1
|
Mishra S, Yadav RK, Mishra DK, Kumar K, Gupta NK, Singh K, Gothwal S, Baeg JO. Metal-free functionalized carbon nitride as a photocatalyst driven by sunlight for acetal synthesis and selective regeneration of NAD(P)H cofactor. Photochem Photobiol 2025; 101:471-482. [PMID: 39152522 DOI: 10.1111/php.14011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Nicotinamide Adenine Dinucleotide Phosphate (NAD(P)H) plays an important role in numerous biologically significant redox reactions. The photochemical restoration of its oxidized form (NAD(P)+) under physiological conditions is intriguing in the context of integrated photo and catalysis. Herein, we report the functionalized graphitic carbon-based solar light active photocatalyst by doping boron and fluorine in the native graphitic carbon nitride (GCN) (nonfunctionalized) for the regeneration of enzymatically visible light active coenzyme and in photo-acetalization reactions. The metal-free functionalized photocatalyst systems such as BFGCN-x leads to higher yield NADH and NADPH regeneration. They are also capable of catalyzing acetal reactions in the absence of any Lewis and Bronsted acids. The current research endeavor provides the advancement and the application of functionalized GCN-based photocatalysts for NADH (61.89%), NADPH (59.84%) regeneration, and photo-acetalization reactions.
Collapse
Affiliation(s)
- Shaifali Mishra
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Dinesh K Mishra
- Research Institute of Industrial Science (RIIS), Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Kuldeep Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Kuldeep Singh
- CSIR-Central Salt & Marine Chemicals Resesrch Institute, Bhavanagar, India
| | - Satyaveer Gothwal
- CSIR-Central Salt & Marine Chemicals Resesrch Institute, Bhavanagar, India
| | - Jin-OoK Baeg
- Korea Research Institute of Chemical Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Chen L, Chen CW, Dong CD. Highly efficient visible-light-driven S-scheme graphene bridged MoS 2/Co 3O 4 nanohybrid for the photocatalytic performance of hazardous dye and antibacterial activity. CHEMOSPHERE 2025; 370:143990. [PMID: 39701317 DOI: 10.1016/j.chemosphere.2024.143990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
A novel graphene-bridged MoS2/Co3O4 (MCG) nanohybrid was well fabricated by a hydrothermal route. The purpose of valuable and economical S-scheme systems with vigorous interface interactions is pressing to photocatalytic efficiency and efficient utilization. While mighty progress has been created with respect to charge carrier bridges, the charge transferring ability of the facility charge carrier bridges is far from capable owing to lower electrical conductivity. The photocatalytic antibacterial tests were performed with visible light activity, and the results exhibited that the as-prepared MCG nanohybrid with powerful interfacial coupling presented excellent photodegradation performance in comparison with bare MoS2 and Co3O4 samples for the removal of methylene blue (MB) and E-coli with visible light irradiation. In addition, a better photocatalytic MB capability and antibacterial activity of 99.5 % and 100 % are approached through MCG-4 nanohybrid, which is 2.76 and 8.32 folds higher than that of the pristine MoS2 sample. The PL measurements and EIS analysis also illustrated that MCG-4 nanohybrid possesses a great separation efficiency of photoinduced charge carriers. This work provides a new objective for high-potential S-scheme photocatalysts and their utilization in the field of environmental remediation.
Collapse
Affiliation(s)
- Linjer Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
3
|
Liu J, Dong Y, Liu Q, Liu W, Lin H. MoS 2-based nanocomposites and aerogels for antibiotic pollutants removal from wastewater by photocatalytic degradation process: A review. CHEMOSPHERE 2024; 354:141582. [PMID: 38462179 DOI: 10.1016/j.chemosphere.2024.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Photocatalytic technologies based on molybdenum disulfide (MoS2) catalysts are effective, eco-friendly, and promising for antibiotic pollutants treatment. The technologies used by MoS2-based nanocomposites and aerogels for efficient degradation of antibiotics are reviewed in detail for the first time in this paper. The fundamental aspects of MoS2 were comprehensively scrutinized, encompassing crystal structure, optical properties, and photocatalytic principle. Then, the main synthesized methods and advantages/disadvantages for the preparation of MoS2-based nanocomposites and aerogels were systematically presented. Besides, a comprehensive overview of diverse MoS2-based nanocomposites and aerogels photo-degradation systems that enhanced the degradation of antibiotic pollutants were revealed. Meanwhile, the photo-degradation mechanism concentrated on the photoelectron transfer pathways and reactive oxygen species (ROS) were systematically evaluated. Finally, the challenges and perspectives for deeply development of MoS2-based nanocomposites and aerogels were discussed. This review may help researchers to deeply understand the research status of MoS2-based nanocomposites and aerogels for antibiotics removal, and makes clear the photo-degradation mechanism from photoelectron transfer pathways and ROS aspects of MoS2-based nanocomposites and aerogels.
Collapse
Affiliation(s)
- Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qiaojun Liu
- West District of the First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
4
|
Kolhe ND, Walekar LS, Kadam AN, Kulkarni MA, Parbat HA, Misra M, Lokhande BJ, Lee SW, Patil V, Mhamane D, Mali MG. Facile construction of multifunctional xNiCo 2O 4/BiVO 4 heterojunction with accelerated charge transfer for efficient photocatalytic treatment of Cr (VI), MB and TC under visible light. CHEMOSPHERE 2024; 352:141353. [PMID: 38307337 DOI: 10.1016/j.chemosphere.2024.141353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/09/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024]
Abstract
The release of industrial effluents, comprising of organic dyes, antibiotics, and heavy metals poses substantial environmental and ecological threats. Among the different approaches, the utilization of heterogeneous photocatalysis based on semiconducting metal oxides is of paramount important to removal of organic ( MB dye and TC antibiotic) and inorganic pollutants ( Cr (VI) ) in wastewater. In this work, a new approach for creating type-II heterojunction photocatalysts named xNiCo2O4/BiVO4 or BNC is suggested. The as-prepared samples were thoroughly examined by means of several sophisticated analytical tools to investigate their physicochemical properties. These composites were utilized in the decomposition of MB dye, TC drug and the reduction of Cr (VI) under visible light irradiation. According to the findings, the creation of type-II heterojunction at BiVO4-NiCo2O4 interface greatly improved charge transportation while successfully preventing electron-hole recombination. Among the various composites studied, BNC-2 demonstrated an enhanced photocatalytic activity towards degradation of MB and TC, which were found to be 91 % over a period of 150 min and 95 % within only 60 min, respectively. Moreover, the photocatalytic reduction of Cr (VI) was accomplished 96 % within just 25 min. Additionally, it is discovered that BNC-2 displayed promising photostability and recyclability with a retention of >90 % after five consecutive cycles. The enhanced photocatalytic activity of BNC-2 is evidently attributed to the expedited separation and transfer of charges, as proven by photocurrent measurement, photoluminescence and electrochemical impedance spectroscopy analyses. Hence, the current amalgamation of NiCo2O4 and BiVO4 heterojunction composite has paved novel paths towards photocatalytic removal of organic as well as inorganic contaminants.
Collapse
Affiliation(s)
- Nagesh D Kolhe
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India
| | - Laxman S Walekar
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India
| | - Abhijit N Kadam
- Department of Chemistry, John Wilson Education Society's, Wilson College (Autonomous), Mumbai, Maharashtra, 400007, India; Department of Chemical and Biological Engineering, Gachon University-1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, South Korea
| | - Makarand A Kulkarni
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India
| | - Harichandra A Parbat
- Department of Chemistry, John Wilson Education Society's, Wilson College (Autonomous), Mumbai, Maharashtra, 400007, India
| | - Mrinmoy Misra
- Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur, India
| | - Balkrishna J Lokhande
- School of Physical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413 255, Maharashtra, India
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University-1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, South Korea
| | - Vaishali Patil
- Engineering and Applied Science Department, Vishwakarma Institute of Information Technology, Pune, Maharashtra, 411 048, India
| | - Dattakumar Mhamane
- Department of Chemistry, Sangameshwar College (Autonomous), Solapur, 413001, Maharashtra, India.
| | - Mukund G Mali
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, 413255, Maharashtra, India.
| |
Collapse
|
5
|
Tian C, Yu H, Zhai R, Zhang J, Gao C, Qi K, Zhang Y, Ma Q, Guo M. Visible Light Photoactivity of g-C 3N 4/MoS 2 Nanocomposites for Water Remediation of Hexavalent Chromium. Molecules 2024; 29:637. [PMID: 38338381 PMCID: PMC10856395 DOI: 10.3390/molecules29030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Water pollution has becoming an increasingly serious issue, and it has attracted a significant amount of attention from scholars. Here, in order remove heavy metal hexavalent chromium (Cr (VI)) from wastewater, graphitic carbon nitride (g-C3N4) was modified with molybdenum disulfide (MoS2) at different mass ratios via an ultrasonic method to synthesize g-C3N4/MoS2 (CNM) nanocomposites as photocatalysts. The nanocomposites displayed efficient photocatalytic removal of toxic hexavalent chromium (Cr (VI)) from water under UV, solar, and visible light irradiation. The CNM composite with a 1:2 g-C3N4 to MoS2 ratio achieved optimal 91% Cr (VI) removal efficiency at an initial 20 mg/L Cr (VI) concentration and pH 3 after 120 min visible light irradiation. The results showed a high pH range and good recycling stability. The g-C3N4/MoS2 nanocomposites exhibited higher performance compared to pure g-C3N4 due to the narrowed band gap of the Z-scheme heterojunction structure and effective separation of photo-generated electron-hole pairs, as evidenced by structural and optical characterization. Overall, the ultrasonic synthesis of g-C3N4/MoS2 photocatalysts shows promise as an efficient technique for enhancing heavy metal wastewater remediation under solar and visible light.
Collapse
Affiliation(s)
- Chunmei Tian
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (C.T.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Huijuan Yu
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (C.T.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Ruiqi Zhai
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (C.T.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Jing Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (C.T.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Cuiping Gao
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (C.T.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China;
| | - Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (C.T.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
- Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali University, Dali 671000, China
| | - Qiang Ma
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Mengxue Guo
- Resources and Environment Institute, Yunnan Land and Resources Vocational College, Kunming 652501, China;
| |
Collapse
|
6
|
Singh A, Modi SK, Joshi P, Nenavathu BP, Singh MS, Verma S, Hatshan MR. Sunlight mediated removal of toxic pollutants from Yamuna wastewater using efficient nano TeO 2-ZnO nanocomposites. CHEMOSPHERE 2024; 348:140658. [PMID: 37956931 DOI: 10.1016/j.chemosphere.2023.140658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
We have utilised our TeO2-ZnO nanocomposites for Yamuna wastewater treatment in natural sunlight wherein the sampling site was Nigam Bodh Ghat, Kashmere Gate, Delhi. In BET isotherm, TZ NCs exhibited type IV isotherm forming a H3 like hysteric loop sustaining mesoporous characteristic with an increase in surface area, pore volume and pore diameter of 56.76 m2/g, 0.257 cc/g and 17.18 nm respectively, when compared to pristine ZnO NPs. Yamuna wastewater treatment was carried out using various concentrations of TZ NCs (range 0.1-0.3 g/500 mL) under natural sunlight. Post-treatment, all the physicochemical parameters such as DO, BOD, COD, Nitrates, Ammonia and Phenolic contents were found to be reduced to 10 times bringing Yamuna water parameters within safe limits. Our TZ NCs have shown to have high selectivity for the removal of Chromium from water. Out of all the three concentrations 0.2 g/500 mL or 0.4 mg/mL is the most optimum concentration of TZ NCs for complete Yamuna wastewater treatment. Also, the bacterial culture present in Yamuna water was killed by 90% using TZ having MIC of 0.1 mg/mL. The antibiofilm activity of TZ against K.pneumoniae MTCC 109 was also checked using Congo Red Agar Assay. The presence of heavy metals, their corresponding degradation and leaching studies were analysed using ICP-OES. TZ NCs showed a very minimal leaching rate of Zinc into the water, proving no toxicity associated with these nanocomposites. Further, to observe the safe disposal of TZ NCs into the soil, TZ NCs were utilised for ecotoxicity studies.
Collapse
Affiliation(s)
- Aishwarya Singh
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India
| | - Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India; Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Preeti Joshi
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India
| | - Bhavani Prasad Nenavathu
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India.
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India; Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India; Centre for Life Sciences, Mahindra University Survey, No: 62/1A, Bahadurpally Jeedimetla, Hyderabad, Telangana, 500043, India
| | - Swati Verma
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Abdul-Kareem MB, Rashid HM, Hassan WH, Al-Ansari N, Lakhera SK, Hatshan MR, Faisal AAH. Preparation of coated MgFe layered double hydroxide nanoparticles on cement kiln dust and intercalated with sodium dodecyl sulfate as an intermediate layer for the adsorption of estrogen from water. CHEMOSPHERE 2023; 344:140338. [PMID: 37820876 DOI: 10.1016/j.chemosphere.2023.140338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Estrogenic hormones, found as micropollutants in water systems, give rise to grave concerns for human health and marine ecosystems, triggering a cascade of adverse effects. This research presents an innovative manufacturing approach using nanoscale layered double hydroxides of magnesium and iron, with sodium dodecyl sulfate surfactant, to create highly efficient sorbent cement kiln dust (CKD) based beads (CKD/MgFe-SDS-LDH-beads). These beads effectively remove estrone from water. Optimization of the preparation process considered factors like molar Mg/Fe ratio, CKD dosage, pH, and SDS dosage using Response Surface Methodology (RSM). The adsorption process was well-characterized by Langmuir isotherm and pseudo-second-order kinetic models, demonstrating a remarkable 6.491 mg/g sorption capacity. Results proved that the calcite was the main component of the CKD with miners of dolomite, and quartz. Adsorption capacity, surface charges, and the availability of vacant sites may be the main mechanisms responsible of removal process. Experimental tests confirmed the beads' potential for estrone removal, aligning with the Bohart-Adams and Thomas-BDST models. This study introduces a promising, eco-friendly solution for addressing water contamination challenges.
Collapse
Affiliation(s)
- Mohammed B Abdul-Kareem
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Hayder M Rashid
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Waqed H Hassan
- College of Engineering, University of Warith Al-Anbiyaa, Kerbala, Iraq; Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala, 56001, Iraq.
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
8
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|