economic feasibility in large treatment plants, toxicity of these nanoparticles when ingested into the human body, among other areas.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Integrated Circuits Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
11
|
Kamran U, Lee SY, Rhee KY, Park SJ. Rice husk valorization into sustainable Ni@TiO 2/biochar nanocomposite for highly selective Pb (II) ions removal from an aqueous media. CHEMOSPHERE 2023; 323:138210. [PMID: 36828115 DOI: 10.1016/j.chemosphere.2023.138210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Herein, we successfully prepared sustainable nanocomposites from agriculture waste (rice husk)-derived biochar precursor, and followed by nickel-doped, base-treated titanium dioxide nanomaterials loading for efficient lead (Pb2+) removal from aqueous media. By varying the loading contents of active materials, the optimized sample (Ni0.01@Na-TiO2/BC) possessed an efficient Pb2+ adsorption capability of 122.3 mg g-1 under the under optimum adsorption parameters, which is attributable to its specific surface area (138.09 m2 g-1) and excess functional sites. Kinetic and Isothermal examination illustrated that Pb2+ adsorption phenomena was well followed through pseudo 2nd order and Langmuir models. In addition, superior Pb2+ ions adsorption selectivity was recorded by optimized sample in a multi-metallic system over other existing ion (such as Cd2+, Mg2+, Ca2+, Cu2+, and Zn2+). Desorption experiments has been performed by using desorbing agent that demonstrates the good regeneration ability of sample. Hence, these findings provide new insight for the biowaste management by converting them into innovative adsorbents for commercial scale environmental remediation.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea; Institute of Advanced Machinery Design Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
12
|
Murugan P, Sarojini G, Saravanane R, Bhuvaneshwari S. Removal of lead ions using OA-Fe 3O 4 magnetic nanoparticles-based pickering emulsion liquid membrane: process optimization using box-behnken response surface methodology. ENVIRONMENTAL TECHNOLOGY 2023; 44:1579-1591. [PMID: 34852734 DOI: 10.1080/09593330.2021.2008016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study is to explore the pickering emulsion liquid membrane (PELM) performance for removing divalent lead ions (Pb II) from aqueous solution. In the present work, the membrane phase was prepared by dissolving methyltrioctylammonium chloride (Aliquat 336) with Mahua oil and adding oleic acid coated-ferrosoferric oxide (OA-Fe3O4) as magnetic nanoparticles. Experimental investigation on percentage removal of lead ions was carried out by studying the influencing process parameters such as pH, agitation speed, stripping concentration, initial feed concentration, surfactant concentration, treat ratio, M/S ratio and carrier concentration. The optimum condition to remove 98.52% of lead ions from the feed solutions has achieved at a stripping phase concentration of 0.3 M, treat ratio of 3, agitation speed of 300 rpm, initial feed concentration of 10 ppm and stabilizer concentration of 2 wt%. The experimental results were validated using box-behnken response surface methodology. The extraction ability of OA-Fe3O4 magnetic nanoparticles-based PELM has been evaluated using statistical optimization of all the affecting process factors using the design of the experiments.
Collapse
Affiliation(s)
- Perumal Murugan
- Department of Chemical Engineering, Agni College of Technology, Chennai, India
| | | | - Raman Saravanane
- Department of Civil Engineering, Pondicherry Engineering College, Puducherry, India
| | | |
Collapse
|
13
|
Zhao C, Yao J, Knudsen TŠ, Liu J, Zhu X, Ma B, Li H, Cao Y, Liu B. Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117163. [PMID: 36603255 DOI: 10.1016/j.jenvman.2022.117163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
A series of goethite-modified montmorillonite (GMt) materials was synthesized for the amelioration of cationic cadmium (Cd) and anionic arsenic (As) complex contaminants in soil and water bodies. The results showed that goethite (Gt) was successfully loaded onto the surface of montmorillonite (Mt), which possessed more functional groups (such as Fe-O, and Fe-OH) and a larger specific surface area. GMt-0.5 (Mt loaded with Gt at a ratio of 0.5:1) showed the highest adsorption capacity for Cd(II) and As(III) with the maximum of 50.61 mg/g and 57.58 mg/g, respectively. The removal rate of Cd(II) was highly pH dependent, while the removal rate of As(III) showed little dependence on pH. The goethite on montmorillonite might contribute to the formation of surface complexes with As(III) and oxidation of As(III) to As(V). In the binary system, both, synergistic and competitive adsorption existed simultaneously. Importantly, in the binary system, the removal of As(III) was more favorable because of the electrostatic interaction, formation of a ternary complex, and co-precipitation. In addition, the amendment of GMt-0.5 significantly reduced the availability of Cd and As in the soil. This study suggests that GMt-0.5 is a promising candidate for the simultaneous immobilization of metal (loid)s in both, aqueous solution and mine soil.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China.
| | - Tatjana Šolević Knudsen
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Njegoševa 12, Belgrade, 11000, Serbia
| | - Jianli Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Bo Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Ying Cao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| | - Bang Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xḍsueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
14
|
Graphene‐Oxide‐Coated, Polypyrrole‐Supported, Nano Zerovalent Iron Nanocomposites for Adsorption of Hexavalent Chromium from Wastewater. ChemistrySelect 2023. [DOI: 10.1002/slct.202204410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
15
|
Polymerization parameters diapason as a tool for thin films morphological and optoelectrical properties optimization of Poly (pyrrole-co-2-nitrocinnamaldehyde) conjugated semiconductor. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
16
|
Indira P, Ho TT, Ahalya N, Sathish T, Saravanan R, Rajasimman M, Sudhakar T. Magnetic porous Ag 2O/Chitin nanostructure adsorbent for eco-friendly effective disposing azo dyes. ENVIRONMENTAL RESEARCH 2023; 218:114824. [PMID: 36455635 DOI: 10.1016/j.envres.2022.114824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Water treatment is as much important as it is to satisfying 11 worldwide sustainable development goals out of 17. The removal of Azo is much important as they are toxic and their existence in water, air and food can easily affect humans by triggering allergies, forming tumours etc. Azo contained Dyes Production was banned in many countries. This research aims to synthesize composite Nanorods and Nanospheres and characterize and test to remove Azo dyes from the wastewater. This research used a previously reported method to rapidly synthesize chitin magnetite nanocomposites (ChM) by co-precipitation while irradiating with ultrasound (US). Detailed structural characterization of ChM revealed a crystalline phase analogous to magnetite and spherical morphologies; extending the reaction time to 8 min yielded a "nanorod" type morphology. Both the morphologies displayed a nanoscale limit with particles averaging between 5 and 30 nm in size, resulting the superparamagnetic performance and saturation magnetization values between 45 and 58 emu/g. The nitrogen adsorption-desorption isotherms showed that the surface modification of ChMs resulted in a rise of specific surface area and pore size. Anionic azo dyes (methyl orange (MO) and reactive black 5 (RB5)) adsorption on the surface of nanocomposites was also demonstrated to be pH-dependent, with the reaction favoured for surface-modified samples at pH 4 and unmodified samples at pH 8. Adsorption capacity studies showed that molecule size effect and electrostatic attraction were two distinct adsorption processes for unmodified and modified ChMs. Chitin Magnetite nanoparticles appear to be a substitute for traditional anionic dye adsorbents. Additionally, the two key materials sources, chitin, and magnetite are inexpensive and easily accessible.
Collapse
Affiliation(s)
- P Indira
- Department of Physics, Sethu Institute of Technology, Virudhunagar, 626115, Tamil Nadu, India
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam
| | - N Ahalya
- Department of Biotechnology, MS Ramaiah Institute of Technology, Bengaluru, 560054, India
| | - T Sathish
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India.
| | - R Saravanan
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| | - T Sudhakar
- Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
17
|
Rajamehala M, Kumara Pandian AM, Rajasimman M, Gopalakrishnan B. Porous nanocomposites for sorptive elimination of ibuprofen from synthetic wastewater and its molecular docking studies. ENVIRONMENTAL RESEARCH 2023; 218:114984. [PMID: 36462695 DOI: 10.1016/j.envres.2022.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals are a new developing pollutant that is threatening aquatic ecosystems and impacting numerous species in the ecosystem. The aim of this study is the green synthesis of TiO2-Fe2O3-Chitosan nanocomposites in conjunction with Moringa olifera leaves extract and its applicability for ibuprofen removal. Various characterization studies were performed for the synthesized nanocomposites. Box-Behnken design (BBD) is employed to optimize pH, agitation speed, and composite dosage. Equilibrium results show that adsorption process matches with Langmuir isotherm, demonstrating adsorption on the nanocomposite's homogenous surface and follows pseudo-first-order kinetics. Using the BBD, pH, adsorbent dose, and agitation speed were examined as adsorption parameters. Ibuprofen elimination was demonstrated to be most successful at a pH of 7.3, using 0.05 g of nanocomposites at a rotational speed of 200 rpm. Thermodynamic parameters for ibuprofen sorption were carried out and the ΔH and ΔS was found to be 76.23 & 0.233. Molecular Docking was performed to find the interaction between the pollutant and the nanocomposite. UV-vis spectra confirm the 243 nm absorption band corresponding to the nanocomposite's surface plasmon resonances. Fourier transform infrared spectroscopy spectra relate this band to a group of nanocomposites. The findings of this work emphasize the importance of TiO2-Fe2O3-Chitosan nanocomposites for removing ibuprofen from wastewater.
Collapse
Affiliation(s)
- M Rajamehala
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Namakkal, 637205, Tamilnadu, India.
| | - A Muthu Kumara Pandian
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Namakkal, 637205, Tamilnadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| | - B Gopalakrishnan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| |
Collapse
|
18
|
Sarojini G, Kannan P, Rajamohan N, Rajasimman M. Bio-fabrication of porous magnetic Chitosan/Fe 3O 4 nanocomposite using Azolla pinnata for removal of chromium - Parametric effects, surface characterization and kinetics. ENVIRONMENTAL RESEARCH 2023; 218:114822. [PMID: 36470349 DOI: 10.1016/j.envres.2022.114822] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
In this research, a novel porous nanocomposite, namely Chitosan-iron-oxide @ Azolla pinnata nanocomposite, has been synthesized by co-precipitation and hydrothermal method. The effect of process parameter on adsorption process was investigated. Batch removal of chromium (Cr) was optimized with respect to solution pH, batch stirring time, sorbent dose, initial chromium concentration and temperature. The maximum removal efficiency was found to be 98.58%. The Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) analysis of the nano composite confirmed the presence of characteristic functional groups and porous structure of synthesized nanocomposite. The adsorption data fitted well with Langmuir adsorption isotherm (R2 = 0.996) confirming mono layer sorption and the maximum uptake was found to be 294.12 mg/g. The adsorption was found to follow pseudo second order model (R2 = 0.997). Thermodynamic studies revealed that adsorption is endothermic and spontaneous. Reusability studies have confirmed that removal efficiency attained was 85% after completion of five adsorption-desorption cycles. Electrostatic attraction, ion exchange, coordination bonding and reduction are the major mechanisms responsible for removal of chromium. Surface modification of Azolla pinnata with chitosan and iron oxide improved the ability of Azolla in the adsorption of chromium from aqueous media. The combined effects of facile synthesis, improved adsorption features and easier magnetic separation promotes Chitosan-iron-oxide @ Azolla pinnata nanocomposite as a novel adsorbent.
Collapse
Affiliation(s)
- G Sarojini
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Valley Campus, Coimbatore, India.
| | - P Kannan
- Department of Chemistry, V.S.B College of Engineering Technical Campus, Coimbatore, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | | |
Collapse
|
19
|
Rajeswari S, Saravanan P, Linkesver M, Rajeshkannan R, Rajasimman M. Identifying global status and research hotspots of heavy metal remediation: A phase upgrade study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116265. [PMID: 36179469 DOI: 10.1016/j.jenvman.2022.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Impact of heavy metal (HM) pollution and its understanding on environment as well as human beings has grown a lot during the last few decades. The goal of this study is to create a scientometric study on heavy metal contamination, in the period 1989 to 2020, in order to provide futuristic goals for the new researchers on wastewater treatment. For this, a search was conducted in the Web of Science (WoS) and Scopus databases, related to heavy metal pollution. Totally, 37,154 records were collected during the study period from 1989 to 2020. The findings revealed that China, the United States, and India has most referenced papers across a wide range of trans disciplinary issues such as toxicity, technology, and pollution. As a result, this study concludes that more research on various treatment methods is required in order to obtain high-quality water for consumption and routine activities, with the incorporation of various treatment tasks poses various challenges for the upcoming future studies.
Collapse
Affiliation(s)
- S Rajeswari
- Department of Library, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - M Linkesver
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| |
Collapse
|
20
|
Rajamehala M, Pandian AM, Rajasimman M, Gopalakrishnan B. Synthesis of metal-based functional nanocomposite material and its application for the elimination of paracetamol from synthetic wastewater. CHEMOSPHERE 2022; 308:136530. [PMID: 36150496 DOI: 10.1016/j.chemosphere.2022.136530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
Non-steroidal anti-inflammatory medicines (NSAIDs) like paracetamol and other substances released into the water system pose serious environmental issues. The current work examines the synthesis of a nanocomposite combined with Moringa olifera aqueous leaf extract as a reducing and stabilizing agent for the green synthesis of nanocomposites. Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) were used to investigate metal based functional nanocomposites. The absorption band centered at a wavelength of 243 nm, which corresponds to the surface plasmon resonances of the produced nanocomposite, is confirmed in UV-vis spectra. The distinctive band at this particular wavelength is attributed to a particular group of nanocomposites based on the result from the Fourier transform infrared spectroscopy spectra. The spherical with irregularly shaped aggregates was confirmed by transmission electron microscopy, and the average size of nanoparticles was found to be 1 nm. For the elimination of pharmaceutical contaminants such as paracetamol from aqueous solutions, the adsorptive characteristics of nanocomposites were examined. Temperature, pH, adsorbent dosage, and agitation speed were investigated as adsorption parameters using Box-Behnken Design (BBD). The best removal outcomes were found under the following circumstances: temperature at 303.15 K, pH = 7.5, 0.05 g of nanocomposites at 200 rpm. Based on the adsorption study, the kinetics was found to be pseudo first order (R2 > 0.9481) which was validated and fitted by Langmuir isotherm (R2 > 0.9973). The adsorption study confirms that it was adsorbed onto the synthesized nanocomposite and found to be present on the homogeneous surface.
Collapse
Affiliation(s)
- M Rajamehala
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Namakkal, 637205, India.
| | - A Muthukumara Pandian
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Namakkal, 637205, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India
| | - B Gopalakrishnan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India
| |
Collapse
|
21
|
Komaba K, Jo T, Kumai R, Goto H. Synthesis of conductive polymer alloys by electrochemical polymerization in chiral liquid crystal. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2138765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kyoka Komaba
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoaki Jo
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, KEK, Tsukuba, Japan
| | - Hiromasa Goto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Pham TH, Chu TTH, Nguyen DK, Le TKO, Obaid SA, Alharbi SA, Kim J, Nguyen MV. Alginate-modified biochar derived from rice husk waste for improvement uptake performance of lead in wastewater. CHEMOSPHERE 2022; 307:135956. [PMID: 35964720 DOI: 10.1016/j.chemosphere.2022.135956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this work, alginate-modified biochar derived from rice husk waste was synthesized using a simple process. The modified biochar (MBC) and rice husk biochar (RhBC) were investigated for removing Pb (II) ions in wastewater. The BET result displayed significantly improved specific surface area of MBC up to 120 m2/g along with a total pore volume of 0.653 cm3/g. FTIR spectrums presented the higher oxygen-contained functional groups of MBC as compared to RhBC, resulting in increasing adsorption capacity of Pb (II). MBC had higher adsorption capacity (112.3 mg/g) and faster removal rate (0.0081 g mg-1 min-1) than those of RhBC (41.2 mg/g and 0.00025 g mg-1 min-1). Modified RhBC can remove more than 99% of Pb (II) from wastewater and it could be utilized for three cycles with a removal performance of over 90%. In addition, the Pb adsorption mechanism by using MBC was proposed and the practical application of MBC for the treatment of wastewater in Vietnam was discussed.
Collapse
Affiliation(s)
- Thi Huong Pham
- Faculty of Environment, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, Vietnam.
| | - Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Vietnam.
| | - Dang Khoa Nguyen
- Faculty of Environment, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Thi Kim Oanh Le
- Faculty of Environment, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Jitae Kim
- Air Pollution Research Center, Institute of Urban Science, University of Seoul, Seoul, Republic of Korea
| | - Minh Viet Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam.
| |
Collapse
|
23
|
Sunny NE, Mathew SS, Venkat Kumar S, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y. Effect of green synthesized nano-titanium synthesized from Trachyspermum ammi extract on seed germination of Vigna radiate. CHEMOSPHERE 2022; 300:134600. [PMID: 35427654 DOI: 10.1016/j.chemosphere.2022.134600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 05/28/2023]
Abstract
The current work investigates the conditional influence on Vigna radiate seed germination in vitro and in vivo using the green chemistry approach for the manufacture of titanium dioxide nanoparticles (TiO2 NPs) from seed extract of Trachyspermum ammi (T. ammi). Ultraviolet spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to analyze the TiO2 NPs produced. The crystalline nature of TiO2 NP was revealed by XRD data, and TEM investigation revealed an irregularity in TiO2 NP shape with a size of 17.5 nm. UV absorbance at 315 nm for the TiO2 NPs was observed using Ultraviolet-visible spectrophotometer. The antioxidant potential of the synthesized nanoparticle was discovered to be good. In case of seed germination studies, six concentrations (25, 50 100, 150, 200, and 250 μg mL- 1) of TiO2 NPs were examined along with the control on Vigna radiata seeds. Germination parameters such as seed vigor index (SVI), germination percentage (GP), germination value (GV) root length (RL) and shoot length (SL) of the Vigna radiata seedlings were observed and results revealed that the green synthesized TiO2 NPs were significantly improved. The results indicated that the TiO2 NP affected the plant growth more specifically at lower concentration (50 μg mL-1) of TiO2 NPs. Overall, the findings of this present study stipulated that the green TiO2 NP production can enhance the growth of Vigna radiate under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Nisha Elizabeth Sunny
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sneha Susan Mathew
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Venkat Kumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Panchamoorthy Saravanan
- Department of Petro Chemical Technology, University College of Engineering-BIT Campus, Anna University, Tiruchirappalli, 620 024, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
24
|
López YC, Ortega GA, Reguera E. Hazardous ions decontamination: From the element to the material. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
25
|
Sundararaman S, Aravind Kumar J, Deivasigamani P, Devarajan Y. Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment - A challenge to water resource management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153897. [PMID: 35182637 DOI: 10.1016/j.scitotenv.2022.153897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Water is one of the important gifts to mankind. In recent days the accessibility of pharmaceuticals in the environment is progressively a worldwide concern. The significant wellspring of these contaminations in water assets is drugs for human use or veterinary medications. Intermediates, active metabolites and raw materials present in water from pharmaceutical industry waste because of incomplete sewage treatment systems. Various pharmaceutical components such as analgesic/antipyretics such as Ibuprofen (57.9-104 ng/L), Diclofenac (17-129 ng/L), antibiotics such as Sulfamethoxazole (28.7-124.5 ng/L), Sulfamethazine (29.2-83.9 ng/L), Azithromycin (10-68 ng/L), psychiatric drug such as Carbamazepine (9.3-92.4 ng/L), stimulants such as caffeine greater than 55 ng/L, antidepressants, antihypertensive, contraceptives etc., are present in water resources and have been detected in mg/L to μg/L range. The synergic effects and ecotoxicological hazard assessment must be developed. Studies demonstrate that these drugs might cause morphological, metabolic and sex alterations on sea-going species, and interruption of biodegradation activities. Hazard analysis and assessments are in progress. However, the conventional effluent treatment methods are not sufficient to remove API (active pharmaceutical ingredients) from this water effectively. There is necessitate for continuous monitoring of the pharmaceutical compounds in aquatic ecosystem to save the environment and living form of lives from health hazards. This work highlights the hazards, environmental assessment and the mitigation measures of pharmaceutical pollutants.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, India.
| | - J Aravind Kumar
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India
| | - Prabu Deivasigamani
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Yuvarajan Devarajan
- Department of Thermal Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, 602105, India.
| |
Collapse
|
26
|
Wang J, Yu Q, Zheng Y, Li J, Jiao B, Li D. Adsorption and reduction from modified polypyrrole enhance electrokinetic remediation of hexavalent chromium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44845-44861. [PMID: 35141822 DOI: 10.1007/s11356-022-18998-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Toxic metal pollutant Cr(VI) in the environment will pose a severe threat to animal and human health. In this work, Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy were prepared to enhance adsorption of Cr(VI) by doping Fe3O4 nanoparticles and amino radicals into the original PPy structure. Their characteristics were investigated by FTIR, SEM, EDS, BET analysis, and batch adsorption experiments. And they were used as permeable reaction barriers (PRB) to combine with electrokinetic remediation (EKR) to remediate Cr-contaminated soil. Adsorption experiment results showed that the maximum adsorption capacities of PPy, Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy for Cr(VI) were 60.43 mg/g, 67.12 mg/g, 159.86 mg/g, and 141.50 mg/g, respectively. They all followed the kinetic pseudo-second-order model and the Langmuir isothermal model with a monolayer adsorption behavior. In the EKR/PRB system, the presence of Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy obtained the higher Cr(VI) removal efficiency near the anode than that of the PPy, increasing by 74.60%, 26.04%, and 68.64%, respectively. A strong electrostatic attraction between anion contaminants and protonated modified PPy and a reduction from Cr(VI) to Cr(III) appeared in the EKR remediation process under acid conditions. This study opened up a prospect for applying modified PPy composites to treat toxic metal-contaminated soil.
Collapse
Affiliation(s)
- Jiangyuan Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiu Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Jing Li
- School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China.
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
27
|
Sarojini G, Venkatesh Babu S, Rajamohan N, Rajasimman M. Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. ENVIRONMENTAL RESEARCH 2022; 204:112132. [PMID: 34571029 DOI: 10.1016/j.envres.2021.112132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
In this experimental investigation, feasibility and performance of a polymer hybrid bio-nano composite were evaluated to remove malachite green (MG) under controlled environment conditions. The polymer hybrid bio-nanocomposite was characterized using FTIR, SEM and EDS. The influence of operating variables, namely effect of pH (2-11), nanocomposite dosage (20-100 mg), initial MG concentration (10- 200 mg/L), contact time (10-120 min) and temperature (298-318 K) were explored. The maximum removal efficiency (RE) of 99.79% was achieved at neutral pH at the dosage level of 50 mg with the initial MG concentration of 150 mg/L in 40 min. The equilibrium results revealed that the adsorption of MG data fitted to Langmuir isotherm (R2 > 0.970) indicating monolayer adsorption. The maximum adsorption capacity of polymer hybrid nanocomposite was found to be 384.615 mg/g. Kinetic studies were performed using five kinetic models and results showed the pseudo second order model fitted very well with the MG adsorption data (R2 > 0.990). The thermodynamic results confirmed that MG adsorption onto polymer hybrid nanocomposite is feasible and (ΔS ͦ = 0.2893 kJ/mol K), spontaneous (ΔH ͦ = 81.103 kJ/mol K) and exothermic (ΔG ͦ < 0). A mechanism is also proposed for the removal of MG using the polymer nanocomposite and identified that electrostatic attraction and hydrogen bonding as the major mechanism for removal of MG. FTIR results confirmed the presence of carboxyl (-COO) and hydroxyl (-OH) groups which helped in effective binding of cationic dye. The overall results revealed that polymer nanocomposite could be used as a potential adsorbent for removing MG from aqueous solution.
Collapse
Affiliation(s)
- G Sarojini
- Department of Petrochemical Engineering, SVS College of Engineering, Coimbatore, India.
| | - S Venkatesh Babu
- Department of Petroleum Engineering, JCT College of Engineering & Technology, Coimbatore, India
| | - N Rajamohan
- Faculty of Engineering, Sohar University, Sohar, P C;311, Oman
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
28
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Ali SA, Mubarak SA, Yaagoob IY, Arshad Z, Mazumder MAJ. A sorbent containing pH-responsive chelating residues of aspartic and maleic acids for mitigation of toxic metal ions, cationic, and anionic dyes. RSC Adv 2022; 12:5938-5952. [PMID: 35424571 PMCID: PMC8981974 DOI: 10.1039/d1ra09234k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
t-Butyl hydroperoxide-initiated cycloterpolymerization of diallylaminoaspartic acid hydrochloride [(CH2[double bond, length as m-dash]CHCH2)2NH+CH(CO2H)CH2CO2H Cl-] (I), maleic acid (HO2CH[double bond, length as m-dash]CHCO2H) (II) and cross-linker tetraallylhexane-1,6-diamine dihydrochloride [(CH2[double bond, length as m-dash]CHCH2)2NH+(CH2)6NH+ (CH2CH[double bond, length as m-dash]CH2)2 2Cl-] (III) afforded a new pH-responsive resin (IV), loaded with four CO2H and a chelating motif of NH+⋯CO2 - in each repeating unit. The removal of cationic methylene blue (MB) (3000 ppm) at pH 7.25 and Pb(ii) (200 ppm) at pH 6 by IV at 298, 313, and 328 K followed second-order kinetics with E a of 33.4 and 40.7 kJ mol-1, respectively. Both MB and Pb(ii) were removed fast, accounting for 97.7% removal of MB within 15 min at 313 K and 94% of Pb(ii) removal within 1 min. The super-adsorbent resin gave respective q max values of 2609 mg g-1 and 873 mg g-1 for MB and Pb(ii). IV was also found to trap anionic dyes; it removed 91% Eriochrome Black T (EBT) from its 50 ppm solutions at pH 2. The resin was found to be effective in reducing priority metal contaminants (like Cr, Hg, Pb) in industrial wastewater to sub-ppb levels. The synthesis of the recyclable resin can be easily scaled up from inexpensive starting materials. The resin has been found to be better than many recently reported sorbents.
Collapse
Affiliation(s)
- Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Shuaib A Mubarak
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Ibrahim Y Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Zeeshan Arshad
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Mohammad A J Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
30
|
Seid L, Lakhdari D, Berkani M, Belgherbi O, Chouder D, Vasseghian Y, Lakhdari N. High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126986. [PMID: 34461534 DOI: 10.1016/j.jhazmat.2021.126986] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Conductive crystalline polypyrrole (Cryst-PPy), Nickel-polypyrrole (Ni-PPy), and copper- polypyrole (Cu-PPy) hybrid materials were prepared using a chemical polymerization method in an aqueous solution. Part I was focused on the Chemical synthesis of Cryst-PPy powder from an organic medium. Cryst-PPy powder was successfully synthesized by chemical route from an organic medium of acetonitrile with polyethylene oxide as a stabilizing agent and oxidizing agent like potassium peroxydisulfate. The morphological study was showed the presence of spherical nanoparticles and cubic microparticles giving rise to a denser structure of PPy. In the second part, the based electrodes composites were examined in the oxidation of phenol by an electrochemical process in an alkaline medium. To follow the yield of phenol degradation at the alkaline solution, UV-visible analysis was performed at the following operating conditions: current density of 0.58 mA cm-2, phenol initial concentration of 0.150 M and for 3 h processing; the rate of phenol elimination was 56%, 38% and 28% for Cu-PPy, Ni-PPy, and pure PPy electrodes respectively. Thus, can be found that the doped Cu-PPy electrodes electrode is a new material with high electrochemical oxidation ability for phenol degradation in aqueous solutions.
Collapse
Affiliation(s)
- Lamria Seid
- Laboratoire d'Energétique et d'Electrochimie du Solide (LEES), Département de Génie Des Procédés, Faculté de Technologie, Université Sétif-1, Sétif, Alegria
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Dalila Chouder
- Laboratoire d'Energétique et d'Electrochimie du Solide (LEES), Département de Génie Des Procédés, Faculté de Technologie, Université Sétif-1, Sétif, Alegria
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
31
|
Sarojini G, Babu SV, Rajamohan N, Rajasimman M, Pugazhendhi A. Application of a polymer-magnetic-algae based nano-composite for the removal of methylene blue - Characterization, parametric and kinetic studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118376. [PMID: 34656675 DOI: 10.1016/j.envpol.2021.118376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The potential ability of synthesized PPy-Fe3O4-SW nano-composite to remove Methylene Blue (MB) from synthetic textile dye solution was investigated under batch conditions. Through parametric studies, the influence of process parameters namely solution pH, on the effective performance of nano-composite was studied. PPy - Fe3O4- SW nano-composite removed 99.14% of MB at the optimized conditions of pH-10, temperature - 25 °C, initial MB concentration - 50 mg/L, nano-composite dosage - 20 mg and contact time - 20 min. PPy - Fe3O4- SW nano-composite has a maximum sorption capacity of 666.66 mg/g. The kinetics and isotherm study revealed that the chromium adsorption obeys pseudo second order (PSO) model (R2 = 0.9941) and Freundlich isotherm (R2 = 0.9910) respectively. The PSO kinetic constant (K2) was found to be 0.000442 (g/mg) min. The thermodynamic feasibility was confirmed through negative values of standard free energy at all tested conditions. The characteristics of adsorption study were analyzed and the results of FTIR, SEM and EDS confirmed the uptake of MB by PPy-Fe3O4-SW nano-composite.
Collapse
Affiliation(s)
- G Sarojini
- Department of Petrochemical Engineering, SVS College of Engineering, Coimbatore, India
| | - S Venkatesh Babu
- Department of Petroleum Engineering, JCT College of Engineering & Technology, Coimbatore, India
| | - N Rajamohan
- Faculty of Engineering, Sohar University, Sohar, P C:311, Oman
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
32
|
Yan C, Qu Z, Wang J, Cao L, Han Q. Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. CHEMOSPHERE 2022; 286:131870. [PMID: 34403898 DOI: 10.1016/j.chemosphere.2021.131870] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
With the rapid economy development and population surge, the water resources available for direct use on the earth have been in shortage. Therefore, water pollution remediation inevitably becomes the focus of global attention. Aside from their capacity to fix and effectively control the emission of carbon dioxide thus achieve negative carbon emission, microalgae and its products modified by genetic engineering and other technologies also have a broad prospect in sewage treatment such as efficiently removing all kinds of pollutants in water and producing high-quality biofuels after use. Therefore, research on these organisms has gradually deepened in recent years. This paper summarizes the bioremediation mechanism of heavy metal ions in water by using microalgae and their modified products. The relevant research progresses since 2015 are critically reviewed and discussed. Challenges and prospects are also put forward for their industrial implementation.
Collapse
Affiliation(s)
- Chicheng Yan
- Miami College, Henan University, Kaifeng, 475004, China
| | - Zhengzhe Qu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jieni Wang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Qiuxia Han
- Miami College, Henan University, Kaifeng, 475004, China; School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
33
|
Vasseghian Y, Mousavi Khaneghah A, Khataee A. New emerging techniques for detection and degradation of hazardous materials in environments: Challenges and perspectives. CHEMOSPHERE 2022; 286:131589. [PMID: 34325253 DOI: 10.1016/j.chemosphere.2021.131589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, 13083-862, São Paulo, Brazil
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
34
|
R J, Gurunathan B, K S, Varjani S, Ngo HH, Gnansounou E. Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. ENVIRONMENTAL RESEARCH 2022; 203:111815. [PMID: 34352231 DOI: 10.1016/j.envres.2021.111815] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Due to the development in science field which gives not only benefit but also introducesundesirable pollution to the environment. This pollution is due to poor discharge activities of industrial effluents into the soil and water bodies, surface run off from fields of agricultural lands, dumping of untreated wastes by municipalities, and mining activites, which deteriorates the cardinal virtue of our environment and causes menace to human health and life. Heavy metal(s), a natural constituent on earth's crust and economic important mineral, due to its recalcitrant effects creates heavy metal pollution which affects food chain and also reduces the quality of water. For this, many researchers have performed studies to find efficient methods for wastewater remediation. One of the most promising methods from economic point of view is adsorption, which is simple in design, but leads to use of a wide range of adsorbents and ease of operations. Due to advances in nanotechnology, many nanomaterials were used as adsorbents for wastewater remediation, because of their efficiency. Many researchers have reported that nanoadsorbents are unmitigatedly a fruitful solution to address this world's problem. This review presents a potent view on various classes of nanoadsorbents and their application to wastewater treatment. It provides a bird's eye view of the suitability of different types of nanomaterials for remediation of wastewater and Backspace gives up-to-date information about polymer based and silica-based nanoadsorbents.
Collapse
Affiliation(s)
- Janani R
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India.
| | - Sivakumar K
- Department of Biotechnology, KarpagaVinayaga College of Engineering and Technology, Chinna Kolambakkam, 603308, Tamilnadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, India.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Sarojini G, Babu SV, Rajasimman M. Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution. CHEMOSPHERE 2022; 287:132371. [PMID: 34597648 DOI: 10.1016/j.chemosphere.2021.132371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The ability of polypyrrole-Iron oxide-seaweed nanocomposite has been tested for the removal of congo red from aqueous solution. The characteristics of nanocomposite after adsorption of Congo red (CR) have been analyzed. FTIR results authorized the involvement of various functional groups in the adsorption of CR. The change in morphology of nanocomposite was analyzed using scanning electron microscope (SEM). TEM and BET analysis were performed to characterize the nanocomposite. The effect of various parameters namely pH, adsorbent dosage, initial dye concentration, adsorption time and temperature are studied. The optimum condition for the effective removal of CR are: pH-3, initial CR concentration- 40 mg/L, nanocomposite dosage- 20 mg, contact time-40 min and temperature-40οC. Adsorption isotherm studies and kinetic studies were done. Langmuir isotherm fits with the experimental data very well with high coefficient of determination (R2 = 0.98) and maximum dye uptake of 500 mg/g is reported. In kinetic studies, pseudo second order model was obeyed (R2 = 0.994). Thermodynamic properties were determined and found that the nature of process is spontaneous, endothermic and increased in randomness. The mechanism of sorption was proposed. Desorption studies were carried out and showed that the nanocomposite could be effectively reused up to five cycles. Thus the outcomes proved that the polypyrrole-iron oxide-seaweed nanocomposite to be an operative, recyclable and low-cost adsorbent for the treatment of dye bearing water.
Collapse
|
36
|
Fadhel Ali F, Al-Rawi AS, Aljumialy AM. Limestone residues of sculpting factories utilization as sorbent for removing Pb(II) ion from aqueous solution. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Sarojini G, Venkatesh Babu S, Rajamohan N, Senthil Kumar P, Rajasimman M. Surface modified polymer-magnetic-algae nanocomposite for the removal of chromium- equilibrium and mechanism studies. ENVIRONMENTAL RESEARCH 2021; 201:111626. [PMID: 34217718 DOI: 10.1016/j.envres.2021.111626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The present work explains the sorption ability of a novel nano-composite, Polypyrrole -iron oxide-seaweed (PPy - Fe3O4 - SW), for Cr(VI) removal. The influence of operating parameters, namely pH, contact time, nanocomposite dosage, initial Chromium concentration and operating temperature, on the hexavalent chromium removal was studied. The novel nano-composite was analyzed using FTIR, SEM and EDS to confirm the sorption of Cr(VI) and to understand the mechanism of sorption. PPy - Fe3O4- SW nano-composite removed 96.36% of Cr(VI) at the optimized conditions of pH = 2, temperature = 30 °C, initial Cr(VI) concentration = 50 mg/L, nanocomposite dosage = 100 mg and contact time = 30min. PPy-Fe3O4-SW nanocomposite has a maximum sorption capacity of 144.93 mg/g. The kinetic studies revealed that the metal adsorption obeys pseudo second order (PSO) model and the sorption was found to be monolayer in nature as confirmed by Langmuir isotherm (R2 > 0.9985). Electrostatic interaction and ion-exchange are identified as the fundamental mechanisms for Cr(VI) sorption on PPy-Fe3O4-SW composite.
Collapse
Affiliation(s)
- G Sarojini
- Department of Petrochemical Engineering, SVS College of Engineering, Coimbatore, India.
| | - S Venkatesh Babu
- Department of Petroleum Engineering, JCT College of Engineering & Technology, Coimbatore, India
| | - N Rajamohan
- Chemical Engineering Section, Sohar University, Oman
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
38
|
Jayakumar V, Govindaradjane S, Senthil Kumar P, Rajamohan N, Rajasimman M. Sustainable removal of cadmium from contaminated water using green alga - Optimization, characterization and modeling studies. ENVIRONMENTAL RESEARCH 2021; 199:111364. [PMID: 34033830 DOI: 10.1016/j.envres.2021.111364] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
This research study reported the feasibility of cadmium removal using green algae, Caulerpa scalpelliformis, under controlled environmental conditions. The algal biosorbent could effectively remove cadmium under broad range of test conditions, namely, initial pH (3-6), adsorbent mass (0.5-2.5 gL-1) and shaking speed (60-100 rpm). The best operating conditions were identified using Central Composite Design under Response Surface methodology and found to be pH - 4.9, adsorbent mass - 2.1 gL-1 and shaking speed - 90 rpm. Equilibrium studies were conducted and monolayer sorption was identified as the mechanism, confirmed by Langmuir isotherm (R2 = 0.9920). The maximum Cd uptake achieved at optimal conditions was 111.11 mg g-1. The kinetic constants of the best fit model (pseudo second order) were determined. The thermodynamic feasibility was verified (ΔG ͦ < 0) and the biosorption process was found to be endothermic (ΔH ͦ > 0). The mass transfer studies shows that the mass transfer coefficient was inversely related to the temperature. Presence of favorable surface functional groups and enhanced surface area confirmed the suitability of the synthesized biosorbent for effective removal of cadmium.
Collapse
Affiliation(s)
- V Jayakumar
- Department of Chemical Engineering, MNGPC, Pudhucherry, 605008, India.
| | - S Govindaradjane
- Department of Civil Engineering, Pondicherry Engineering, College, Pudhucherry, 605014, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - N Rajamohan
- Chemical Engineering Section, Sohar University, Sohar, PC:311, Oman
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, India
| |
Collapse
|