1
|
Ma J, Rahman WU, Du P, Li Q, He F, Qiu G, Wang G, Xu X, Li D, Li M, Lin S. Removal and recovery of perchlorate from fireworks production wastewater through ion exchange and biological reduction processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124806. [PMID: 40048978 DOI: 10.1016/j.jenvman.2025.124806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Ion exchange is often used to remove perchlorate from various wastewaters. This study evaluated the performance of four representative anion exchange resins for removing perchlorate from wastewater. Perchlorate was recovered from the regenerant brine concentrate and further treated through biological methods. The adsorption equilibrium data were well-fitted to the Freundlich isotherm, suggesting that perchlorate adsorption occurred on a heterogeneous resin surface under favorable conditions. Under conditions of high perchlorate concentrations, high salinity, and dissolved organic matter, the anion exchange resins with both polystyrene and polyacrylic matrices exhibited excellent perchlorate adsorption and superior perchlorate selectivity. After the first regeneration step, most ion exchange sites in polyacrylic IRA958 were recovered within five bed volume of the regenerant, while only 24.8% of the sites were recovered for the polystyrene A520E resin. Additionally, solid-phase KClO4 crystals were readily recovered from the IRA958 waste regenerant and achieved a purity higher than 90% owing to the high perchlorate concentration and low solubility of KClO4. During the biological degradation process, perchlorate concentrations gradually decreased from 1371 mg/L to nearly zero within 72 h, while methane yield increased. Our results indicate that the combination of ion exchange, perchlorate recovery, and biological reduction processes effectively reduces operating costs and eliminates waste from wastewater. This approach has significant potential for treating wastewater from fireworks production and supports environmental sustainability goals.
Collapse
Affiliation(s)
- Jie Ma
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Waseem Ur Rahman
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Peijun Du
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Qimeng Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China.
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Guoyu Qiu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Guoxiang Wang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Donglin Li
- Jiangsu Academy of Forestry, Nanjing, 211153, China; Yancheng Coastal Wetland Ecosystem National Research Station, Yancheng, 224000, China
| | - Ming Li
- Yancheng Academy of Fishery Sciences, Yancheng, 224008, China
| | - Shuizhong Lin
- Yancheng Academy of Fishery Sciences, Yancheng, 224008, China
| |
Collapse
|
2
|
Gentilhomme AS, Dhakar K, Timmins-Schiffman E, Chaw M, Firth E, Junge K, Nunn BL. Proteomic Insights into Psychrophile Growth in Perchlorate-Amended Subzero Conditions: Implications for Martian Life Detection. ASTROBIOLOGY 2025; 25:177-188. [PMID: 39960803 DOI: 10.1089/ast.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Since the discovery of perchlorates in martian soils, astrobiologists have been curious if and how life could survive in these low-water, high-salt environments. Perchlorates induce chaotropic and oxidative stress but can also confer increased cold tolerance in some extremophiles. Though bacterial survival has been demonstrated at subzero temperatures and in perchlorate solution, proteomic analysis of cells growing in an environment like martian regolith brines-perchlorate with subzero temperatures-has yet to be demonstrated. By defining biosignatures of survival and growth in perchlorate-amended media at subzero conditions, we move closer to understanding the mechanisms that underlie the feasibility of life on Mars. Colwellia psychrerythraea str. 34H (Cp34H), a marine psychrophile, was exposed to perchlorate ions in the form of a diluted Phoenix Mars Lander Wet Chemistry Laboratory solution at -1°C and -5°C. At both temperatures in perchlorate-amended media, Cp34H grew at reduced rates. Mass spectrometry-based proteomics analyses revealed that proteins responsible for mitigating effects of oxidative and chaotropic stress increased, while cellular transport proteins decreased. Cumulative protein signatures suggested modifications to cell-cell or cell-surface adhesion properties. These physical and biochemical traits could serve as putative identifiable biosignatures for life detection in martian environments.
Collapse
Affiliation(s)
- Anais S Gentilhomme
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kusum Dhakar
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Matthew Chaw
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Erin Firth
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Karen Junge
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Santhi JJ, Guru A, Shaik MR, Hussain SA, Issac PK. Understanding the effects of perfluorobutane sulfonate in zebrafish larvae model (Danio rerio): Insights into potential ecotoxicological risks and human health. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110069. [PMID: 39510332 DOI: 10.1016/j.cbpc.2024.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Perfluorobutane sulfonate (PFBS) is a synthetic organic molecule that belongs to the per and polyfluoroalkyl substances family. Due to its unique physicochemical characteristics, PFBS has been extensively used in consumer products and industries. However, its increasing usage and chemical stability cause environmental pollution and bioaccumulation. The toxicological effects of PFBS were not well studied. In this study, the impact of PFBS on zebrafish embryos was evaluated. PFBS (1000-1500 μM) exposure exhibited increased mortality and malformation in a concentration-dependent manner. After 96 hour post-fertilization of PFBS exposure, the LC50 was estimated to be 1378 μM. Furthermore, PFBS (1.4, 14, 140, 1400 μM) exposure significantly increases oxidative stress by suppressing antioxidant levels. Locomotor behavior analysis revealed that PFBS exposure caused locomotor changes in zebrafish larvae. Acetylcholine esterase activity was also reduced in the PFBS-exposed groups. Gene expression study showed that PFBS exposure downregulated the antioxidant gene expression in zebrafish larvae. Overall, the current study reveals that PFBS can trigger oxidative stress-induced apoptosis by reducing antioxidant activity in zebrafish larvae.
Collapse
Affiliation(s)
- Jenila John Santhi
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| |
Collapse
|
4
|
Zhang Y, Zhang L, Pu Y, Wang X, Mao W. Spatial distribution and risk assessment of perchlorate in raw cow milk from China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125169. [PMID: 39433205 DOI: 10.1016/j.envpol.2024.125169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
Perchlorate is a ubiquitous environmental contaminant worldwide, recognized as an emerging thyroid toxicant. This study focused on the pollution status, spatial distribution, possible sources of perchlorate in raw cow milk collected from 155 dairy farms in China, as well as the health risk of exposure to perchlorate through dairy products. The results showed that the detection rate of perchlorate in raw milk was 100% with the mean of 15.9 μg/kg, indicating the ubiquitous contamination of perchlorate in raw milk from China. The simulation of spatial distributions indicated that the levels of perchlorate in raw milk were spatially correlated, and relatively high levels of perchlorate exist in certain parts of Beijing-Tianjin-Hebei, Shanxi, Henan, and Zhejiang, suggesting potential environmental perchlorate contamination in these regions. A positive correlation was found between the perchlorate level in milk and the perchlorate level in feed, indicating the transfer process of perchlorate from feed to milk. The hazard quotient (HQ) values of exposure to perchlorate by dairy products ranged between 0 and 2.14, with the mean of 0.0188 and P95 of 0.101, indicating relatively low health risk to perchlorate through dairy products. To our knowledge, this is the first nationwide study on the spatial distribution and risk assessment of perchlorate in raw cow milk from China.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yunxia Pu
- Inner Mongolia Center for Disease Control and Prevention, Huhhot, 010031, Inner Mongolia, China
| | - Xiaodan Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Weifeng Mao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| |
Collapse
|
5
|
Karunanidhi D, Rhishi Hari Raj M, D Roy P, Subramani T. Health hazards from perchlorate enriched groundwater of a semi-arid river basin of south India and suggesting in-situ remediation through Managed Aquifer Recharge. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136231. [PMID: 39467436 DOI: 10.1016/j.jhazmat.2024.136231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024]
Abstract
The present study was conducted to assess the groundwater quality and perchlorate contents in the pre- and post-monsoon groundwater samples along with its associated health concerns with suggesting in-situ remediation in semi-arid Arjunanadi River basin of south India. Most of the samples (86 in pre-monsoon and 84 in post-monsoon out of total 94) showed secondary salinity and secondary alkalinity, and the perchlorate showed positive relations with Na+, K+, SO42-, Cl-, and NO3- contents. The main source of perchlorate could be fireworks manufacturing industries with 23 % of pre-monsoon (246.5 km2) and 33 % of post-monsoon samples (360 km2) showing perchlorate above the World Health Organization (WHO) standard (>0.07 mg/l). Perchlorate health risk assessment (PHRA) and total hazard index (THI) indicated more effect from oral pathway compared to the dermal pathway with about 80 %, 79 %, 65 %, and 60 % of samples causing health complications for infants, children, women, and men during the pre-monsoon. The post-monsoon groundwater showed increased health risks with 90 %, 82 %, 74 %, and 69 % of samples remaining hazardous for infants, children, women, and men. Artificial recharge through Managed Aquifer Recharge (MAR) techniques in the high-risk area could be useful to minimize the perchlorate contamination in groundwater and associated health risks under the United Nations Development Programme (UNDP) Sustainable Development Goals 3 and 6 (SDGs) for a healthy society.
Collapse
Affiliation(s)
- D Karunanidhi
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore 641032, India.
| | - M Rhishi Hari Raj
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore 641032, India
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma deMéxico, Ciudad Universitaria, Ciudad de Mexico 04510, CP, Mexico
| | - T Subramani
- Department of Geology, College of Engineering Guindy (CEG), Anna University, Chennai 600025, India; Department of Mining Engineering, College of Engineering Guindy (CEG), Anna University, Chennai 600025, India
| |
Collapse
|
6
|
Xia Z, Wang S, Wu Y, Qiao X, Guo X, Wang Q, Liu Y, Qiu N, Wu Y, Liu X. Unveiling the Contamination of Thiocyanate, Perchlorate, and Chlorate in Edible Microalgae: Detection, Distribution, and Risk Assessment in Sustainable Food Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39568100 DOI: 10.1021/acs.jafc.4c08334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
With the growing interest in microalgae as a sustainable food source, concerns about potential chemical contaminants in these products have emerged. In this study, a sensitive and reliable LC-MS/MS method was developed for the simultaneous detection of thiocyanate, perchlorate, and chlorate in edible microalgae samples. The method was validated with excellent linearity (R2 > 0.998), low detection limits (LOD: 1-8 μg/kg), quantification limits (LOQ: 4-26 μg/kg), and high recovery rates (75-101.9%) across different sample types. We collected a total of 77 microalgae products based on the available varieties in the market, including 43 Spirulina powder samples, 10 Chlorella powder samples, and 24 microalgae-based food products, sourced from key microalgae production regions in China. The contamination levels for thiocyanate (median: 1843.06-2645.72 μg/kg) and perchlorate (median: 23.29-31.4 μg/kg) were consistently quantitated in all samples, while chlorate concentrations showed greater variability (median: 18.94-160.21 μg/kg). Risk assessment revealed a significant dietary exposure risk to thiocyanate, with estimated daily intake (EDI) values exceeding the EPA's subchronic reference dose, whereas no significant risk was identified for perchlorate or chlorate. Monte Carlo simulations further supported the conclusion that perchlorate and chlorate posed minimal dietary risks, while thiocyanate exposure warrants concern. This study not only provides a foundational method for monitoring these contaminants in microalgae but also contributes critical data for future food safety standards and regulatory practices regarding edible microalgae products.
Collapse
Affiliation(s)
- Zhunan Xia
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Sisi Wang
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yatao Wu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Xiangqi Qiao
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Xiao Guo
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Qiao Wang
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yan Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Nannan Qiu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food, State Administration for Market Regulation, Wuhan 430075, China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan, Hubei 430023, China
| |
Collapse
|
7
|
Li Y, Wang H, Zhang M, Wang B, Zhu G, Zhao X, Wu F. Risk assessment of dietary perchlorate exposure in typical areas of fireworks manufacturing in China using a perchlorate intake model. CHEMOSPHERE 2024; 366:143511. [PMID: 39389379 DOI: 10.1016/j.chemosphere.2024.143511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Perchlorate can disrupt the production of thyroid hormones, impact metabolism, and even affect the cognitive development of infants and toddlers. Typical areas of fireworks manufacturing might face severe perchlorate pollution due to perchlorate is an important raw material. But related study has not been reported. We assess the risk caused by perchlorate and identify the critical exposure pathways for different age/gender groups in typical area of fireworks manufacturing. Liuyang city, a major fireworks manufacturing center in China, was selected as study region. Perchlorate concentrations were measured in 230 local food samples from Liuyang using LC/MS/MS. Risks for different age/gender groups were estimated using a perchlorate intake model. The detection rate of perchlorate in samples from all eight food groups, including vegetables, fruits, meat, seafood, egg, cereal, beans, and drinking water was 100%, and the perchlorate concentrations were higher than those reported in the United States, Canada, South Korea, Kuwait, and other regions of China. Liuyang residents are currently facing an extremely high perchlorate dietary exposure risk, with the mean Estimated Daily Intakes (EDIs) approximately 6-49 times higher than US EPA's recommended reference dose (RfD, 0.7 μg/kg bw/day), and 14-115 times higher than the tolerable daily intake (TDI, 0.3 μg/kg bw/day) established by EFSA. Breast milk and drinking water are identified as the primary exposure pathways for infants and toddlers under the age of two, contributing 44-86% and 13-41% to their total exposure, respectively. For individuals > two years, vegetable consumption (constituting 54-66% of exposures) and ingestion of drinking water (constituting 23-32% of exposures) represent the chief exposure routes. The Hazard Quotient (HQ) values for Liuyang City residents all exceed 2, indicating an extremely high non-carcinogenic risk associated with perchlorate. Scientific and systematic perchlorate pollution control measures should be taken by local government.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Minghui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
8
|
Xie Y, Gu L, Wang Y, Liu W, Huo Y. Comparative effects of ammonium nitrogen on perchlorate degradation performance under heterotrophic condition with different carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135293. [PMID: 39094307 DOI: 10.1016/j.jhazmat.2024.135293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Perchlorate (ClO4-) mainly exists in the form of ammonium perchlorate in industrial production. However, the degradation mechanisms of different concentrations of ammonium nitrogen (NH4+-N) and ClO4- mixed pollutants in the environment are not well understood. This study aims to explore the potential of different types of carbon sources for ClO4- and NH4+-N biodegradation. Experimental results showed that the concentration and type of carbon sources are decisive to simultaneous removal of NH4+-N and ClO4-. Under condition of C(COD)/C(ClO4-) ratio of 21.15 ± 4.40, the simultaneously removal efficiency of ClO4- and NH4+-N in acetate (Ace) was relatively higher than that in methanol (Met). C(NH4+-N)/C(ClO4-) ratio of 9.66 ± 0.51 and C(COD)/C(ClO4-) ratio of 2.51 ± 0.87 promoted ClO4- reduction in glucose-C (Glu-C). However, high concentration of Glu could cause pH decrease (from 7.57 to 4.59), thereby inhibiting ClO4- reduction. High-throughput sequencing results indicated that Proteobacteria and Bacteroidetes have made a major contribution to the simultaneous removal of NH4+-N and ClO4-. They are two representative bacterial phyla for participating in both ClO4- reduction and denitrification. Notably, the abundance of main ClO4- degrading bacteria (such as Proteobacteria, Chloroflexi, and Firmicutes) significantly increased by 528.57 % in Glu-C. It can be inferred that the concentration of carbon source and NH4+-N were the most important factors determining the removal efficiency of ClO4- by influencing changes in the core microbial community. This study will provide new techniques and mechanistic insights for the simultaneous removal of mixed ClO4- and nitrogen pollutants, which can also provide theoretical support for innovation in future biological treatment processes.
Collapse
Affiliation(s)
- Yuxuan Xie
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Liang Gu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Yang Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Wuzixiao Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Yang Huo
- Research Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, People's Republic of China; Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| |
Collapse
|
9
|
Hu Z, Jia Y, Wu Y, Zhang Y. Occurrence and removal technologies of perchlorate in water: A systematic review and bibliometric analysis. CHEMOSPHERE 2024; 364:143119. [PMID: 39154764 DOI: 10.1016/j.chemosphere.2024.143119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The pollution resulting from the emergence of the contaminant perchlorate is anticipated to have a substantial effect on the water environment in the foreseeable future. Considerable research efforts have been devoted to investigating treatment technologies for addressing perchlorate contamination, garnering widespread international interest in recent decades. A systematic review was conducted utilizing the Web of Science, Scopus, and Science Direct databases to identify pertinent articles published from 2000 to 2024. A total of 551 articles were chosen for in-depth examination utilizing VOS viewer. Bibliometric analysis indicated that countries such as China, the United States, Chile, India, Japan, and Korea have been prominent contributors to the research on this topic. The order of ClO4- occurrence was as follows: surface water > groundwater > drinking water. Various remediation methods for perchlorate contamination, such as adsorption, ion-exchange, membrane filtration, chemical reduction, and biological reduction, have been suggested. Furthermore, the research critically evaluated the strengths and weaknesses of each approach and offered recommendations for addressing their limitations. Advanced technologies have shown the potential to achieve notably enhanced removal of perchlorate and co-contaminants from water sources. However, the low concentration of perchlorate in natural water sources and the high energy consumption related to these technologies need to be solved in order to effectively remove perchlorate from water.
Collapse
Affiliation(s)
- Zhihui Hu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yan Jia
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yuan Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| |
Collapse
|
10
|
Li J, Du B, Wang Y, Qiu J, Shi M, Wei M, Li L. Environmental perchlorate, thiocyanate, and nitrate exposures and bone mineral density: a national cross-sectional study in the US adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34459-34472. [PMID: 38703319 DOI: 10.1007/s11356-024-33563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Associations of perchlorate, thiocyanate, and nitrate exposures with bone mineral density (BMD) in adults have not previously been studied. This study aimed to estimate the associations of individual and concurrent exposure of the three chemicals with adult BMD. Based on National Health and Nutrition Examination Survey (NHANES, 2011-2018), 1618 non-pregnant adults (age ≥ 20 years and 47.0% female) were included in this study. Survey-weighted linear regression models were used to estimate individual urinary perchlorate, thiocyanate, and nitrate concentrations with lumbar spine BMD and total BMD in adults. Then, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were conducted to evaluate associations of co-occurrence of the three chemicals with adult BMD. In all participants, nitrate exposure was inversely associated with lumbar spine BMD (β = - 0.054, 95%CI: - 0.097, - 0.010). In stratification analyses, significant inverse associations were observed in female and participants older than 40 years old. In WQS regressions, significant negative associations of the weighted sum of the three chemicals with total and lumbar spine BMD (β = - 0.014, 95%CI: - 0.021, - 0.007; β = - 0.011, 95%CI: - 0.019, - 0.004, respectively) were found, and the dominant contributor was nitrate. In the BKMR models, non-linear dose-response associations of nitrate exposure with lumbar spine and total BMD were observed. These findings suggested that environmental perchlorate, thiocyanate, and nitrate exposure may reduce adult BMD and nitrate is the main contributor.
Collapse
Affiliation(s)
- Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Muhong Wei
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China.
| |
Collapse
|
11
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Efficient perchlorate reduction in microaerobic environment facilitated by partner methane oxidizers. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133683. [PMID: 38310847 DOI: 10.1016/j.jhazmat.2024.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
12
|
Guan J, Wan Y, Li J, Zheng T, Xia W, Xu S, Li Y. Urinary perchlorate, thiocyanate, and nitrate and their associated risk factors among Chinese pregnant women. CHEMOSPHERE 2023; 345:140467. [PMID: 37852377 DOI: 10.1016/j.chemosphere.2023.140467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are well-known inhibitors of iodide uptake and thyroid-disrupting chemicals. Widespread human exposure to them has been identified, whereas studies on their internal exposure levels among Chinese pregnant women are scarce and factors associated with them are not well recognized. The objective of this study is to determine their levels and identify the associated factors among pregnant women (n = 1120), based on a prospective birth cohort in Wuhan, central China, using repeated urine samples of three trimesters. Urinary perchlorate, thiocyanate, and nitrate were 100% detected in the samples, and specific gravity-adjusted median concentrations of them in all the samples were 12.6 ng/mL, 367 ng/mL, and 63.7 μg/mL, respectively. Their concentrations were weakly-to-moderately correlated with each other, with Spearman correlation coefficients ranging from 0.27 to 0.54. Poor reproducibility were observed for the three analytes over the three trimesters, with intraclass correlation coefficient of 0.07, 0.19, 0.04 for perchlorate, thiocyanate, and nitrate, respectively. The women who were overweight or used tap water as drinking water had significantly higher perchlorate concentrations, while those with excessive gestational weight gain had significantly higher thiocyanate concentrations (p < 0.05). The women with a college degree or above had lower nitrate concentrations (p < 0.05). Meanwhile, the median concentration of perchlorate in urine samples collected in spring, thiocyanate in those collected in winter, and nitrate in those collected in autumn, was significantly higher compared to their median concentrations in the samples collected in other three seasons (p < 0.05), respectively. Urinary perchlorate and nitrate concentrations of pregnant women in this study were higher than the concentrations of pregnant women in other countries, while thiocyanate concentrations were lower than that of most other countries. This study suggested potential covariates for future epidemiological analyses.
Collapse
Affiliation(s)
- Jing Guan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tongzhang Zheng
- School of Public Health, Brown University, Providence, RI, 02903, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
13
|
Lu Y, Han H, Huang X, Yi Y, Wang Z, Chai Y, Zhang X, Lu C, Wang C, Chen H. Uptake and translocation of organic pollutants in Camellia sinensis (L.): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118133-118148. [PMID: 37936031 DOI: 10.1007/s11356-023-30441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Camellia sinensis (L.) is a perennial evergreen woody plant with the potential for environmental pollution due to its unique growth environment and extended growth cycle. Pollution sources and pathways for tea plants encompass various factors, including atmospheric deposition, agricultural inputs of chemical fertilizers and pesticide, uptake from soil, and sewage irrigation. During the cultivation phase, Camellia sinensis (L.) can absorb organic pollutants through its roots and leaves. This review provides an overview of the uptake and translocation mechanisms involving the absorption of polycyclic aromatic hydrocarbons (PAHs), pesticides, anthraquinone (AQ), perchlorate, and other organic pollutants by tea plant roots. Additionally, we summarize how fresh tea leaves can be impacted by spraying pesticide and atmospheric sedimentation. In conclusion, this review highlights current research progress in understanding the pollution risks associated with Camellia sinensis (L.) and its products, emphasizing the need for further investigation and providing insights into potential future directions for research in this field.
Collapse
Affiliation(s)
- Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuchen Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuexing Yi
- School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou, 310008, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou, 310008, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China.
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
14
|
Li D, Huang W, Huang R. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131952. [PMID: 37399723 DOI: 10.1016/j.jhazmat.2023.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.
Collapse
Affiliation(s)
- Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|