1
|
Arain MB, Niaz A, Soylak M. Dispersive solid-phase microextraction of Cd(II) using CaFe layer double hydroxide with g-C₃N₄ nanocomposite from food and environmental samples. Food Chem 2025; 476:143410. [PMID: 39986069 DOI: 10.1016/j.foodchem.2025.143410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
A green and novel composite material integrating graphitic carbon nitride (g-C₃N₄) with layer double hydroxide CaFe-LDH has been developed for detecting Cd(II) ions in food and environmental samples using dispersive solid-phase microextraction (DSPME) method by flame atomic absorption spectroscopy. CaFe-LDH@g-C₃N₄ was synthesized via hydrothermal co-precipitation. The nanocomposite was characterized using various analytical techniques including FTIR, FESEM, XRD and EDX. Optimal conditions were set as pH 8, 15 mg adsorbent, 60 s adsorption time, 30 s desorption time, sample volume 25 mL and eluent volume 2 mL using 0.5 M HNO₃. The method shows low limit of detection (0.04 μg/L), limit of quantification (0.13 μg/L), and preconcentration and enrichment factor 12.5 and 12.32, respectively. It asserts high precision with a relative standard deviation under 10 % and an extraction efficiency of 101.4 %. The accuracy was validated using certified reference materials (CRMs), demonstrating the composite material effectiveness in quantifying Cd(II) concentrations across different matrices.
Collapse
Affiliation(s)
- Muhammad Balal Arain
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Department of Chemistry, University of Karachi, 75270 Karachi, Pakistan.
| | - Abdul Niaz
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Department of Chemistry, University of Science & Technology, 28100 Bannu, KPK, Pakistan
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; Turkish Academy of Sciences (TUBA), Çankaya, Ankara, Türkiye.
| |
Collapse
|
2
|
Wang X, Wang D, Liu X, Zhang H, Chen G, Xu M, Shen X, You C. BEL1-like homeodomain transcription factor SAWTOOTH1 (MdSAW1) in Malus domestica enhances the tolerance of transgenic apple and Arabidopsis to zinc excess stress. Int J Biol Macromol 2025; 307:141948. [PMID: 40074134 DOI: 10.1016/j.ijbiomac.2025.141948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
In recent years, the phenomenon of zinc pollution in orchards has become increasingly serious, and the safety of apple production is facing a major risk. Therefore, exploring excellent genes for zinc tolerance has a positive effect on apples. Up to now, there is still a lack of attention on genes related to zinc stress tolerance in apples. In this study, the apple transcriptome map under zinc stress (1000 μM ZnSO4) was generated based on high-throughput sequencing. Through transcription factor analysis and association network prediction, TALE superfamily SAWTOOTH 1 was found to have an important role in 32 up-regulated core transcription factors. Further, BEL1-like homeodomain MdSAW1 gene from Malus domestica was overexpressed in Arabidopsis seedlings ('Col-0'), apple callus tissues ('Orin'), and apple plants ('GL-3'), and the results showed that the transformed lines carried obvious tolerance to zinc stress, which was reflected in the significant reduction of relative dielectric leakage, malondialdehyde, O2- and H2O2 content. The interaction between protein and DNA confirmed that MdSAW1 binds to natural resistance-associated macrophage protein NRAMP2 promoter to inhibit its transcription and thus regulate zinc ion homeostasis. In addition, overexpression of MdSAW1 increased the activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and caused differences in metabolites in plants. MdSAW1 endows plants with strong tolerance to Zn stress, therefore, this study provides valuable reference for genetic improvement and environmental adaptation of fruit trees.
Collapse
Affiliation(s)
- Xun Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Daru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xin Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Haiyuan Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Guolin Chen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Minghui Xu
- College of Agriculture, Yunnan University, Kunming 650091, China
| | - Xiang Shen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
3
|
Yan Y, Mao Z, Wang X, Chen Z, Ma C, Wei D, Yan W, Wu X, Guo Y, Xu H, Han G, Han E, Lou H, Chen T, Huo W, Wang C, Huang S, Zeng X. From farm to table: assessing the status and health risk assessment of heavy metal pollution in rice in Henan Province. Front Public Health 2025; 13:1499653. [PMID: 40313503 PMCID: PMC12043637 DOI: 10.3389/fpubh.2025.1499653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction In recent years, industrial and agricultural advancements in Henan Province have increased heavy metal contamination in rice, raising public concerns. The aim of this study was to investigate the contamination levels of five heavy metals, cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and inorganic arsenic (As), in rice from Henan Province and to assess potential health risks. Methods A total of 6,632 rice samples were collected from 18 regions between 2020 and 2022. The samples were analyzed for Cd, Cr, Pb, Hg, and As using inductively coupled plasma mass spectrometry (ICP-MS). Detection rates were compared using the chi-square test, and health risks were assessed for the three populations (adults, children and toddlers) according to USEPA guidelines. Results The results of the study showed that As had the highest detection rate of 99.59%, followed by Cd (27.69%), Cr (22.57%), Pb (2.25%) and Hg (1.95%). Cd levels were significantly higher in urban areas (30.42%) than rural areas (23.13%) (P < 0.001). The detection rate of Cd was higher in the southern region compared to other regions, while the detection rate of Cr in the eastern region was the highest among all regions. The health risk assessment showed that the Hazard Quotient (HQ) for inorganic As exceeded 1. However, children and toddlers were at relatively higher risk of exposure to As compared to adults. Conclusion This study revealed the current status of heavy metal contamination in rice in Henan, particularly highlighting the presence of As as a significant health hazard for children and toddlers. Consequently, it is recommended that the relevant authorities should strengthen the monitoring and control of food safety in order to effectively protect public health.
Collapse
Affiliation(s)
- Yumeng Yan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, China
| | - Xinlu Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, China
| | - Zhiwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenjing Yan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yao Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haoran Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guozhen Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Erbao Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huilin Lou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Taimeng Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shan Huang
- Institute for Special Food Inspection, Henan Province Food Inspection Research Institute, Zhengzhou, China
| | - Xin Zeng
- Department of Social Medicine, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Sahu P, Patel AR, Pandey A, Verma V. Fluorescent Rhodamine Sensors for Mercury, Iron, and Copper Ion Detection in Water: Mechanisms and Applications. J Fluoresc 2025:10.1007/s10895-025-04292-0. [PMID: 40238050 DOI: 10.1007/s10895-025-04292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Fluorescent rhodamine sensors (FRS) have emerged as highly effective tools for detecting metal ions. These sensors coordinate with metal ions with specific donor atoms in the rhodamine structure, which led to the significant changes in fluorescence properties such as quenching or enhancement, of rhodamine. This paper explores the sensing mechanisms behind the detection of mercury (Hg2⁺), iron (Fe2⁺/Fe3⁺), and copper (Cu2⁺) in water. The metal ions often interact with the thiol, amine, and carboxyl groups of FRS which results in alterations to the electrons and produces measurable spectroscopic changes. The ability of these sensors provides real-time, sensitive, and selective detection of metals for monitoring water quality in industrial, environmental, and biomedical applications. Additionally, the novelty of this research lies in the development of FRS based multi-metal detection systems that allow simultaneous analysis of multiple ions viz., Hg2⁺, Fe2⁺, Fe3⁺, and Cu2⁺. This feature advocates the utility of FRS in complex water samples. The characterization of FRS includes NMR, Mass, and FTIR techniques, while the evaluation of sensing efficacy of FRS for metal ions involves spectroscopic and imaging methods. The integration of these sensors into portable devices and smart monitoring systems opens new avenues for real-time metal monitoring and metal pollution control. This paper highlights the current advancements, challenges, and prospects of FRS and emphasises their role in ensuring safer water and environmental sustainability.
Collapse
Affiliation(s)
- Pradeep Sahu
- Department of Chemistry, Dr. C. V. Raman University, Bilaspur, Chhattisgarh- 495113, India.
| | - Ashok Raj Patel
- Department of Chemistry, Dr. C. V. Raman University, Bilaspur, Chhattisgarh- 495113, India
| | - Abhilash Pandey
- Department of Chemistry, Guru GhasidasViswavidyalaya, Bilaspur, Chhattisgarh- 495009, India
| | - Vibha Verma
- Department of Chemistry, Guru GhasidasViswavidyalaya, Bilaspur, Chhattisgarh- 495009, India
| |
Collapse
|
5
|
Kong X, Li C, Pan Y. Association Between Heavy Metals Mixtures and Life's Essential 8 Score in General US Adults. Cardiovasc Toxicol 2025; 25:592-603. [PMID: 39920440 DOI: 10.1007/s12012-025-09969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Heavy metals were toxic environmental pollutants capable of entering the human body, posing significant risks to human health. Life's Essential 8 (LE8) score is a new comprehensive index constructed for quantifying cardiovascular health (CVH). However, the association between heavy metals mixtures and LE8 appears ambiguous. To investigated the association between heavy metals and cardiovascular health in US population. Urinary heavy metals concentrations (barium, cadmium, cobalt, manganese, molybdenum, lead, antimony, strontium, thallium, tin, tungsten, uranium, cesium) were Ln-transformed and LE8 was consisted of eight metrics. Single and multivariate linear regression, weighted quantile sum (WQS) and Bayesian kernel machine regression models (BKMR) were utilized to assess the association between single and mixed exposure of thirteen heavy metals concentrations and LE8. In 4339 participants from National Health and Nutrition Examination Survey 2007-2018, single urinary heavy metals barium, cadmium, cobalt, lead, antimony, strontium, tin, tungsten, uranium and cesium showed a significant negative association with LE8. WQS models showed heavy metals mixture was negatively associated with LE8 (β = - 2.720, 95% CI - 3.660, - 1.790). BKMR analysis also demonstrated a downward trend of heavy metals mixture and LE8. Both WQS analyzed weights and the conditional posterior inclusion probabilities (condPIP) of BKMR showed that cadmium (37.78%, condPIP = 1.000), barium (24.56%, condPIP = 0.537) and uranium (14.71%, condPIP = 0.646) contributed most for these negative associations. Single and mixed heavy metals, especially cadmium, barium and uranium were negatively associated with LE8 score, a new comprehensive CVH index, predicting an increasing risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Xugang Kong
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, People's Republic of China
| | - Chuang Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yiwen Pan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, People's Republic of China.
| |
Collapse
|
6
|
Xu X, Liu Y, Liu Q, Gui D, Cui B, Chen X, Abd-Elmabod SK. Spatial distribution characteristics and risk assessment of heavy metals in soils of Southern Xinjiang oases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:395. [PMID: 40087190 DOI: 10.1007/s10661-025-13816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
The oasis is the most important territorial system of human-earth relationships in the hyper-arid zone. With the socioeconomic development, increasingly serious environmental problems have occurred in the oases. But current research major focus on the soil water balance of oases while ignore the spatial characteristics and risks of heavy metals in soils. Therefore, taking Southern Xinjiang, a typical hyper-arid zone, as a case study site, we collected soil samples from 15 major oases in the region and analyzed the spatial characteristics and risks of eight heavy metals (Cr, Ni, Cu, Zn, As, Cd, Pb, Hg). Through spatial autocorrelation analysis, the contamination index method, the geoaccumulation index method, and risk assessment methods, the analysis results show that (1) the overall concentration of soil heavy metals in the oases of Southern Xinjiang is low and relatively uniformly distributed, and there is a small-scale aggregation. (2) The eight heavy metals in the study area exhibit significant spatial distribution differences, with varying concentrations, but none exceed the risk screening values. The content of 8 heavy metals in the soil of the Southern Xinjiang oasis ranges from 0.01 to 62.73 mg/kg, in descending order of Zn > Cr > Ni > Cu > Pb > As > Cd > Hg. Among them, Zn, Cr, and Ni have the highest concentrations, while Cd, As, and Pb show significant deviations from background values. (3) Except for Cd and Hg, there is no overall ecological risk from soil heavy metals in the soils of most Southern Xinjiang oases. (4) None of the oasis soils in the study area have shown non-carcinogenic risks from heavy metals, but there are some carcinogenic risks for children, which are related to the accumulation of heavy metals and the specificity of the children's population. This study fills a key gap in soil heavy metal research in oasis areas, offering valuable data for future research and policy. Future work should focus on remediation technologies like phytoremediation and microbial treatments, along with targeted policies to reduce pollution risks, especially for vulnerable populations.
Collapse
Affiliation(s)
- Xinlong Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfei Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China.
| | - Qi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
| | - Bochao Cui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaonan Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation & Research for Desert Grassland Ecosystem in Xinjiang, Cele, 848300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sameh Kotb Abd-Elmabod
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Soils and Water Use Department, Agricultural and Biological Research Institute, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
7
|
Hui N, Wang P, Su L, Liu X, Zheng B, Setälä H, Kotze DJ, Jumpponen A. What drives metal resistance genes in urban park soils? Park age matters across biomes. ENVIRONMENT INTERNATIONAL 2025; 197:109369. [PMID: 40080960 DOI: 10.1016/j.envint.2025.109369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Although resistance genes are a global concern in ecosystems, the underlying factors responsible for their worldwide dissemination, especially in urban greenspaces, are poorly known. To investigate metal and metal resistance genes (MRGs) accumulation in urban parks, we used ICP-MS to analyze metal concentrations and GeoChip functional gene arrays to analyze MRGs abundances in vegetation types with labile and recalcitrant litter across urban parks and non-urban reference sites in three distinct climatic regions: Boreal (Finland), Temperate (Baltimore, USA), and Tropical (Singapore). Our results indicate that metal concentrations and MRGs abundances in park soils increase with park age across climatic zones, especially so for the dominant metals - Fe and Al - accounting for more than 90% of the total metal content, and others, e.g., Mn, Zn, and Pb. Correspondingly, Fe and Al resistance genes were the most abundant MRGs, representing 23% of all detected MRGs. Vegetation type affected metals and MRGs only in the boreal region, not in temperate or tropical regions, suggesting that vegetation context is not generalizable across climatic zones. Our analyses also indicate that the distribution of resistance genes is only weakly affected by soil properties, but largely associated with accumulation of metals from traffic and industrial sources. Our data further indicate that MRGs and antibiotic resistance genes (ARGs) are co-selected by metal accumulation. The pattern of MRG abundance between old and young parks is similar to that of ARGs, indicating a potential risk for human health in old urban parks. Our findings emphasize the importance of park age and the corresponding cumulative effects of anthropogenic activities as a driver of metal and MRG dynamics in urban soils globally.
Collapse
Affiliation(s)
- Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland; Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peiyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai 200240, China
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland.
| | - Bangxiao Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland; Center for Ecology & Health Innovative Research, Xiamen University of Technology, Xiamen, China
| | - Heikki Setälä
- Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland
| | - D Johan Kotze
- Faculty Biological of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15240, Finland
| | - Ari Jumpponen
- 433 Ackert Hall, Division of Biology, Kansas State University, Manhattan KS66506, USA
| |
Collapse
|
8
|
Salih ZR, Khudhur NS, Aziz FH. Comparison of dust and surface soil heavy metals and some element contents in erbil city as a sign of environmental pollution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:331. [PMID: 40011235 DOI: 10.1007/s10661-025-13763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
The purpose of the study was to compare the levels of Heavy metals and some elements in the dust and soil close to the Lanaz oil refinery and the steel industry in Erbil-Iraq, as indicators of environmental contamination. Accordingly, ten different sites were investigated based on their distances from the pollution sources. Results of the study showed that dust was significantly more contaminated with elements than urban soil, particularly Pb, As, Hg, and Sb with t values (p < 0.01) of 2.170**, 2.104**, -0.985**, and -3.187** respectively. Significant variations between all of the distances under study were found via statistical analysis. The order of heavy metals and elements abundance was the same in both soil and dust as: Fe > Zn > Mn > Pb > Cr > Cu > Ni > As > Co > V > Sb > Se > Hg > Cd. Ni, Cr, and Zn concentrations in soil exceeded WHO limits. The contamination factor of dust and soil's Pb, As, Co, Cr, Mn, Zn, Cu, Fe, Ni, V, Se, and Sb contents showed very high pollution (CF > 6). Ni was the main contributor to soil pollution 250-1500 m away from pollution sources. The pollution load index (PLI) for dust and soils indicated deterioration of the site's quality in the distances from 250-750 and 250-500m respectively. Dust posed very strong Pb, As, and Zn health risks (RI ≥ 440) in 250 m from pollution sources, whereas, only Sb showed powerful health risks in soils from 250-1250 m.
Collapse
Affiliation(s)
- Zhian Rashid Salih
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq.
| | - Nashmeel Saeed Khudhur
- Department of Environmental Science and Health, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Farhad Hassan Aziz
- Department of Environmental Science and Health, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
9
|
Zhang F, Zhang D, Li X, Lou H, Fu H, Sun X, Sun P, Wang X, Bao M. Distribution characteristics of Hg and As in the water-SPM system in the Xiaoqing river estuary and coastal. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106932. [PMID: 39742774 DOI: 10.1016/j.marenvres.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Water and suspended particulate matter (SPM) were collected from Xiaoqing Estuary and its adjacent waters in August 2022 to study the spatial distribution and risk assessment of Hg and As. The content of Hg in SPM samples ranged from 4.7152 to 446.8678 mg kg-1, and the content of As ranged from 90.1739 to 1147.5500 mg kg-1. The content of Hg in water ranges from 0.0219 to 0.0986 μg L-1, and the content of As ranges from 1.4326 to 11.6750 μg L-1. Xiaoqing River runoff input is the main source of Hg and As. Particulate Hg and As was extremely polluted, water was much less of a risk. It indicated that SPM accumulates more dangerous pollutants (Hg and As). In both water and SPM, it turned out that Hg has a higher risk than As (i.e., CF(Hg) > CF(As), Igeo(Hg) > Igeo(As)). The analysis showed that the environmental factors of water further affected the distribution of Hg or As in water and SPM by influencing biological activity.
Collapse
Affiliation(s)
- Feifei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center, Weifang, 262700, China.
| | - Xiaoyue Li
- Shouguang Marine Fishery Development Center, Weifang, 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center, Weifang, 262700, China
| | - Hongrui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
10
|
Asgari A, Sobhanardakani S, Cheraghi M, Lorestani B, Sadr MK. Source apportionment, ecological and health risks of potentially toxic elements in street dusts across different land uses in city of Kermanshah, Iran. Sci Rep 2025; 15:2517. [PMID: 39833456 PMCID: PMC11746890 DOI: 10.1038/s41598-025-86677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In this study, the contamination, ecological and human health risks as well as source apportionment of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and V in street dusts of different land-uses in Kermanshah, Iran were investigated. A total of 192 dust samples were taken from 16 sites and were analyzed for their elemental contents using ICP-OES. The computed mean values for the geo-accumulation index (I-geo) and the pollution index (PI) ranged from - 6.07 to 2.67 and from 0.023 to 9.58, respectively, indicating 'unpolluted' to 'moderately to heavily polluted', and 'slight to very high polluted' pollution levels, respectively. The pollution load index (PLI) with a cumulative mean value of 1.03 reflected moderate pollution levels across the entire study area. Moreover, the ecological risk (RI) of 135 indicated moderate ecological risks throughout the study region. The mean hazard index (HI) values for the analyzed potentially toxic elements (PTEs) for both adults and children were all within the safe limit (< 1). Furthermore, the total carcinogenic risk (TCR) values showed that the carcinogenic risks associated with As, Cd, Cr, and Ni for both target populations were at tolerable to unacceptable levels. The positive matrix factorization (PMF) model identified traffic emissions and sources, fossil fuel combustion and natural sources, and industrial emissions as the major sources of tested elements. Hence, a thorough investigation into the sources of ecological health risks associated with dust contamination from potentially toxic elements (PTEs) is recommended for future studies.
Collapse
Affiliation(s)
- Ali Asgari
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Maryam Kiani Sadr
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
11
|
Liu C, Chen L, Ni G, Yuan X, He S, Miao S. Prediction of heavy metal spatial distribution in soils of typical industrial zones utilizing 3D convolutional neural networks. Sci Rep 2025; 15:396. [PMID: 39747543 PMCID: PMC11696153 DOI: 10.1038/s41598-024-84545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Land resources are vital for urban development and construction. Abandoned industrial areas often contain large amounts of heavy metals from past industrial activities. Accurate knowledge of soil pollutant content and spatial distribution is crucial to avoid health risks and achieve sustainable soil use. However, due to the limitation of human, material and financial resources, it is difficult to carry out intensive detection of soil heavy metals in polluted areas. This problem can be solved by using known soil heavy metal content data to predict the heavy metals in unknown regions. This study utilizes a three-dimensional Convolutional Neural Network (3DCNN) model, combined with spatial location and soil physicochemical properties, to predict heavy metal in a typical industrial zone in Qingdao City. The results show that the [Formula: see text] of 3DCNN for predicting cadmium (Cd), lead (Pb), copper (Cu) and nickel (Ni) are 0.59, 0.59, 0.77 and 0.51, respectively. Therefore, 3DCNN can be used as an effective method for spatial prediction of soil heavy metals, which can reduce the cost of sampling and laboratory analysis. The three-dimensional spatial distribution analysis revealed that Cd and Pb were concentrated in the surface soil layer and gradually decreased with the depth, while Cu and Ni contents are mainly concentrated in the range of 3 m, exhibiting downward migration. Therefore, heavy metal enrichment has occurred in this area, and soil heavy metal treatment should be carried out before redevelopment.
Collapse
Affiliation(s)
- Chao Liu
- School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lan Chen
- School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Guoqing Ni
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Xiuhe Yuan
- School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Shuai He
- Qingdao Borui Zhiyuan Vibration Anti-vibration Technology Co., Ltd, Qingdao, 266000, China
| | - Sheng Miao
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
12
|
Almashhadany DA, Rashid RF, Altaif KI, Mohammed SH, Mohammed HI, Al-Bader SM. Heavy metal(loid) bioaccumulation in fish and its implications for human health. Ital J Food Saf 2024; 14:12782. [PMID: 39960044 PMCID: PMC11874910 DOI: 10.4081/ijfs.2024.12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/25/2024] [Indexed: 02/20/2025] Open
Abstract
Heavy metal(loid)s (HM) pollution in aquatic environments is a serious issue due to the toxicity, persistence, bioaccumulation, and biomagnification of these pollutants. The main sources of HM contamination are industrial activities, mining, agricultural practices, and combustion of fossil fuels. Fish can accumulate HMs through a process called bioaccumulation. As larger predatory fish consume smaller fish, these HMs enter the main food chains and can become increasingly concentrated in their tissues and finally reach humans. Here, we provided a general and concise conclusion from current research findings on the toxicological effects on different body systems. Exposure to HMs can lead to a range of adverse health effects, including neurological damage, developmental disorders, kidney damage, cardiovascular problems, and cancers. Their long-term accumulation can result in chronic toxicity even at low levels of exposure. HMs exert cellular cytotoxicity by disrupting essential cellular processes and structures. They can interfere with enzyme function, disrupt cell membrane integrity, induce oxidative stress, and cause DNA damage, ultimately leading to cell death or dysfunction. Prevention and control of HMs involve implementing measures to reduce their release into the environment through regulations on industrial processes, waste management, and pollution control technologies. Additionally, monitoring and remediation efforts are crucial for identifying contaminated sites and implementing strategies such as soil and water remediation to reduce human exposure and mitigate the impact on ecosystems. To conclude, HM accumulation in fish poses serious risks to public health and the environment, necessitating urgent interdisciplinary efforts to mitigate their harmful effects and promote sustainable practices that reduce HM flow into biological systems.
Collapse
Affiliation(s)
| | - Rzgar Farooq Rashid
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil.
| | | | | | - Hero Ismael Mohammed
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region.
| | - Salah Mahdi Al-Bader
- Department of Community Health, College of Health Technology, Cihan University-Erbil, Kurdistan Region.
| |
Collapse
|
13
|
Gruszka D, Gruss I, Szopka K. Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests. TOXICS 2024; 12:873. [PMID: 39771088 PMCID: PMC11679028 DOI: 10.3390/toxics12120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Heavy metal soil contamination in urban areas poses a significant environmental hazard, particularly in regions with historical or ongoing industrial activities. These areas are often polluted with metals such as Pb, Cu, Cd, and Zn, which can be absorbed by plants and pose risks to both ecosystems and human health. This study investigates soil contamination in urban gardens in Wroclaw, Poland, where elevated levels of trace elements were detected. Standard soil analyses, including macroelement content, granulometry, and trace element concentrations, were performed alongside an ecotoxicological evaluation using an Ostracodtoxkit test. The test evaluates the impact of contaminants on organism growth. An uncontaminated urban garden soil served as a reference. This study revealed that Zn, Cu, Pb, and Cd concentrations in soils exceeded limits permitted by Polish regulations in several soil samples. Despite the high concentrations of total metals, the bioavailable forms of these metals (measured by extraction of 1 M NH4NO3 extraction) were significantly lower, highlighting that the total metal content may not fully reflect the environmental risk. Pb was identified as the primary contributor to growth inhibition of test organisms, showing a particularly strong correlation with ecotoxicity. These findings underscore the importance of using ecotoxicological tests to evaluate soil contamination risks.
Collapse
Affiliation(s)
- Dariusz Gruszka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Iwona Gruss
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Katarzyna Szopka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
14
|
Dat ND, Thuan NT, Thi-Tuyet Hoang N, Nguyen GT, Phu Nguyen LS. Understanding polycyclic aromatic hydrocarbon accumulation in road dust of a tropical megacity in southern Vietnam: Implications on environmental management. CHEMOSPHERE 2024; 368:143700. [PMID: 39515537 DOI: 10.1016/j.chemosphere.2024.143700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the characteristics of 23 PAHs in road dust from various areas in Ho Chi Minh City (HCMC), focusing on spatial distribution, pollution levels, human health risks, and source apportionment. PAH levels in urban samples (residential and industrial sites) ranged from 208 to 7665 (μg/kg), significantly higher than background levels (135 ± 42.2 μg/kg). A west > east gradient in PAH distribution, particularly in crowded traffic intersections, suggested traffic activities as a major source. Pollution load indices indicated moderate to very high pollution in most urban sites. Incremental lifetime cancer risk assessments showed moderate to high risks, especially for children. Statistical analyses and diagnostic ratios identified vehicular emissions as the primary PAH sources, with Positive Matrix Factorization analysis attributing 46.6% to gasoline vehicles, 21.9% to diesel vehicles and petroleum evaporation, 18.3% to tar oil, and 10.2% to coal burning. This study fills a significant information gap on PAHs in road dust, which has not been previously reported in southern Vietnam, specifically in HCMC-a dynamic and rapidly developing city in Southeast Asia. The findings highlight the need for synchronized management and technical solutions to mitigate PAH risks in road dust, contributing valuable knowledge on PAH accumulation in a major southern city of Vietnam.
Collapse
Affiliation(s)
- Nguyen Duy Dat
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Viet Nam, 700000.
| | - Ngo Thi Thuan
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Vietnam National University, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nhung Thi-Tuyet Hoang
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Viet Nam, 700000
| | - Giang Tien Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Viet Nam, 700000
| | - Ly Sy Phu Nguyen
- Vietnam National University, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam; Faculty of Environmental Science, University of Science, Ward 4, District 5, Ho Chi Minh City, Viet Nam
| |
Collapse
|
15
|
Shi J, Yang Y, Shen Z, Lin Y, Mei N, Luo C, Wang Y, Zhang C, Wang D. Identifying heavy metal sources and health risks in soil-vegetable systems of fragmented vegetable fields based on machine learning, positive matrix factorization model and Monte Carlo simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135481. [PMID: 39128147 DOI: 10.1016/j.jhazmat.2024.135481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Urban fragmented vegetable fields offer fresh produce but pose a potential risk of heavy metal (HM) exposure. Thus, this study investigated HM sources and health risks in the soil-vegetable systems of Chongqing's central urban area. Results indicated that Cd was the primary pollutant, with 28.33 % of soil samples exceeding the screening value. Amaranth was particularly problematic, exceeding thresholds for Cd, Hg, and Cr, and both amaranth and celery showed significantly higher HM accumulation (p < 0.05). The HM pollution level in the soil-vegetable system was moderate or above. The sources of HMs identified via Positive matrix factorization (PMF) model included agricultural activities (18.19 %), natural soil parent material (25.88 %), mixed metal smelting and transportation (30.72 %), and coal combustion (25.21 %). Furthermore, evaluations using the Random Forest (RF) model revealed an intricate interaction of factors influencing the presence of HMs, where enterprise density, population density, and road density played significant roles in HMs accumulation. Monte Carlo assessments revealed higher non-carcinogenic risks for children (Pb, As) and greater carcinogenic risks for adults (Cd). Therefore, the issue of HM pollution in soils and vegetables from fragmented fields in industrial urban areas need attention, given the potential for elevated health risks with long-term vegetable consumption.
Collapse
Affiliation(s)
- Jiacheng Shi
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhijie Shen
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China
| | - Yuding Lin
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Nan Mei
- Chongqing Municipal Solid Waste Management Center, Chongqing 401147, China
| | - Chengzhong Luo
- Chongqing Municipal Solid Waste Management Center, Chongqing 401147, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Cheng Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Pugazhendhi A, Govindasamy C, Sharma A. Heavy metal accumulation in root and shoot tapioca plant biomass grown in agriculture land situated around the magnesite mine tailings. ENVIRONMENTAL RESEARCH 2024; 257:119287. [PMID: 38823610 DOI: 10.1016/j.envres.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Heavy metal pollution in soil has emerged as a major environmental concern. This can be attributed to human activities such as mining, modern agriculture, and industrialization. This study was conducted to determine how heavy metals spread from mine tailings to surrounding farmland. Metal absorption and accumulation were also investigated in the root and shoot biomass of tapioca crops grown in those farmlands. Metal concentrations in MTAS1 were 85.3 ± 1.2, 45.8 ± 1.5, 134.8 ± 1.7, 92.4 ± 2.2, and 78.95 ± 1.4 mg kg-1, respectively. Heavy metal concentrations in MTAS2 and MTAS3 were found to be 79.62 ± 1.6, 75.4 ± 1.5, 41.31 ± 1.1, 47.8 ± 1.6, 142.5 ± 2.1, 128.4 ± 1.4, 86.2 ± 1.9, 79.5 ± 1.3, and 83.4 ± 1.2 mg kg-1, respectively. Tapioca crop shoot and root biomass grown at these metal polluted sites absorbed and accumulated significant amounts of Cd, Cu, Zn, Pb, Ni, and Mn. Notably, the metal content of the tapioca crop's root and shoot biomass exceeded national standards.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh-11433, Saudi Arabia
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
17
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Abbasi A, Mirekhtiary F, Zakaly HMH. Heavy metal levels of outdoor dust from the Eastern Mediterranean Sea region and assessment of the ecological and health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56295-56307. [PMID: 39264495 DOI: 10.1007/s11356-024-34794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
As a result of some chemical element (heavy metals) pollution of dust, environmental pollution of dust has become an increasing concern, necessitating an assessment of risks to both ecology and human health, particularly in urban areas. Most of these pollutants settle on the outdoors and eventually become part of the outdoor dust. These will have negative long-term repercussions on ecosystems and human health. In this research, energy dispersive X-ray fluorescence (EDXRF) spectrometry analytical method was used to assess the pollution characteristics of the eight heavy metals (HMs): Mn, Cu, As, Hg, Ni, Cr, Zn, and Pb in the East Mediterranean Sea area. The concentration of As, Mn, Cr, Cu, Hg, Ni, Pb, and Zn analyzed in outdoor dust samples varied from 0.94 to 19.52 mg kg-1, 190.08 to 1019.7 mg kg-1, 20.46 to 45.9 mg kg-1, 19.5 to 62.56 mg kg-1, 0.01 to 0.93 mg kg-1, 10.48 to 40.64 mg kg-1, 12. 6 to 36.1 mg kg-1, and 48.96 to 112.41mg kg-1, respectively. HMs have been detected in the outdoor dust samples analyzed in the study, and, as a result, mean concentrations followed the order Mn > Zn > Cu > Cr > Ni > Pb > As > Hg, respectively. The ecological risk was observed at various contamination levels, with As and Hg pollution being the most severe. The highest hazard quotient (HQ) for adults and children was determined as a result of As and Cr, respectively. According to the US-EPA health risk threshold, the cancer risk in the study area is negligible.
Collapse
Affiliation(s)
- Akbar Abbasi
- Faculty of Art and Science, University of Kyrenia, via Mersin 10, Kyrenia, TRNC, Turkey.
| | - Fatemeh Mirekhtiary
- Department of Engineering, Near East University, via Mersin 10, Nicosia, TRNC, Turkey
| | - Hesham M H Zakaly
- Physics Department, Faculty of Science, Al-Azhar University Assiut Branch, Asyut, Egypt
- Computer Engineering Department, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Sarıyer, Istanbul, Turkey
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, 620002, Russia
- Department of Physics and Technical Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
19
|
Akbarimorad S, Sobhanardakani S, Hosseini NS, Martín DB. Pinus eldarica (L.) bark as urban atmospheric trace element pollution bioindicator: pollution status, spatial variations, and quantitative source apportionment based on positive matrix factorization receptor model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:771. [PMID: 39085500 DOI: 10.1007/s10661-024-12929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
In this study, a total of 180 Pinus eldarica bark samples were collected from different regions of Hamedan megacity, Iran, in 2023, and contents of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the samples were determined using ICP-OES. The results illustrated that the average contents of all the analyzed elements were greater than those in the background contents, which presumably demonstrated anthropogenic sources of these potentially toxic elements (PTEs). The greatest concentrations of the analyzed PTEs for different functional areas were observed in specimens collected from commercial or industrial areas, indicating the impact of human entries. The I-geo values were in the range of "unpolluted to moderately polluted" to "moderately to heavily polluted", PI showed "moderate to very high pollution", and PLI reflected high to very high pollution levels for the whole study area. Additionally, the cumulative mean value of ecological risk (RI) was found to be 152, demonstrating moderate ecological risk across the study area. The results of positive matrix factorization (PMF) showed that the PTE contamination in the air of Hamedan could mainly have an anthropogenic origin (82.7%) and that the traffic emissions as the primary pollution source (33.6%) make the highest contribution to the PTE pollution and ecological risks in the study area. In residential areas, demolition and construction activities could be considered the main sources of PTEs, while in commercial and industrial areas traffic emissions and industrial emissions, could be regarded as the main sources of such pollution, respectively. In conclusion, this study provides a useful approach to identifying the sources and contributions of the toxic elements in different functional areas and can inform future endeavors that aim at managing and controlling metal element pollution.
Collapse
Affiliation(s)
- Shima Akbarimorad
- Department of Energy and Fuels, School of Mining and Energy Engineering, Universidad Politécnica de Madrid, 28003, Madrid, Spain
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Nayereh Sadat Hosseini
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - David Bolonio Martín
- Department of Energy and Fuels, School of Mining and Energy Engineering, Universidad Politécnica de Madrid, 28003, Madrid, Spain
| |
Collapse
|
20
|
Alqattan ZA, Artiola JF, Walls D, Ramírez-Andreotta MD. Evaluating the portable X-ray fluorescence reliability for metal(loid)s detection and soil contamination status. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:765. [PMID: 39073501 DOI: 10.1007/s10661-024-12893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Marginalized communities experience barriers that can prevent soil monitoring efforts and knowledge transfer. To address this challenge, this study compared two analytical methods: portable X-ray fluorescence spectroscopy (pXRF, less time, cost) and inductively coupled plasma mass spectrometry (ICP-MS, "gold standard"). Surface soil samples were collected from residential sites in Arizona, USA (N = 124) and public areas in Troy, New York, USA (N = 33). Soil preparation differed between groups to account for community practice. Statistical calculations were conducted, paired t test, Bland-Altman plot, and a two-way ANOVA indicated no significant difference for As, Ba, Ca, Cu, Mn, Pb, and Zn concentrations except for Ba in the t test. Iron, Ni, Cr, and K were statistically different for Arizona soils and V, Ni, Fe, and Al concentrations were statistically different for New York soils. Zinc was the only element with high R2 and low p value. Pollution load index (PLI), enrichment factors (EF), and geo-accumulation index (Igeo) were calculated for both methods using U.S. Geological Survey data. The PLI were > 1, indicating soil pollution in the two states. Between pXRF and ICP-MS, the Igeo and EF in Arizona had similar degree of contamination for most elements except Zn in garden and Pb in yard, respectively. For New York, the Igeo of As, Cu, and Zn differed by only one classification index between the two methods. The pXRF was reliable in determining As, Ba, Ca, Cu, Mn, Pb, and Zn in impacted communities. Therefore, the pXRF can be a cost-effective alternative to using ICP-MS techniques to screen soil samples for several environmentally relevant contaminants to protect environmental public health.
Collapse
Affiliation(s)
- Zain Alabdain Alqattan
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Janick F Artiola
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Dan Walls
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA
- Department of Science and Technology Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mónica D Ramírez-Andreotta
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, USA.
- Division of Community, Mel and Enid Zuckerman College of Public Health, University of Arizona, Environment & Policy, Tucson, AZ, USA.
| |
Collapse
|
21
|
Wang KH, Wen CP, Tang Y, Su CW. Mitigating environmental pollution in China: Unlocking the potential for high-quality innovation. iScience 2024; 27:110231. [PMID: 39027373 PMCID: PMC11255844 DOI: 10.1016/j.isci.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
The nexus between environmental pollution (EP) and technological innovation is crucial for achieving sustainable development. However, existing literature has paid less attention to the new form of high-quality innovation (HI) in environmental management. This paper uses panel data from 31 Chinese provinces from 2008 to 2020, employing the two-stage least squares method to investigate the relationship between HI and EP. The empirical results reveal that HI can effectively reduce the EP, which holds after multiple robustness tests, and this effect is more obvious in southern China. Meanwhile, HI drives clean and efficient energy transition and decreases EP. Moreover, increased environmental regulation weakens the influence of HI on EP. The major contributions of this study are constructing an HI index including innovation, human capital, and government support and examining its influence on EP in China. The findings encourage government to implement policies of innovation-driven transformation, energy conservation and emissions reduction.
Collapse
Affiliation(s)
- Kai-Hua Wang
- School of Economics, Qingdao University, Qingdao 266100, P.R. China
| | - Cui-Ping Wen
- School of Economics, Qingdao University, Qingdao 266100, P.R. China
| | - Yun Tang
- School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Chi-Wei Su
- School of Economics, Qingdao University, Qingdao 266100, P.R. China
| |
Collapse
|
22
|
Habib SS, Naz S, Saeed MQ, Ujan JA, Masud S, Mushtaq A, Ullah M, Khan K, Zahid M, Al-Rejaie SS, Mohany M. Assessment of heavy metal levels in polyculture fish farms and their aquatic ecosystems: an integrative study addressing environmental and human health risks associated with dam water usage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:267. [PMID: 38954229 DOI: 10.1007/s10653-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
This study examines the levels of heavy metals in polyculture fish (Labeo rohita, Cyprinus carpio, and Catla catla), water, and sediment in Tanda Dam, Kohat, Pakistan, aiming to understand environmental and health risks. Samples of fish, water, and sediment were collected from 3 fish farms, and heavy metal concentrations were measured using a Flame Atomic Absorption Spectrophotometer (AAS). Results reveal that C. catla exhibited significantly higher (p < 0.05) levels of Zn than other fish species. Conversely, C. carpio showed significantly higher (p < 0.05) concentrations of Pb, Cd, Cr, Mn, Cu, As, and Ni than other species. The heavy metal hierarchy in C. carpio was found to be Zn > Cu > Pb > Cr > Cd > Mn > As > Ni. While heavy metal levels in L. rohita and C. catla generally fell within reference ranges, exceptions were noted for Zn, Pb, and Cd. Conversely, in C. carpio, all metals exceeded reference ranges except for Cu and Ni. Principal Component Analysis (PCA) indicated a close relationship between water and sediment. Additionally, cluster analysis suggested that C. catla formed a distinct cluster from L. rohita and C. carpio, implying different responses to the environment. Despite concerns raised by the Geoaccumulation Index (Igeo) and Contamination Factor (CF), particularly for Cd, which exhibited a high CF. Furthermore, Hazard Index (HI) values for all three fish species were below 1, suggesting low health risks. However, elevated Igeo and CF values for Cd suggest significant pollution originating from anthropogenic sources. This study underscores the importance of monitoring heavy metals in water for both environmental preservation and human health protection. Future research efforts should prioritize pollution control measures to ensure ecosystem and public health safety.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Saira Naz
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University Multan, Punjab, 60800, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University, Khairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Alia Mushtaq
- Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Huang H, Su H, Li X, Li Y, Jiang Y, Liu K, Xie X, Jia Z, Zhang H, Wang G, Ye Z, Cheng X, Wen J, Li N, Yu Y. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of the tropical region in southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:234. [PMID: 38849608 DOI: 10.1007/s10653-024-02021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
The disturbance of ecological stability may take place in tropical regions due to the elevated biomass density resulting from heavy metal and other contaminant pollution. In this study, 62 valid soil samples were collected from Sanya. Source analysis of heavy metals in the area was carried out using absolute principal component-multiple linear regression receptor modelling (APCS-MLR); the comprehensive ecological risk of the study area was assessed based on pollution sources; the Monte-Carlo model was used to accurately predict the health risk of pollution sources in the study area. The results showed that: The average contents of soil heavy metals Cu, Ni and Cd in Sanya were 5.53, 6.56 and 11.66 times higher than the background values of heavy metals. The results of soil geo-accumulation index (Igeo) showed that Cr, Mo, Mn and Zn were unpolluted to moderately polluted, Cu and Ni were moderately polluted, and Cd was moderately polluted to strongly polluted. The main sources of heavy metal pollution were natural sources (57.99%), agricultural sources (38.44%) and traffic sources (3.57%). Natural and agricultural sources were jointly identified as priority control pollution sources and Cd was the priority control pollution element for soil ecological risk. Heavy metal content in Sanya did not pose a non-carcinogenic risk to the population, but there was a carcinogenic risk to children. The element Zn had a high carcinogenic risk to children, and was a priority controlling pollutant element for the risk of human health, with agricultural sources as the priority controlling pollutant source.
Collapse
Affiliation(s)
- Haoran Huang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Hang Su
- Office of International Cooperation and Exchanges, Nanjing Institute of Technology, Nanjing, China
| | - Xiang Li
- School of Architectural Engineering, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China.
- Nanjing Institute of Geography & Limnology Chinese Academy of Sciences, State Key Laboratory of Lakes and Environment, Nanjing, Jiangsu, China.
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
- College of Resources and Environment, Henan University of Economics and Law, Zhengzhou, Henan, China.
| | - Yujie Jiang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Ke Liu
- College of Resources and Environment, Henan University of Economics and Law, Zhengzhou, Henan, China
| | - Xuefeng Xie
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Zhenyi Jia
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Huanchao Zhang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Genmei Wang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Zi Ye
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Xinyu Cheng
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Jiale Wen
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Ning Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| | - Ye Yu
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159#, Nanjing, 210037, Jiangsu Province, China
| |
Collapse
|
24
|
Wang H, Zhao M, Huang X, Song X, Cai B, Tang R, Sun J, Han Z, Yang J, Liu Y, Fan Z. Improving prediction of soil heavy metal(loid) concentration by developing a combined Co-kriging and geographically and temporally weighted regression (GTWR) model. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133745. [PMID: 38401211 DOI: 10.1016/j.jhazmat.2024.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The study of heavy metal(loid) (HM) contamination in soil using extensive data obtained from published literature is an economical and convenient method. However, the uneven distribution of these data in time and space limits their direct applicability. Therefore, based on the concentration data obtained from the published literature (2000-2020), we investigated the relationship between soil HM accumulation and various anthropogenic activities, developed a hybrid model to predict soil HM concentrations, and then evaluated their ecological risks. The results demonstrated that various anthropogenic activities were the main cause of soil HM accumulation using Geographically and temporally weighted regression (GTWR) model. The hybrid Co-kriging + GTWR model, which incorporates two of the most influential auxiliary variables, can improve the accuracy and reliability of predicting HM concentrations. The predicted concentrations of eight HMs all exceeded the background values for soil environment in China. The results of the ecological risk assessment revealed that five HMs accounted for more than 90% of the area at the "High risk" level (RQ ≥ 1), with the descending order of Ni (100%) = Cu (100%) > As (98.73%) > Zn (95.50%) > Pb (94.90%). This study provides a novel approach to environmental pollution research using the published data.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China
| | - Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaxun Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Department of Geographical Sciences, University of Maryland, College Park 20742, the United States
| | - Zilin Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jing Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Yafeng Liu
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
25
|
Li M, Zhou J, Cheng Z, Ren Y, Liu Y, Wang L, Cao L, Shen Z. Pollution levels and probability risk assessment of potential toxic elements in soil of Pb-Zn smelting areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:165. [PMID: 38592368 DOI: 10.1007/s10653-024-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.
Collapse
Affiliation(s)
- Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liu Cao
- Jiyuan Industrial and Urban Integration Demonstration Zone Ecological Environment Bureau, Jiyuan, 459000, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
26
|
Xu D, Wang Z, Tan X, Xu H, Zhu D, Shen R, Ding K, Li H, Xiang L, Yang Z. Integrated assessment of the pollution and risk of heavy metals in soils near chemical industry parks along the middle Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170431. [PMID: 38301773 DOI: 10.1016/j.scitotenv.2024.170431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Industrialization in riparian areas of critical rivers has caused significant environmental and health impacts. Taking eight industrial parks along the middle Yangtze River as examples, this study proposes a multiple-criteria approach to investigate soil heavy metal pollution and associated ecological and health risks posed by industrial activities. Aiming at seven heavy metals, the results show that nickel (Ni), cadmium (Cd), and copper (Cu) exhibited the most significant accumulation above background levels. The comprehensive findings from Pearson correlation analysis, cluster analysis, principal component analysis, and industrial investigation uncover the primary sources of Cd, arsenic (As), mercury (Hg), and lead (Pb) to be chemical processing, while Ni and chromium (Cr) are predominantly derived from mechanical and electrical equipment manufacturing. In contrast, Cu exhibits a broad range of origins across various industrial processes. Soil heavy metals can cause serious ecological and carcinogenic health risks, of which Cd and Hg contribute to >70 % of the total ecological risk, and As contributes over 80 % of the total health risk. This study highlights the importance of employing multiple mathematical and statistical models in determining and evaluating environmental hazards, and may aid in planning the environmental remediation engineering and optimizing the industry standards.
Collapse
Affiliation(s)
- Dong Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Zejun Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China.
| | - Xiaoyu Tan
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Haohan Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Dongbo Zhu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Ruili Shen
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Kang Ding
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Hongcheng Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China.
| | - Zhibing Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
27
|
Younis U, Danish S, Datta R, Alahmadi TA, Ansari MJ. Sustainable remediation of chromium-contaminated soils: boosting radish growth with deashed biochar and strigolactone. BMC PLANT BIOLOGY 2024; 24:115. [PMID: 38365582 PMCID: PMC10870680 DOI: 10.1186/s12870-024-04791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.
Collapse
Affiliation(s)
- Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Sub Campus Rahim Yar Khan, Rahim Yar Khan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
28
|
Zhang J, Yang T, Wang N, Luo X, Li H, Liao Y. Health risk assessment of heavy metals in wild fish and seasonal variation and source identification of heavy metals in sediments: a case study of typical urban river in Xi'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8898-8916. [PMID: 38180666 DOI: 10.1007/s11356-023-31693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
In order to determine the status of heavy metal pollution in river sediments and wild fish in Xi'an, concentrations of heavy metals (Cr, Ni, Cu, Zn, As, and Pb) were collected and analyzed in sediments and wild fish during dry season (October-November 2020) and wet season (June-July 2021). This study aimed to investigate the spatial and temporal variations of heavy metals in urban rivers of Xi'an, China. Their distribution characteristics and sources as well their pollution levels and health risks were assessed. The findings revealed that influenced by human activities, the heavy metal content in sediments (mg·kg-1 dry weight) in wet season was ranked as follows: Cr (73.09) > Zn (63.73) > Pb (40.31) > Ni (31.52) > Cu (24.86) > As (6.83); in the dry season: Zn (94.07) > Cr (69.59) > Cu (34.24) > Ni (33.60) > Pb (32.87) > As (7.60). Moreover, 32 fish samples from six species indicated an average metal content trend (mg·kg-1 wet weight) of Zn (8.70) > Cr (0.57) > Pb (0.28) > Ni (0.27) > Cu (0.24) > As (0.05). The potential ecological risk indices for sediment heavy metal concentrations in both seasons were well below the thresholds, which indicates that the aquatic environment is in safe level. The analysis of the potential ecological risk of sediment heavy metal concentrations indicates that the aquatic environment is safe for the time being. Based on the estimated daily intake (EDI), target risk quotient (THQ), total target risk quotient (TTHQ), cancer risk (CR), total cancer risk (TCR), and the permissible safety limits set by the agencies, the consumption of the fish examined is safe for human health. However, the presence of Cr and As in wild fish should still be a concern for human health, especially for children. The cumulative effect of heavy metals and the bioconcentration factor (BCF) suggest that sediment and heavy metals in fish are closely related, with higher concentrations in fish living in the bottom layer of the water column than in other water layers, and increasing with increasing predator levels. Correlation analysis and PMF modeling identified and determined four comparable categories of potential sources, namely, (1) atmospheric deposition and traffic sources, (2) agricultural sources, (3) industrial sources, and (4) natural sources.
Collapse
Affiliation(s)
- Jiale Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Tao Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, 710062, Shaanxi, People's Republic of China.
| | - Ning Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xingyu Luo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Haiyan Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Yilin Liao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| |
Collapse
|
29
|
Zhou H, Yue X, Chen Y, Liu Y. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167772. [PMID: 37839479 DOI: 10.1016/j.scitotenv.2023.167772] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Heavy metal pollution (HMP) from mining operations severely threatens soil ecosystems and human health. Identifying the sources of soil heavy metals (HMs) and assessing source-specific risks are critical for developing effective risk mitigation strategies. In this study, a combination of methodologies including PMF, Monte Carlo analysis, soil pollution risk index, and a human health risk assessment model were utilized to investigate soil HM risks in a typical ancient mining area in Daye City, China, considering both environmental pollution and human health impacts. Cu emerged as the most significant soil pollution risk, whereas As posing the highest health risk. About 48.44 % of the multi-element integrated soil pollution risk has escalated to the heavy level. Furthermore, around 22.42 % of the non-carcinogenic risk (NCR) and 9.53 % of the carcinogenic risk (CR) exceeded unacceptable thresholds (THI > 1 for NCR and TCR > 1E-4 for CR). The PMF model identified four distinct sources: the smelting industry, traffic emissions, a combination of agricultural and natural factors, and mining activities. The mixed agricultural and natural source significantly impacted health risks, contributing 42.17 % to NCR and 53.88 % to CR, followed by the mining source, contributing 31.67 % to NCR and 24.07 % to CR. Interestingly, the mining source contributed the highest soil pollution risk at 42.45 %, while the mixed agricultural and natural source exhibited the lowest at 16.33 %. Furthermore, the study explored source-specific risk components by evaluating the contributions of different sources to specific elements. The mining source was identified as the focus for soil HMP control, followed by the mixed agricultural and natural source. Overall, this study provided an in-depth analysis of soil heavy metal risks in mining areas from the source apportionment perspective, which broadened the research framework of soil heavy metal source analysis and risk assessment, potentially providing scientific guidance for managing regional soil HMP.
Collapse
Affiliation(s)
- Hao Zhou
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China.
| | - Xuemei Yue
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China.
| | - Yong Chen
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China; Hubei Provincial Key Laboratory of Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan 430080, Hubei, China.
| | - Yanzhong Liu
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; Hubei Provincial Key Laboratory of Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan 430080, Hubei, China.
| |
Collapse
|
30
|
Lu X, Wang Z, Chen Y, Yang Y, Fan X, Wang L, Yu B, Lei K, Zuo L, Fan P, Liang T, Cho JW, Antoniadis V, Rinklebe J. Source-specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119056. [PMID: 37757688 DOI: 10.1016/j.jenvman.2023.119056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Contamination, hazard level and source of 10 widely concerned potentially toxic metal(loid)s (PTMs) Co, As, Pb, Cr, Cu, Zn, Ni, Mn, Ba, and V in fine dust with particle size below 63 μm (FD63) were investigated to assess the environmental quality of college campuses and influencing factors. PTMs sources were qualitatively analyzed using statistical methods and quantitatively apportioned using positive matrix factorization. Probabilistic contamination degrees of PTMs were evaluated using enrichment factor and Nemerow integrated enrichment factor. Eco-health risk levels of content-oriented and source-oriented for PTMs were evaluated using Monte Carlo simulation. Mean levels of Zn (643.8 mg kg-1), Pb (146.0 mg kg-1), Cr (145.9 mg kg-1), Cu (95.5 mg kg-1), and Ba (804.2 mg kg-1) in FD63 were significantly larger than soil background values. The possible sources of the concerned PTMs in FD63 were traffic non-exhaust emissions, natural source, mixed source (auto repair waste, paints and pigments) and traffic exhaust emissions, which accounted for 45.7%, 25.4%, 14.5% and 14.4% of total PTMs contents, respectively. Comprehensive contamination levels of PTMs were very high, mainly caused by Zn pollution and non-exhaust emissions. Combined ecological risk levels of PTMs were low and moderate, chiefly caused by Pb and traffic exhaust emissions. The non-cancer risks of the PTMs in FD63 to college students fell within safety level, while the carcinogenic PTMs in FD63 had a certain cancer risks to college students. The results of source-specific health risk assessment indicated that Cr and As were the priority PTMs, and the mixed source was the priority pollution source of PTMs in FD63 from college campuses, which should be paid attention to by the local government.
Collapse
Affiliation(s)
- Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yurong Chen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Woo Cho
- Department of Environment, Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| |
Collapse
|
31
|
Xie YX, Cheng WC, Wang L, Xue ZF, Xu YL. Biopolymer-assisted enzyme-induced carbonate precipitation for immobilizing Cu ions in aqueous solution and loess. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116134-116146. [PMID: 37910372 DOI: 10.1007/s11356-023-30665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Wastewater, discharged in copper (Cu) mining and smelting, usually contains a large amount of Cu2+. Immobilizing Cu2+ in aqueous solution and soils is deemed crucial in preventing its migration into surrounding environments. In recent years, the enzyme-induced carbonate precipitation (EICP) has been widely applied to Cu immobilization. However, the effect of Cu2+ toxicity denatures and even inactivates the urease. In the present work, the biopolymer-assisted EICP technology was proposed. The inherent mechanism affecting Cu immobilization was explored through a series of test tube experiments and soil column tests. Results indicated that 4 g/L chitosan may not correspond to a higher immobilization efficiency because it depends as well on surrounding pH conditions. The use of Ca2+ not only played a role in further protecting urease and regulating the environmental pH but also reduced the potential for Cu2+ to migrate into nearby environments when malachite and azurite minerals are wrapped by calcite minerals. The species of carbonate precipitation that are recognized in the numerical simulation and microscopic analysis supported the above claim. On the other hand, UC1 (urease and chitosan colloid) and UC2 (urea and calcium source) grouting reduced the effect of Cu2+ toxicity by transforming the exchangeable state-Cu into the carbonate combination state-Cu. The side effect, induced by 4 g/L chitosan, promoted the copper-ammonia complex formation in the shallow ground, while the acidic environments in the deep ground prevented Cu2+ from coordinating with soil minerals. These badly degraded the immobilization efficiency. The Raman spectroscopy and XRD test results tallied with the above results. The findings shed light on the potential of applying the biopolymer-assisted EICP technology to immobilizing Cu ions in water bodies and sites.
Collapse
Affiliation(s)
- Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| | - Yin-Long Xu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China
| |
Collapse
|
32
|
Dat ND, Nguyen LSP, Vo TDH, Van Nguyen T, Do TTL, Tran ATK, Hoang NTT. Pollution characteristics, associated risks, and possible sources of heavy metals in road dust collected from different areas of a metropolis in Vietnam. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7889-7907. [PMID: 37493982 DOI: 10.1007/s10653-023-01696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Road dust samples were collected from different areas in Ho Chi Minh City (HCMC)-the largest city in Vietnam to explore pollution characteristics, ecological and human health risks, and sources of heavy metals (HMs). Results revealed the level of HMs found in the samples from residential and industrial zones of HCMC in the order of Mn > Zn > Cu > Cr > Pb > Ni > Co > As > Cd, Zn > Mn > Cu > Cr > Pb > Ni > Co > As > Cd. Due to the high enrichment of Cu, Zn in residential areas and Cu, Pb, Zn in industrial areas, the HM contamination in these areas remained moderate to severe. The findings also revealed a rising trend in the level of HMs in road dust from the east to the west of HCMC, and a heavy metal contamination hotspot in the west. In addition, industrial areas were more contaminated with HMs, posing greater associated risks than residential areas. Children living in urban areas of HCMC were found to be exposed to unacceptable health risks. Meanwhile, adults living in industrial areas face intolerable cancer risk. Among the nine HMs, Cd, Pb, and Cu posed the greatest ecological risk, while Cr and As were the main culprits behind health risks. HMs in road dust might derive from non-exhaust vehicular emissions, crustal materials, and industrial activities. The results suggested that industrial areas to the west of HCMC should focus more on reducing and controlling severe pollution of HMs.
Collapse
Affiliation(s)
- Nguyen Duy Dat
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam.
| | - Ly Sy Phu Nguyen
- Faculty of Environment, University of Science, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Truc Van Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Thi Thuy Linh Do
- Institute for Environment and Resources (IER), Ho Chi Minh City, 700000, Viet Nam
- Department of Science and Technology, Vietnam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Anh Thi Kim Tran
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam
| | - Nhung Thi-Tuyet Hoang
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Viet Nam
| |
Collapse
|
33
|
He K, Wang J, Geng H, Qin Z, Li N, Zhang Y, Yang R, Feng S, Wang B. Will different land uses affect heavy metal pollution in soils of roadside trees? An empirical study from Shanghai. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1388. [PMID: 37897518 DOI: 10.1007/s10661-023-12021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Heavy metal pollution in roadside soil may harm humans, animals, plants, and local ecosystems. This study aimed to explore the sources and potential ecological risks of heavy metals in soils of roadside trees under different land uses, using soil samples collected from 136 roads across 16 administrative districts in Shanghai. The contents, pollution characteristics, potential ecological risks, and sources of seven heavy metals were analyzed, including Cr, Ni, Cd, Pb, As, Cu, and Zn. Results showed that (1) land use patterns affected the heavy metal contents, with industrial and construction areas showing higher contents while agricultural and forestry areas lower; (2) the ranking of heavy metal pollution levels was Cd > As > Pb > Cu > Ni > Cr > Zn. Cd exhibited the highest potential ecological risk, falling within the moderate to considerable potential ecological risk interval; (3) the sources of Cu, Zn, Cr, Ni, Cd, and Pb were associated with traffic emissions, whereas As had independent other sources and Pb in industrial and construction areas was also influenced by industrial emissions. These results provide valuable references on the control of heavy metal pollutants and the management of land uses in megacities.
Collapse
Affiliation(s)
- Kun He
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Junjie Wang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Hefang Geng
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China
| | - Zhenyan Qin
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Nan Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yanting Zhang
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China
| | - Ruiqing Yang
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China
| | - Shucheng Feng
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China.
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China.
| | - Benyao Wang
- Shanghai Municipal Landscape Management and Instructional Station, 156 Jianguo West Road, Huangpu District, Shanghai, 201020, China.
- Shanghai Engineering Research Center of Urban Trees Ecological Application, Shanghai, 201020, China.
| |
Collapse
|
34
|
Martins AC, Ferrer B, Tinkov AA, Caito S, Deza-Ponzio R, Skalny AV, Bowman AB, Aschner M. Association between Heavy Metals, Metalloids and Metabolic Syndrome: New Insights and Approaches. TOXICS 2023; 11:670. [PMID: 37624175 PMCID: PMC10459190 DOI: 10.3390/toxics11080670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Samuel Caito
- School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Romina Deza-Ponzio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| |
Collapse
|
35
|
Parlak M, Everest T, Tunçay T. Spatial distribution of heavy metals in soils around cement factory and health risk assessment: a case study of Canakkale-Ezine (NW Turkey). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5163-5179. [PMID: 37085738 DOI: 10.1007/s10653-023-01578-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Sustainable use of agricultural land plays a crucial role in ensuring food security. For sustainable use of soils, it is very important to focus on the pollution status. This study was conducted on the soils in the northern part of the Ezine district in northwestern Turkey. The study aimed to determine the physicochemical properties of the soils in the vicinity of the cement plant, the concentrations of heavy metals, the spatial distribution of heavy metals, and their impact on the health of the local human population. Soil samples were collected from the cement plant in different directions (S,W, N, E, NE, SW) and at different distances (1, 3, 5, and 7 km) from 0-10 cm depth with three replicates. The soil samples were analyzed for texture, pH, electrical conductivity, lime, and heavy metals such as Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn. The soils had different textures (loam, sandy clay loam, loam, sandy loam), slightly alkaline pH, low lime content, and moderate organic matter content. Except for Cd and Pb, the average values of the other heavy metals (Co = 1.18 < 19 mg kg-1,Cr = 50.92 < 90 mg kg-1, Cu = 31.21 < 45 mg kg-1, Fe = 16,007 < 47,200 mg kg-1, Mn = 499.68 < 850 mg kg-1, Ni = 41.17 < 68 mg kg-1, Zn = 50.91 < 95 mg kg-1) in the soils were below the normal background level. The heavy metal contents of the soils in the study area are influenced by various sources (geological structure, agrochemicals used in agricultural activities, and vehicle traffic). The prevailing wind direction did not influence the local distribution of heavy metals in soils in the study area. The health risk assessment model studies showed that the hazard quotient values of less than 1 for adults and children indicate that the noncarcinogenic risks were insignificant. People exposed to heavy metals in the soils of the study area contaminated from various sources for a long time could be at carcinogenic risk. Since Cr and Pb exceed the acceptable risk range in children and Cr exceeds the acceptable risk range in adults, geochemical monitoring of soils should be conducted periodically by authorized institutions in the study area.
Collapse
Affiliation(s)
- Mehmet Parlak
- Canakkale Onsekiz Mart University, Lapseki Vocational School, Canakkale, Turkey.
| | - Timuçin Everest
- Canakkale Onsekiz Mart University, Lapseki Vocational School, Canakkale, Turkey
| | - Tülay Tunçay
- Soil Fertilizer and Water Resources Central Research Institute, Ankara, Turkey
| |
Collapse
|
36
|
Zhang Z, Guo S, Hua L, Wang B, Chen Q, Liu L, Xiang L, Sun H, Zhao H. Urinary Levels of 14 Metal Elements in General Population: A Region-Based Exploratory Study in China. TOXICS 2023; 11:488. [PMID: 37368588 DOI: 10.3390/toxics11060488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Metal pollution may lead to a variety of diseases; for this reason, it has become a matter of public concern worldwide. However, it is necessary to use biomonitoring approaches to assess the risks posed to human health by metals. In this study, the concentrations of 14 metal elements in 181 urine samples obtained from the general population of Gansu Province, China, were analyzed using inductively coupled plasma mass spectrometry. Eleven out of fourteen target elements had detection frequencies above 85%, namely, Cr, Ni, As, Se, Cd, Al, Fe, Cu and Rb. The concentrations of most metal elements in the urine of our subjects corresponded to the medium levels of subjects in other regional studies. Gender exerted a significant influence (p < 0.05) on the concentrations of Tl, Rb and Zn. The concentrations of Ni, As, Pb, Sr, Tl, Zn, Cu and Se showed significant differences among different age groups and the age-related concentration trends varied among these elements. There were significant differences in the urine concentrations of Zn and Sr between those subjects in the group who were frequently exposed to soil (exposed soil > 20 min/day) and those in the group who were not, indicating that people in regular contact with soil may be more exposed to metals. This study provides useful information for evaluating the levels of metal exposure among general populations.
Collapse
Affiliation(s)
- Zining Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiusheng Chen
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Lu Liu
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
37
|
Panqing Y, Abliz A, Xiaoli S, Aisaiduli H. Human health-risk assessment of heavy metal-contaminated soil based on Monte Carlo simulation. Sci Rep 2023; 13:7033. [PMID: 37120424 PMCID: PMC10148830 DOI: 10.1038/s41598-023-33986-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Soil contamination soils of by heavy metals (HMs) poses serious threats to the soil environment and enters the human body through exposure pathways such as ingestion and skin contact, posing a threat to human health. The purpose of this study was to analyze the sources and contributions of soil HMs, and to quantitatively assess the human health risks of soil HMs to different populations (i.e. children, adult females and adult males), and to analyze the human health risks caused by various sources of sensitive populations. 170 topsoil (0-20 cm) were collected from Fukang, Jimsar and Qitai on the northern slope of Tianshan Mountains in Xinjiang, China, and the contents of Zn, Cu, Cr, Pb and Hg were determined. This study used the Unmix model and a health-risk assessment (HRA) model to assess the human health risks of five HMs. The results showed that: (1) The mean values of Zn and Cr were lower than the background values of Xinjiang, the mean values of Cu and Pb were slightly higher than the background values of Xinjiang but lower than the national standard, and the mean value of Hg and Pb was higher than the background value of Xinjiang and the national standard. (2) The sources of soil HMs in the region were mainly traffic, natural, coal, and industrial sources. Moreover, the HRA model combined with Monte Carlo simulation showed similar trends in the health-risk status of all population groups in the region. Probabilistic HRA revealed that noncarcinogenic risks were acceptable for all populations (HI < 1) while carcinogenic risks were high (children: 77.52%; female: 69.09%; male: 65.63%). For children, carcinogenic risk from industrial and coal sources exceeded the acceptable threshold by 2.35 and 1.20 times, respectively, and Cr was the main element contributing to human carcinogenic risk. These findings suggest that carcinogenic risks from coal-based Cr emissions cannot be ignored, and the study area should aim to control Cr emissions from industrial sources. The results of this study provide support for the prevention of human health risks and the control of soil HMs pollution across different age groups.
Collapse
Affiliation(s)
- Ye Panqing
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Abdugheni Abliz
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China.
- Ecological Post-Doctoral Research Station, Xinjiang University, Urumqi, 830046, China.
| | - Sun Xiaoli
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Halidan Aisaiduli
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
38
|
Pasupuleti RR, Huang Y. Recent applications of atomic spectroscopy coupled with magnetic solid‐phase extraction techniques for heavy metal determination in environmental samples: A review. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
| | - Yeou‐Lih Huang
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan
- Graduate Institute of Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Research Center for Precision Environmental Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
39
|
Chen Y, Hu Z, Bai H, Shen W. Variation in Road Dust Heavy Metal Concentration, Pollution, and Health Risk with Distance from the Factories in a City-Industry Integration Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114562. [PMID: 36361440 PMCID: PMC9656356 DOI: 10.3390/ijerph192114562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/23/2023]
Abstract
Road dust samples around three typical factories, F1, F2, and F3, in the National Zhengzhou Economic and Technology Development Zone (ZETZ), China, were collected to study the variation in heavy metal concentration (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn), pollution, and health risk with distance from the factories. The results indicated that the concentrations of all the elements near F1 were higher than near both F2 and F3. Apart from Co, Mn, and Cu in some dust samples, all the element concentrations were higher than the corresponding background values (BCs), to varying degrees. The spatial distributions of the heavy metals surrounding the factories followed the normal distribution. The peak values of element concentrations occurred at 300~400 m away from the factories, except for Hg, which continued increasing more than 500 m away from the factories. The fluctuation curves of the pollution load index value calculated according to the BCs for F1, F2, and F3 all had two peaks, a "small peak" and a "large peak", appearing at about 30 m and 300 m, respectively. For the hazard index and the total carcinogenic risk, the peak values all appeared at 400 m, with the curves following the normal distribution. Exposure to road dust containing non-carcinogenic and carcinogenic elements around F1 was greater than around F2 or F3. In conclusion, our results provide a reference for pursuing effective prevention of dust heavy metal pollution around modern manufacturing factories.
Collapse
Affiliation(s)
- Yinan Chen
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450018, China
| | - Zhiqiang Hu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
| | - He Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Shen
- The College of Environment and Planning, Henan University, Kaifeng 475001, China
| |
Collapse
|