1
|
Hu S, Lv Y, Hou X, Li J, Hou Y, Fu X, Xu T. BDD electrode pulsed alternating electrochemical oxidation of sulfamethazine in antibiotic wastewater: Process optimization and degradation mechanism. ENVIRONMENTAL RESEARCH 2025; 275:121375. [PMID: 40081652 DOI: 10.1016/j.envres.2025.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
To address the issues of electrode passivation and high electric energy consumption (EEC) associated with the removal of antibiotic wastewater using traditional direct current electrocatalytic oxidation (DCEO) with Boron-Doped Diamond (BDD) electrodes, this study aims to develop an efficient, low-cost, and self-cleaning BDD electrode pulsed alternating electrocatalytic oxidation (BDD-PAEO) technology. The experimental findings demonstrated that, under optimal conditions, the BDD-PAEO mode achieved a 99.9% removal efficiency for sulfamethazine (SMZ). Furthermore, the removal efficiency of COD in the BDD-PAEO mode consistently remained above 93% in 10 experimental cycles. Compared with the BDD-DCEO mode, the EEC of the BDD-PAEO mode is reduced by 17.39%, and the current efficiency (CE) is increased by 47.15%. The ·OH was confirmed to be the main active oxidant species for degradation of SMZ by free radical quenching experiments, electron paramagnetic resonance (EPR) and three-dimensional excitation-emission matrix (3D-EEM) spectroscopy. The degradation pathway of SMZ was revealed by density functional theory (DFT) calculation and gas chromatography-mass spectrometry (GC-MS) analysis. Toxicity estimation illustrated that BDD-PAEO technology can effectively reduce the toxicity of wastewater after SMZ degradation. This study shows BDD-PAEO technology's high potential for efficient SMZ degradation and toxicity reduction in antibiotic wastewater, offering a novel treatment solution.
Collapse
Affiliation(s)
- Simeng Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yongshang Lv
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xifei Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiahao Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaxuan Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaohua Fu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Singh R, Sinha A. A critical review of recent advancements in the photocatalysis process, mechanism, and degradation pathways for the removal of phthalates from the contaminated water matrix. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124663. [PMID: 40020358 DOI: 10.1016/j.jenvman.2025.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Phthalates, a sort of plasticizer, are widely utilized in various consumer products and pose significant environmental and health risks due to their persistence and potential toxicity. This review explores the occurrence, sources, environmental impact, and remediation strategies for phthalates. Various remediation techniques have been investigated to address phthalate contamination. Among these, photocatalysis, an advanced oxidation process (AOP), has emerged as a viable approach due to its ability to mineralize organic contaminants into innocuous byproducts. The review discusses the recent advancements in photocatalytic processes, the underlying mechanisms, and degradation pathways for phthalate removal. The mechanism of photocatalytic degradation includes the generation of reactive oxygen species like hydroxyl radicals (OH•) and superoxide radicals (O2-•) and their role in breaking down phthalate molecules. It also highlights recent advancements in photocatalytic materials, such as metal-doped semiconductors and composite materials, which enhance the removal efficiency. The review concludes by emphasizing the need for integrated approaches to achieve effective and sustainable phthalate remediation. Future research should focus on developing efficient and cost-effective photocatalytic materials, optimizing reactor design, and scaling up photocatalytic processes for practical applications. The review also highlights the challenges and limitations of photocatalytic processes, including low quantum efficiency, catalyst deactivation, and mass transfer limitations. Potential areas of study are put forward to address these challenges and further advance the application of photocatalysis for phthalate removal. This review intends to help the development of efficient photocatalytic technologies for the remediation of phthalate-contaminated water by providing a complete overview of the present state of the art.
Collapse
Affiliation(s)
- Ravindra Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
3
|
Koli M, Kanwar B, Singh SP. Impact of operating parameters on the electrooxidation of methylene blue and ciprofloxacin: a comprehensive analysis and degradation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4656-4669. [PMID: 39885076 DOI: 10.1007/s11356-025-35992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
In recent decades, freshwater bodies have experienced significant stress due to the excessive disposal of dyes from textile industries and waste antibiotic discharges from pharmaceutical industries. The continuous disposal of these substances may harm the natural ecosystem and generate antibiotic resistance in living organisms. Conventional treatment facilities are inadequate in treating these contaminants effectively, leading to a focused interest in advanced technologies, such as electrooxidation. This study aimed to assess graphite sheet electrode's efficacy in removing methylene blue (MB) dye and antibiotic ciprofloxacin (CIP) under different operating conditions, such as voltage (2.5, 5, and 7.5 V), initial concentration (5, 10, 25, and 50 ppm), pH (3, 6, and 9), and electrolyte (Na2SO4 and NaCl). The results indicated that 10 ppm MB and CIP could be removed by more than 99%, with pseudo-first-order reaction kinetics in 2 h. The degradation was more effective in the NaCl medium than in Na2SO4 due to the presence of highly active chlorine species. The degradation by-products revealed successful degradation of MB and CIP molecules in both electrolytes yielding low m/z value by-products and the toxicity analysis via ECOSAR V2.2 reveals that the daughter products are not harmful. The operating cost of the system was between 0.05 and 0.07 $ m-3 for degradation in both electrolyte systems. These findings suggest that electrooxidation systems utilizing thin graphite sheet electrodes may be promising for dye and pharmaceutical wastewater treatment due to their effectiveness, versatility, and relatively low environmental impact.
Collapse
Affiliation(s)
- Mitil Koli
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Bhavana Kanwar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Excellence On Membrane Technologies for Desalination, Brine Management and Water Recycling (DeSaltM), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
4
|
Schroeder CM, Koehler TM, Leadbeater NE. Real-time in situ monitoring as a tool for comparison of electrochemical advanced oxidation processes for the decolourisation of azo and indigoid dyes. RSC Adv 2024; 14:38385-38390. [PMID: 39635362 PMCID: PMC11615860 DOI: 10.1039/d4ra07657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The widespread use of synthetic dyes has led to the release of substantial amounts of dye-contaminated wastewater, posing significant environmental and health concerns. This study focuses on the use of anodic and electrochemically activated persulfate oxidation for the degradation of organic contaminants. Specifically, the structural variations of nine dyes in the indigoid and azo families, and their impact on the efficiency of electrochemical oxidation were analysed. An in situ continuous monitoring apparatus with a UV-visible detector was employed to collect data in real-time. The electrochemically activated persulfate system demonstrated higher efficiency compared to the anodic oxidation approach. In both systems the efficiency of decolourisation was highly dependent on the structure of the pollutant. Electron-withdrawing substituents in direct conjugation with the chromophore, bulky auxochromes, and extended aromatic systems significantly decreased the decolourisation efficiency. Conversely, changing the location of electron-withdrawing groups and adding electron-donating substituents increased the decolourisation efficiency, even overcoming the detrimental effects of bulky groups and extended conjugation. This type of systematic structural comparison study is essential for highlighting the interconnected nature of pollutant structure and degradation speed so that efficient electrochemical oxidation systems can be designed for the treatment of genuine wastewater effluent containing more than one pollutant.
Collapse
Affiliation(s)
- Chelsea M Schroeder
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs Connecticut 06269 USA
| | - Taylor M Koehler
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs Connecticut 06269 USA
| | - Nicholas E Leadbeater
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs Connecticut 06269 USA
| |
Collapse
|
5
|
Yakamercan E, Aygün A, Simsek H. Antibiotic ciprofloxacin removal from aqueous solutions by electrochemically activated persulfate process: Optimization, degradation pathways, and toxicology assessment. J Environ Sci (China) 2024; 143:85-98. [PMID: 38644026 DOI: 10.1016/j.jes.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 04/23/2024]
Abstract
Ciprofloxacin (CIP) is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections. When CIP is discharged into the sewage system, it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics. In this study, boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate (EAP) process. Iron was added to the system as a coactivator and the process was called EAP+Fe. The effects of independent variables, including pH, Fe2+, persulfate concentration, and electrolysis time on the system were optimized using the response surface methodology. The results showed that the EAP+Fe process removed 94% of CIP under the following optimum conditions: A pH of 3, persulfate/Fe2+ concentration of 0.4 mmol/L, initial CIP concentration 30 mg/L, and electrolysis time of 12.64 min. CIP removal efficiency was increased from 65.10% to 94.35% by adding Fe2+ as a transition metal. CIP degradation products, 7 pathways, and 78 intermediates of CIP were studied, and three of those intermediates (m/z 298, 498, and 505) were reported. The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals, including fathead minnow, Daphnia magna, Tetrahymena pyriformis, and rats. The optimum operation costs were similar in EAP and EAP+Fe processes, approximately 0.54 €/m3.
Collapse
Affiliation(s)
- Elif Yakamercan
- Environmental Engineering Department, Bursa Technical University, Bursa, Turkey
| | - Ahmet Aygün
- Environmental Engineering Department, Bursa Technical University, Bursa, Turkey.
| | - Halis Simsek
- Agricultural and Biological Engineering Department, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Li J, Wang T, Liang E. Carbon and hydrogen isotopic evidence for atrazine degradation by electro-activated persulfate: Radical contributions and comparisons with heat-activated persulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122892. [PMID: 37952922 DOI: 10.1016/j.envpol.2023.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
The activation ways of persulfate (PS) were dominate for pollutant degradation and energy consumption. For the first time, this research compared electro-activated PS and heat-activated PS from the perspective of isotope fractionation, in order to "fingerprinted" and precisely interpretate reaction contributions and degradation pathways. As results, PS can be electrochemically activated with atrazine (ATZ) removal rates of 84.8% and 88.8% at pH 4 and 7. The two-dimensional isotope plots (ɅC/H) values were 6.20 at pH 4 and 7.46 at pH 7, rather different from that of SO4·- -dominated process with ɅC/H value of -4.80 at pH 4 and -23.0 at pH 7, suggesting the weak contribution of SO4·-. ATZ degradation by electro-activated PS was controlled by direct electron transfer (DET) and ·OH radical, and ·OHPS (derived from PS activation) played the crucial role with contributing rate of 63.2%-69.1%, while DET and ·OHBDD (derived from electrolysis of H2O) contributed to 4.5-7.9% and 23.0%-30.8%, respectively. This was different from heat activation of PS, of which the latter was dominated by SO4·- with contributions of 83.9%-100%. The discrepant dominating reactive oxygen species should be responsible for their different degradation capabilities and pathways. This research provided isotopic interpretations for differences of PS activation mode, and further efforts can be made to realize the selective degradation by enhancing the specific reaction process.
Collapse
Affiliation(s)
- Jie Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
7
|
Bhatt P, Engel BA, Shivaram KB, Turco RF, Zhou Z, Simsek H. Treatment and optimization of high-strength egg-wash wastewater effluent using electrocoagulation and electrooxidation methods. CHEMOSPHERE 2024; 347:140632. [PMID: 37967677 DOI: 10.1016/j.chemosphere.2023.140632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
Egg-washing wastewater contains a high concentration of nutrition and organic matter since eggs are broken during the washing and cleaning processes. Moreover, the wastewater contains small amounts of detergents or sanitizing agents. These contaminants may pose environmental challenges when they are not properly managed or treated. The study scrutinizes the efficiency of electrocoagulation (EO) and electrooxidation (EO) approaches for egg-wash wastewater treatment. The response surface methodology was employed to optimize the operational parameters. The removal efficiencies of soluble chemical oxygen demand (sCOD 90%), ammonia (NH3-N 91%), nitrate (NO3--N 97%), nitrite (NO2--N 89.3%), total dissolved nitrogen (TDN 91%), and phosphate (90%) were measured under various treatment conditions. The optimum treatment conditions achieved in the combined EC + EO process were pH 6.0, current density 20 mA cm-2, and electrolysis time of 60 min, respectively. Degradation kinetics of the egg-wash pollutants showed a significant reduction in half-life (t1/2) with EO (after EC-Aluminum) at 15 min, 12 min, 17 min, and 15 min for sCOD, NO2--N. NO3--N, and TDN, respectively. Whereas the half-life of NH3-N (18 min) and phosphate (17 min) reduced significantly with the EO (after EC-iron). Al and Fe electrodes coupled with boron-doped diamond were found efficient for pollutant removal. Environmental implication. Egg-wash wastewater has a high protein content and contains nutrients that are essential for living organisms. While these compounds can be valuable for agricultural use by increasing soil phosphate concentration, they can also become an issue if the excess nutrients are not properly managed. The soil has a threshold limit for holding phosphate, and any excess amount may be transported through surface runoff or contaminate groundwater through leachate, potentially affecting aquatic ecosystems and water quality. This study explores the efficiency of electrocoagulation and electrooxidation methods in treating egg-wash wastewater. These methods aim to remove pollutants and reduce their environmental impact.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Bernard A Engel
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Karthik B Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Zhi Zhou
- School of Civil Engineering, Purdue University, West Lafayette, IN, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Schroeder CM, Koehler TM, Ohlhorst KK, Leadbeater NE. Real-time in situ monitoring using visible spectrophotometry as a tool for probing electrochemical advanced oxidation processes for dye decolorisation. RSC Adv 2023; 13:33559-33565. [PMID: 38020003 PMCID: PMC10652061 DOI: 10.1039/d3ra06634g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
An apparatus for real-time in situ monitoring of electrochemical processes using UV-visible spectrophotometry has been used to optimise the electrochemically-activated persulfate decolorisation of Acid Orange 7. The impacts of varying electrode composition, current density, persulfate loading, and stirring speed on the rate of decolorisation have been probed. Decolorisation through this activated persulfate approach was compared to that using anodic oxidation for nine dyes; three from each of the azo, triarylmethane, and xanthene families. The core structure and presence of functional groups have a significant impact on the rate of decolorisation. Azo and xanthene dyes decolorise faster than triarylmethane dyes, while electron-withdrawing groups and halogens are especially detrimental to the rate of decolorisation. Electrochemically-activated persulfate resulted in faster decolorization than anodic oxidation for almost every dye, an effect that was enhanced with the electron-deficient substrates. This type of systematic structural comparison study is essential for designing electrochemical degradation procedures for the remediation of real wastewater.
Collapse
Affiliation(s)
- Chelsea M Schroeder
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs Connecticut 06269 USA
| | - Taylor M Koehler
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs Connecticut 06269 USA
| | - Kristiane K Ohlhorst
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs Connecticut 06269 USA
| | - Nicholas E Leadbeater
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs Connecticut 06269 USA
| |
Collapse
|
9
|
Jiang H, Chen H, Wei K, Liu L, Sun M, Zhou M. Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. CHEMOSPHERE 2023; 341:140083. [PMID: 37696481 DOI: 10.1016/j.chemosphere.2023.140083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have emerged as a promising approach for efficient wastewater treatment. However, despite their promising potential, there is a lack of comprehensive analysis regarding the research trends, bibliometric data, and research frontiers of EAOPs. To address this gap, this study conducted a thorough and comprehensive analysis of 2347 related articles in the Web of Science Core Collection Database from 2012 to 2022. The analysis included information on countries, authors, institutions, and more, with a focus on summarizing trends and cutting-edge research hotspots in the field. The University of Barcelona in Spain is the most effective institution. Brillas E. is the most productive author in the world. Research hotspots in EAOPs have evolved from traditional anodic oxidation (AO) to novel electro-Fenton (EF) technology, which focuses on efficient generation of H2O2 and the use of metal-organic frameworks to enhance performance and efficiency. Through systematic research hotspot analysis, the importance of performance comparison of different types of EAOPs, development of new materials, optimization of device parameters, and toxicity assessment of byproducts is highlighted. Concurrently, the rise and mechanisms of emerging EAOPs are predicted and analyzed. Finally, future research on EAOPs technologies should focus on technological coupling, development of new materials, reduction of energy consumption and cost, evaluation and minimization of toxicity, and exploration of green renewable energy sources for larger-scale applications in wastewater treatment pilot plants. In this way, these technologies can contribute to the sustainability of larger industrial wastewater treatment applications and make an important contribution to environmental protection and scientific and technological progress.
Collapse
Affiliation(s)
- Hanfeng Jiang
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haoming Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kajia Wei
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lufan Liu
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingdi Sun
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Xu T, Tang X, Qiu M, Lv X, Shi Y, Zhou Y, Xie Y, Naushad M, Lam SS, Ng HS, Sonne C, Ge S. Degradation of levofloxacin from antibiotic wastewater by pulse electrochemical oxidation with BDD electrode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118718. [PMID: 37541001 DOI: 10.1016/j.jenvman.2023.118718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.
Collapse
Affiliation(s)
- Tao Xu
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiting Tang
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meiting Qiu
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoliu Lv
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Shi
- Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yihui Zhou
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| | - Yanfei Xie
- People's Hospital of Ningxiang City, Ningxiang, Hunan, 410600, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Shengbo Ge
- Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| |
Collapse
|
11
|
Makhoul E, Boulos M, Cretin M, Lesage G, Miele P, Cornu D, Bechelany M. CaCu 3Ti 4O 12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2119. [PMID: 37513130 PMCID: PMC10383651 DOI: 10.3390/nano13142119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants. These approaches rely on the generation of hydroxyl and sulfate radicals during electro-oxidation and sulfate activation, respectively. In addition, hybrid activation, in which these methods are combined, is interesting because of the synergistic effect of hydroxyl and sulfate radicals. Hybrid activation effectiveness in pollutant removal can be influenced by various factors, particularly the materials used for the anode. This review focuses on various organic pollutants. However, it focuses more on pharmaceutical pollutants, particularly paracetamol, as this is the most frequently detected emerging pollutant. It then discusses electro-oxidation, photocatalysis and sulfate radicals, highlighting their unique advantages and their performance for water treatment. It focuses on perovskite oxides as an anode material, with a particular interest in calcium copper titanate (CCTO), due to its unique properties. The review describes different CCTO synthesis techniques, modifications, and applications for water remediation.
Collapse
Affiliation(s)
- Elissa Makhoul
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Madona Boulos
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, 75231 Paris, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Gulf University for Science and Technology (GUST), West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
12
|
Wang S, Zhang Y. Zero valent iron-electro-Fenton-peroxymonosulfate (ZVI-E-Fenton-PMS) process for industrial wastewater treatment. RSC Adv 2023; 13:15063-15076. [PMID: 37200704 PMCID: PMC10186334 DOI: 10.1039/d2ra06653j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 05/20/2023] Open
Abstract
Advanced oxidation processes are frequently applied to a variety of refractory organic wastewater, but rarely is electro-Fenton combined with activated persulfate technology applied to the removal of refractory pollutants. In this work, the electro-Fenton process was combined with zero-valent iron (ZVI) activated peroxymonosulfate (PMS), two advanced oxidation processes based on different radicals, to form the ZVI-E-Fenton-PMS process to treat wastewater, whose main advantages are the generation of more reactive oxygen species and the reduction of oxidant cost to achieve rapid removal of pollutants. This process can not only produce H2O2 and activate PMS at the cathode, but also reduce Fe(iii) to realize the sustainable Fe(iii)/Fe(ii) redox cycle. The main reactive oxygen species in the ZVI-E-Fenton-PMS process were found to be ˙OH, SO4˙- and 1O2 by radical scavenging experiments and electron paramagnetic resonance (EPR), and the relative contributions of the three reactive oxygen species for the degradation of MB were estimated to 30.77%, 39.62% and 15.38%, respectively. Then, by calculating the ratio of the relative contributions of each component to the removal of pollutants at different PMS doses, it was found that the synergistic effect of the process was better when the proportion of ˙OH in the oxidation of reactive oxygen species (ROS) was higher and the proportion of non-ROS oxidation increased year-on-year. This study provides a new perspective on the combination of different advanced oxidation processes and reveals the advantages and potential of this process for application.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 China
- School of Environmental Science and Engineering, Tiangong University Tianjin 300387 China
| | - Yonggang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 China
- School of Environmental Science and Engineering, Tiangong University Tianjin 300387 China
| |
Collapse
|
13
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
14
|
Zhu D, Zhou F, Ma Y, Xiong Y, Li X, Li W, Wang D. An economic, self-supporting, robust and durable LiFe 5O 8 anode for sulfamethoxazole degradation. CHEMOSPHERE 2023; 316:137810. [PMID: 36634712 DOI: 10.1016/j.chemosphere.2023.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemically activating peroxydisulfate (PDS) to degrade organic pollutants is one of the most attractive advanced oxidation processes (AOPs) to address environmental issues, but the high cost, poor stability, and low degradation efficiency of the anode materials hinder their application. Herein, an economic, self-supporting, robust, and durable LiFe5O8 on Fe substrate (Fe@LFO) anode is reported to degrade sulfamethoxazole (SMX). When PDS is electrochemically activated by the Fe@LFO anode, the degradation rate of SMX is significantly improved. It is found that hydroxyl radicals (•OH), superoxide radical (O2•-), singlet oxygen (1O2), Fe(Ⅳ), activated PDS (PDS*), and direct electron transfer (DET) reactions synergistically contribute to the degradation of SMX, which can realize the degradation of SMX in four possible routes: cleavage of the isoxazole ring, hydroxylation of the benzene ring, oxidation of the aniline group, and cleavage of the S-N bond, as evidenced by a series of tests of radicals quenching, electron paramagnetic resonance (EPR), linear sweep voltammetry (LSV) and liquid chromatograph mass spectrometer (LC-MS). Furthermore, Fe@LFO has good structural stability, excellent cyclability and low degradation cost, demonstrating its great potential for practical applications. This work contributes to a stable and effective anode material in the field of AOPs.
Collapse
Affiliation(s)
- Dongdong Zhu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Fengyin Zhou
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yongsong Ma
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yu Xiong
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Xiangyun Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Wei Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| | - DiHua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
15
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
16
|
Li X, Hu Y, Zhang C, Xiao C, Cheng J, Chen Y. Electro-activating of peroxymonosulfate via boron and sulfur co-doped macroporous carbon nanofibers cathode for high-efficient degradation of levofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130016. [PMID: 36179625 DOI: 10.1016/j.jhazmat.2022.130016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
To address the difficulty of precisely regulating the two-electron oxygen reduction reaction (2e-ORR) and investigate the synergistic effect of hydrogen peroxide (H2O2) and peroxymonosulfate (PMS), a heterogeneous electro-catalyst was synthesized via carbonation of boron (B) and sulfur (S) co-doping electrospun nanofibers containing iron and cobalt (B, S-Fe/Co@C-NCNFs-900), and used to degrade levofloxacin (Levo) in the electro-activating PMS with self-made cathode material (E-cathode-PMS) system. The morphological, structural, and electrochemical characteristics have been investigated. The results showed that B and S co-doping could remarkably enhance electron transfer and manage two-electron oxygen reduction, which was more favorable for H2O2 generation. Levo degradation efficiency could reach 99.63% with a reaction rate of 0.3056 min-1 in 20 min under the appropriate conditions (pH = 4, current = 20 mA, and [PMS] = 8.0 mM). The steady-state concentration of singlet oxygen (1O2) was calculated to be 669.17 × 10-14 M, which was 15.42, 29.74, and 45.00 times respectively than that of HO2·/O2·- (43.40 × 10-14 M), ·OH (22.25 × 10-14 M) and SO4-·(14.87 × 10-14 M), signifying that 1O2 was the predominant reactive oxygen species (ROS) involved in Levo removal. The high TOC removal (74.19%), low energy consumption (0.14 kWh m-3 order-1), few intermediates toxicity, and excellent Levo degradation efficiency for complex wastewater with various anions and matrixes showed the prospective practical applications of the E-cathode-PMS system. Overall, this study provides a useful strategy to regulate and control the 2e-ORR pathway.
Collapse
Affiliation(s)
- Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China.
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
17
|
Zhao K, Zhang Y. Effective and continuous degradation of pollutants via carbon felt loaded with Co3O4 as three-dimensional electrode: Collaboration between ROS. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
19
|
Electrochemical Oxidation of Anastrozole over a BDD Electrode: Role of Operating Parameters and Water Matrix. Processes (Basel) 2022. [DOI: 10.3390/pr10112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The electrochemical oxidation (EO) of the breast-cancer drug anastrozole (ANZ) is studied in this work. The role of various operating parameters, such as current density (6.25 and 12.5 mA cm−2), pH (3–10), ANZ concentration (0.5–2 mg L−1), nature of supporting electrolytes, water composition, and water matrix, have been evaluated. ANZ removal of 82.4% was achieved at 1 mg L−1 initial concentration after 90 min of reaction at 6.25 mA cm−2 and 0.1 M Na2SO4. The degradation follows pseudo-first-order kinetics with the apparent rate constant, kapp, equal to 0.022 min−1. The kapp increases with increasing current density and decreasing solution pH. The addition of chloride in the range 0–250 mg L−1 positively affects the removal of ANZ. However, chloride concentrations above 250 mg L−1 have a detrimental effect. The presence of bicarbonate or organic matter has a slightly negative but not significant effect on the process. The EO of ANZ is compared to its degradation by solar photo-Fenton, and a preliminary economic analysis is also performed.
Collapse
|
20
|
Large-Scale Synthesis of Iron Ore@Biomass Derived ESBC to Degrade Tetracycline Hydrochloride for Heterogeneous Persulfate Activation. Catalysts 2022. [DOI: 10.3390/catal12111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-based catalysts are widely used in water treatment and environmental remediation due to their abundant content in nature and their ability to activate persulfate at room temperature. Here, eggshell biochar-loaded natural iron slag (IO@ESBC) was successfully synthesized to remove tetracycline hydrochloride (TCH) by activated persulfate. The morphology, structure and chemical composition of IO@ESBC were systematically characterized. The IO@ESBC/PS process showed good performance for TCH removal. The decomposition rate constant (k) for IO@ESBC was 0.011 min−1 and the degradation rate was 3690 mmol/g/h in this system. With the increase of PS concentration and IO@ESBC content, the removal rate of TCH both increased. The IO@ESBC/PS process can effectively remove TCH at pH 3–9. There are different effects on TCH removal for the reason that the addition of water matrix species (humic acid, Cl−, HCO3−, NO3− and HPO42−). The IO@ESBC/PS system for degrading TCH was mainly controlled by both the free radical pathway (SO4•−, •OH and O2•−) and non-free radical pathway (1O2). The loading of ESBC slows down the agglomeration between iron particles, and more active sites are exposed. The removal rate of TCH was still above 75% after five cycles of IO@ESBC. This interesting investigation has provided a green route for synthesis of composite driving from waste resources, expanding its further application for environmental remediations.
Collapse
|
21
|
Jiang F, Feng X, Jiang X, Wang P. Enhanced dewaterability of lake dredged sediments by electrochemical oxidation of peroxydisulfate on BDD anode. CHEMOSPHERE 2022; 307:135832. [PMID: 35963373 DOI: 10.1016/j.chemosphere.2022.135832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Dredged sediments, as a product of mitigating endogenous pollution of rivers and lakes, cause severe environmental pollution without suitable disposal. To reduce dredged sediments, the electrochemical oxidation (EO) of peroxydisulfate (PS) on a boron-doped diamond (BDD) anode (EO/BDD-PS) was utilized to enhance the dewaterability of the dredged sediments. The soluble chemical oxygen demand increased in the EO/BDD-PS system, and more than 70.0% of the specific resistance to filtration was reduced by EO/BDD-PS within 20 min. The optimal conditions were determined to be as follows: current density, 30 mA cm-2; PS dosage 4 g L-1; and initial pH, 6.96. After treatment with EO/BDD-PS, the electronegativity of the sludge flocs was alleviated and the particle size increased from 7.61 to 10.64 μm. Furthermore, proteins and polysaccharides were degraded, and tightly bound extracellular polymeric substances (TB-EPS) and loosely bound EPS (LB-EPS) were effectively transported to soluble EPS (S-EPS). Furthermore, humification of organic matter occurred in S-EPS and LB-EPS when the dredged sediment was treated with EO/BDD-PS. Dominant hydroxyl radicals (•OH) and sulfate radicals (SO4•-) were generated in the EO/BDD-PS system. Moreover, the efficiency of the filtrate as an electrolyte decreased slightly after recycling five times. Therefore, this method may be economical for enhancing the dewaterability of dredged sediments.
Collapse
Affiliation(s)
- Feng Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Anwai, Beiyuan, Beijing 100012, China
| | - Xianlu Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Anwai, Beiyuan, Beijing 100012, China.
| | - Pengfei Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Anwai, Beiyuan, Beijing 100012, China.
| |
Collapse
|
22
|
Yu D, Pei Y. Persulfate-enhanced continuous flow three-dimensional electrode dynamic reactor for treatment of landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115890. [PMID: 35969970 DOI: 10.1016/j.jenvman.2022.115890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Compared with sequencing batch reactor, continuous flow dynamic reactors are more conducive to promotion and application. In this study, the ability of a three-dimensional (3D) electrode dynamic reactor to remove pollutants in the landfill leachate was investigated, in which landfill leachate entered through continuous flow. Either increased of current density or the decreased of flow rate was conducive to the removal of pollutants. The optimal process parameters for current density and flow rate were 16 mA cm-2 and 0.75 L h-1, respectively. When the current density was constant at 16 mA cm-2 and the flow rate was kept at 0.75 L h-1, 60.02% of total organic carbon (TOC), 96.50% of chroma, 64.98% of chemical oxygen demand (COD) and 99.46% of ammonia nitrogen (NH3-N) were removed. The characteristic peaks of refractory organic pollutants were reduced by 97.95%. After the reaction, the biological oxygen demand (BOD)/COD was increased from 0.24 to 0.32. As one of the emerging trace organics in landfill leachate, 85.90% of ibuprofen (IBU) was removed. The results showed that the 3D electrode dynamic reactor constructed in this study could reduce the TOC, refractory trace organic pollutant, NH3-N and chroma in the landfill leachate. The 3D electrode dynamic reactor constructed in this research has application potential in the field of landfill leachate treatment.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Li X, Fan S, Jin C, Gao M, Zhao Y, Guo L, Ji J, She Z. Electrochemical degradation of tetracycline hydrochloride in sulfate solutions on boron-doped diamond electrode: The accumulation and transformation of persulfate. CHEMOSPHERE 2022; 305:135448. [PMID: 35764112 DOI: 10.1016/j.chemosphere.2022.135448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel electrifying mode (divided power-on and power-off stage) was applied in the system of BDD activate sulfate to degrade tetracycline hydrochloride (TCH). The BDD electrode could activate sulfate and H2O to generate sulfate radicals (SO4•-) and hydroxyl radicals (•OH) to remove TCH, and SO4•- could dimerize to form S2O82-. Then, the S2O82- was activated by heat and quinones to generate SO4•- for the continuous degradation of TCH during the power-off stage. In addition, the intermittent time has a significant effect on the degradation of TCH. Factors, affecting the accumulation of S2O82-, were analyzed using a full factorial design, and the accumulation of S2O82- could reach 16.2 mM in 120 min. The results of electron spin resonance and radical quenching test showed that SO4•-, •OH, direct electron transfer (DET), and non-radical in the system could effectively degrade TCH, and SO4•- was dominated. The intermediate products of TCH were analyzed by HPLC-QTOF-MS/MS, and the TCH mainly underwent hydroxylation, demethylation and ring opening reactions to form small molecules, and finally mineralized. The results of the feasibility analysis revealed that some intermediates have high toxicity, but the system could improve the toxicity. The results of energy consumption indicated that the intermittent electrifying mode could make full use of the persulfate generated during the power-on stage and reduce about 30% energy consumption. In conclusion, this work demonstrated that it was economically feasible to degrade TCH in wastewater by activating sulfate with BDD electrodes with an intermittent electrifying mode.
Collapse
Affiliation(s)
- Xiaobao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shasha Fan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
24
|
Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Song S, Zhang H, Han S, Xiao S, Du Y, Hu K, Wang H, Wu C. Activation of persulfate by a water falling film DBD process for the enhancement of enrofloxacin degradation. CHEMOSPHERE 2022; 301:134667. [PMID: 35460676 DOI: 10.1016/j.chemosphere.2022.134667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
A synergetic system of water falling film dielectric barrier discharge (DBD) plasma and persulfate (PS) was established and applied to enhance the enrofloxacin (EFA) degradation in this study. The simultaneous existence of electrons, reactive species, heat and UV-visible light in the DBD plasma system were utilized together to activate the PS to form SO4-· and other reactive oxygen species (ROS), and then worked in synergy with the DBD plasma to oxidize the EFA. The obtained results verified that there was a significant increase in the degradation percentages of EFA (20 mg L-1) in the DBD/PS system, and the trend was more obvious under the condition of larger discharge power input. When 0.8 mM PS was added into the DBD system with 0.8 kW discharge power, the degradation percentage of EFA could reach 99.35% after 60 min treatment, the corresponding synergetic factor (SF) was 7.94. Analysis of the O3 and the H2O2 concentrations in the DBD plasma system before and after the PS addition explained the activation of the PS by the HO·. The quenching experiments on reactive species suggested that SO4-·, HO·, and 1O2 were all important reactive species for EFA degradation. The intermediates formed by the EFA degradation were detected and the degradation pathways were speculated. Results of toxicity analysis illustrated that the toxicity of the initial EFA solution decreased after degradation in the synergetic system of DBD/PS.
Collapse
Affiliation(s)
- Shilin Song
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huihui Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Song Han
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - Yansheng Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - Kun Hu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - Chundu Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| |
Collapse
|
26
|
Li X, Jie B, Lin H, Deng Z, Qian J, Yang Y, Zhang X. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114664. [PMID: 35149402 DOI: 10.1016/j.jenvman.2022.114664] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The large amount of trace organic contaminants (TrOCs) in wastewater has caused serious impacts on human health. In the past few years, Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) are widely recognized for their high removal rates of recalcitrant TrOCs from water. Peroxymonosulfate (PMS) and persulfate (PS) are stable and non-toxic strong oxidizing oxidants and can act as excellent SO4•- precursors. Compared with hydroxyl radicals(·OH)-based methods, SR-AOPs have a series of advantages, such as long half-life and wide pH range, the oxidation capacity of SO4•- approaches or even exceeds that of ·OH under suitable conditions. In this review, we present the progress of activating PS/PMS to remove TrOCs by different methods. These methods include activation by transition metal, ultrasound, UV, etc. Possible activation mechanisms and influencing factors such as pH during the activation are discussed. Finally, future activation studies of PS/PMS are summarized and prospected. This review summarizes previous experiences and presents the current status of SR-AOPs application for TrOCs removal. Misconceptions in research are avoided and a research basis for the removal of TrOCs is provided.
Collapse
Affiliation(s)
- Xingyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Borui Jie
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huidong Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongpei Deng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junyao Qian
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
27
|
Cai J, Xie J, Zhang Q, Zhou M. Enhanced degradation of 2,4-dichlorophenoxyacetic acid by electro-fenton in flow-through system using B, Co-TNT anode. CHEMOSPHERE 2022; 292:133470. [PMID: 34973260 DOI: 10.1016/j.chemosphere.2021.133470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A flow-through system was constructed for 2,4-dichlorophenoxyacetic acid (2,4-D) degradation for the first time using efficient boron and cobalt co-doped TiO2 nanotubes (B, Co-TNT) as the anode and carbon black doped carbon felt (CB-CF) that had a high H2O2 yield as the cathode. Compared with dimensionally stable anode (DSA), whether in anodic oxidation (AO) or AO-electro-Fenton (EF) system, 2,4-D degradation in B, Co-TNT anode system was more efficient accompanying with a lower energy consumption (Ec). Different operating parameters including applied current density, initial pH and flow rate were explored, supporting that the optimal Fe2+ dosage was 0.5 mM while decreasing the initial pH and increasing the current intensity and flow rate were beneficial to 2,4-D removal. In this AO-EF system, the involved mechanisms for 2,4-D degradation were anodization and Fenton oxidation, possessing the comprehensive effect of •OH and SO4•- with their contribution of 92.7% and 4.8%, respectively. This flow-through AO-EF system performed a stable performance, and an efficient degradation performance with low Ec (5.8-29.5 kWh (kg TOC)-1) was obtained for different kinds of contaminants (methylene blue, phenol, p-nitrophenol and sulfamethazine). Therefore, B, Co-TNT anode coupled with CB-CF cathode in flow-through system was effective for contaminants degradation.
Collapse
Affiliation(s)
- Jingju Cai
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410007, China
| | - Jinxin Xie
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
28
|
Chen Y, Liao D, Lin Y, Deng T, Yin F, Su P, Feng D. Electrochemical degradation performance and mechanism of dibutyl phthalate with hydrophobic PbO 2 electrode. CHEMOSPHERE 2022; 288:132638. [PMID: 34687678 DOI: 10.1016/j.chemosphere.2021.132638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
A polytetrafluoroethylene (PTFE) doped PbO2 anode with a highly hydrophobicity was fabricated by electrodeposition method. In this process, vertically aligned TiO2 nanotubes (TiO2NTs) are formed by the anodic oxidation of Ti plates as an intermediate layer for PbO2 electrodeposition. The characterization of the electrodes indicated that PTFE was successfully introduced to the electrode surface, the TiO2NTs were completely covered with β-PbO2 particles and gave it a large surface area, which also limited the growth of its crystal particles. Compared with the conventional Ti/PbO2 and Ti/TiO2NTs/PbO2 electrode, the Ti/TiO2NTs/PbO2-PTFE electrode has enhanced surface hydrophobicity, higher oxygen evolution potential, lower electrochemical impedance, with more active sites, and generate more hydroxyl radicals (·OH), which were enhanced by the addition of PTFE nanoparticles. The electrocatalytic performance of the three electrodes were investigated using dibutyl phthalate (DBP) as the model pollutant. The efficiency of the DBP removal of the three electrodes was in the order: Ti/TiO2NTs/PbO2-PTFE > Ti/TiO2NTs/PbO2 > Ti/PbO2. The degradation process followed the pseudo-first-order kinetic model well, with rate constants of 0.1326, 0.1266, and 0.1041 h-1 for the three electrodes, respectively. The lowest energy consumption (6.1 kWh g-1) was obtained after 8 h of DBP treatment using Ti/TiO2NTs/PbO2-PTFE compared to Ti/TiO2NTs/PbO2 (6.7 kWh g-1) and Ti/PbO2 (7.4 kWh g-1) electrodes. Moreover, the effects of current density, initial pH and electrolyte concentration were investigated. Finally, the products of the DBP degradation process were verified based on gas chromatography-mass spectrometry analysis, and possible degradation pathways were described.
Collapse
Affiliation(s)
- Yongsheng Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Dexiang Liao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China.
| | - Yue Lin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Tianyu Deng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Penghao Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
29
|
Song X, Jo C, Zhou M. Enhanced electricity generation and tetracycline removal of bioelectro-Fenton with electroactive biofilm induced by multi external resistance. CHEMOSPHERE 2022; 289:133070. [PMID: 34838838 DOI: 10.1016/j.chemosphere.2021.133070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A simple multi electric resistance mode is used to regulate electroactive anode film, which improves the electricity generation, H2O2 production and pollutants removal. This external electron transport path (double cathode with different resistance) exhibits higher H2O2 production (571.9 ± 0.1 mg m-2 h-1), tetracycline removal (71.4 ± 0.4% to 50 mg L-1), and power (615.3 ± 9.9 mW m-2 plus 680.6 ± 10.3 mW m-2), which is 75.4%, 23.1% and 1.25 times higher than that of single cathode mode. The double cathode improves the relative abundance of Geobacter (exoelectrogens), which is 9.45 times higher than that of single cathode mode. The anodic capacitance of double cathode mode is more than 10 times higher than that of single cathode mode. Electrons (generate by exoelectrogens) participate in two- (cathodic chamber) and four- (anodic chamber) electron reaction at cathode surface, and facilitates electricity generation of bioelectro-Fenton. The removal rate of double cathode mode is 342.7 mg L-1 d-1 (50 mg L-1 tetracycline) and 170.1 mg L-1 d-1 (20 mg L-1 tetracycline), which is much higher than that of reported. These results indicate that external electron transport path enhances the electrochemical activity of anode film and performance of bioelectro-Fenton. This paper provides a new power supply method for the future practical application and field experiment of bioelectrio-Fenton.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, North Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|